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ON COUPLING MOMENT INTEGRABILITY FOR
TIME-INHOMOGENEOUS MARKOV CHAINS

UDC 519.21

V. V. GOLOMOZIY AND N. V. KARTASHOV

Abstract. In this paper, we find the conditions under which the expectation of the first coupling
moment for two independent, discrete, time-inhomogeneous Markov chains will be finite. We consider
discrete chains with a phase space {0, 1, . . . } and as the coupling moment we understand the first
moment of visiting zero state by the both chains at the same time.
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1. Introduction

The problem of finiteness for the moment of simultaneous hitting for two chains into
certain set (or simultaneous renewal of two renewal processes) play a crucial role in
evaluation of the stability estimates using coupling method. Similar estimates one can
find in the authors’ works [4, 5]. The problem of stability for a time-inhomogeneous
Markov chain is investigated there using a coupling method as a key method of the
research. Similar problems, but for the homogeneous Markov chains, are also considered
in the work [7].

The key question for the stability estimate evaluation in these papers is how we can
estimate the expectation for the moment of simultaneous hitting for two Markov chains.
The coupling setup can be found in the following work [5].

The problem of integrability and finiteness for the coupling moment can be reduced
to the problem of integrability and finiteness for the moment of simultaneous hitting
into certain set or to the problem of finiteness for the moment of simultaneous renewal.
Similar task is considered in the Lindvall’s book [14]. It worth to mention, that this
monograph is a classical book on the coupling method. There introduced different types
of coupling: week coupling, maximal coupling, Ornshtein coupling, Mineka coupling and
so on. Another famous book on the coupling method is a Torrison’s work [15].

The coupling method is also used in many other works. The first works on coupling
method are [1, 12, 13]. An example of how the coupling method is used to establish stabil-
ity estimates for time-homogeneous chain with different initial distributions is proposed
in [2].
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However, the problem of coupling only the same homogeneous Markov chain and re-
lated problems were considered in books mentioned above. In particular, the theorem
about integrability of the coupling moment in the book by Lindvall [14] had been proved
for two copies of the same time-homogeneous Markov chain whith different initial dis-
tributions. In the investigation of stability there arises the necessity to extend coupling
moment for different, not necessarily homogeneous Markov chains. So, well-known classi-
cal Lindvall’s and Thorrison’s results do not work in this case. Meantime, it is important
to note that the main theorem of this article uses the same proof schema as Lindvall’s
theorem 4.2 [14, p. 27].

The paper [9] is devoted to the investigation of such problem as integrability of the
coupling moment for two different Markov chains. In this work the estimates for the
expectation of a coupling moment for two different time-homogeneous Markov chains
starting with a random delays are presented. The conditions under which these estimates
were obtained are the strong aperiodicity (g1

1+g2
1 > 0) and the finiteness of second renewal

moments.
The maximal coupling for two time-inhomogeneous chains is considered in other au-

thor’s papers [10, 11].
In the current paper these results extended to the time-inhomogeneous case. It is

important that in this case the fundamental principle of independence of the renewal
times does not hold true anymore. Instead, the conditional independence should be
considered given the fixed moments of the previous renewal process.

The main theorem of this paper gives the general conditions which guarantee the
integrability of the coupling moment. They are the condition of the separation from a
zero for renewal probabilities (in the time-homogeneous case this condition automatically
holds true for the non-periodic renewal distribution with a finite mean) and the uniform
integrability of the renewal distributions. It is interesting that similarity of the condition
can be noted for homogeneous and inhomogeneous case. In particular, for the time-
homogeneous case, an estimate similar to the one from the work [9] is derived in a
principal different way.

2. Dependence of renewal moments for time-inhomogeneous Markov chain

The fundamental fact defining the proof schema in the time-inhomogeneous case is
that elements of a renewal sequence are not independent and the distribution of the
k + 1-st renewal moment is completely defined by the k-th renewal value.

Let’s examine an example that leads to the renewal sequence generated by the time-
inhomogeneous Markov chain.

Consider some time-inhomogeneous discrete Markov chain (Xt, t ≥ 0) with a phase
space {0, 1, 2, . . .}. Its transition probabilities are defined in the following way:

P{Xt+1 = j | Xt = i} = Pt(i, j) = p
(t)
ij , t ≥ 0. (1)

In the zero moment of time the chain is in the zero state. Let’s introduce the following
notation:

θ1 = inf{t > 0: Xt = 0}
θ2 = inf{t > θ1 : Xt = 0}

. . .

θm = inf{t > θm−1 : Xt = 0}, m > 1,

(2)

where θ1 is time of the first returning to zero, θ2 is time between first and second zero
hitting, and so on. In this case τk =

∑k
j=1 θk is the k-th hitting moment.

The sequence {θm,m ≥ 1} is a renewal sequence generated by the time-inhomogeneous
Markov chain Xt. In general case, for the chain starting from a non-zero state we may
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consider an initial delay θ0. It is time that a chain takes till hitting zero for the first
time.

Let’s now investigate a problem of dependence for the θm variables. In the homo-
geneous case, these variables are independent. But if the chain is time-inhomogeneous
there is dependence between θm’s. Let’s see an example below.

The random variable θ1 has a following distribution:

pr{θ1 = k} = P{Xk = 0, Xk−1 �= 0, . . . , X1 �= 0, X0 = 0}

=
∑

i0=0,i1 �=0,i2 �=0,...,ik−1 �=0,ik=0

k−1∏
j=0

p
(j)
ijij+1

.
(3)

So, we can see that a distribution potentially depends from all Xt, t ≤ k.
The distribution of the random variable θ2 is as follows

P{θ2 = k} =
k−1∑
j=1

P{θ2 = k, θ1 = j}

=
∑
j

P{Xk = 0, Xk−1 �= 0, Xj+1 �= 0, Xj = 0,

Xj−1 �= 0, . . . , X1 �= 0, X0 = 0}.

(4)

Note, that for each term in the last sum, the following equality holds true:∑
P{Xk = 0, Xk−1 �= 0, Xj+1 �= 0 | Xj = 0}P{θ1 = j}

=
∑

P{Xk = 0, Xk−1 �= 0, Xj+1 �= 0 | Xj = 0}P{τ1 = j}.

So, the distribution of the random variable θ2 depends on the variable τ1 and all Xt,
t > τ1. We’ll show that this situation holds true for the other θm as well.

Let us now consider

P{θm = k} =
∑

P{Xk = 0, Xk−1 �= 0, . . . , Xj+1 �= 0 | Xj = 0}P{τm−1 = j}. (5)

So the distribution of the θm depends on probabilities p(t)
ij where t ≥ τm−1. In other

words, in order to write down a distribution for the θm, one should know the value of the
variable τm−1 but now necessarily the values of variables θ1, . . . , θm−1. Moreover, under
fixed τm−1 the distribution of θm does not depend on the values θ1, . . . , θm−1.

Now we have:
P{θm = i, θm−1 = j | τm−1 = t}

= P{θm = i, θm−1 = j | Xt = 0, Xl = 0, exactly m− 2 times, l < m− 1}
= P{Xk = 0, k ∈ {i, t, t− j}, Xk �= 0 otherwise, A}P−1(A)

= P{Xi = 0, Xl �= 0,

l = t+ 1, . . . , i− 1 | Xt = 0, Xt−1 �= 0, . . . , Xt−j = 0, Xt−j−1 �= 0, A}
× P{Xt = 0, Xt−1 �= 0, . . . , Xt−j = 0, Xt−j−1 �= 0 | A}

= P{Xi = 0, Xl �= 0, l = t+ 1, . . . , i− 1 | Xt = 0}P{θm−1 = j | τm−1 = t}
= P{Xi = 0, Xl �= 0, l = i− 1, . . . , t+ 1 | Xt = 0, B}P{θm−1 = j | τm−1 = t}
= P{θm = i | τm−1 = t}P{θm−1 = j | τm−1 = t},

where the set A = {Xt = 0, Xl = 0, exactly m− 2 times, l < m− 1} = {τm−1 = t},
B = {exactly m− 1 zero hittings happened till time t− 1}.

So we have proved that

P{θm = i, θm−1 = j | τm−1 = t} = P{θm = i | τm−1 = t}P{θm−1 = j | τm−1 = t}, (6)
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which means that variables θm and θm−1 are conditionally independent given τm−1.
Let us also note, that formula (5) implies that the distribution of the θm is parame-

terized by only one parameter j (values of a τm−1), and does not depend on index m.
So we can write:

gjn = P{θm = n | τm−1 = j}.
This fact leads us to consideration of the random variables θ(t) which have the same

distribution as (gtn)n≥0. This variables can be handled as moments of the first after time
t returning to zero, if we know that a chain is in the zero state at the moment t.

3. Key definitions

In this section and further on we’ll consider two time-inhomogeneous Markov chains
(X1

t , t ≥ 0) and (X2
t , t ≥ 0) defined on a phase space E = {0, 1, . . .}. The chains are

defined by their transition probabilities on the s-th step Ps(x,A, 1), Ps(x,A, 2) for chains
X1
t , X2

t respectively. Let’s define transition probabilities for n > 0 steps:

P t,n(x,A, l) =

(
n−1∏
k=0

Pt+k

)
(x,A, l). (7)

Having this set of transition probabilities and the initial conditions μl(·) we can build
a probability space (Ω,F,P) where both chains (X l

t), l ∈ {1, 2}, are defined and

P{X l
s ∈ A} =

∫
E

μl(dx)P 0,s(x,A, l), P{X l
s+1 ∈ A | X l

s = x} = Ps(x,A, l).

Let’s define renewal intervals θlk, l ∈ {1, 2}:

θl0 = inf{t ≥ 0: Xt = 0}, θlm = inf{t > θm−1 : Xt = 0}, m > 1, (8)

which are defined on the same probability space (Ω,F,P). The classes of variables
{θ1k}k≥0 and {θ2k}k≥0 are independent. θlk for each l ∈ {1, 2} and k > 0 have only positive
integer values while θl0 take non-negative integers. Let’s define renewal sequences in the
following way:

τ ln =
n∑
k=0

θlk, l ∈ {1, 2}. (9)

We will assume that neighboring variables inside each class are conditionally indepen-
dent giving τ . In other words, for each k, t, l the following equality holds true:

E
[
f
(
θlk
)
g
(
θlk+1

)
| τ lk
]

= E
[
f
(
θlk
)
| τ lk
]
E
[
g
(
θlk+1

) ∣∣ τ lk] , (10)

for any bounded Borel functions f and g.
Let’s introduce a definition for the conditional distribution of the θlk variable (please,

note that this distribution does not depend on k):

gt,ln = P
{
θlk = n

∣∣ τk−1 = t
}
, l =∈ {1, 2}, n ≥ 0, (11)

and we assume that gt,l0 = P{θlk = 0 | τk−1 = t} = 0. The variables θlk, k ≥ 1 will be
interpreted as renewal steps and θl0 as a delay.

We’ll say that T > 0 is a coupling (or simultaneously hitting) moment if:

T = min
{
t > 0: ∃m,n : t = τ1

m = τ2
n

}
. (12)

Our goal is to find conditions which guarantee T <∞ a.s. and E[T ] <∞.
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By u
(t,l)
n we define a renewal sequence for the process τ l. In other words, u(t,l)

n is a
probability of a renewal at the moment t+ n having renewal at the moment t. Formally
u

(t,l)
n can defined in a following way:

u
(t,l)
0 = 1, u(t,l)

n =
n∑
k=0

u
(t,l)
k gt+k,ln−k . (13)

4. Formal definition of the θl(t) variable

As we’ve seen before, the distribution of the k + 1-st renewal interval is completely
defined by the value of the τk variable, i.e. by the moment of the previous renewal and
does not depend on the index k. That’s why we have introduced the notations gt,ln and
u

(t,l)
n . Our goal is to define random variables θl(t) in such a way that gt,ln be a distribution

for θl(t).
For simplicity we’ll omit index l in this section.
Assume Xt is some time-inhomogeneous Markov chain with transition probabilities

on the t-th step equal to Pt(x,A). As before, let’s define:

P t,n(x,A) =

(
n−1∏
k=0

Pt+k

)
(x,A),

transition probability for the time from t to t+ n.
For each t we define probability space (Ωt,Ft,Pt) as a canonical space for the Markov

chain Xt+n which starts at zero. Let’s note that

θ(t) = min{j > 0: Xt+j = 0}, (14)

and gtn = Pt{θ(t) = n} is the distribution of the variable θ(t). Then,

gtn =
∫

(E\{0})n−1
Pt(0, dx0)Pt+1(x0, dx1) . . . Pt+n−1(xn−1, {0}). (15)

As in the previous section let’s define θl(t) as a moment of the first hitting zero state for
the chain (X l

t+k, k ≥ 0) which starts from zero. Then a variable θl(t) has the distribution
(gt,ln )n≥0.

Let’s define an overshoot:

Dn(t) = min{j ≥ 0: Xt+n+j = 0}. (16)

The variable Dn(t) should be understood as a time that has left till hitting {0} after
moment t + n having Xt = 0. Note that variables Dn(t) and θ(t) are defined on the
common probability space (Ωt,Ft,Pt).

The following lemma is a key in proving the main theorem (the proof will be given
later):

Lemma 4.1. If a distribution family gtn (or, a family of random variables θ(t)) is uni-
formly integrable then for each ρ ∈ (0, 1) there exists a constant C = C(ρ) ≥ 0, such that
for each t the following inequality holds true:

Et[Dn(t)] ≤ ρn+ C.

5. Main theorem

Theorem 5.1. Assume that (in notations introduced before):
1) The set of random variables θl(t) is uniformly integrable (or, in other words, the

family of distributions gt,ln is uniformly integrable).
2) There exists a constat γ > 0 and a positive integer n0 > 0 such that for all t, l

and n ≥ n0: u
(t,l)
n ≥ γ.
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Then the coupling moment is integrable: E[T ] <∞.

6. Setup for the proof of the theorem 5.1

Following the Lindvall approach (see. [14, p. 27]) let’s define the following random
variables:

n0

B0 τ1
ν0

n0

B1

τ2
ν1

n0

B2 τ1
ν2

n0

B3

τ2
ν3

ν0 := min
{
j ≥ 1: τ1

j > n0

}
,

B0 := τ1
ν0 ,

ν1 := min
{
j ≥ ν0 : τ2

j − τ1
ν0 > n0, or τ2

j − τ1
ν0 = 0

}
,

B1 := τ2
ν1 − τ1

ν0 ,

and further on

ν2m := min
{
j ≥ ν2m−1 : τ1

j − τ2
ν2m−1

> n0, or τ1
j − τ2

ν2m−1
= 0
}
,

B2m := τ1
ν2m

− τ2
ν2m−1

,

ν2m+1 := min
{
j ≥ ν2m : τ2

j − τ1
ν2m

> n0 , or τ2
j − τ1

ν2m=0

}
,

B2m+1 := τ2
ν2m+1

− τ1
ν2m

.

νk is called as coupling trials. Let’s define τ = min{n ≥ 1: Bn = 0} and a sequence
of sigma-fields Bn, n ≥ 0 in the following way:

Bn = σ
[
Bk, νk, τ

l
j , k ≤ n, j ≤ νn

]
.

Let’s also define random variables: Dk,l
n = min{j : ∃m, τ lm = τ lk + n+ j}.

7. The proof of the theorem 5.1

At the beginning we assume that θ20 = 0.
The following inequality is true:

T ≤ θ10 +
τ∑

n=0

Bn = θ10 +
∑
n≥0

Bn�τ≥n. (17)

According to the lemma 8.4 for each n ≥ 0, ρ ∈ (0, 1) the following inequality holds
true:

E[Bn | Bn−1] ≤ ρBn−1 + C, (18)
which implies that

E[Bk�τ≥k | Bk−1] = E

[
Bk

k−1∏
n=0

�Bk �=0

∣∣∣∣ Bk−1

]
= �τ≥n E[Bn | Bn−1]

≤ �τ≥n(ρBn−1 + C) = ρBn−1�τ≥n + C�τ≥n
≤ ρBn−1�τ≥n−1 + C�τ≥n,

where the latest equality follows from the relation {τ ≥ n} ⊂ {τ ≥ n − 1} and so
�τ≥n ≤ �τ≥n−1.
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So we’ve proved the following inequality:

E[Bn�τ≥n] ≤ ρE [Bn−1�τ≥n−1] + C P{τ ≥ n}. (19)

It follows from lemma 8.5 that

P{τ ≥ n} ≤ (1− γ)n.

Let’s define an = E[Bn�τ≥n]. Then (19) implies:

an ≤ ρan−1 + C(1− γ)n ≤ C

n∑
k=0

ρk(1− γ)n−k ≤ Cnmax(ρ, (1− γ))n.

Note, since ρ is arbitrary, we can choose it be equal to (1− γ). In this case

an ≤ Cn(1− γ)n.

So

E[T ] ≤ E
[
θ10
]
+
∑
n≥0

an ≤ E
[
θ10
]
+
C

γ2
<∞. (20)

Recall our assumption θ20 = 0. Now we will get rid of it. Let’s define as T ′ a coupling
moment for the processes with the following delays:

θ′10 = max
(
θ10 , θ

2
0

)
−min

(
θ10, θ

2
0

)
,

θ′20 = 0.

Note that T = T ′ + min(θ10 , θ
2
0). So

E[T ] ≤ E
[
min

(
θ10 , θ

2
0

)]
+ E[T ′] <∞.

Note that

E[T ′] ≤ E
[
θ′10
]
+
C

γ2
,

or

E[T ] ≤ E
[
max

(
θ10, θ

2
0

)]
+
C

γ2
.

8. Auxiliary lemmas

Lemma 8.1. Let x(t)
n , y(t)

n be some inhomogeneous sequences of real numbers, u(t)
n be

some inhomogeneous renewal sequence defined by the formula (13): g(t)
0 = 0, for all t.

Assume the following conditions are true

x(t)
n =

n∑
k=0

g
(t)
k x

(t+k)
n−k + y(t)

n , (21)

x0
n ≥

n∑
k=0

g
(t)
k x0

n−k + y(t)
n . (22)

Then for any t, n:
x(t)
n ≤ x0

n.

Proof. Let’s show that

x(t)
n =

n∑
k=0

u
(t)
k y

(t+k)
n−k . (23)

We’ll do this by induction:
For the n = 0: x(t)

0 = g
(t)
0 x

(t)
0 + y

(t)
0 = y

(t)
0 = u

(t)
0 y

(t)
0 .
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Assuming the statement holds true for all k ≤ n, lets prove it for the n+ 1.

x
(t)
n+1 =

n+1∑
k=0

g
(t)
k x

(t+k)
n+1−k + y

(t)
n+1 =

n+1∑
k=1

g
(t)
k

n+1−k∑
j=0

u
(t+k)
j y

(t+k+j)
n+1−k−j + g

(t)
0 x

(t)
n+1 + y

(t)
n+1

=
n+1∑
k=1

u
(t)
k y

(t+k)
n−k + y(t)

n =
n+1∑
k=0

u
(t)
k y

(t+k)
n−k .

Then for any t, n:

y(t)
n ≤ x(0)

n −
n∑
k=0

g
(t)
k x0

n−k,

x(t)
n ≤

n∑
k=0

u
(t)
k x

(0)
n−k −

n∑
k=0

u
(t)
k

n−k∑
j=0

g
(t+k)
j x

(0)
n−k−j . (24)

Let us consider the second term
n∑
k=0

u
(t)
k

n−k∑
j=0

g
(t+k)
j x

(0)
n−k−j = x0

0

n∑
k=0

u
(t)
k g

(t+k)
n−k + x0

1

n−1∑
k=0

u
(t)
k g

(t+k)
n−1−k + . . .+ x0

nu
(t)
0 g

(t)
0

=
n−1∑
k=0

x0
ku

(t)
n−k =

n∑
k=1

u
(t)
k x0

n−k.

Applying the last relation to the (24) we derive:

x(t)
n ≤

n∑
k=0

u
(t)
k x

(0)
n−k −

n∑
k=1

u
(t)
k x0

n−k = u
(t)
0 x0

n = x0
n. �

Lemma 8.2. Assume A is a some set defined by the variables τ lνk
, νk, k < n. Then:

E
[
Dm,l
k+n0

∣∣ Bn+1 = k, τ lνn
= t, νn = m,A

]
= Et

[
Dl
k+n0

(t)
]
.

Proof. Let’s denote t+ k + n0 = q. Then:

P
{
Dm,l
k+n0

= r,Bn+1 = k, τ lνn
= t, νn = m,A

}
= P

{
X l
q+r = 0, X l

q+s �= 0, s = 0, . . . , r − 1, X l
t = 0, τ lνn

= t, νn = m,Bn+1 = k,A
}

=

(∫
(E\0)r

P t,k+n0(0, dx0, l)Pq(x0, dx1, l) . . . Pq+r−1(xr−1, dxr , l)Pq+r(xr, 0, l)

)
× P

{
Xt = 0, τ lνn

= t, νn = m,Bn+1 = k,A
}

= Pt

{
Dl
k+n0

(t) = r
}

P
{
τ lνn

= t, νn = m,Bn+1 = k,A
}
. �

Lemma 8.3.

E[B2n | B2n−1] =
∑
t,k

Et

[
D1
k+n0

(t)
]
�τ1

ν2n−2
=t�B2n−1=k,

E[B2n+1 | B2n] =
∑
t,k

Et

[
D2
k+n0

(t)
]
�τ2

ν2n−1
=t�B2n=k.

Proof. At the beginning we should note that the sigma-field Bm is generated by the
finite amount of random variables, and each of them takes only no more than countable
number of values. So, for each m, Bm is generated by the finite number of events.
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Let us define a set of events {An(i), i ∈ In} as An(i) = {τ lνk
= tlk, νk = nk, k ≤ n}

and note that In is a countable set. Let’s add the following notation

Cn(s, t,m, k) =
{
τ2
k = t, τ1

m = s, ν2n−1 = k, ν2n−2 = m,A2n−3(i)
}
.

Note that it follows from the definition of B2n that

B2n = D
ν2n−2,1
B2n−1+n0

+ n0, (25)

which implies

E[B2n − n0 | B2n−1]

=
∑

s<t,m,k,i∈I2n−3

E
[
Dm,1
t−s+n0

∣∣∣ Cn(s, t,m, k), A2n−3(i)
]

�Cn(s,t,m,k)�A2n−3(i).

Using lemma 8.2 we derive that the last term is equal∑
s<t,m,k,i∈I2n−3

Es

[
D1
t−s+n0

(s)
]
�Cn(s,t,m,k)�A2n−3(i)

=
∑

s<t,m,k

Es

[
D1
t−s+n0

(s)
]
�Cn(s,t,m,k) =

∑
s<t

Es

[
D1
t−s+n0

(s)
]
�τ2

ν2n−1=t
�τ1

ν2n−2
=s

=
∑
s,k

Es

[
D1
k+n0

]
�τ1

ν2n−2=s
�B2n−1=k,

where we used the following equality B2n−1 = τ2
ν2n−1

− τ1
ν2n−2

in the last relation.
The corresponding statement for E[B2n+1 | B2n] can be derived in a similar way. �

Lemma 8.4. Assuming the conditions of the theorem 5.1 holds true for each ρ ∈ (0, 1)
there exists a constant C ∈ (0,∞), that for every n ≥ 0 a following inequality is true

E[Bn | Bn−1] ≤ ρBn−1 + C.

Proof. Using lemmas 8.3 and 4.1 we will get

E[B2n | B2n−1] =
∑
t,k

Et

[
D1
k+n0

(t)
]
�τ1

ν2n−2
=t�B2n−1=k

≤
∑
t,k

(ρ(k + n0) + C)�τ1
ν2n−2

=t�B2n−1=k = ρB2n−1 + C′.

The same statement holds true for the E[B2n+1 | B2n]. �

Lemma 8.5. The following inequality is true

P{τ > n} ≤ (1− γ)n.

Proof. Recall that τ = min(n : Bn = 0). An event {τ > n} = {
∏n
k=0Bk �= 0}.

E
[
��n

k=0 Bk �=0

]
= E

[
��n−1

k=0 Bk �=0 E [�Bn �=0 | Bn−1]
]

= E
[
��n−1

k=0 Bk �=0

]
P
{
θlη > Bn +Bn−1

}
≤ E

[
��n−1

k=0 Bk �=0

]
P
{
θlη > n0

}
≤ E

[
��n−1

k=0 Bk �=0

]
(1− γ) ≤ (1− γ)n,

where η is a number of the next after Bn−1 renewal in the l-th series. �
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9. The proof of the lemma 4.1

Let’s consider the random variable Dn(t)�θ(t)=j, j ≤ n. By the direct calculation it
is easy to verify that

Pt{Dn(t) = k, θ(t) = j} = Pt{θ(t) = j}Pt+j{Dn−j(t+ j) = k}. (26)

The following inequality holds true:

Dn(t)�θ(t)>n = (θ(t) − n)�θ(t)>n. (27)

Then, having in mind inequalities (26) and (27) we’ll get

Et[Dn(t)] =
n∑
j=1

Et

[
Dn(t)�θ(t)=j

]
+ Et

[
Dn(t)�θ(t)>n

]
=

n∑
j=1

( ∞∑
k=0

kPt{Dn(t) = k, θ(t) = j}
)

+ Et

[
(θ(t) − n)�θ(t)>n

]
=

n∑
j=1

Pt{θ(t) = j}
( ∞∑
k=0

kPt+j{Dn−j(t+ j) = k}
)

+ Et[(θ(t)− n)�θ(t)>n]

=
n∑
j=1

gtjEt+j [Dn−j(t+ j)] + Et

[
(θ(t)− n)�θ(t)>n

]
.

So we have the following equality

Et[Dn(t)] =
n∑
j=1

gtjEt+j [Dn−j(t+ j)] + Et

[
(θ(t) − n)�θ(t)>n

]
. (28)

After that we’ll use the lemma 8.1. Let’s define:
x(t)
n = Et[Dn(t)],

y(t)
n = Et

[
�θ(t)>n(θ(t) − n)

]
,

then (28) implies the condition (21).
We define as

x0
n = ρn+ C.

Let’s proof that the condition (22) of the lemma 8.1 holds true. For doing that we should
show, that for any ρ ∈ (0, 1) there exists such C = C(ρ), that

ρn+ C ≥
n∑
j=0

gtj(ρ(n− j) + C) +
∑
j>n

(j − n)gtj , (29)

We’ll derive the following from the statement (29)

(29) ⇔ ρn+ C ≥ nρ
n∑
j=0

gtj + C
n∑
j=0

gtj − ρ
n∑
j=0

jgtj +
∑
j>n

jgtj − nGtn

⇔ nρGtn + CGtn ≥ Et

[
θ(t)�θ(t)>n

]
− ρEt

[
θ(t)�θ(t)≤n

]
− nGtn

⇔ n(ρ+ 1)Gtn + CGtn + ρEt
[
θ(t)�θ(t)≤n

]
≥ Et

[
θ(t)�θ(t)>n

]
⇔ n(ρ+ 1)Gtn + CGtn + ρEt [θ(t)] ≥ (1 + ρ)Et

[
θ(t)�θ(t)>n

]
,

(30)

So, the inequalities (29) are equivalent to (30). Note that, in the case of Gtn = 0 the
equality (30) holds true automatically. Assume than Gtn > 0. But Et[θ(t)] ≥ 1 and the
uniform integrability implies that there is a number n0, such that for all t > 0, n ≥ n0:
Et[θ(t)�θ(t)>n] ≤ ρ/(1 + ρ). The constant C we’ll choose in the way to satisfy (30) for
n ≤ n0.
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Let’s show now, that C could be chosen disregarding of t. For ε = ρ/(1+ ρ) we’ll find
such δ > 0, that for each set A, such that P(A) < δ it follows that Et[θ(t)�A] < ε. It is
possible, since θ(t) are uniformly integrable. Let’s define then

C :=
(1 + ρ)suptEt[θ(t)]− ρ

δ
.

Now having Gtn < δ inequality (30) holds true automatically. In the case of Gtn ≥ δ, we’ll
get:

n(ρ+ 1)Gtn + CGtn + ρEt[θ(t)] > (1 + ρ) sup
t

Et[θ(t)] ≥ (1 + ρ)Et[θ(t)]

≥ (1 + ρ)Et
[
θ(t)�θ(t)>n

]
.
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SEMI-MARKOV APPROACH TO THE PROBLEM OF DELAYED
REFLECTION OF DIFFUSION MARKOV PROCESSES

UDC 519.21

B. P. HARLAMOV

Abstract. An one-dimensional diffusion process with positive values, reflecting from zero, is consid-
ered. All the variants of reflecting with preservation of the semi-Markov property are described. This
property is characterized by a family of Laplace images of times from the first hitting of zero up to
the first hitting of a level r for any r > 0. The parameter C(λ) of this family is used for construction
of a time change, transforming a process with instantaneous reflection to the process with delayed
reflection.
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1. Introduction

Apparently Gihman and Skorokhod were the first who investigated reflection with
delaying of one-dimensional Markov diffusion processes ([1, p. 197]). They applied a
method of stochastic integral equations which takes into account preserving the Markov
property while reflecting. However there exist examples of interaction between a process
and a boundary of its range of values, which can be interpreted like reflection, when
the Markov property is being lost, although the property of continuous semi-Markov
processes is preserved. Here is a simple example.

Let w(t), t ≥ 0, be Wiener process. Let us consider on the segment [a, b], a < w(0) < b,
the truncated process

w(t) =

⎧⎪⎨⎪⎩
b, w(t) ≥ b

w(t), a < w(t) < b

a, w(t) ≤ a

for all t ≥ 0. It is clear that this process is not Markov. However it remains to be
continuous semi-Markov [4]: the Markov property is fulfilled with respect to the first
exit time from any open interval inside the segment, and also that from any one-sided
neighborhood of any end of the segment.

2000 Mathematics Subject Classification. Primary 60J25, 60J60.
Key words and phrases. Diffusion, Markov, continuous semi-Markov, reflection, delaying, first exit

time, transition function, Laplace transformation, time change.
This work is supported by grant RFBR 12-01-00457-a.
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The semi-Markov approach to the problem of reflection consists in solution of the
following task: to determine a semi-Markov transition function for the process at a
boundary point for the process preserving its diffusion form inside its open range of
values, i. e. that up to the first exit time from the region and any time when it leaves the
boundary. A more specific task to find reflection, preserving a global Markov property,
is reduced to a problem to find a subclass of Markov reflected processes in the class of
all the semi-Markov ones. Tasks of such a kind are important for applications where
one takes into account interaction of diffusion particles with a boundary of a container,
leading to a dynamic equilibrium of the system (see, e. g. [7]).

In paper [3] all class of semi-Markov characteristics of reflection for a given locally
Markov diffusion process is described. In paper [5] conditions for a semi-Markov charac-
teristic to give a globally Markov process are found. In the present paper we continue to
investigate processes with semi-Markov reflection. The aim of investigation is to find for-
mulae, characterizing a time change, transforming a process with instantaneous reflection
into the process with delaying reflection,

In paper [6] while analyzing a two-dimensional diffusion process in a neighborhood of
a flat screen a time change in a tangential component of the process with respect to a
normal component time run is factually treated. This splitting of the process on two
components makes the situation easier to be understood, but at the same time it masks
the true mechanism of transformation. In fact the time change could be learned on the
initial stage of semi-Markov approach to the problem of reflection. In the present paper
this shortcoming of our first paper on this theme is removed.

2. Semi-Markov transition function on a boundary

We will consider a diffusion process X(t) on the half-line t ≥ 0 with one boundary at
zero. We assume that the process does not go to infinity and from any positive initial
point it hits zero with probability one. For example, it could be a diffusion Markov
process with a negative drift and bounded local variance. We had substantiated above
why it is expedient to consider semi-Markov reflection. Semi-Markov approach permits
to consider from unit point of view an operation of instantaneous reflection as well as an
operation of truncation.

In frames of semi-Markov models of reflection it is natural to assume that X(t) is
a semi-Markov process of diffusion type. Let (Px), x ≥ 0, be a consistent family of
measures of the process, depending on initial points of trajectories. On interval (0,∞)
semi-Markov transition generating functions of the process

g(a,b)(λ, x) := Ex

(
e−λσ(a,b) ;X(σ(a,b)) = a

)
;

h(a,b)(λ, x) := Ex

(
e−λσ(a,b) ;X(σ(a,b)) = b

)
,

a < x < b, satisfy the differential equation
1
2
f ′′ +A(x)f ′ −B(λ, x)f = 0,

with boundary conditions

g(a,b)(λ, a+) = h(a,b)(λ, b−) = 1, g(a,b)(λ, b−) = h(a,b)(λ, a+) = 0.

The coefficients of the equation are assumed to be piece-wise continuous functions of
x > 0, and for any x function B(λ, x) is non-negative and has completely monotone
partial derivative with respect to λ. First of all reflection of the process from point
x = 0 means addition of this point to the range of values of the process. Further all
the semi-closed intervals [0, r) are considered what the process can only exit from open
boundary. Corresponding semi-Markov transition generating functions are denoted as
h[0,r)(λ, x) with main distinction from exit from an open set h[0,r)(λ, 0) > 0. Function
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K(λ, r) := h[0,r)(λ, 0) plays an important role for description of properties of reflected
processes. Using semi-Markov properties of the process, we obtain

h[0,r)(λ, x) = h(0,r)(λ, x) + g(0,r)(λ, x)K(λ, r),

and also

K(λ, r) = K(λ, r − ε)(h(0,r)(λ, r − ε) + g(0,r)(λ, r − ε)K(λ, r)).

Assuming that there exist derivatives with respect to the second argument we have

g(a,b)(λ, x) = 1 + g′(a,b)(λ, a+)(x − a) + o(x − a),

g(a,b)(λ, x) = −g′(a,b)(λ, b−)(b − x) + o(b − x),

h(a,b)(λ, x) = h′(a,b)(λ, a+)(x− a) + o(x− a),

h(a,b)(λ, x) = 1− h′(a,b)(λ, b−)(b− x) + o(b − x),

and obtain the differential equation

K ′(λ, r) +K(λ, r)h′(0,r)(λ, r−) +K2(λ, r)g′(0,r)(λ, r−) = 0.

Its general solution is

K(λ, r) =
h′(0,r)(λ, 0+)

C(λ) − g′(0,r)(λ, 0+)
,

where arbitrary constant C(λ) can depend on λ. In order for K(λ, r) to be a Laplace
transform it is sufficient that function C(λ) to be non-decreasing, C(0) = 0, and its
derivative to be a completely monotone function [5]. Under our assumptions it is fair

K(λ, r) = 1− C(λ)r + o(r), r → 0.

Our next task is to learn a time change in the process with instantaneous reflection
which derives the process with delayed reflection.

3. Time change with respect to time run under instantaneous reflection

Let us denote θt the shift operator on the set of trajectories; σΔ the operator of the
first exit time from set Δ. For any Markov times τ1, τ2 (with respect to the natural
filtration) on set {τ1 <∞} let us determine the following operation

τ1+̇τ2 := τ1 + τ2 ◦ θτ1 .
It is known [4], that for any open (in relative topology) sets Δ1, Δ2, if Δ1 ⊂ Δ2, then

σΔ2 = σΔ1+̇σΔ2 .

In this case σΔ(ξ) = 0, if ξ(0) /∈ Δ.
Let us introduce special denotations for some first exit times and their combinations,

and that for random intervals as ε > 0
α := σ[0,ε), β := σ(0,∞), γ(0) := β,

γ := α+̇β, γ(n) := γ(n− 1)+̇γ, n ≥ 1,

b(0) := [0, β), a(n) :=
[
γ(n− 1), γ(n− 1)+̇α

)
, b(n) =

[
γ(n− 1)+̇α, γn

)
.

The random times α, γ(n), and intervals a(n), b(n), n = 1, 2, . . . , depend on ε. In some
cases we will denote this dependence by the lower index.

Let us remark that sequence (γ(n)) forms moments of jumps of a renewal process.
Besides if X(t) > 0 then for any t > 0 there exist ε > 0, and n ≥ 1 such that t ∈ bε(n).
It implies that for ε → 0 random set

⋃∞
k=1 bε(k) covers all the set of positive values of

processX with probability one. On share of supplementary set (a limit of set
⋃∞
k=1 aε(k))

there remain possible intervals of constancy and also a discontinuum of points (closed
set, equivalent to continuum, without any intervals, [2, p. 158]), consisted of zeros of
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process X . The linear measure of it can be more than or equal to 0. This measure is
included as a component in a measure of delaying while reflecting.

It is known ([4, p. 111]) that continuous homogeneous semi-Markov process is a Markov
process if and only if it does not contain intrinsic intervals of constancy (it can have
an interval of terminal stopping). This does not imply that a process with delayed
deflection cannot be globally Markov. Its delaying is exceptionally at the expense of
the discontinuum. A process without intervals of constancy at zero, and with the linear
measure of the discontinuum of zeros which equals to zero is said to be a process with
instantaneous reflection.

We will construct a non-decreasing sequence of continuous non-decreasing functions
Vε(t), t ≥ 0, converging to some limit V (t) as ε→ 0 uniformly on every bounded interval.

Let X(0) > 0, and Vε(t) = t on interval b(0), and Vε(t) = β on interval a(1). On
interval b(1) the process Vε increases linearly with a coefficient 1. On interval a(2)
function Vε is constant. Then it increases with coefficient 1 on interval b(2), and so on,
being constancy on intervals a(k), increasing with coefficient 1 on intervals b(k). Noting
that if ε1 > ε2, for any iterval aε2(k) there exists n such that aε2(k) ⊂ aε1(n), we
convince ourself that the sequence of constructed functions does not decrease, bounded
and consequently tends to a limit.

Let us define a process with instantaneous reflecting obtained from the original process
X as a process, obtained after elimination of all its intervals of constancy at zero, and
contraction of a linear measure of its discontinuum of zeros to zero. This process can be
represented as a limit (in Skorokhod metric) of a sequence of processes Xε(t), determined
for all t by formula

Xε(t) = X
(
V −1
ε (t)

)
,

where V −1
ε (y) is defined as the first hitting time of the process Vε(t) to a level y.

Hence Xε(t) has jumps of value ε at the first hitting time to zero and its iterations.
Let us denote the process with instantaneous reflecting as X0(t), and the map X �→ X0

as φV . Such a process is measurable (with respect to the original sigma-algebra of sub-
sets) and continuous. Let P 0

x = Px ◦ φ−1
V be the induced measure of this process.

Then it is clear that V is an inverse time change transforming the process X0 into the
process X , i.e. X = X0 ◦ V . In this case for any open interval Δ = (a, b), 0 < a < b, or
Δ = [0, r), r > 0, it is fair

σΔ(X0 ◦ V ) = V −1(σΔ(X0)).

The function V −1 we call a direct time change, which corresponds to every “intrinsic”
Markov time of the original process (in given case X0(t)) the analogous time of the
transformed process.

Remark, that for ε1 > ε2 the set {γε1(n), n = 0, 1, 2, . . .} is a subset of the set
{γε2(n), n = 0, 1, 2, . . .}. That is why every Markov time γε(n) is a Markov regeneration
time of the process V , what permits in principle to calculate finite-dimensional distrib-
utions of this process. On the other hand this process is synonymously characterized by
its inverse, i.e. the process

V −1(y) := inf{t ≥ 0: V (t) ≥ y}, y > 0.

This process is more convenient to deal with because Laplace transform of its value at a
point y can be found as a limit of a sequence of easy calculable Laplace images of values
V −1
ε (y).

Theorem 1. A direct time change V −1(y), mapping a process with instantaneous re-
flection into a process with delayed reflection satisfy the relation

E0 exp
(
−λV −1(y)

)
= E0 exp(−λy − C(λ)W (y)), (1)
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where W−1(t) is a non-decreasing process with independent increments for which

E0 exp
(
−λW−1(t)

)
= exp

(
g′(0,∞)(λ, 0+)t

)
. (2)

Short proof. Without loss of generality we suppose that X(0) = 0. Let Nε(t) = n if and
only if

n−1∑
k=1

|b(k)| < t ≤
n∑
k=1

|b(k)|

(|a(k)| and |b(k)| are lengths of intervals a(k), b(k)). Then

E0 exp
(
−λV −1(y)

)
= lim
ε→0

E0 exp
(
−λV −1

ε (y)
)

= lim
ε→0

E0

⎛⎝−λy − λ

Nε(y)∑
k=1

|a(k)|

⎞⎠ .

We have

E0 exp
(
−λ
(
V −1
ε (y)− y

))
= E0 exp

⎛⎝−λNε(y)∑
k=1

|a(k)|

⎞⎠
=

∞∑
n=0

E0 exp

(
−λ

n∑
k=1

α ◦ θγ(k−1);Nε(t) = n

)

= Pε(β ≥ y) +
∞∑
n=1

E0

(
exp

(
−λ

n∑
k=1

α ◦ θγ(k−1)

)
;
n−1∑
k=1

|b(k)| < y ≤
n∑
k=1

|b(k)|
)

= Pε(β ≥ y)

+
∞∑
n=1

E0

(
exp

(
−λα− λ

n∑
k=2

α ◦ θγ(k−1)

)
;β ◦ θα +

n−1∑
k=2

β ◦ θα ◦ θγ(k−1)

< y ≤ β ◦ θα +
n∑
k=2

β ◦ θα ◦ θγ(k−1)

)

= Pε(β ≥ y) +
∞∑
n=1

∫ y

0

E0

(
exp

(
−λα− λ

n∑
k=2

α ◦ θγ(k−1)

)
;β ◦ θα ∈ dx,

n−1∑
k=2

β ◦ θα ◦ θγ(k−1) < y − x ≤
n∑
k=2

β ◦ θα ◦ θγ(k−1)

)
= Pε(β ≥ y)

+
∞∑
n=1

∫ y

0

E0

(
e−λα;β ◦ θα ∈ dx

)
× E0

(
exp

(
−λ

n∑
k=2

α ◦ θγ(k−2)

)
;

n−1∑
k=2

β ◦ θα ◦ θγ(k−2) < y − x ≤
n∑
k=2

β ◦ θα ◦ θγ(k−2)

)
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= Pε(β ≥ y)

+
∞∑
n=1

∫ y

0

Pε(β ∈ dx)E0

(
e−λα

)
× E0

(
exp

(
−λ

n−1∑
k=1

α ◦ θγ(k−1)

)
;

n−2∑
k=1

β ◦ θα ◦ θγ(k−1) < y − x ≤
n−1∑
k=1

β ◦ θα ◦ θγ(k−1)

)
= Pε(β ≥ y)

+
∫ y

0

Pε(β ∈ dx)E0

(
e−λα

) ∞∑
n=0

E0

(
exp

(
−λ

n∑
k=1

α ◦ θγ(k−1)

)
;Nε(y − x) = n

)

= Pε(β ≥ y) +
∫ y

0

Pε(β ∈ dx)E0

(
e−λα

)
E0 exp

(
−λ
(
V −1
ε (y − x)− (y − x)

))
.

Let us denote Z(y) := E0 exp(−λ(V −1
ε (y)−y)), F (x) := Px(β < x), F (x) := 1−F (x),

A := E0(e−λα). We obtain an integral equation

Z(y) = F (x) +A

∫ y

0

Z(y − x) dF (x),

with a solution which can be written as follows

Z(y) =
∞∑
n=0

An
(
F (n)(y)− F (n+1)(y)

)
,

where F (n) is n-times convolution of distribution F . Let us consider a sequence of
independent and identically distributed random values |b(n)|, n = 1, 2, . . . . Let P ∗

ε is the
distribution of a renewal process Nε(y) with this sequence of lengths of intervals, and E

∗
ε

is the corresponding expectation. Then

E
∗
εA

Nε(y) =
∞∑
n=0

AnP ∗
ε (Nε(y) = n) =

∞∑
n=0

An
(
F (n)(y)− F (n+1)(y)

)
,

Thus
E0 exp

(
−λV −1

ε (y)
)

= e−λyE∗
ε

(
E0e

−λα)Nε(y)
.

On the other hand it is clear that there exists a version of the process Nε(y), measurable
with respect to the basic sigma-algebra, and adapted to the natural filtration of the
original process, and having identical distribution with respect to measure P0. Preserving
denotations we can write

E
∗
ε

(
E0e

−λα)Nε(y)
= E0

(
E0e

−λα)Nε(y)
.

Moreover, measures P0 and P 0
0 coincide on sigma-algebra F ∗, generated by all the random

values βε ◦ θαε ◦ θγ(k)ε , ε > 0, k = 1, 2, . . . . From here

E0

(
E0e

−λα)Nε(y) = E
0
0

(
E0e

−λα)Nε(y)
.

Taking into account that α depends on ε and using our former denotations we can write

E0e
−λα = K(λ, ε) = 1− C(λ)ε + o(ε).

We will show that the process Wε(y) := εNε(y) tends weakly to a limit W (y) as ε→ 0,
which is an inverse process with independent increments with known parameters, and
measurable with respect to sigma-algebra F ∗. Actually, the process Wε(y) does not
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decrease and is characterized completely by the process W−1
ε (t). The latter has indepen-

dent positive jumps on the lattice with a pitch ε. Hence it is a process with independent
increments. Evidently a limit of a sequence of such processes, if it exists, is a process with
independent increments too. Its existence follows from evaluation of Laplace transform
of its increment. We have

E
0
0e

−λW−1
ε (t) = E

0
0 exp

⎛⎝−λ [t/ε]∑
k=1

|b(k)|

⎞⎠ =
(
Eεe

−λβ)[t/ε]
=
(
1 + g′(0,∞)(λ, 0)ε+ o(ε)

)[t/ε]

→ eg
′
(0,∞)(λ,0)t, ε→ 0.

Using the sufficient condition of weak convergence of processes in terms of convergence
of their points of the first exit from open sets ([4], p. 287), we obtain

E0 exp
(
−λV −1(y)

)
= E

0
0 exp (−λy − C(λ)W (y)) ,

what can be considered as description of the direct time change in terms of the process
with instantaneous reflection and the main characteristic of delaying, function C(λ). �

We use this formula for deriving the Laplace transform of a difference between the
first exit times from an one-sided neighborhood of the boundary point for processes with
delayed and instantaneous reflection.

Denote
βr := σ(0,r), γr(0) = 0,

γr := α+̇βr, γr(n) := γr(n− 1)+̇γr, n ≥ 1,

br(n) =
[
γr(n− 1)+̇α, γr(n)

)
, n ≥ 1,

M r
ε := inf {n ≥ 0: X(γr(n)) ≥ r} .

Hence
P0(M r

ε = n) = P0(X(γr(1)) = 0, . . . , X(γr(n− 1)) = 0,

X(γr(n− 1)) = r) = (p(ε, r))n−1(1− p(ε, r)),

where p(ε, r) := P0(X(γr(1)) = 0).

Theorem 2. A difference between the first exit times from a semi-closed interval [0, r)
for processes with delayed and instantaneous reflection obeys to the relation

E0 exp
(
−λ
(
σ[0,r) − σ0

[0,r)

))
=

−G′
(0,r)(0+)

C(λ) −G′
(0,r)(0+)

, (3)

where G(0,r)(x) = g(0,r)(0, x).

Short proof. Let X(0) = 0. Then evidently, σ[0,r) = γrMr
ε

for any ε < r. On the other
hand, it is clear, that γr = γ on the set {X(γr) = 0}, and by induction we conclude that

γr(n) = γ(n) on the set
n⋂
k=1

{X(γr(k)) = 0}.

From here

γr(n)I(M r
ε = n) = (γr(n− 1)+̇γr)I

(
n−1⋂
k=1

{X(γr(k)) = 0}
)
∩ {X(γr(n)) = r}

= (γ(n− 1)+̇γr)I(M r
ε = n).



SEMI-MARKOV APPROACH TO THE PROBLEM OF DELAYED REFLECTION 19

Let us denote σ0
[0,r) the first exit time from interval [0, r) of the process with instantaneous

reflection (formally it means σ0
[0,r) = V (σ[0,r))). Then V −1

(
σ0

[0,r)

)
= σ[0,r), and from

formula (1) it follows that

E0 exp
(
−λ
(
σ[0,r) − σ0

[0,r)

))
= E

0
0 exp

(
−C(λ)W

(
σ0

[0,r)

))
= E

0
0 exp

(
−C(λ)W (γr(M r

ε ))
)

=
∞∑
n=1

E
0
0

(
exp
(
−C(λ)W (γr(n))

)
;M r

ε = n
)

=
∞∑
n=1

E
0
0 exp

(
−C(λ)W

(
γ(n− 1)+̇γr

)
;M r

ε = n
)

=
∞∑
n=1

E
0
0

(
exp(−C(λ)W

(
n−1∑
k=1

(|a(k)|+ |br(k)|) + |a(n)|+ |br(n)|
)

;M r
ε = n

)
.

Taking into account P 0
0 -almost sure convergence

∑Mr
ε

k=1(|a(k)| → 0 as ε→ 0, we have

lim
ε→0

∞∑
n=1

E
0
0

(
exp(−C(λ)W

(
n−1∑
k=1

(|a(k)|+ |br(k)|) + |a(n)|+ |br(n)|
)

;M r
ε = n

)

= lim
ε→0

E
0
0

⎛⎝exp(−C(λ)W

⎛⎝Mr
ε −1∑
k=1

|br(k)|+ |br(M r
ε )|

⎞⎠⎞⎠
= lim

ε→0
E

0
0

⎛⎝exp(−C(λ)εNε

⎛⎝Mr
ε −1∑
k=1

|br(k)|+ |br(M r
ε )|

⎞⎠⎞⎠ .

From the definition of the process Nε(t) it folows that

Nε

(
n−1∑
k=1

|br(k)|+ |br(n)|
)

= n, n = 1, 2 . . . .

Consecuently

E0 exp
(
−λ
(
σ[0,r) − σ0

[0,r)

))
= lim
ε→0

E
0
0 exp (−C(λ)εM r

ε )

= lim
ε→0

∞∑
n=1

e−C(λ)εn(p(ε, r))n−1(1 − p(ε, r))

= lim
ε→0

e−C(λ)ε 1− p(ε, r)
1− e−C(λ)εp(ε, r)

.

and taking into account that

p(ε, r) = P0(X(γrε) = 0) = P0(X(αε+̇βrε) = 0) = P0(X(βrε) ◦ θαε = 0)

= Pε(X(βrε) = 0) := G(0,r)(ε),

and that the last expression (the partial case g(0,r)(λ, ε) for λ = 0) has an asymptotic
G(0,r)(ε) = 1 +G′

(0,r)(0+)ε+ o(ε), we obtain at last

E0 exp
(
−λ
(
σ[0,r) − σ0

[0,r)

))
=

−G′
(0,r)(0+)

C(λ) −G′
(0,r)(0+)

. �

It is interesting to note that for a linear function C(λ) = kλ, when a reflecting locally
Markov process is globally Markov [5], the difference between the first exit times from a
semi-closed interval [0, r) for processes with delayed and instantaneous reflection has the
exponential distribution with parameter −G′

(0,r)(0+)/k.
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4. Example

Let us consider the standard Wiener process truncated in its negative values

w(t) =

{
0, w(t) ≤ 0,
w(t), w(t) > 0.

In frames of the semi-Markov model of reflection it is characterized by the function

K(λ, r) =
h′(0,r)(λ, 0+)

C(λ)− g′(0,r)(λ, 0+)
=

√
2λ/ sinh r

√
2λ

C(λ) −
√

2λ cosh r
√

2λ/ sinh r
√

2λ
.

Taking into account the origin of this process one can write

K(λ, r) = E
w
0 exp

(
−λσ(−∞,r)

)
= exp

(
−r
√

2λ
)
.

Comparing derivatives at zero of these two representations of the same function, we
obtain C(λ) =

√
2λ. Now we can obtain the main characteristic of delay of this process

under reflection (including lengths of all the intervals of constancy) from the first hitting
time of the level 0 up to the first hitting time of the level r:

E0 exp
(
−λ
(
σ[0,r) − σ0

[0,r)

))
=

1/r√
2λ+ 1/r

,

what relates to tabulated values of Laplace transforms, and here is not exposed.
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ON A CONJECTURE OF ERDÖS ABOUT ADDITIVE FUNCTIONS
UDC 519.21

KARL-HEINZ INDLEKOFER

Abstract. For a real-valued additive function f : � → � and for each n ∈ � we define a distribution
function

Fn(x) :=
1

n
#{m ≤ n : f(m) ≤ x}.

In this paper we prove a conjecture of Erdös, which asserts that in order for the sequence Fn to be
(weakly) convergent, it is sufficient that there exist two numbers a < b such that limn→∞(Fn(b)−Fn(a))
exists and is positive.

The proof is based upon the use of the Stone–Čech compactification β� of � to mimic the behaviour
of an additive function as a sum of independent random variables.
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1. Introduction

A function f : N → R is called additive if f(mn) = f(m) + f(n) for any coprime
integers m and n. Then f is defined by its values f(pk) on prime powers pk (p prime,
k ∈ N) and f(1) = 0.

Given a real-valued additive function f , one can define, for each n ∈ N, a distribution
function

Fn(x) :=
1
n

#{m ≤ n : f(m) ≤ x}. (1.1)

An old conjecture of Erdös in 1947 (see Erdös [4]) asserts that in order for the se-
quence Fn to be (weakly) convergent (in this case we say that the additive function f
possesses a limit distribution), it is sufficient that there exist two numbers a < b such

2000 Mathematics Subject Classification. Primary 11N37, 11N60, 11K65.
Key words and phrases. Probabilistic number theory, additive functions.
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that
lim
n→∞(Fn(b)− Fn(a)) exists and is positive. (1.2)

In 1992 A. Hildebrand [6] could show that the conclusion of Erdös’ conjecture is valid,
provided (1.2) is strengthened to

La := lim
n→∞Fn(a) and Lb := lim

n→∞Fn(b) (1.3)

both exists and La �= Lb. Some further discussions are contained in [10] and [11].
In this paper we show that the above conjecture of Erdös holds.

Theorem. Let f : N → R be an additive function. In order for the distributions (1.1) to
converge, it is sufficient that (1.2) holds for some a < b.

The proof is based upon a method, introduced in [7, 8] using the Stone–Čech compact-
ification βN of N to mimic the behaviour of an additive function as a sum of independent
random variables.

2. Finitely distributed additive functions

An additive function f is said to be finitely distributed if there are positive constants c1
and c2, and an unbounded sequence n1 < n2 < . . . so that for every i there exists a
sequence

a
(i)
1 < a

(i)
2 < · · · < a

(i)
ti < ni

satisfying ∣∣∣f (a(i)
r

)
− f

(
a(i)
s

)∣∣∣ < c1, ti > c2ni, 1 ≤ r, s ≤ ti.

The necessary and sufficient condition that f should be finitely distributed is that
there should exist a constant c and an additive function h so that

f(n) = c logn+ h(n) (2.1)

where both the series ∑
|h(p)|>1

1
p
,

∑
p

|h(p)|≤1

h2(p)
p

(2.2)

converge (Erdös [3], 1946). Further characterizations of finitely distributed additive
functions can be found in Ch. 7 of Elliott’s book [2]. For our purpose we shall apply the
following ([2, p. 259]).

Proposition. If the additive function has a representation (2.1) with convergent series
(2.2), then, if we define

α(n) = c logn+
∑
p≤n

|h(p)|≤1

h(p)
p
, (2.3)

the distribution functions

Gn(x) :=
1
n

#{m ≤ n : f(m)− α(n) ≤ x} (2.4)

weakly converge to some distribution function G(x).

If (1.2) holds then f is finitely distributed. Now, assume that (2.1) holds and α(n) is
unbounded. Then, if α(n′

k) →∞, k →∞, for some subsequence (n′
k), by (1.2),

lim
k→∞

{
Gn′

k
(b− α(n′

k))−Gn′
k
(a− α(n′

k))
}

= lim
k→∞

(
Fn′

k
(b)− Fn′

k
(a)
)
> 0 (2.5)
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whereas the left side in (2.5) tends to zero since Gn converge weakly to some distribution
function. Then, since α(n) = c logn+O(log logn), we conclude c = 0, i.e. f = h, and

A(n) :=
∑
p≤n

|f(p)|≤1

f(p)
p

= O(1) for all n ∈ N. (2.6)

In the following we assume that ∑
p

|f(p)|≤1

f(p)
p

diverges, (2.7)

which implies (see [3], Theorem II) that G(x) is continuous and strictly increasing for all
x ∈ R.

For each n ∈ N define the additive function fn by

fn(pk) =

{
f
(
pk
)

if p ≤ n,

0, otherwise.

and put, for A ⊂ N,

δn(A) :=
1
n

#{m ≤ n : m ∈ A}.

If the limit
δ(A) := lim

n→∞ δn(A) (2.8)

exists we say that A possesses the asymptotic density δ(A).
If some sequence {n′

k} is given we write

δ′(A) := lim
k→∞

δn′
k
(A) (2.9)

in the case the limit (2.9) exists.
With these notations we show

Lemma 1. Assume that (1.2) holds. Then

lim
n→∞ δ({m : fn(m) ∈ (a, b]}) = δ({m : f(m) ∈ (a, b]}) =: c0 > 0. (2.10)

Proof. Observe that δ({m : fn(m) ∈ (a, b]}) always exists. Assume that (2.10) does not
hold. Then there exists a sequence {nk} of natural numbers such that

lim
k→∞

δ({m : fnk
(m) ∈ (a, b]}) = c′ �= c0.

Since A(nk) = O(1) there exists some subsequence {n′
k} of {nk} so that

lim
k→∞

A(n′
k) =: A′

exists. Choose k1 such that for every k0 ≥ k1∣∣∣δ ({m : fn′
k0

(m) ∈ (a, b]
})

− c0

∣∣∣
=
∣∣∣δ′ ({m : fn′

k0
(m) ∈ (a, b]})− δ′({m : f(m) ∈ (a, b]

})∣∣∣
≥ |c0 − c′|

2
.

(2.11)

On the other hand we shall show that

lim
k0→∞

lim
k→∞

δn′
k

({
m :

∣∣∣f(m)− fn′
k0

(m)
∣∣∣ > ε

})
= 0 (2.12)

for every ε > 0 which contradicts (2.11).
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For the proof of (2.12) put

P0 := {p : |f(p)| > 1} ∪
{
pk : k ≥ 2

}
.

Define the functions
h′(m) :=

∑
pk‖m
pk∈P0
p>n′

k0

f
(
pk
)

and
j(m) :=

∑
p‖m

|f(p)|≤1
p>n′

k0

f(p).

From our definitions of these functions

f(m)− fn′
k0

(m) = j(m)−
(
A(n′

k)−A
(
n′
k0

))
+ h′(m) +

(
A(n′

k)−A
(
n′
k0

))
.

We shall prove that for every ε > 0 each of the three expressions

L1(k0) = lim
k→∞

δn′
k

({
m :

∣∣j(m)−
(
A(n′

k)−A
(
n′
k0

))∣∣ > ε
})
,

L2(k0) = lim
k→∞

δn′
k
({m : |h′(m)| > ε})

and
L3(k0) = lim

k→∞
δn′

k

({
m :

∣∣A (n′
k)−A

(
n′
k0

)∣∣ > ε
})

converge to zero as k0 →∞. We may readily estimate the first of these three expressions
by appealing to the Turan–Kubilius inequality. In our present circumstances it becomes

1
n′
k

n′
k∑

m=1

∣∣j(m)−
(
A (n′

k)−A
(
n′
k0

))∣∣2 � ∑
n′

k0
<p≤n′

k

|f(p)|≤1

|f(p)|2
p

.

Appealing to the convergence of the second sum in (2.2) we see that

L1(k0) �
1
ε2

∑
n′

k0
<p

|f(p)|≤1

|f(p)|2
p

= o(1) as k0 →∞.

The estimate L3(k0) = o(1) as k0 →∞ is obvious.
If an integerm is counted in the expression L2(k0) it must satisfy one of two divisibility

criteria.
First, it may be divisible by the square of a prime p > n′

k0
. The frequency of these

integers is at most

δn′
k

({
m : p2|m, p > n′

k0

})
≤
∑
n′

k0
<p

1
p2

= o(1) as k0 →∞.

Next, it may be exactly divisible by a prime in the range n′
k0
< p for which |f(p)| > 1.

From the hypothesis (2.2) we deduce that the frequencies of such integers is at most∑
n′

k0
<p

|f(p)|>1

1
p

= o(1) as k0 →∞

and thus L2(k0) = o(1) as k0 →∞. We have now shown that (2.12) holds and completed
the proof of Lemma 1. �
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In the next step we identify the additive function f with a sum
∑

p primeXp of inde-
pendent random variables.

3. Additive functions as a sum of independent random variables

For the sake of simplicity we restrict ourselves to strongly additive functions. Then f
can be written in the form

f =
∑
p

f(p)εp

where

εp(n) =

{
1 if p|n,
0, otherwise.

If A denotes the algebra generated by the sets

Ap := {n ∈ N : p|n}, p prime,

then obviously each A ∈ A possesses an asymptotic density δ(A) and δ(Ap) = 1
p (p

prime). Thus δ defines a content on A. Now the construction runs as follows. (For
details see [7, 8].) We embed N, endowed with the discrete topology, in the Stone–Čech
compactification βN,

N ↪→ βN

and, if for any A ⊂ N, the closure of A in βN is denoted by Ā, then

Ā := {Ā ⊂ βN : A ∈ A}
is an algebra, too. The extension δ̄ of δ

δ̄(Ā) := δ(A), Ā ∈ Ā,

defines a premeasure on Ā and leads to a measure P, induced by

δ∗(A) := lim
n→∞ δn(A) for all A ⊂ N,

and to a probability space (Ω, σ(Ā),P) with Ω = βN and with P(Āp) = 1/p, p prime.
There is a unique extension of εp to a function ε̄p on Ω, and putting Xp = f(p)ε̄p

f =
∑
p

f(p)εp → X =
∑
p

f(p)ε̄p =
∑
p

Xp

fn → Sn :=
∑
p≤n

Xp

with

P(Xp = f(p)) =
1
p

and

P(Xp = 0) = 1− 1
p
.

The ε̄p are independent, i.e. X =
∑

pXp is a sum of independent random variables.
If (1.2) holds then, by Lemma 1,

lim
n→∞P(Sn ∈ (a, b]) = c0 > 0

and, by Proposition,
∑
pXp is essentially convergent (for the definition see [13, p. 262]).

Putting
ap = E(Xc

p), Yp = Xp − ap, Tn :=
∑
p≤n

Yp
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then limn→∞ Tn holds a.s.. (Here Xc
p denotes the truncation of Xp at (a positive) c, i.e.

we replace Xp by Xp = X or 0 according as |Xp| < c or |Xp| ≥ c.) Denote Y := limTn
a.s.

It is well-known that the a.s. convergence of Y =
∑

p Yp is equivalent to the weak
convergence of the distributions of the partial sums of that series. Moreover, by Kol-
mogorov’s three series theorem, Y =

∑
p Yp converges a.s. if and only if the series∑

p

E
(
Y cp
)
,

∑
p

P(|Yp| > c),
∑
p

Var
(
Y cp
)

(3.1)

converge.
We choose c = 1, i.e. ap = E(X1

p ) and put (see (2.6))

A(n) =
∑
p≤n

ap.

Then A(n) = O(1) and, the divergence of the sequence A(n) implies (see [3, Theorem 2]).

Lemma 2. Let Y =
∑

p Yp with Yp = Xp−ap as above, where the partial sums
∑

p≤N ap
are bounded and divergent. Then the distribution function G(x) = P(Y ≤ x) is continu-
ous and strictly monotone for all x ∈ R.

Remark. The divergence of the sequence A(n) implies∑
p

a−p = −∞,

∑
p

a+
p = +∞

(3.2)

where a+
p = max(ap, 0) and a−p = max(−ap, 0). Then the strict monotonicity of the

distribution function G(x) in Lemma 2 can be directly proved by a result of A. Hilde-
brand [6].

For this we define, following the notation of Hildebrand in [6], p. 1206, the range of a
random variable X as the set

R(X) = {x ∈ R : P(|X − x| ≤ ε) > 0 for every ε > 0},
that is, it is equal to the set of points of increase of the distribution function F (x) =
P(X ≤ x). The form of this set was described by A. Hildebrand in Lemma 2 of [6]
when X is given as an a.s. convergent series of independent random variables. A special
version of this result is contained in the following lemma.

Lemma 3. Let
∑∞

n=0Xn be an a.s. convergent series of independent random variables
and let X denote its sum. Suppose that for every ε > 0 and n ≥ n0 = n0(ε) there exist
numbers c−n = c−n (ε), c+n = c+n (ε) ∈ R(Xn) with |c−n | ≤ ε and |c+n | ≤ ε such that

lim
N→∞

N∑
n=n0

c−n = −∞

and

lim
N→∞

N∑
n=n0

c+n = +∞.

Then R(X) = R.

Now it is easy to prove the assertions of Lemma 2. Put

c−p =

{
f(p)− ap if − ε

2 ≤ f(p) < 0,
0, otherwise.



ON A CONJECTURE OF ERDÖS ABOUT ADDITIVE FUNCTIONS 27

and

c+p =

{
f(p)− ap if 0 < f(p) ≤ ε

2 ,

0, otherwise.

Then obviously, c−p , c+p ∈ R(Yp), |c−p | ≤ ε
2 + |ap| ≤ ε and |c+p | ≤ ε

2 + |ap| ≤ ε for
p > n0 = n0(ε) since |ap| ≤ 1/p. Further,∑

n0≤p≤N
c−p =

∑
n0≤p≤N

− ε
2<f(p)<0

f(p)−
∑

n0≤p≤N
ap

<
∑

n0≤p≤N
− ε

2<f(p)<0

f(p)
p

+O(1)

<
∑

n0≤p≤N
−1<f(p)<0

f(p)
p

+O(1)

=
∑

n0≤p≤N
a−p +O(1) → −∞ as N →∞.

Here the last inequality holds because of the convergence of the second series in (3.1).
Similarly,

lim
N→∞

∑
n0≤p≤N

c+p = +∞.

We use Lemma 3 and recall that the divergence of the series (2.7) implies, by Levy’s
theorem, the continuity of G(x) to end the proof of Lemma 2.

This ends the remark.

For every subsequence n′ = (n′
k) of the natural numbers we defined

δ′(A) = lim
k→∞

δn′
k
(A)

if the limit exists. This leads to a content δ′ on A and a measure P ′ on βN induced by

δ
′∗(A) = lim

k→∞
δn′

k
(A) for all A ⊂ N.

Obviously, if Ω0 ⊂ βN is P-measurable it is P ′-measurable and P(Ω0) = P ′(Ω0).
Since every bounded real-valued function g on N extends uniquely to a (continuous)

function ḡ on βN (for details see R. Walker [14, p. 8 et seq.]), we conclude

Ω0 := {m : f(m) ∈ (a, b]} = {ω : f̄(ω) ∈ [a, b]},
where f̄ is the unique extension of the (bounded) function f(a,b], defined by

f(a,b](m) =

{
f(m), if f(m) ∈ (a, b],
|a|+ |b|+ 1, if f(m) /∈ (a, b].

If (1.2) holds then
P(Ω0) = c0 > 0.

4. Proof of the conjecture of Erdös

We suppose that A(n) is not convergent so that

A := lim inf
n→∞ A(n) < lim sup

n→∞
A(n) =: Ā, (4.1)

and we shall show that this leads to a contradiction.
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We fix two increasing sequences n′ = {n′
k} and n′′ = {n′′

k} of positive integers so that

A = lim
k→∞

A(n′′
k) and Ā = lim

k→∞
A(n′

k).

We put
gn =

∑
p≤n

(f(p)εp − ap)

and define

g′ = gn′
1
+

∞∑
k=1

(
gn′

k+1
− gn′

k

)
. (4.2)

Then {
m : g′(m) ∈ (a−A, b−A]

}
= {m : f(m) ∈ (a, b]}

since g′(m) = f(m)−A for every m ∈ N. Further

δ′
({
m : g′(m) ∈ (a−A, b−A]

})
= lim
k→∞

δ′
({
m : gn′

k
(m) ∈ (a−A, b−A]

})
= c0.

In the same way we define

g′′ = gn′′
1

+
∞∑
k=1

(
gn′′

k+1
− gn′′

k

)
with g′′(m) = f(m)−A, m ∈ N, and obtain

δ′′ ({m : g′′(m) ∈ (a−A, b−A]}) = lim
k→∞

δ′′
({
m : gn′′

k
(m) ∈ (a−A, b−A]

})
= c0.

Defining the corresponding extensions g′ and g′′ and P ′ and P ′′, respectively, we arrive
at

Ω0 =
{
ω : g′(ω) ∈ [a−A, b−A]

}
=
{
ω : g′′(ω) ∈ [a−A, b−A]

}
together with

P ′ ({ω : g′(ω) ∈ [a−A, b−A]
})

= P ′′ ({ω : g′′(ω) ∈ [a−A, b−A]
})

= c0.

Since
g′ corresponds to Y ′ = lim

k→∞
Tn′

k

g′′ corresponds to Y ′′ = lim
k→∞

Tn′′
k

and since
Y =

∑
p

Yp = lim
n→∞Tn

converges a.s. with respect to P and possesses an everywhere continuous distribution
function we conclude

(i) {ω : Y ′(ω) ∈ [a−A, b−A]} = Ω′
0 with P ′(Ω0 � Ω′

0) = 0,
(ii) P ′({ω : Y ′(ω) ∈ [a−A, a−A]}) ≤ P ′({ω : Y ′(ω) �= Y ′′(ω)}) = 0 and
(iii) P ′({ω : Y ′(ω) ∈ [a−A, b−A]}) = c0.

Observe, that (iii) implies that
a−A < b−A.

Since P({ω : Y (ω) ∈ [a−A, a− A]}) exists it must be zero by (ii), i.e.

P
({
ω : Y (ω) ∈ [a−A, a−A]

})
= 0. (4.3)

In the same way we show

P
({
ω : Y (ω) ∈ [b−A, b−A]

})
= 0. (4.4)

(4.3) and (4.4) contradict the monotonicity of G(x), and thus the assertion of Theorem 1
holds.



ON A CONJECTURE OF ERDÖS ABOUT ADDITIVE FUNCTIONS 29

Acknowledgement. I would like to acknowledge and express my gratitude to my col-
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CONSISTENCY AND ASYMPTOTIC NORMALITY OF
PERIODOGRAM ESTIMATOR OF HARMONIC OSCILLATION

PARAMETERS
UDC 519.21

A. V. IVANOV AND B. M. ZHURAKOVSKYI

Abstract. The problem of detection of hidden periodicities is considered in the paper. In the capacity
of useful signal model the harmonic oscillation observed on the background of random noise being a
local functional of Gaussian strongly dependent stationary process is taken. For estimation of unknown
angular frequency and amplitude of harmonic oscillation periodogram estimator is chosen, for which
sufficient conditions of asymptotic normality are obtained and limit normal distribution is found.
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1. Introduction

Detection of hidden periodicities is a problem that has a long history started by
Lagrange in XVIII century [1].

In statistical setting the detection of hidden periodicities is the estimation of unknown
amplitudes and angular frequencies, generally speaking, of the sum of harmonic oscil-
lations by observation of this sum on the background of a random noise masking these
oscillations.

There are many publications on the subject. Among them first of all we have to
mention the works by Whittle [2], Walker [3], Hannan [4], Dorogovtsev, Grechka [5],
Ivanov [6], Knopov [7], Quinn and Hannan [8], etc. A good survey of the topic one can
find in [9].

In the paper the problem of detecting hidden periodicities is considered in the case
when we observe the only harmonic oscillation on the background of random noise being
a local functional of Gaussian stationary process with strong dependence. For estimation
of unknown parameters the periodogram estimator is chosen.

In the proofs we use approach of the paper [4] where the case of weakly dependent
Gaussian stationary noise has been considered.

2000 Mathematics Subject Classification. Primary 62J02; Secondary 62J99.
Key words and phrases. Hidden periodicities, periodogram estimator, harmonic oscilation.
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2. The main result

Suppose the observed random process is of the form

X(t) = A0 cosϕ0t+ ε(t), (1)

where A0 > 0, ϕ0 ∈ (ϕ,ϕ), 0 < ϕ < ϕ < ∞, and the random noise ε(t) satisfies the
following conditions:

A1. ε(t), t ∈ R1, is a local functional of a Gaussian stationary process ξ(t), that
is ε(t) = G(ξ(t)), G(x), x ∈ R1, is a Borel function such that E ε(0) = 0,
E ε2(0) <∞.

A2. ξ(t), t ∈ R1, is a real mean square continuous measurable Gaussian stationary
process defined on the probability space (Ω, F,P), E ξ(0) = 0.

Assume also that one of the next conditions is fulfilled:
A3. Covariance function (c.f.) of the process ξ(t) is E ξ(t)ξ(0) = B(t) = L(|t|)|t|−α,

α ∈ (0, 1), where L(t), t ≥ 0, is a nondecreasing slowly varying at infinity
function, E ξ2(0) = B(0) = 1.

A4. C.f. of the process ξ(t) is B(t) = cosψt(1 + t2)−α/2, α ∈ (0, 1), ψ > 0 is some
number, ϕ0 �= ψ.

Suppose that for a function G(x) ∈ L2

(
R

1, ϕ(x) dx
)
,

ϕ(x) = (2π)−1/2
e−x

2/2,

C1(G) �= 0 or C1(G) = · · · = Cm−1(G) = 0, Cm(G) �= 0, where

Ck(G) =
∫ +∞

−∞
G(t)Hk(t)ϕ(t) dx, k ≥ 0,

and Hk(t) are Hermite polynomials. Then the number m ≥ 1 is said to be Hermite rank
of G.

We also assume that function G(·) from condition A1 satisfies assumption
B1. mα > 1, where α is a parameter of c.f. B.
We need in a result proved in [10].

Lemma 1. If conditions A1, A2, and A3 or A4 are satisfied, then

E

(
sup
λ∈R1

1
T

∣∣∣∣∣
∫ T

0

e−iλtε(t) dt

∣∣∣∣∣
)2

→ 0, T →∞.

Consider the functional

QT (ϕ) =

∣∣∣∣∣ 2T
∫ T

0

X(t)eiϕt dt

∣∣∣∣∣
2

. (2)

The periodogram estimator of the frequency ϕ0 is said to be any random variable (r.v.)
ϕT ∈ [ϕ,ϕ] such that QT (ϕT ) = maxϕ∈[ϕ,ϕ]QT (ϕ) .

Theorem 1. If conditions of Lemma 1 are satisfied, then ϕT
P→ ϕ0, T →∞.

Proof. For any fixed ϕ consider a behavior, as T →∞, of the value

QT (ϕ) =
4
T 2

⎛⎝A2
0

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕt dt

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ T

0

ε(t)eiϕt dt

∣∣∣∣∣
2
⎞⎠

+
4
T 2

(
2A0 Re

[∫ T

0

cosϕ0te
iϕt dt

∫ T

0

ε(t)e−iϕt dt

])
.

(3)
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As

T−1

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕt dt

∣∣∣∣∣ ≤ 1,

then due to lemma 1, the 2nd and the 3rd summands in the right-hand side of (3) tend
to 0, as T →∞, in probability. Next we have for ϕ ∈ [ϕ,ϕ]

2
T

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕt dt

∣∣∣∣∣ =
{
ei(ϕ−ϕ0)T −1
i(ϕ−ϕ0)T + ei(ϕ+ϕ0)T −1

i(ϕ+ϕ0)T , ϕ �= ϕ0,
eiϕ0T −1
2iϕ0T

+ 1, ϕ = ϕ0.
(4)

From (3) and (4) it follows that

QT (ϕ0)
P→ A2

0, T →∞, (5)

QT (ϕ) P→ 0, T →∞, (6)

uniformly on any set

Φδ =
{
ϕ ∈

[
ϕ,ϕ
]

: |ϕ− ϕ0| ≥ δ
}
, δ > 0.

By definition of ϕT
P (|ϕT − ϕ0| ≥ δ) = P (|ϕT − ϕ0| ≥ δ,QT (ϕT ) ≥ QT (ϕ0))

≤ P

(
sup
ϕ∈Φδ

QT (ϕ) ≥ QT (ϕ0)
)
→ 0, T →∞,

according to (5) and (6). �

We define the periodogram estimator of amplitude A0 as AT = Q
1/2
T (ϕT ).

Lemma 2. If conditions of Lemma 1 are satisfied, then

QT (ϕT ) P→ A2
0, T →∞.

Proof. Using (3), one can write

0 ≤ QT (ϕT )− QT (ϕ0)

=
4A2

0

T 2

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕT t dt

∣∣∣∣∣
2

− 4A2
0

T 2

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕ0t dt

∣∣∣∣∣
2

+ ηT ,

ηT
P→ 0, T →∞.

(7)

As from (4) we have

sup
ϕ∈[ϕ,ϕ]

1
T

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕt dt

∣∣∣∣∣ ≤ 1 and lim
T→∞

1
T

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕ0t dt

∣∣∣∣∣ = 1,

then

lim
T→∞

sup
ϕ∈[ϕ,ϕ]

⎧⎨⎩4A2
0

T 2

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕt dt

∣∣∣∣∣
2

− 4A2
0

T 2

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕ0t dt

∣∣∣∣∣
2
⎫⎬⎭ ≤ 0. (8)

Taking into account relations (7), (8), we get

QT (ϕT )− QT (ϕ0)
P→ 0, T →∞.

According to (5) QT (ϕ0)
P→ A2

0, T →∞, so

QT (ϕT ) P→ A2
0 as T →∞. �
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Theorem 2. If conditions of Lemma 1 are satisfied, then

T (ϕT − ϕ0)
P→ 0, T →∞.

Proof. From lemma 2 and (7) it follows

2
T 2

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕT t dt

∣∣∣∣∣
2

− 2
T 2

∣∣∣∣∣
∫ T

0

cosϕ0te
iϕ0t dt

∣∣∣∣∣
2

P→ 0, T →∞. (9)

In order to satisfy (9), it is necessary and sufficient that (see. (4))∣∣∣∣ei(ϕT −ϕ0)T − 1
i (ϕT − ϕ0)T

+
ei(ϕT +ϕ0)T − 1
i (ϕT + ϕ0)T

∣∣∣∣2 − ∣∣∣∣eiϕ0T − 1
2iϕ0T

+ 1
∣∣∣∣2 P→ 0, (10)

or
sin 1

2 (ϕT − ϕ0)T
1
2 (ϕT − ϕ0)T

P→ 1 as T →∞.

But the latter is possible if and only if

T (ϕT − ϕ0)
P→ 0, T →∞. �

Consider a vector function

a(t) = (a1(t), a2(t), . . . , aq(t))
′
, t ≥ 0, (11)

and family of matrix measures μT (dλ) =
(
μjlT (dλ)

)q
j,l=1

,

μjlT (dλ) =
(
ajT (λ)aiT (λ)

)(∫ +∞

−∞

∣∣∣ajT (λ)
∣∣∣2 dλ)−1/2(∫ +∞

−∞

∣∣alT (λ)
∣∣2 dλ)−1/2

dλ,

ajT (λ) =
∫ T

0

eiλtaj(t) dt, j, l = 1, . . . , q.

Assume that μT (dλ) weakly converges, as T → ∞, to a matrix measure μ(dλ), that is
for any continuous bounded function b(λ), λ ∈ R1,∫ +∞

−∞
b(λ)μT (dλ) →

∫ +∞

−∞
b(λ)μ(dλ), T →∞.

Then the measure μ(dλ) is said to be spectral measure of vector function (11).
To determine the spectral measure of vector (11) one can use the relations [11]

lim
T→∞

d−1
iT d

−1
jT

∫ T

0

ai(t+ s)aj(t) dt =
∫ +∞

−∞
eiλs μij (dλ), i, j = 1, . . . , q,

with

d2
iT =

∫ T

0

a2
i (t) dt, i = 1, . . . , q.

Let for j ≥ m

f∗j(λ) =
∫

Rj−1
f(λ− λ2 − · · · − λj)

j∏
i=2

f (λi) dλ2 . . . dλj

be the j-th convolution of the spectral density f(λ) of the random process ξ. Note that
Bk(·) ∈ L1

(
R

1
)
, k ≥ m, so all the f∗j(λ), k ≥ m, are continuous bounded functions.

Further we formulate the general theorem on asymptotic normality of certain vector
integrals [12] and will use in the paper partial cases of this result.
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Theorem 3. Suppose assumptions A1, A2, B1, and A3 or A4 are fulfilled. In addition
the vector function (11) possesses spectral measure μ (dλ) and

sup
t∈[0,T ]

d−1
iT |ai(t)| ≤ ki · T−1/2, i = 1, . . . , q, (12)

ki < +∞, i = 1, . . . , q, are some constants.
Then the vector

bT = d−1
T

∫ T

0

G (ξ(t)) a(t) dt, dT = diag (diT )qi=1.

is asymptotically, as T →∞, normal N (0,K) where

K = 2π
∞∑
k=m

C2
k

k!

∫ ∞

−∞
f∗k(λ)μ (dλ, θ) . (13)

Corollary. If the conditions of Lemma 1 and B1 are satisfied, then the random vector(
d−1
1T

∫ T

0

ε(t) sinϕ0t dt, d
−1
2T

∫ T

0

ε(t)t sinϕ0t dt

)′

is asymptotically, as T →∞, normal N(0,K1) with

K1 = 2π
∞∑
j=m

C2
j

j!
f∗j (ϕ0)

(
1

√
3

2√
3

2 1

)
.

It follows from this fact that the vector(
T−1/2

∫ T

0

ε(t) sinϕ0t dt, T
−3/2

∫ T

0

ε(t)t sinϕ0t dt

)′
(14)

is asymptotically, as T →∞, normal N(0,K2) with

K2 = 2π
∞∑
j=m

C2
j

j!
f∗j (ϕ0)

(
1
2

1
4

1
4

1
6

)
.

Similarly, one can obtain asymptotic normality of the vector(
T−1/2

∫ T

0

ε(t) cosϕ0t dt, T
−3/2

∫ T

0

ε(t)t cosϕ0t dt

)′
(15)

with the same covariance matrix K2.

Lemma 3. If the conditions of Lemma 1 and B1 are satisfied, then T−1/2Q′
T (ϕ0) is

asymptotically, as T →∞, normal N(0,K3) with

K3 =
4
3
πA2

0

∞∑
j=m

C2
j

j!
f∗j (ϕ0).

Proof. Obviously

QT (ϕ) =
4
T 2

[∫ T

0

X(t) cosϕt dt

]2

+
4
T 2

[∫ T

0

X(t) sinϕt dt

]2

.
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Then

T−1/2Q′
T (ϕ0) = − 8

T 5/2

∫ T

0

X(t) cosϕ0t dt

∫ T

0

X(t)t sinϕ0t dt

+
8

T 5/2

∫ T

0

X(t) sinϕ0t dt

∫ T

0

X(t)t cosϕ0t dt

= − 8
T 5/2

[
1
2

∫ T

0

A0cos2ϕ0t dt

∫ T

0

A0t sin 2ϕ0t dt

+
∫ T

0

A0cos2ϕ0t dt

∫ T

0

ε(t)t sinϕ0t dt

+
1
2

∫ T

0

A0t sin 2ϕ0t dt

∫ T

0

ε(t) cosϕ0t dt

+
∫ T

0

ε(t) cosϕ0t dt

∫ T

0

ε(t)t sinϕ0t dt

]

+
8

T 5/2

[
1
2

∫ T

0

A0 sin 2ϕ0t dt

∫ T

0

A0tcos2ϕ0t dt

+
1
2

∫ T

0

A0 sin 2ϕ0t dt

∫ T

0

ε(t)t cosϕ0t dt

+
∫ T

0

A0tcos2ϕ0t dt

∫ T

0

ε(t) sinϕ0t dt

+
∫ T

0

ε(t) sinϕ0t dt

∫ T

0

ε(t)t cosϕ0t dt

]

=
8∑
i=1

Si.

Evidently S1, S5 → 0, T → ∞. Using lemma 1, we have S3
P→ 0, T → ∞. Conver-

gence to 0 in probability of summands S4, S6 and S8 arises from asymptotic normality
of integrals

T−3/2

∫ T

0

ε(t)t sinϕ0t dt and T−3/2

∫ T

0

ε(t)t cosϕ0t dt.

So,
T−1/2Q′

T (ϕ0) = S2 + S7 + η
(2)
T , η

(2)
T

P→ 0, T →∞,

and

T− 1
2Q′

T (ϕ0) = 2A0T
−1

2

∫ T

0

ε(t)sinϕ0t dt− 4A0T
− 3

2

∫ T

0

ε(t)tsinϕ0t dt+ η
(3)
T

= 2A0(b1T − 2b2T ) + η
(3)
T , η

(3)
T

P→ 0, T →∞.

(16)

Using asymptotic normality of vector (14), find the variance 4A2
0D (b1T − 2b2T ). Let

λ = (λ1, λ2), bT = (b1T , b2T ). It is easily seen that

E ei〈λ,bT 〉 → exp
{
−1

2
〈K2λ, λ〉

}
, T →∞.

Taking λ = (τ,−2τ) we obtain

E eiτ(b1T−2b2T ) → exp
{
−τ

2

2
(
K11

2 − 4K12
2 + 4K22

2

)}
,
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that is r.v. b1T − 2b2T is asymptotically normal N
(
0, 1

6

)
. So, T−1/2Q′

T (ϕ0) is asymptot-
ically, as T →∞, normal N(0,K3). �

Lemma 4. If conditions of Lemma 1 and B1 are fulfilled, then for any r.v. ϕ̃T satisfying
inequality |ϕ̃T − ϕ0| ≤ |ϕT − ϕ0| with probability 1, for all T > 0,

1
T 2
Q′′
T (ϕ̃T ) P→ −1

6
A2

0, T →∞.

Proof. Write

1
T 2
Q′′
T (ϕ̃T ) = 8

[∫ T

0

t sin ϕ̃T tX(t) dt

]2

− 8
T

∫ T

0

cos ϕ̃T tX(t) dt
1
T 3

∫ T

0

t2 cos ϕ̃T tX(t) dt

+ 8

[
1
T 2

∫ T

0

t cos ϕ̃T tX(t) dt

]2

− 8
T

∫ T

0

sin ϕ̃T tX(t) dt
1
T 3

∫ T

0

t2 sin ϕ̃T tX(t) dt

=
4∑
i=1

Qi.

Then the integral

1
T

∫ T

0

cos ϕ̃T tX(t) dt =
1
T

∫ T

0

cos ϕ̃T t [A0 cosϕ0t+ ε(t)] dt

=
A0

T

∫ T

0

cos ϕ̃T t cosϕ0t dt+
1
T

∫ T

0

cos ϕ̃T tε(t) dt

=
1

2T

∫ T

0

A0 (cos (ϕ̃T − ϕ0) t+ cos (ϕ̃T + ϕ0) t) dt+ η
(4)
T

=
A0

2T

∫ T

0

cos (ϕ̃T − ϕ0) t dt+ η
(5)
T ,

η
(4)
T , η

(5)
T

P→ 0, T →∞.

Using the lemma conditions and the result of the theorem 2 we obtain

1
T

∫ T

0

cos ϕ̃T tX(t) dt P→ A0

2
, T →∞.

Using similar calculations we get

1
T 3

∫ T

0

t2 cos ϕ̃T tX(t) dt P→ A0

6
, T →∞,

so, Q2
P→ − 2

3A
2
0. Similarly, Q3

P→ A2
0/2, and Q1, Q4

P→ 0, T →∞. Then

1
T 2
Q′′
T (ϕ̃T ) P→ −2A2

0

3
+
A2

0

2
= −A

2
0

6
, T →∞. �

Theorem 4. If the conditions of Lemma 1 and B1 are satisfied, then T 3/2 (ϕT − ϕ0) is
asymptotically, as T →∞, normal with zero mean and variance

48π
∞∑
j=m

c2j
j!
f∗j (ϕ0).
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Proof. As Q′
T (ϕT ) = 0, then

Q′
T (ϕ0) +Q′′

T (ϕ̃T ) (ϕT − ϕ0) = 0 (17)

with some r.v. ϕ̃T , satisfying

|ϕ̃T − ϕ0| ≤ |ϕT − ϕ0| , T →∞.

From (17)

T 3/2 (ϕT − ϕ0) = −T
−1/2Q′

T (ϕ0)
T−2Q′′

T (ϕ̃T )
.

The theorem follows now from lemmas 3 and 4. �

Theorem 5. If the conditions of Lemma 1 and B1 are satisfied, then the normed esti-
mator T 1/2 (AT −A0) is asymptotically, as T →∞, normal with zero mean and variance

4π
∞∑
j=m

c2j
j!
f∗j (ϕ0).

Proof. Write

T 1/2 (AT −A0) = T 1/2
[
Q

1/2
T (ϕT )−A0

]
= T 1/2

[
QT (ϕT )−A2

0

] [
Q

1/2
T (ϕT ) +A0

]−1

.

From Lemma 2

Q
1/2
T (ϕT ) +A0

P→ 2A0, T →∞. (18)

We have

T 1/2 [QT (ϕT )−QT (ϕ0)] = T 1/2Q′
T (ϕ0) (ϕT − ϕ0) +

1
2
T 1/2Q′′

T (ϕ̃T ) (ϕT − ϕ0)
2

with some ϕ̃T such that |ϕ̃T − ϕ0| ≤ |ϕT − ϕ0|. The value

T 1/2Q′
T (ϕ0) (ϕT − ϕ0) = T−1/2Q′

T (ϕ0) T (ϕT − ϕ0) (19)

tends to 0 in probability, according to theorem 2 and lemma 3. The expression

T 1/2

2
Q′′
T (ϕ̃T ) (ϕT − ϕ0)

2 =
1

2T 2
Q′′
T (ϕ̃T )T 3/2 (ϕT − ϕ0) T (ϕT − ϕ0)

tends to 0 in probability as it follows from lemma 4 and theorems 2 and 4. Using (18)
and (19) we can conclude that asymptotic distribution of T 1/2 (AT −A0) is the same as
asymptotic distribution of

T 1/2

2A0

[
QT (ϕ0)−A2

0

]
. (20)

From (3) and (4) it is seen that QT (ϕ0)−A2
0 behaves at infinity as

ZT (ϕ0) =
4
T 2

∣∣∣∣∣
∫ T

0

ε(t)eiϕ0t dt

∣∣∣∣∣
2

+
8A0

T 2
Re

{∫ T

0

cosϕ0te
iϕ0t dt

∫ T

0

ε(t)e−iϕ0t dt

}
.

Consider

1
T 3/2

∣∣∣∣∣
∫ T

0

ε(t)eiϕ0t dt

∣∣∣∣∣
2

=
1

T 1/2

∫ T

0

ε(t)eiϕ0t dt
1
T

∫ T

0

ε(t)e−iϕ0t dt
P→ 0, T →∞,

because the 1st integral is asymptotically normal and the 2nd tends to 0 in probability.
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So, it remains to analyze the behavior of

T−3/2 Re

{∫ T

0

cosϕ0te
iϕ0t dt

∫ T

0

ε(t)e−iϕ0t dt

}

= T−3/2

∫ T

0

cos2ϕ0t dt

∫ T

0

ε(t) cosϕ0t dt

+ T−3/2

∫ T

0

cosϕ0t sinϕ0t dt

∫ T

0

ε(t) sinϕ0t dt

=
1

2T 1/2

∫ T

0

ε(t) cosϕ0t dt+ η
(6)
T , η

(6)
T

P→ 0, T →∞.

As it was shown earlier, T−1/2
∫ T
0 ε(t) cosϕ0t dt is asymptotically normal with parame-

ters 0 and π
∑∞

j=m

c2j
j! f

∗j (ϕ0). Using this fact we obtain that T 1/2
(
QT (ϕ0)−A2

0

)
is as-

ymptotically normal with parameters 0 and 16πA2
0

∑∞
j=m

c2j
j! f

∗j (ϕ0), so T 1/2 (AT −A0)

is asymptotically normal with zero mean and variance 4π
∑∞

j=m

c2j
j! f

∗j (ϕ0). �

Theorem 6. If conditions A1, A2, B1, and A3 or A4 are satisfied, then the random
vector (

T 1/2 (AT −A0) , T 3/2 (ϕT − ϕ0)
)′

is asymptotically normal, as T →∞, with zero mean and covariance matrix

2π
∞∑
j=m

C2
j

j!
f∗j (ϕ0)

(
2 0
0 24A−2

0

)
.

Proof. In the proofs of lemma 3, theorems 4 and 5 it was shown that

T
3
2 (ϕT − ϕ0) = 12A−1

0 T−1
2

∫ T

0

ε(t)sinϕ0t dt

− 24A−1
0 T−3/2

∫ T

0

ε(t)t sinϕ0t dt+ η
(7)
T ,

(21)

T 1/2 (AT −A0) = 2T−1/2

∫ T

0

ε(t) cosϕ0tdt+ η
(6)
T , T →∞; (22)

η
(6)
T

P→ 0, η(7)
T

P→ 0, T →∞.
We have, for any u1, u2,

u1T
1/2 (AT −A0) + u2T

3/2 (ϕT − ϕ0)

= u12T−1/2

∫ T

0

ε(t) cosϕ0t dt+ u212A−1
0 T−1/2

∫ T

0

ε(t)sinϕ0t dt

− u224A−1
0 T−3/2

∫ T

0

ε(t)t sinϕ0t dt+ η
(8)
T

= v1ξ1T + v2ξ2T + v3ξ3T + η
(8)
T ,

(23)

where v1 = u1
2√
2
, v2 = u2

12√
2
A−1

0 , v3 = −u2
24√
6
A−1

0 , ξ1T =
√

2T−1/2
∫ T
0 ε(t) cosϕ0t dt,

ξ2T =
√

2T−1/2
∫ T
0 ε(t) sinϕ0t dt, ξ3T =

√
6T−3/2

∫ T
0 ε(t)t sinϕ0t dt, η

(8)
T

P→ 0, T →∞.
Note that the spectral measure μ (dλ) of the vector (cosϕ0t, sinϕ0t, t sinϕ0t) is

μ (dλ) =

⎛⎜⎝ α −iβ −iβ
−iβ α

√
3

2 α

−iβ
√

3
2 α α

⎞⎟⎠ , (24)
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where α is a measure concentrated at ±ϕ0, and α ({±ϕ0}) = 1
2 , β is a signed measure

concentrated at ±ϕ0 and β ({±ϕ0}) = ± 1
2 .

Using result of the Theorem 3, we obtain

E exp {i (v1ξ1T + v2ξ2T + v3ξ3T )} → exp
{
−1

2
〈Kv, v〉

}
,

where, from (13) and (24) it follows

〈Kv, v〉 = 2π
∞∑
k=m

C2
k

k!
f∗k(ϕ0)

(
v2
1 + v2

2 + v2
3 +

√
3v2v3

)
= 2π

∞∑
k=m

C2
k

k!
f∗k(ϕ0)

(
2u2

1 + 24A−2
0 u2

2

)
. �
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QUANTITATIVE AND QUALITATIVE LIMITS FOR EXPONENTIAL
ASYMPTOTICS OF HITTING TIMES FOR BIRTH-AND-DEATH

CHAINS IN A SCHEME OF SERIES
UDC 519.21

N. V. KARTASHOV

Abstract. We consider time-homogeneous discrete birth-and-death Markov chain (Xt) and investi-
gate the asymptotics of the hitting time τn = inf(t ≥ 1: Xt ≥ n) as well as the chain position before
this time in the scheme of series as n → ∞. In our case one-step probabilities of the chain vary simul-
taneously with n. The proofs are based on the explicit two-side inequalities with numerical bounds
for the survival probability P(τn > t). These inequalities can be used also for the pre-limit finite-time
schemes. We have applied the results obtained for construction the uniform asymptotic representations
of the corresponding risk function.
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1. Introduction

The task of investigation of the distribution stability for general Markov chains under
the broad assumptions about the nature of jumps is expounded in details in the author’s
monograph [2]. Some applications of the theory are included there as well. The proofs
are based on the analytical operator methods. The book includes some new inequalities
for the renewal process asymptotics and the solutions of the renewal equation.

Foundations of the stability theory for stochastic models are set in the monograph by
Zolotarev [5]. Important achievements in the stability theory are included in the book
by Mayn and Tweedie [4].

This paper is based on the author’s results placed in [2, Ch.7]. These results were
obtained earlier but they have not been published. The comparison with paper [3] can
be useful. The similar but not identical results were obtained earlier in [6].

2. Main results

Let us consider the time-homogeneous birth-and-death Markov chain

X = (Xt, t = 0, 1, . . . )
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with values in a discrete space E = Z+. A matrix of one-step transition probabilities
P = (pij , i, j ∈ E) has entries pi,i−1 = qi, pi,i+1 = pi, pii = ri = 1 − pi − qi when
i ≥ 1, and p01 = p0, p00 = 1 − p0 = q0. We assume that the chain is not reducible: pi,
qi > 0. The symbols Pi(·) and Ei(·) will be used to denote the conditional probability
and expectation given {X0 = i}.

Let us define the hitting moment of the ”distant” level as

τn = inf(t ≥ 1: Xt ≥ n). (1)

We investigate the asymptotics of the time τn in a scheme of series where n→∞. In
our case the one-step transition probabilities (pi, qi) could change. For instance, they
could depend on n.

Let’s introduce the following notation for t ≥ 0

θt =
∏

1≤i≤t
(qi/pi), θ0 = 1, σt =

∑
0≤i<t

θi, κt = 1/(ptθt), t ≥ 0. (2)

Consider the aggregate parameters

λn =

⎛⎝1 +
∑

i≤j∈En

κiθj

⎞⎠−1

=

(
1 +

∑
i∈En

κi(σn − σi)

)−1

,

ωn = λn − λ2
n + λ2

n

∑
i≤j<k≤l∈En

κiθjκkθl

= λn − λ2
n + λ2

n

∑
i<k∈En

κi(σk − σi)κk(σn − σk).
(3)

Hereafter we will use the summation sign without upper and lower indexes assuming
summation on the hole index set En ≡ {0, 1, . . . , n − 1}. It worth to mention that the
process continuity implies the entire determination for the distribution of the time τn by
(pi, qi, i ∈ En).

The following estimation can be applicable to any scheme of series as well as for the
fixed n.

Theorem 2.1. The following inequality holds true

sup
t≥0

∣∣∣P0(τn > t)−
(
1−m−1

n

)t∣∣∣ ≤ 2ωn(1 + λn)p0/λnσn(1 − ωn), (4)

where
m−1
n = λn/(1 + ωn).

Remark 2.1. It follows from the definitions (3) that 0 < ωn ≤ 1/2 in (4).

Corollary 2.1. Let n→∞ in a scheme of series in such a way that λn → 0 and

ωnp0 = o(λnσn), n→∞. (5)

Then
sup
x≥0

|P0(τn/mn > x)− exp(−x)| → 0, n→∞.

This convergence is uniform in the scheme of series if the relation (5) is uniform too.

Corollary 2.2. Let the chain X be unchangeable for the scheme of series, irreducible
and ergodic, and n → ∞. Then λn → 0, ωn → 0, and the following representation is
true

sup
x≥0

|P0(λnτn > x)− exp(−x)| = O(ωn), n→∞. (6)
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Corollary 2.3. Let n and the distribution of the chain X be fixed excepting p0 → 0.
Then the following representation holds true

sup
x≥0

|P0(p0τn > x)− exp(−x)| = O(p0), p0 → 0. (7)

We can obtain from (4) the limit results for the specially structured schemes of series
at one time. Here are some examples.

Corollary 2.4. Let the transition probabilities in a scheme of series for the birth-and-
death chain satisfy the relationship

pi = εnvi + o(εn), qi = εnui + o(εn), i ≥ 1, n→∞, (8)

for some εn → 0, and vi, ui > 0. Let us use the denotations

θt =
t∏
i=1

(ui/vi), σt =
t−1∑
s=1

θs, χt = 1/(vtθt), t ≥ 1. (9)

We assume that in a scheme of series

σn →∞,
∑
t≥1

χt ≡ χ = O(1), n→∞. (10)

Then, subject to

ωn ≡ σ−1
n

∑
1≤i<k<n

χi(σk − σi)χk = o(1), n→∞,

the uniform convergence is true

sup
t≥0

∣∣∣P0(τn > t)−
(
1−m−1

n

)t∣∣∣ = O
(
ωn + σ−1

n

)
= o(1), n→∞.

Remark 2.2. If the coefficients vi, ui are bounded and separated from zero, then the
conditions (10) are equivalent to the ergodicity of the the birth-and-death chain with
jump probabilities (ui/(ui + vi), vi/(ui + vi)), i ≥ 1.

To analyze the asymptotics of joint distribution of the time τn and the chain value X
till this time (the comparison can be made with [6]) we additionally assume that there
is a systematic shift to zero

qi > pi, i ≥ 1, (11)
and state 0 in a scheme of series is asymptotically positive and attainable:

lim
n→∞

λnσn > 0, 0 < lim
n→∞

p0 ≤ lim
n→∞ p0 < 1. (12)

It was established in the proof of the Corollary 2.2 (see the limit relation (38)) that
the conditions (12) hold for any fixed irreducible ergodic birth-and-death chain.

We define the speed-of-mixing indicator as

δn = min
1≤i<n

(qi − pi) > 0. (13)

Theorem 2.2. Let the conditions (11), (12) and λn → 0, ωn → 0 hold true in a scheme
of series as n→∞ so that

λn lnλ−1
n = o(δ4n), n→∞. (14)

Then, for every s0 > 0 the uniform representation holds true

sup
s≥s0,B⊂E

∣∣P0(λnτn > s, Xs/λn
∈ B)− πn(B) exp(−s)

∣∣
= O(ωn + λnδ

−4
n ln(1/λnδn)) = o(1), n→∞,

(15)
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where the discrete distribution πn = (πni , i ∈ En) can be defined through (2), (3) by
equalities

πnn = λn, πni = λnκi(σn − σi), i < n, πn(B) =
∑
i∈B

πni . (16)

Corollary 2.5. Let the chain X do not change in a scheme of series and be irreducible
and ergodic. Then, the sufficient condition for the convergence to zero of the left-hand
part of (15) is

lim
n→∞

nδn/ lnn > 3/2. (17)

Remark 2.3. For comparison with (17) we remark that
(a) in a class of birth-and-death chains satisfying the conditions (13) and δn → 0,

n→∞ the sufficient condition of ergodicity is

lim
n→∞

nδn/ lnn > 1,

(b) under additional assumptions ri ≡ 0 and qi − pi ↓ 0, i→∞, it follows from the
condition

lim
n→∞

nδn < 1/2

that the chain is not ergodic.

3. Proofs

The proofs in this section are based on the Corollary 7.5 [2, Ch.VII].
In order to use it we consider the auxiliary finite chain Xn = (Xn

t , t ≥ 0) with the set
of states En ≡ {0, 1, . . . , n} = En ∪ {n} and the transition probabilities

Pn = (pij(n), i, j ∈ En),
where pij(n) = pij as i ∈ En and

pn0(n) = 1.
It is evident that the distributions for the time τn in (1) for chains (Xt) and (Xn

t ) are
equal.

Lemma 3.1. A chain Xn has the unique invariant probability πn = (πni , i ∈ En) where

πnn = λn, πnj = λnκj(σn − σj) = λn
∑

i<j∈En

θiκj , j < n. (18)

Proof. The system of equations for xi ≡ πni has a form

x0q0 + x1q1 + xn = x0,

xi−1pi−1 + xiri + xi+1qi+1 = xi, 1 ≤ i < n− 1,
xn−2pn−2 + xn−1rn−1 = xn−1,

xn−1pn−1 = xn. (19)

We obtain the following equations from the first and the second rows

xi−1pi−1 − xiqi = xipi − xi+1qi+1 = xn, 1 ≤ i < n− 1. (20)

And finally, using the third, the forth rows of (19) and from (20) we recurrently
calculate when 0 ≤ k < n

xk = xnq
−1
k θ−1

k−1

[
n−3∑
i=k

θi + θn−3qn−2(pn−1 + qn−1)/pn−2pn−1

]

= xnq
−1
k θ−1

k−1

[
n−3∑
i=k

θi + θn−2(1 + qn−1/pn−1)

]
= xn

n−1∑
i=k

κkθi.

(21)
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The condition of normalization
∑n

k=0 xk = 1 implies (18). �

In order to prove the Theorem 2.1 we shall use the Corollary 7.5 [2, Ch.VII] for the
chain Xn with a set En and invariant probability πn. Let us mention that every tran-
sition kernel Q(x,A) and the corresponding linear operator in the descrete space can be
defined by the matrix Q(x,A) =

∑
y∈AQxy, Qxy = Q(x, {y}). Operation of multiplica-

tion kernels by measures, functions and kernels corresponds to the multiplication of the
matrices by rows, columns and matrices.

In particular, the system for the kernel R = (Rxy, x, y ∈ En) in the formulation of the
Corollary 7.5 [2, Ch.VII] is as following

Rxy =
∑
k∈En

Pxk(n)Rky + Pxy(n)− πny ,∑
k∈En

πnkRky = 0, x, y ∈ En, (22)

where the last equation arises from the Lemma 3.1 since πn is the eigenvector for the
matrix Pn.

Moreover, it follows from the defining R as a sum of series of powers of Pn (Corol-
lary 7.5 [2, Ch.VII]) that the operators R and Pn commutate so the equations (22) are
equivalent to the system

Rxy =
∑
k∈En

RxkPky(n) + Pxy(n)− πny ,∑
k∈En

Rxk = 0, x, y ∈ En. (23)

Lemma 3.2. The solutions of systems (22), (23) for x = n or y = n are as following

Rnn = −ωn, (24)

Rkn = λn
∑
i≤j<k

κiθj + λn − ωn, k < n, (25)

Rnk = κk(σn − σk)(λn − ωn) + λn
∑
k<i<n

κk(σn − σi)κi(σi − σk), k < n. (26)

Proof. Denote xk = Rkn. Taking into account (18) we put y = n into (22) and obtain
the system

x0 = q0x0 + p0x1 − λn,

xi = qixi−1 + rixi + pixi+1 − λn, 0 < i < n− 1,
xn−1 = qn−1xn−2 + rn−1xn−1 + pn−1xn + pn−1 − λn,

xn = x0 − λn. (27)

The following equalities are deduced from the first and the second rows
p0(x1 − x0) = λn,

(xi+1 − xi)/θi = λnκi + (xi − xi−1)/θi−1, 1 ≤ i < n− 1.

By recurrent calculation we get

xk+1 − xk = λn

k∑
i=0

κiθk, 0 ≤ k < n− 1,

xk = x0 + λn
∑
j<k

j∑
i=0

κiθj , 0 ≤ k < n. (28)
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Putting the equalities (28) and (27) into the second equation (22) we obtain that

0 =
∑
k∈En

πnkxk = x0 − λ2
n + λn

∑
k∈En

∑
j<k

j∑
i=0

κiθj

= x0 − λ2
n + λ2

n

∑
i≤j<k∈En

κiθjκk(σn − σk) = x0 − λ2
n + ωn − λn + λ2

n

= x0 + ωn − λn,

and deduce from (27) the identities in (24), (25).
For proving (26) we use the denote xk ≡ Rnk and use (23) when x = n

x0 = q0x0 + q1x1 + xn + 1− πn0 ,

xk = pk−1xk−1 + rkxk + qk+1xk+1 − πnk , 1 ≤ k < n− 1,
xn−1 = pn−2xn−2 + rn−1xn−1 − πnn−1,

xn = pn−1xn−1 − πnn, (29)

where the probabilities πnk are defined in the Lemma 3.1.
Using the first two equations (29) and the recurrent calculations we deduce that

pkxk − qk+1xk+1 = −
k∑
i=0

πni + 1 + xn =
n∑

i=k+1

πni + xn, 0 ≤ k < n− 2. (30)

Multiplying (30) by θk and summing over k = 0, . . . , n− 3 we obtain

xkθkpk = xn−2θn−2pn−2 +
n−3∑
j=k

θj

⎛⎝xn +
n∑

i=j+1

πni

⎞⎠ .

Taking into account the last two equations in (29) and the identity

θn−2(pn−1 + qn−1)/pn−1 = θn−2 + θn−1

we deduce that

xk = xn(σn − σk) +
n−1∑
j=k

κkθj

n∑
i=j+1

πni , 0 ≤ k < n. (31)

And finally, putting there the values πni from (16) and xn = Rnn from (24) concludes
the proof of the Lemma 3.2. �

Proof of Theorem 2.1. Let us utilize the inequality (7.40) from the Corollary 7.5 [2,
Ch.VII] to the chain X = Xn on E = En with time τH = τn and the set H = {n}. An
invariant measure and the chain potential are calculated in the Lemmas 3.1 and 3.2.

In the notations of (7.39) [2, Ch.VII]

rHH = sup
x∈H

∣∣R∣∣ (x,H) =
∣∣Rnn∣∣ = ωn, (32)
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under (24) since ωn > 0. It follows from (25), (18), (3)

rπH =
∫
π(dx)

∣∣R∣∣ (x,H) =
n∑
k=0

πnk
∣∣Rkn∣∣

≤ λn
∣∣Rnn∣∣+ n−1∑

k=0

λnκk(σn − σk)max

⎛⎝ωn, λn + λn
∑
i≤j<k

κiθj

⎞⎠
= λnωn + max

⎡⎣λnωn n−1∑
k=0

κk(σn − σk),

λ2
n

n−1∑
k=0

κk(σn − σk)

⎛⎝1 +
∑
i≤j<k

κiθj

⎞⎠⎤⎦
≤ λnωn + max

[
λnωn(λ−1

n − 1), λ2
n(λ

−1
n − 1)

]
+ ωn − λn + λ2

n

= λnωn + max[ωn(1− λn), ωn] = ωn(1 + λn).

(33)

Furthermore, according to the equality (7.41) [2, Ch. VII]

m−1
H = (EπτH)−1 = πnn

∑
t≥0

(−1)t(Rnn)t = λn(1 + ωn)−1 = m−1
n . (34)

And finally, the constant a in the Corollary 7.5 [2, Ch.VII] is the upper limit for the
density of the initial distribution of α (it is concentrated in 0) regarding the measure πn

a = 1/πn0 = 1/λnκ0σn = p0/λnσn. (35)

Putting the relations (32), (33), (34) and (35) into the inequality (7.40) of the Corol-
lary 7.5 [2, Ch.VII] we have proved the estimate (4) in the Theorem 1. �

Proof of Remark 1. The positiveness of ωn > 0 follows from condition λn < 1 in defini-
tion (3). Let us denote as

sn =
∑

i≤j∈En

κiθj > 0

the sum included in (3). Using the last definition

λn = (1 + sn)−1,

ωn =

⎛⎝sn +
∑

i≤j<k≤l∈En

κiθjκkθl

⎞⎠ / (1 + sn)
2

≤

⎛⎝sn + 1/2
∑

i≤j∈En

κiθj
∑

k≤l∈En

κkθl

⎞⎠ / (1 + sn)
2

= (sn + s2n/2)/(1 + sn)2 ≤ 1/2 < 1. �

(36)

Proof of Corollary 2.1. The proof can be concluded from the inequality (4) since the
right-hand part of (4) equals to O(p0ωn/λnσn) in view of (36). From the other side, the
relation in the left-hand part after the substitution t = [xmn] is equivalent to

(1 −m−1
n )[xmn] → exp(−x), n→∞, (37)

uniformly on x ≥ 0 since m−1
n ≤ λn → 0. �
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Proof of Corollary 2.2. The well-known recurrence and positivity criteria for the birth-
and-death chain [1] correspond to the divergence of σn → ∞ and convergence of κ =∑

i≥0 κi <∞.
Let us calculate

(λnσn)−1 = σ−1
n

⎛⎝1 +
∑

i≤j∈En

κiθj

⎞⎠ = σ−1
n +

∑
i≥0

κi

(
1− σiσ

−1
n

)
�i<n

→
∑
i≥0

κi = κ ∈ (0,∞), n→∞,

(38)

using the Lebesgue theorem on majorized convergence.
So, λn ∼ 1/κσn → 0, n→∞.
Similarly, it follows from the representation

ωn = λn − λ2
n + λ2

n

∑
0≤i<k<n

κi(σk − σi)κk(σn − σk)

≤ λn + (λnσn)2
∑

i,k∈En

κiκk(σk − σi)+σ−1
n �i<k<n,

and the monotonicity of σn, using the Lebesgue theorem on majorized convergence, that
limn→∞ ωn = 0.

Taking into account (38) and the Remark 1 we can conclude that the right-hand part
of (4) 2ωn(1 + λn)p0/λnσn(1− ωn) is equal to O(ωn).

Utilization of approximation (37) in its left-hand part, convergence of ωn → 0 and the
estimate |exp(−x− xε)− exp(−x)| ≤ ε, x, ε ≥ 0 result in (6) �

Proof of Corollary 2.3. Let us use the representations (4) of the Theorem 2.1, where n is
fixed. Since p0 is included into (3) only as a part of κ0, then λn = 1/(1 +L/p0) ∼ p0/L,
p0 → 0, ωn = p0/L + o(p0), p0 → 0, σ2

n = C for some constants L,C > 0. Thus, (7)
follows from (4). �

Proof of Corollary 2.4. It follows from the definitions (3), (8), (9) that

λ−1
n = 1 + σn/p0 + ε−1

n

∑
1≤i<n

χi(σn − σi) ∼ σnχ/εn →∞, n→∞.

Simultaneously,

ωn = λn − λ2
n + λ2

n

∑
1≤i<k<n

ε−2
n χi(σk − σi)χk(σn − σk) ∼ λn + λ2

nσ
2
nωn/ε

2
n

∼ λn + χ−2ωn = o(1), n→∞. �

Proof of Theorem 2.2. Let us use the inequality (7.43) of the Corollary 7.5 [2, Ch.VII]
to the chain X = Xn on E = En with time τH = τn and the set H = {n}. An invariant
probability and the potential of the chain Xn are calculated in the Lemmas 3.1 and 3.2.

The estimate for new variation of the potential in (7.42) can be deduced from the
equalities (24), (26) since

rH = 1 + sup
x∈H

∣∣R∣∣ (x,E) = 1 +
n∑
k=0

∣∣Rnk∣∣
≤ 1 +

∣∣Rnn∣∣+ (λn + ωn)
∑
k<n

κk(σn − σk) + λn
∑
k<i<n

κk(σi − σk)κi(σn − σk)

= 1 + ωn + (λn + ωn)
(
λ−1
n − 1

)
+
(
ωn − λn + λ2

n

)
λ−1
n = 1 + 2ωnλ−1

n .

(39)

The relations (3) are also used in the expressions above.
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Since π(H) = πnn = λn then utilizing (32) to the firs term in the right-hand part
of (7.43) [2, Ch. VII] we obtain the inequality

π(H)2rH/(1− rHH) ≤ λn2
(
1 + 2ωnλ−1

n

)
/(1− ωn) = O(ωn), n→∞, (40)

where Remark 2.1 is taken into account as well. The representation λn = O(ωn) is the
evident conclusion from (3).

Thus, in order to apply (7.43) we need to find such constants rα ∈ (0, 1) and b < ∞
that

|P0(Xn
t ∈ B)− πn(B)| ≤ b(1− rα)t (41)

for all t > 0, B ⊂ E.
Let us use the Theorem 3.6 [2, Ch.III].
We define the following norm on the space of measures μ = (μi, i ∈ En)

‖μ‖ =
∑
i∈En

vi |μi| , (42)

where the constant v > 1 will be choose later. The form of the corresponding operator
norm on L(En) is placed in [2, p. 1.1]. Let us mention that since v > 1:

|P0(Xn
t ∈ B)− πn(B)| ≤

∣∣αP tn − πn
∣∣ (En) ≤ ∥∥αP tn − πn

∥∥ =
∥∥α(P tn −Πn)

∥∥
≤ ‖α‖

∥∥P tn −Πn

∥∥ =
∥∥P tn −Πn

∥∥ , (43)

where P tn ≡ (Pn)t and αi = δi0 is the initial distribution of the matrix Πn that has equal
rows of the type πn.

Let us transform the matrix Pn as Pn = Tn + h ◦ β, where the function

h = (δi0, i ∈ En),
the measure β = (p0, 1− p0, 0, . . . , 0) = (P0j(n), j ∈ En), and the matrix

Tn = (Pij(n)1i>0, i, j ∈ En).
So, the condition (C) [2, p.3.3] is true when n = 1 (in denotations of [2]).

Let us calculate the operator norm ρn ≡ ‖Tn‖:

ρn = max
i∈En

v−i
∑
j∈En

vjPij(n)1i>0

= max
{

max
1≤i<n

v−i
(
qiv

i−1 + riv
i + piv

i+1
)
, v−n

}
= max

1≤i<n
(
1− (v − 1)

(
qiv

−1 − pi
))

= 1− (v − 1)v−1 min
1≤i<n

(qi − pi − (v − 1)pi)

≤ 1− (v − 1)v−1(δn − (v − 1)/2),

(44)

taking into account (13) and the condition (11) under which δn > 0 and pi < 1/2.
Let us put v = 1 + δn. Then (44) implies the following inequalities

ρn ≤ 1− δ2n/2(1 + δn) < 1− δ2n/4.

The condition (T) from [2, p. 3.3] is fulfilled when m = 1 (in denotations of [2]) and the
following representation holds true uniformly in a scheme of series

(1− ρn)
−1 = O

(
δ−2
n

)
, n→∞. (45)

Thus, all the conditions of the Theorem 3.6 [2, Ch. III] are true and in the denotations
of the Theorem: n = m = 1, α = β, h = h, P = Pn, π = πn, Π = Πn, T = Tn, ρ = ρn,
and the norm ‖·‖ is defined in (42). In particular, for the parameter σ in (3.31) [2] we
get the estimate

σ ≤ k ‖α‖ /(1− ρ) = O
(
δ−2
n

)
, n→∞. (46)



ASYMPTOTICS OF HITTING TIMES 49

In order to applied (3.30) we choose (3.29) according to (3.32)

ω ≤ ω1 = 2 exp
(
−(1− πh) ln(αh)/πh(1 − (αh))

)
− 1 = O(1), n→∞, (47)

where we used the equalities πh = πn0 = λnσn/p0, αh = p0 and the condition of distancing
from zero (12).

From (45), (46), (47) we can calculate the asymptotics for the parameter θ0 in (3.29)
[2]:

(1− θ0)−1 = O
(
(1− ρn)

−1
)
O(σω) = O

(
δ−4
n

)
, n→∞. (48)

Let us choose in (3.30) [2, p. 3.3] the parameter θ = (1 + θ0)/2.
Since θ − θ0 = (1 − θ0)/2, 1 − θ = (1 − θ0)/2 so from (46), (48) and from (3.30) [2,

p. 3.3] we deduce the inequality (41) in the form∥∥P tn −Πn

∥∥ ≤ bn(1 − rn)t, (49)

where

r−1
n = max

(
(1− ρn)

−1, (1− θ)−1
)

= O
(
δ−4
n

)
, n→∞, (50)

bn = (1 + σ)/(θ − θ0) = O
(
δ−6
n

)
, n→∞. (51)

Finally, we deduce the following inequality for the second term in the right-hand part
of (7.43) [2, Ch. VII]

π(H)ar−1
α ln(1 + be/aπ(H)) = λnar

−1
n ln(1 + bne/aλn)

≤ λnO(1)O
(
δ−4
n

)
ln
(
O
(
δ−6
n

)
λ−1
n

)
= O

(
λnδ

−4
n ln(1/δnλn)

)
, n→∞,

(52)

taking into account the identity (35) under the boundedness conditions (12) and the
estimates (50), (51).

The relation (14) λn lnλ−1
n = o(δ4n), n→∞ is equivalent to the convergence to zero of

the last term in (15): λnδ−4
n ln(λ−1

n δ−1
n ) → 0, n→∞. Really, (14) follows from (15) since

λn → 0, δn → 0. From the other hand, from (14) we deduce that δ−4
n = o(1/λn lnλ−1

n )
implying

λnδ
−4
n ln δ−1

n = λno
((
λn lnλ−1

n

)−1
ln(λn lnλ−1

n )−1
)

= o(1), n→∞,

which concludes (15).
Since after putting in (7.43) [2, Ch. VII] t = λ−1

n s it follows from the inequality
s > s0 > 0 that

λ−1
n s0 ≥ t0 ≡ r−1

α ln+(b/aπ(H)) = O
(
δ−4
n ln(1/δnλn)

)
, n→∞,

as the consequence from the convergence to zero of the right-hand part of (15) and
therefore t ≥ t0 in the Corollary 7.5.

This substitution and taking into account (40) and (52) prove (15). �

Proof of Corollary 2.5. The convergence λn → 0, ωn → 0 was proved in the Corol-
lary 2.2. Correctness of (12) follows from (38).

If lim δn > 0 then the uniform ergodicity holds true and the Corollary statement will
be evident since under the condition λn + ωn → 0, n→∞.

So, we can assume that δn → 0.
From the relation (38) λn ∼ κσ−1

n , 0 < κ <∞ we find

λn lnλ−1
n ∼ σ−1

n lnσn, n→∞. (53)
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Furthermore, it follows from the definition (13) that

θt =
t∏
i=1

(1 + (qi − pi)/pi) ≥ (1 + 2δn)t,

σn =
∑
t<n

θt ≥ (2δn)−1((1 + 2δn)n − 1),

These relations and (17) imply that

(1 + 2δn)n ≥ exp((2 − ε)nδn) ≥ exp((3 + ε) lnn) = n3+ε,

σ−1
n = O(δnn−3−ε),

for some ε > 0 starting from some number.
So, in the consequence of (53) the condition (14) hold true:

λn lnλ−1
n = O

(
δnn

−3−ε ln(δ−1
n n3+ε)

)
= o
(
δ4n
)
, n→∞,

since δ1−αn n1+ε/3 →∞ for all sufficiently small α, ε > 0 given (17). Hereof,(
δnn

−3−ε ln δ−1
n

)
/δ4n =

(
δnn

1+ε/3
(
ln δ−1

n

)−1/3
)−3

→ 0, n→∞. �

Proof of Remark 2.3. According to [1] the ergodicity of the chain is equivalent to the
convergence of the series

∑
κt, which corresponds to the convergence of the series∑

n≥1

∏n
i=1(pi/qi). By the definition (13) the convergence of the last series follows from

the convergence of the following series∑
n≥1

n∏
i=1

(1 − δn/qi) ≤
∑
n≥1

(1− δn)n <∞.

In the conditions (b) the equality δi+1 = qi − pi hold true, so qi > 1/2 and∑
n≥1

n∏
i=1

(pi/qi) ≥
∑
n≥1

n∏
i=1

(1− 2δi+1) = ∞. �

We are grateful to the anonymous referee for the insightful comments that have sig-
nificantly improved the paper.
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COMPOUND KERNEL ESTIMATES FOR THE TRANSITION
PROBABILITY DENSITY OF A LÉVY PROCESS IN �

n

UDC 519.21

VICTORIA KNOPOVA

Abstract. We construct in the small-time setting the upper and lower estimates for the transition
probability density of a Lévy process in �n. Our approach relies on the complex analysis technique and
the asymptotic analysis of the inverse Fourier transform of the characteristic function of the respective
process.
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1. Introduction

Let Zt be a real-valued Lévy process in �n with characteristic exponent ψ, i.e.

E eiξ·Zt = e−tψ(ξ), ξ ∈ �n.
It is known that the characteristic exponent ψ admits the Lévy-Khinchin representation

ψ(ξ) = ia · ξ − 1
2
ξ ·Qξ +

∫
�n

(
1− eiξ·u + iξ · u�‖u‖<1

)
μ(du), (1.1)

where a ∈ �n, Q is a positive semi-definite n× n matrix, and μ is a Lévy measure, i.e.∫
�n(1 ∧ ‖u‖2)μ(du) <∞. In what follows we assume that Q ≡ 0, and

μ(�n) = ∞. (1.2)

Clearly, (1.2) is necessary for Zt to possess a distribution density.
In the past decades such questions as the existence and properties of the transition

probability density of Lévy and, more generally, Markov processes, attracted a lot of
attention. Although some progress is already achieved, this problem is highly non-
trivial. One can prove the existence of the transition probability density of a symmetric
Markov process and study its properties by applying the Dirichlet form technique, see
[2, 8, 4, 3, 5, 6, 7]. The other approach relies on versions of the Malliavin calculus for
jump processes, see [20], [9]–[10], [23]–[25], and provides the pointwise small-time as-
ymptotic of the transition probability density of a Markov process which is a solution to
a Lévy-driven SDE. Under certain assumptions on the Lévy measure estimates on the
transition probability density are obtained in [11, 12], see also the references therein for
earlier results. In [16], which is the one-dimensional predecessor of the current paper, we
investigated the transition probability density pt(x) of a Lévy process, and proposed a

2010 Mathematics Subject Classification. Primary 60G51; Secondary 60J75, 41A60.
Key words and phrases. Transition probability density, transition density estimates, Lévy processes,

Laplace method.
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52 VICTORIA KNOPOVA

specific form of estimates, which we call the compound kernel estimates, see Definition 1
below. The approach described in [16] relies on the asymptotic analysis of the inverse
Fourier transform of the respective characteristic function. The analysis made in [16]
shows that under rather general assumptions the bell-like estimate

pt(x) ≤ σtg(‖x‖σt) (1.3)

where g ∈ L1(�n), and σt is some “scaling function”, is not possible. We also point
out, that in the case of a Lévy process the results obtained in [23]–[25] and [10] fit in
our observation. At the same time, the upper and lower compound kernel estimates give
an adequate picture of behaviour of the transition probability density. In [18, 19] we
investigate possible applications of the compound kernel estimates for the construction
of the transition probability density of some class of Markov processes.

In this paper we investigate the transition probability density of a Lévy process in
the multi-dimensional setting. In Section 2 we set the notation and formulate our main
result Theorem 1. Section 3 is devoted to the proof of Theorem 1. In Section 4, Theo-
rems 2 and 3, we treat the particular cases in which it is possible to construct a bell-like
estimate (1.3). In Section 5 we illustrate our results by examples. As already mentioned,
even if one can construct an estimate of the form (1.3), it may prove to be not informa-
tive. In particular, in Example 2 we consider the discretized analogue of an α-stable Lévy
measure, and show that in the multi-dimensional setting the bell-like estimate for the
respective transition probability density, which is given by Theorem 2, is not integrable
in x. At the same time, the compound kernel estimate provided by Theorem 1 gives an
adequate answer.

2. Settings and the main result

Notation: We denote by Sn a unit sphere in �n; ξ · η and ‖ξ‖ denote, respectively,
the scalar product of ξ, η ∈ �n and the Euclidean norm of ξ in �n. We write f � g
if there exist constants c1, c2 > 0 such that c1f(x) ≤ g(x) ≤ c2f(x) for all x ∈ �;
a ∧ b := min(a, b).

To formulate the regularity assumption on the characteristic exponent ψ we introduce
some auxiliary functions. For x ∈ � put

L(x) := x2
�{|x|<1}, U(x) := x2 ∧ 1, (2.1)

and define for ξ ∈ �n the functions

ψL(ξ) :=
∫
�n

L(ξ · u)μ(du) =
∫
|(ξ·u)|≤1

(ξ · u)2 μ(du),

ψU (ξ) :=
∫
�n

U(ξ · u)μ(du) =
∫
�n

(
(ξ · u)2 ∧ 1

)
μ(du).

(2.2)

Observe that we always have

(1− cos 1)ψL(ξ) ≤ Reψ(ξ) ≤ 2ψU (ξ). (2.3)

In addition, we assume that functions ψL and ψU are comparable, i.e. the assumption
below holds true.

A. There exists β > 1 such that supl∈Sn ψU (rl) ≤ β inf l∈Sn ψL(rl) for all r large
enough.

In particular, assumption A implies the existence of the transition probability density
of Zt, see Lemma 1 in Section 3.

Define
ψ∗(r) := sup

l∈Sn

ψU (rl),
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and
ρt := inf{r : ψ∗(r) = 1/t}. (2.4)

We decompose Zt into a sum

Zt = Z̄t + Ẑt − at, (2.5)

where
• at ∈ �n is a vector with coordinates

(at)i = t

(
ai +

∫
1/ρt<‖u‖<1

ui μ(du)

)
, (2.6)

where the vector a ∈ �n is that from representation (1.1), and ρt is defined in (2.4);
• for each t > 0 the random variables Z̄t and Ẑt are independent; the variable Z̄t is

infinitely divisible for each t > 0, with respective characteristic exponent

ψt(ξ) := t

∫
ρt‖u‖≤1

(1− eiξ·u + iξ · u)μ(du), (2.7)

and Ẑt admits for each t > 0 the compound Poisson distribution with the intensity
measure

Λt(du) := t μ(du)�{ρt‖u‖>1}. (2.8)

If condition A is satisfied, then Z̄t possesses a distribution density (see Lemma 2 below),
which we denote by p̄t(x). Therefore, we can represent pt(x) as

pt(x) = (p̄t ∗ Pt ∗ δ−at)(x), (2.9)

where

Pt(dy) := e−Λt(�
n)

∞∑
m=0

1
m!

Λ∗m
t (dy), (2.10)

and Λ∗m
t denotes the m-fold convolution of the measure Λt; by Λ∗0

t we understand the
δ-measure at 0.

We are looking for a specific form of the estimate for pt(x), called the compound kernel
estimate, see the definition below.

Definition 1. Let σ, ζ : (0,∞) → �, h : �n → � be some functions, and (Qt)t≥0 be
a family of finite measures on the Borel σ-algebra in �n. We say that a real-valued
function g defined on a set A ⊂ (0,∞)×�n satisfies the upper compound kernel estimate
with parameters (σt, h, ζt, Qt), if

gt(x) ≤
∑
m=0

1
m!

∫
�n

σth((x − y)ζt)Q∗m
t (dy), (t, x) ∈ A. (2.11)

If the analogue of (2.11) holds true with the sign ≥ instead of ≤, then we say that the
function g satisfies the lower compound kernel estimate with parameters (σt, h, ζt, Qt).

Let us put a lexicographical order on �n; namely, we say that x ≤ y, x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ �n, if there exists 1 ≤ m ≤ n, such that for all i < m either xi = yi,
or xi < yi. Introducing such an order, we can define in the lexicographical sense the first
argument of maximum xt of the function p̄t(x). Below we show that xt indeed exists,
and for every t0 > 0 there exists L = L(t0) such that

‖xt‖ ≤ L/ρt, t ∈ (0, t0].

Below we present our main result on the behaviour of the transition probability density
of a Lévy process in �n.

Theorem 1. Suppose that condition A is satisfied. Then for every t0 > 0 there exist
constants bi > 0, i = 1, . . . , 4, such that the statements below hold true.
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I. The function
pt(x+ at), (t, x) ∈ (0, t0]×�n,

satisfies the upper compound kernel estimate with parameters (ρnt , fupper, ρt,Λt),
where

fupper(x) = b1e
−b2‖x‖. (2.12)

II. The function

pt(x + at − xt), (t, x) ∈ (0, t0]×�n,
satisfies the lower compound kernel estimate with parameters (ρnt , flower, ρt,Λt),
where

flower(x) = b3�‖x‖≤b4 . (2.13)

One can obtain in the same fashion as in the statement I of the preceding theorem
that pt(·) ∈ C∞

b (�n), and construct the upper estimates for derivatives.

Proposition 1. Suppose that condition A is satisfied. Then there exist constants b1 > 0
and b2 > 0 such that for any N ≥ 1, ki ≥ 0, i = 1, . . . , n, such that k1 + · · ·+ kn = N ,
the function ∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkn
n

pt(x+ at)

∣∣∣∣∣ , (t, x) ∈ (0, t0]×�n,

satisfies the upper compound kernel estimate with parameters (ρn+N
t , fupper, ρt,Λt).

Clearly, in the case of a symmetric Lévy measure and a zero drift the statement of
Theorem 1 holds true with at = xt = 0. Moreover, one can get the sharper upper
estimate for pt(x) and its derivatives.

Proposition 2. Suppose that the process Zt is symmetric, and condition A holds true.
Then the first statement of Theorem 1 and Proposition 1 hold true with at replaced by
zero, and fupper replaced by

fupper(x) = b1e
−b2‖x‖ ln(‖x‖+1). (2.14)

3. Proofs

We start with the proof of the auxiliary lemma on the growth of ψU .

Lemma 1. Under condition A we have for ‖ξ‖ large enough

ψU (ξ) ≥ c‖ξ‖2/β, (3.1)

where c > 0 is some constant.

Proof. For l ∈ Sn and r > 0 let

θU (rl) := ψU (erl), θL(rl) := ψL(erl). (3.2)

Note that the functions L and U satisfy

U(x2)− U(x1) =
∫ x2

x1

2
x
L(x) dx, x1 < x2.

Then, taking two parallel vectors ξ1 and ξ2, and applying the above relation with x1 =
ξ1 · u, x2 = ξ2 · u, where u ∈ �n and ‖ξ1‖ ≤ ‖ξ2‖, we derive by the Fubini theorem

ψU (ξ2)− ψU (ξ1) =
∫
�n

[
U((ξ2, u))− U((ξ1, u))

]
μ(du)

=
∫
�n

∫ ‖ξ2‖

‖ξ1‖

2
r
L(r(l · u)) dr μ(du)

=
∫ ‖ξ2‖

‖ξ1‖

2
r
ψL(lr) dr,

(3.3)
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where l := ξ1/‖ξ1‖. Thus, by (3.3) and condition A we have

θU (ξ2)− θU (ξ1) ≥
2
β

∫ ‖ξ2‖

‖ξ1‖
θU (vl) dv, (3.4)

implying that exp
{
− 2
β ‖ξ2‖

}
θU (ξ2) ≥ exp

{
− 2
β ‖ξ1‖

}
θU (ξ1). Thus,

ψU
(
e‖ξ2‖l

)
= θU (ξ2) ≥ c1e

2
β ‖ξ2‖,

where c1 := e−
2
β ‖ξ1‖ inf l∈Sn θU (ξ1) > 0. Taking inf l∈Sn in the left-hand side of the

preceding inequality, we arrive at (3.1). �

The proof of Theorem 1 and Proposition 1 rely on the following lemma.

Lemma 2. For each t > 0 the variable Zt possesses the density p̄t(x), which satisfies∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkN
n

pt(x)

∣∣∣∣∣ ≤ b1ρ
N+n
t e−b2ρt‖x‖, x ∈ �n, t ∈ (0, t0], (3.5)

for any N ≥ 0, ki ≥ 0, i = 1, . . . , n, such that k1 + · · ·+ kn = N .

Proof. For n = 1 we have

tμ{u : ρt‖u‖ ≥ 1} ≤ tψ∗(ρt) = 1.

For n ≥ 2 the situation is similar, but a bit more complicated: since

μ{u : ‖u‖ ≥ r} ≤
n∑
i=1

μ{u : |ui| ≥ r} + μ{u : ‖u‖ ≥ r, |ui| < r, i = 1, . . . , n}

≤
n∑
i=1

μ{u : |ui| ≥ r} + μ{u : r/2 ≤ |ui| < r, i = 1, . . . , n}

=
n∑
i=1

μ{u : |ui| ≥ r}

+ μ{u : |ui| ≥ r, 1 ≤ i ≤ n} − μ{u : |ui| ≥ r/2, 1 ≤ i ≤ n}

≤
n∑
i=1

μ{u : |ui| ≥ r} + μ{u : ∃i : |ui| ≤ r}

≤ (n+ 1)ψ∗(1/r),

(3.6)

we arrive at tμ{u : ρt‖u‖ ≥ 1} ≤ n+ 1. Therefore,

Reψt(ξ) = tReψ(ξ) − t

∫
ρt‖u‖≥1

(1− cos(ξ · u))μ(du)

≥ tReψ(ξ) − 2tμ{u : ρt‖u‖ ≥ 1}

= tReψ(ξ) − 2(n+ 1) ≥ t

(
1− cos 1

β

)
ψU (ξ)− 2(n+ 1)

≥ c1t‖ξ‖2/β − 2(n+ 1).

(3.7)

where in the last line we used (3.1). Thus, by Lemma 1 the variable Zt possesses a
distribution density pt ∈ C∞

b (�n), and for any N ≥ 0, k1 + . . .+ kn = N , we have

∂N

∂xk11 . . . ∂xkn
n

pt(x) = (2π)−n
∫
�n

(−ix1)k1 . . . (−ixn)kne−ix·ξ−ψt(ξ) dξ. (3.8)
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Put H(t, x, z) := −iz ·x−ψt(z). Note that by the structure of ψt the function H(t, x, z)
can be extended analytically (with respect to z) to �n. Applying the Cauchy theorem,
we derive

∂N

∂xk11 . . . ∂xkn
n

pt(x) = (2π)−n
∫
�n

(−iz1)k1 . . . (−izn)kneH(t,x,z) dz

= (2π)−n
∫
�n

N∏
j=1

(−iyj + ηj)kjex·η−ix·y−ψt(y+iη) dy.

for any η ∈ �n satisfying ‖η‖ ≤ ρt. Since the proof of the above equality repeats line by
line the proof of [16, Lemma 3.4], see also [14] and [15] for the n-dimensional case, we
omit the details.

For ‖η‖ ≤ ρt we have

ReH(t, x, y + iη) = x · η − t

∫
ρt‖u‖≤1

(
1− η · u− e−u·η

)
μ(du)

− t

∫
ρt‖u‖≤1

e−η·u(1− cos(y · u))μ(du)

≤ x · η − ψt(iη)− e−1Reψt(y),

which implies the upper bound∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkn
n

pt(x)

∣∣∣∣∣ ≤ c2e
η·x−ψt(iη)

∫
�n

(‖η‖+ ‖y‖)Ne−e−1Reψt(y) dy. (3.9)

Put

c := sup
|s|≤1

∣∣∣1− s− e−s

s2

∣∣∣, s ∈ �.

Using again the inequality ‖η‖ ≤ ρt and that {u : ρt‖u‖ ≤ 1} ⊂ {u : |η ·u| ≤ 1}, we derive

−ψt(iη) ≤ ct

∫
ρt‖u‖≤1

|η · u|2μ(du) ≤ ctψ∗(ρt) = c.

Thus, taking in (3.9) the vector η with coordinates ηi = −ρt signxi, i = 1, . . . , n, we get∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkn
n

pt(x)

∣∣∣∣∣ ≤ c3e
−ρt‖x‖

∫
�n

(
ρNt + ‖y‖N

)
e−e

−1Reψt(y) dy, (3.10)

where c3 ≡ c3(n,N) > 0 is some constant. Recall that in (3.7) we proved that

Reψt(y) ≥ tc4ψ
U (y)− 2,

where c4 := 1−cos 1
β . Therefore,∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkn
n

pt(x)

∣∣∣∣∣ ≤ c5e
−ρt‖x‖ sup

l∈Sn

(
ρNt In−1(t, c6, l) + IN+n−1(t, c6, l)

)
,

where c6 := e−1c4, and

Ik(t, λ, l) :=
∫ ∞

0

e−λtθ
U (vl)+(k+1)v dv, k ≥ 0. (3.11)

To finish the proof we need to show that

sup
l∈Sn

Ik(t, λ, l) ≤ c7ρ
k+1
t . (3.12)
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We get

sup
l∈Sn

Ik(t, λ, l) = ρk+1
t sup

l∈Sn

∫ ∞

0

e−λt[θ
U (vl)−θU (vtl)]+(k+1)(v−vt)−λtθU (vtl) dv

≤ ρk+1
t

∫ ∞

0

e
−λt inf

l∈Sn
[θU (vl)−θU (vtl)]+(k+1)(v−vt)−λt inf

l∈Sn
θU (vtl)

dv

≤ ρk+1
t

[∫ vt

0

+
∫ ∞

vt

]
e
−λt inf

l∈Sn
[θU (vl)−θU (vtl)]+(k+1)(v−vt)

dv,

where vt := ln ρt, and in the last line we used that θU is non-negative. To estimate the
first integral observe that∫ vt

0

e−λt[θ
U (vl)−θU (vtl)]+(k+1)(v−vt) dv ≤ eλtψ

U (lρt)

∫ vt

0

e(k+1)(v−vt) dv ≤ eλ

k + 1
. (3.13)

Using condition A and (3.4) we derive[
θU (vl)− θU (vtl)

]
= 2
∫ v

vt

θL(rl) dr ≥ 2
β

∫ v

vt

θU (rl) dr

=
2
β
θU (vtl)(v − vt) +

4
β

∫ v

vt

∫ r

vt

θL(sl) ds dr

≥ 2
β
θU (vtl)(v − vt) +

4
β2

∫ v

vt

∫ r

vt

θU (sl) ds dr

≥ 2
β
θU (vtl)(v − vt) +

4
β2
θU (vtl)(v − vt)2.

Further, by (2.3) and condition A we have

t inf
l∈Sn

θU (vtl) ≥
t(1− cos 1)

2β
sup
l∈Sn

ψU (ρtl) =
t(1− cos 1)

2β
sup
l∈Sn

ψ∗(ρt) =
1− cos 1

2β
, (3.14)

implying

t inf
l∈Sn

[
θU (vl)− θU (vtl)

]
≥ b(v − vt) + 2bβ−1(v − vt)2,

where b = (1 − cos 1)/β2. Thus,∫ ∞

vt

e−tλ infl∈Sn [θU (vl)−θU (vtl)]+(k+1)(v−vt) dv ≤
∫ ∞

0

e(k+1)w−bλw− 2bλ
β w2

dw <∞. (3.15)

Combining (3.13) and (3.15) we get (3.12), which finishes the proof. �

If the Lévy measure μ is symmetric, one can refine the upper estimate in (3.5).

Lemma 3. Let condition A hold true, and suppose in addition that the Lévy measure μ
is symmetric. Then for any N ≥ 0, and any ki ≥ 0, i = 1, . . . , n, k1 + . . .+ kn = N , we
have∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkN
n

pt(x)

∣∣∣∣∣ ≤ b1ρ
N+n
t e−b2ρt‖x‖ ln(ρt‖x‖+1), x ∈ �n, t ∈ (0, t0]. (3.16)

Proof. By the same argument as in [16, Lemma 3.6] we have for any η ∈ �n∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkN
n

pt(x)

∣∣∣∣∣ ≤ (2π)−neη·x−ψt(iη)

∫
�n

(‖y‖+ ‖η‖)Ne−Reψt(y)dy. (3.17)
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By Lemma 2, the integral in (3.17) is estimated from above by c1(‖η‖Nρnt +ρN+n
t ), where

c1 > 0 is some constant. For ψt(iη) we have

−ψt(iη) = t

∫
ρt‖u‖≤1

[cosh(η · u)− 1]μ(du) = tθ
(
‖η‖/ρt

) ∫
ρt‖u‖≤1

(η · u)2 μ(du)

≤ tθ
(
‖η‖/ρt

)(
‖η‖/ρt

)2 sup
l∈Sn

∫
ρt‖u‖≤1

ρ2
t (l · u)2 μ(du)

≤ (cosh(‖η‖/ρt)− 1)tψ∗(ρt)

= cosh(‖η‖/ρt)− 1,

where θ(s) := s−2(cosh s − 1), s ≥ 0, is increasing. Since sofar η was arbitrary, take η
with coordinates satisfying sign ηi = − signxi, i = 1, . . . , n. Then∣∣∣∣∣ ∂N

∂xk11 . . . ∂xkN
n

pt(x)

∣∣∣∣∣ ≤ c2ρ
N+n
t e−‖x‖‖η‖+cosh(‖η‖/ρt). (3.18)

Minimizing the expression under the exponent in (3.18) in ‖η‖, we arrive at (3.16). �

Proof of Theorem 1. Upper bound. The proof of the upper bound follows from Lemmas 1
and 2, and representation (2.9).

Lower bound. From Lemma (2) we know that the function pt(x) is continuous in x,
and bounded from above by b1ρ

n
t . Without loss of generality we may assume that∫

ρt‖x‖≤1
pt(x)dx ≥ 1/2. Then

1/2 ≤
∫
ρt‖x‖≤L

pt(x) dx ≤
wnL

n

ρnt
max
x∈�n

pt(x),

where wn is the volume of a unit ball in�n. Let xt be the ”smallest” in the lexicographical
sense point in which the maximum of pt(x) is achieved. For the off-diagonal lower bound
we get using the Taylor formula:

pt(x) ≥ pt(xt)−
∣∣∣∣∣
n∑
i=1

(x− xt)i
∫ 1

0

∂

∂xi
pt(xt + r(x − xt)) dr

∣∣∣∣∣
≥ pt(xt)−

(
n∑
i=1

∫ 1

0

∣∣∣∣ ∂∂xi pt(xt + r(x − xt))
∣∣∣∣2 dr

)1/2

‖x− xt‖

≥ 1
2wnLn

ρnt − c1(n)ρn+1
t ‖x− xt‖

= c2(n)ρnt (1− c3(n)ρt‖x− xt‖),

(3.19)

where in the second line form below we used the on-diagonal estimate∣∣∣∣ ∂∂yi pt(y)
∣∣∣∣ ≤ c(n)ρn+1

t . �

4. Bell-like estimates

In this section we discuss some particular cases in which we pose more restrictive
assumptions on the regularity of the tail of the Lévy measure. We show that under
certain assumptions it is possible to write more explicit upper and lower estimates for
pt(x). At the same time, we emphasize that although such estimates can be more explicit,
they suppress the vital information about the transition probability density, given by the
compound kernel estimates. Moreover, as we will see below, a bell-like estimate may
heavily depend on the space dimension.

We begin with some notions on sub-exponential distributions in the multi-dimensional
setting, see [22] and [21] for more details. We keep the notation of Theorem 1.



COMPOUND KERNEL ESTIMATES FOR THE TRANSITION PROBABILITY DENSITY 59

Definition 2. [22] We say that G is a sub-exponential distribution on �n (and write
G ∈ L(�n)) if for all x ∈ �n such that mini xi <∞, we have

lim
t→∞

1−G∗2(tx)
1−G(tx)

= 1. (4.1)

Theorem below generalizes the one-dimensional result, proved in [16].

Theorem 2. Let condition A hold true, and suppose that there exist a distribution
function G ∈ L(�n), such that

tμ ({u : ‖ρtu‖ > ‖v‖}) ≤ C(1 −G(v)), ‖v‖ ≥ 1, t ∈ (0, t0], (4.2)

where C > 0 is some constant, independent of t. Then for every t0 > 0 there exist some
constant C1 > 0, such that

pt(x+ at) ≤ C1ρ
n
t (fupper(ρtx) + 1−G(xρt)) , x ∈ �n, t ∈ (0, t0], (4.3)

where fupper is defined by (2.12). If the inequality (4.2) holds true with the sign ≥, then

pt(x+ at − xt) ≥ C2ρ
n
t (flower(ρtx) + 1−G(ρtx)), x ∈ �n, t ∈ (0, t0], (4.4)

where C2 > 0 is some constant, and flower is defined in (2.13).

In [16] we proved a version of Theorem 2 in the case when the measure μ is absolutely
continuous, and the density is sub-exponential in the sense of [13]. Up to our knowledge
sub-exponential densities are not studied in the multi-dimensional case, see, however, [22]
for a brief comment. We strongly believe that the result analogous to those proved in
[16] also can be proved in the multi-dimensional setting, after establishing the necessary
properties of sub-exponential densities analogous to those presented in [13]. However, it
is possible to prove a version of Theorem 2 under the assumption of a power decay of
the Lévy density.

Theorem 3. Let condition A hold true. Suppose that μ(du) = m(u)du, and for ‖u‖ ≥ 1
we have the estimate

tρ−nt m
(
uρ−1

t

)
≤ ‖u‖−n−b, t ∈ (0, t0], (4.5)

where b > 0. Then

pt(x+ at) ≤ c1
ρnt

(1 + ρt‖x‖)n+b
, x ∈ �n, t ∈ (0, t0]. (4.6)

If the inequality (4.5) holds true with the sign ≥, then

pt(x+ at − xt) ≥ c2
ρnt

(1 + ρt‖x‖)n+b
, x ∈ �n, t ∈ (0, t0]. (4.7)

The proof of Theorem 2 relies on the results obtained in [22]. In order to make the
presentation self-contained, we quote these results below.

It is shown in [22, Theorem 7, Corollary 11] that for a distribution function G the
conditions

G1. For ∀a, x ∈ �n, a ≥ 0, x ≥ 0, such that mini xi <∞, lim
t→∞

1−G(tx−a)
1−G(tx) = 1;

G2. All marginals Gi of G are sub-exponential (i.e., Gi ∈ L(�)),
are equivalent to G ∈ L(�n), and imply that for x ≥ 0, min xi <∞, and a ∈ �n, a ≥ 0,
one has

lim
t→∞

1−H(tx− a)
1−G(tx)

= λ, (4.8)

where

H(x) =
∞∑
k=1

λk

k!
G∗k(x), λ ∈ (0,∞). (4.9)
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We also need [22, Theorem 10], which states that if the distribution function G satis-
fies G1 and G2, and the distribution functions R and F are such that

lim
t→∞

1− F (tx − a)
1−G(tx)

= α, (4.10)

lim
t→∞

1−R(tx− a)
1−G(tx)

= β, (4.11)

for some α, β ∈ �, and any a, x ∈ �n, a, x ≥ 0, mini xi <∞, then

lim
t→∞

1−R ∗ F (tx− a)
1−G(tx)

= α+ β. (4.12)

Proof of Theorem 2. By (4.9) we have

pt(x) ≤ ρnt fupper(xρt) + c1ρ
n
t

∫
‖v‖≥1

fupper(xρt − v)G(dv). (4.13)

Note that for any c > 0 the tail of a sub-exponential distribution in � decays slower than
e−c|y| as |y| → ∞, (see [13], also the comment in [16]), which implies that for any c > 0
the tail of a sub-exponential distribution in �n decays slower than e−c‖x‖ as ‖x‖ → ∞.
Hence, for R(x) = 1− fupper(x) we have (4.11) with β = 0. Thus, by sub-exponentiality
of G we have the relation (4.12) with α = 1, β = 0, i.e.

lim
s→∞

∫
‖v‖≥1

f(xs− v) dG(v)

1−G(sx)
= 1.

Since ρt →∞ as t→ 0, we finally derive (4.3) for t small enough.
Similar argument works for the lower bound: in this case we take

R(x) = 1− flower(x). �

Proof of Theorem 3. Let q(v) := (1 + ‖v‖)−n−b, and put

Q(v) :=
∞∑
k=1

q∗k(v)/k!, v ∈ �n.

By Theorem 1 and (4.5) we get

pt(x) ≤ cρnt

(
fupper(xρt) +

∫
�n

fupper(xρt − v)Q(v) dv
)
. (4.14)

Let us estimate Q(v). We have:

q∗2(w) =
∫
�n

1
(1 + ‖v‖)n+b(1 + ‖w − v‖)n+b

dv

=

[∫
{‖w−v‖≤2−1‖w‖}

+
∫
{‖w−v‖≥2−1‖w‖}

]
1

(1 + ‖v‖)n+b(1 + ‖w − v‖)n+b
dv

= I1 + I2.

To estimate I1 observe that if ‖w − v‖ ≤ 2−1‖w‖, then ‖w‖ ≤ ‖v‖ ≤ 3
2‖w‖, or 1

2‖w‖ ≤
‖v‖ ≤ ‖w‖, implying

1
1 + ‖v‖ ≤

2
2 + ‖w‖ .

Therefore,

I1 ≤
(

2
2 + ‖w‖

)n+b ∫
�

1
(1 + ‖v‖)n+b

dv ≤ c

(
2

1 + ‖w‖

)n+b

.
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Analogously, if ‖w − v‖ ≥ 2−1‖w‖, then
2

2 + ‖w‖ ≥
1

1 + ‖w − v‖ ,

implying

I2 ≤
(

2
2 + ‖w‖

)n+b ∫
�

1
(1 + ‖v‖)n+b

dv ≤ c

(
2

1 + ‖w‖

)n+b

.

Thus, there exists a constant C > 0 such that q∗2(v) ≤ Cq(v). By induction, q∗k(v) ≤
Ck−1q(v), implying Q(v) ≤ c1q(v), v ∈ �. Finally, observe that∫

�

fupper(x− v)Q(v) dv =

[∫
‖x−v‖≥2−1‖x‖

+
∫
‖x−v‖≤2−1‖x‖

]
fupper(x− v)Q(v) dv

≤ c2fupper(x/2) + c3Q(x) ≤ c4Q(x).

Thus, we arrive at

pt(x) ≤ c5
ρnt

(1 + ρt‖x‖)n+b
,

which proves the first part of the theorem. The same argument applies for the lower
bound. �

5. Examples

Example 1. Let Zt be an α-stable process, α ∈ (0, 2), with the Lévy measure μ(du) =
cα‖u‖−n−αdu, and the drift vector b ∈ �n. One can easily verify that condition A is
satisfied, and ρt = t−1/α. Applying Theorem 3, we arrive at

pt(x+ bt) � t−n/α ∧ t

‖x‖1+α
� t−n/αf

(
t−1/α‖x‖

)
, x ∈ �n, t ∈ (0, t0],

where
f(z) = 1 ∧ z−α−n, z > 0, (5.1)

and for the lower bound we used that due to the symmetry of the Lévy measure we have
xt = 0. Note that by the structure of μ the above estimates hold true for all t > 0,
x ∈ �n, and coincides in the case b = 0 with the well-known estimate for the transition
probability density of a symmetric α-stable process.

Observe that for 1 < α < 2 we have

t−1/α‖x− tb‖ ≥ t−1/α − t1−1/α‖b‖ ≥ t−1/α‖x‖ − c‖b‖, t ∈ (0, t0].

Thus, for such α we arrived at

pt(x) � t−n/αf(t−1/α‖x‖), t ∈ (0, t0], x ∈ �n.

Example 2. Consider a ”discretized version” of an α-stable Lévy measure in �n. Let
mk,υ(dy) be a uniform distribution on a sphere Sk,υ centered at 0 with radius 2−kυ,
υ > 0, k ∈ Z. Consider a Lévy process with characteristic exponent of the form (1.1),
where

μ(dy) =
∞∑

k=−∞
2kγmk,v(dy), 0 < γ < 2υ,

and some drift coefficient a ∈ �n. Let us check that in this case ψU (ξ) � ψL(ξ) � ‖ξ‖α,
where α = γ/υ.

Let k0 := υ−1 log2 ‖ξ‖. We have

ψU (ξ) ≤
∫
�n

(
‖ξ‖2‖y‖2 ∧ 1

)
μ(dy)

= ‖ξ‖2

∫
‖y‖≤/‖ξ‖

‖y‖2 μ(dy) +
∫
‖y‖>1/‖ξ‖

μ(dy)
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= ‖ξ‖2
∑
k≥k0

2γk−2kυ + c1
∑
k≤k0

2γk

≤ ‖ξ‖22k0(γ−2v)
∑
k≥k0

2−(k−k0)(2υ−γ) + c1 + 2γk0
1− 2−γk0

1− 2−γ

≤ 22υ−γ

22υ−γ − 1
‖ξ‖22

2υ−γ
υ log2 ‖ξ‖ + c22

γ
υ log2 ‖ξ‖ ≤ c3‖ξ‖α.

The above calculations and the inequality (1 − cos 1)ψL(ξ) ≤
∫
�n(1 − cos(ξ · y))μ(dy)

imply that

ψL(ξ) ≤ c4ψ
U (ξ) ≤ c5‖ξ‖α.

For the lower bound we have

ψL(ξ) ≥
∫
‖y‖≥1/‖ξ‖

|ξ · y|2 μ(dy) ≥ mk0,v{l ∈ Sk0,υ : | cos(lξ · l)| > ε}‖ξ‖22k0(γ−2υ)

= c6‖ξ‖α,
where lξ := ξ/‖ξ‖, implying

inf
‖l‖=1

ψL(‖ξ‖l) ≥ c‖ξ‖α.

Thus, condition A is satisfied, and ψL(ξ) � ψU (ξ) � ‖ξ‖α, which in turn gives ρt � t−1/α.
Note that for ‖x‖ > 1 we have

tμ ({u : ρt‖u‖ > ‖x‖}) = t
∑

n≤n(t,x)

2γn ≤ Ct2
γ
υ log2(ρt/‖x‖) = C‖x‖−γ/υ = C‖x‖−α,

where n(t, x) := 1
υ log2(ρt/‖x‖). Therefore, condition (4.2) of Theorem 2 holds true with

1 − G(x) = ‖x‖−α, ‖x‖ ≥ 1. By this theorem we have the following estimate for the
respective transition probability density:

pt(x + at) ≤ c1t
−n/αf(t−1/α‖x‖) (5.2)

where
f(z) = 1 ∧ z−α, z > 0. (5.3)

However, as one may notice, such upper estimate is informative only in the case n = 1
and 1 < α < 2, see [16] for the detailed analysis. In the other cases the upper bound is
not integrable! On the other hand, Theorem 1 together with Proposition 2 provides that
the transition probability density satisfies the upper compound kernel estimates with
parameters (t−1/α, fupper, t

−1/α,Λt), with

fupper(x) = b1e
−b2‖x‖ log(1+‖x), and Λt(du) = t�{‖u‖≥t1/α}μ(du).

In this case the obtained upper bound is integrable.

Remark 1. The above example illustrates that even if the (re-scaled) Lévy measure
can be dominated by a reasonably good function, the explicit upper estimate obtained
in Theorem 2 can be extremely inexact. Heuristically, the condition (4.2) is imposed on
the tail of the re-scaled measure, which suppresses its intrinsic behaviour. See, however,
[12] for another approach in a similar situation. On the other hand, the condition on the
behaviour of the density can lead to adequate results, as we saw in Example 1. Possibly,
one can modify the assumption Theorem 2 and get more reasonable explicit estimates,
but in fact it is not needed, since the compound kernel estimates obtained in Theorem 1
already contain the information, sufficient for many applications, see [18] and [19].
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STORAGE IMPULSIVE PROCESSES ON INCREASING TIME
INTERVALS

UDC 519.21

V. S. KOROLIUK, R. MANCA, AND G. D’AMICO

Abstract. The Storage Impulsive Process (SIP) S(t) is a sum of (jointly independent) random vari-
ables defined on the embedded Markov chain of a homogeneous Markov process.

The SIP is considered in the series scheme on increasing time intervals t/ε, with a small parameter
ε → 0, ε > 0. The SIP is investigated in the average and diffusion approximation scheme. The large
deviation problem is considered under corresponding scaling with an asymptotically small diffusion.
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1. Introduction

The Storage Impulsive Process (SIP) S(t) is a sum of (jointly independent) random
variables defined on the embedded Markov chain of a homogeneous Markov process

S(t) = u+
ν(t)∑
n=1

αn(xn), t ≥ 0, u ∈ R
d. (1)

The time homogeneous Markov process x(t), t ≥ 0, is defined on a standard phase space
(E, E) by the generator

Qϕ(x) = q(x)
∫
E

P (x, dy)[ϕ(y) − ϕ(x)], x ∈ E,

for a real valued test function ϕ(x), x ∈ E, with a bounded sup-norm:

‖ϕ(x)‖ := sup
x∈E

|ϕ(x)|.

The embedded Markov chain xn, n ≥ 0, is defined by

xn := x(τn), n ≥ 0,
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where the renewal moments of jumps are given by

τn+1 = τn + θn+1, n ≥ 0, τ0 = 0,

and the sojourn times θn+1, n ≥ 0, are such that

P(θn+1 ≥ t | xn = x) = e−q(x)t =: P(θx ≥ t).

The stochastic kernel P (x,B), x ∈ E, B ∈ E , defines the transition probabilities of
the embedded Markov chain

P (x,B) = P{xn+1 ∈ B | xn = x}.
The counting process is defined by

ν(t) := max{n > 0: τn ≤ t}, t ≥ 0.

The random variables in (1) have the distribution functions

Φx(dv) = P{αn(x) ∈ dv} := P{αn(xn) ∈ dv | xn = x}, x ∈ E.
The SIP may be considered as a random evolution process [1, Ch.2]. The switching

Markov process x(t), t ≥ 0, describes a random environment.
A1: The main assumption is the uniform ergodicity of the Markov process x(t), t ≥ 0,

with the stationary distribution π(B), B ∈ E , satisfying the equation:

π(dx)q(x) = qρ(dx), q =
∫
E

π(dx)q(x).

The stationary distribution ρ(B), B ∈ E , of the embedded Markov chain xn, n ≥ 0,
satisfies the equation

ρ(B) =
∫
E

ρ(dx)P (x,B), B ∈ E , ρ(E) = 1.

Provided that the main assumption A1 takes place the potential operator R0 may be
given by a solution of the equation [1, Ch. 2]

QR0 = R0Q = Π− I, Πϕ(x) :=
∫
E

π(dx)ϕ(x).

2. SIP on increasing time intervals in average scheme.

The SIP on increasing time intervals in average scheme is considered in the series
scheme with the small parameter ε→ 0, ε > 0, in the following scaling:

Sε(t) = u+ ε

ν(t/ε)∑
n=1

αn(xn), t ≥ 0, ε > 0, u ∈ R
d. (2)

The random evolution approach [1, Ch. 3, 5] is an effective method of asymptotic analy-
sis (2) when ε→ 0.

Proposition 2.1. The SIP (2) in the average scheme convergences weakly

Sε(t) ⇒ S0(t) = u+ â0t, ε→ 0, (3)

where the average velocity is such that

â0 = qâ, â =
∫
E

ρ(dx)a(x), a(x) =
∫

Rd

vΦx(dv). (4)

Proof of Proposition 2.1 is based on the random evolution approach [1, Ch. 3] by using
a solution of the singular perturbation problem [1, Ch. 5].
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Remark 2.1. For simplcity without loss of generality the proof is realized for the SIP
given on real line R, d = 1.

According to the definition of a random evolution [1, Ch. 2] we consider the two
component Markov process

Sε(t), xε(t) := x(t/ε), t ≥ 0. (5)

Lemma 2.1. The Markov process (5) is characterized by the generator

Lεϕ(u, x) = ε−1q(x)
∫
E

P (x, dy)
∫

Rd

Φy(dv)[ϕ(u + εv, y)− ϕ(u, x)]. (6)

The proof of Lemma 2.1 is a direct consequence of the definition of the generator [1,
Ch. 3].

Remark 2.2. The generator (6) may be rewritten as follows

Lεϕ(u, x) = ε−1 [Q+Q0Φεx]ϕ(u, x), (7)

where, by definition,

Q0ϕ(x) := q(x)
∫
E

P (x, dy)ϕ(y),

Φεxϕ(u) :=
∫

Rd

Φx(dv)[ϕ(u + εv)− ϕ(u)].

On a test function ϕ(u) being smooth enough,

Φεxϕ(u) = ε[a(x)ϕ′(u) + δε(x)ϕ(u)]

with the negligible term:

‖δε(x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C2(R).

Lemma 2.2. The generator (7) admits the following asymptotic expansion:

Lεϕ(u, x) =
[
ε−1Q+Q0A(x) + δε(x)

]
ϕ(u, x),

where
A(x)ϕ(u) := a(x)ϕ′(u),

and the negligible term is such that

sup
x∈E

‖δε(x)ϕ(u, x)‖ → 0, ε→ 0, ϕ(u, ·) ∈ C2(R).

Then a solution of the singular perturbation problem [1, Ch. 5] may be used for the
truncated operator

Lε0ϕ(u, x) :=
[
ε−1Q+Q0A(x)

]
ϕ(u, x). (8)

Lemma 2.3. The truncated operator (8) on a perturbed test function

ϕε(u, x) = ϕ(u) + εϕ1(u, x),

admits the following asymptotic representation [1, Proposition 5.1]:

Lε0ϕ
ε(u, x) = â0ϕ

′(u) + δε(x)ϕ(u).

The negligible term may be written in explicit form:

δε(x)ϕ(u) = εQ0A(x)R0Â(x)ϕ(u).

Â(x) := Â0 −Q0A(x), Â0 := ΠQ0A(x)Π.
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Conclusion 2.1. The generator (6) of the random evolution (5) admits the asymptotic
representation

Lεϕε(u, x) = â0ϕ
′(u) + δε(x)ϕ(u) (9)

with the negligible term δε(x)ϕ(u).
The representation (9) implies the weak convergence (3)–(4) [1, Ch. 6] because the

limit operator
L0ϕ(u) := â0ϕ

′(u), ϕ(u) ∈ C1(R), (10)
defines the evolution

S0(t) = u+ â0t, t ≥ 0, S0(0) = u.

Remark 2.3. The limit operator (10) in the Euclidean space Rd has the following repre-
sentation:

â0ϕ
′(u) :=

d∑
k=1

â0
kϕ

′
k(u), ϕ′

k(u) := ∂ϕ(u)/∂uk,

â0
k = qâk, âk =

∫
E

ρ(dx)ak(x), ak(x) =
∫

R

vkΦx(dv).

3. SIP in diffusion approximation scheme.

It is well known that the diffusion approximation of stochastic systems may be realized
under some additional Balance Condition (BC).

We consider two different BC for SIP, namely the total and local ones.

3.1. SIP under total balance condition. The SIP in the series scheme with the
parameter ε→ 0, ε > 0, in the diffusion approximation scheme under the Total Balance
Condition (TBC):

a(x) =
∫
Rd

vΦx(dv) ≡ 0, (11)

is considered in the following scaling:

Sε(t) = u+ ε

ν(t/ε2)∑
n=1

αn(xn), t ≥ 0, ε > 0.

Proposition 3.1. Under the TBC (11), the weak convergence

Sε(t) ⇒Wσ(t), ε→ 0,

takes place.
The limit Brownian motion process Wσ(t), t ≥ 0, is defined by the variance matrix

Ĉ = σ∗σ = qB̂,

B̂ =
∫
E

ρ(dx)B(x), B(x) =
∫

Rd

v∗vΦx(dv).

Proof of Proposition 3.1. As in Section 2, we start by characterizing the coupled Markov
process.

Lemma 3.1. The Markov process

Sε(t), xε(t) := x
(
t/ε2

)
, t ≥ 0,

is characterized by the generator

Lεϕ(u, x) = ε−2q(x)
∫
E

P (x, dy)
∫

Rd

Φx(dv)[ϕ(u + εv, y)− ϕ(u, x)]. (12)
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The generator (12) may be rewritten as follows

Lεϕ(u, x) = ε−2[Q+Q0Φ
ε
x]ϕ(u, x), (13)

where

Φεxϕ(u) :=
∫

Rd

Φx(dv)[ϕ(u + εv)− ϕ(u)] = ε2
[
1
2
B(x)ϕ′′(u) + δε(x)ϕ(u)

]
, (14)

with the negligible term δε(x)ϕ(u).

Lemma 3.2. The generator (13)–(14) admits the asymptotic expansion

Lεϕ(u, x) =
[
ε−2Q+Q0B(x)

]
ϕ(u, x) + δε(x)ϕ(u)

with negligible term δε(x)ϕ(u). Here by definition

B(x)ϕ(u) =
1
2
B(x)ϕ′′(u). (15)

Then the solution of singular perturbation problem [1, Ch. 5] can be used for the truncated
operator

L
ε
0ϕ(u, x) =

[
ε−2Q+Q0B(x)

]
ϕ(u, x). (16)

Lemma 3.3. The truncated operator (16) on a perturbed test function

ϕε(u, x) = ϕ(u) + ε2ϕ2(u, x), (17)

admits the asymptotic representation

Lε0ϕ
ε(u, x) =

1
2
Ĉϕ′′(u) + δε(x)ϕ(u).

Proof. Considering (16) and (17),

Lε0ϕ
ε =

[
ε−2Q+Q0B(x)

] [
ϕ(u) + ε2ϕ2(u, x)

]
= ε−2Qϕ(u) + [Qϕ2(u, x) +Q0B(x)ϕ(u)] + δε(x)ϕ(u).

It is obvious
Qϕ(u) = 0.

The equation
Qϕ2(u, x) +Q0B(x)ϕ(u) = L̂0ϕ(u)

can be solved under the solvability condition [1, Ch.5]:

L̂0Π = ΠQ0B(x)Π.

Transforming (15) gives us

L̂0ϕ(u) =
1
2
Ĉϕ′′(u).

Indeed

L̂0ϕ(u) =
∫
E

π(dx)q(x)
∫
E

P (x, dy)
1
2
B(y)ϕ′′(u)

=
1
2
q

∫
E

ρ(dx)B(x)ϕ′′(u) =
1
2
qB̂ϕ′′(u). �

Remark 3.1. The limit generator L̂0 in the Euclidean space Rd is represented as follows:

L̂0ϕ(u) =
q

2

d∑
k,r=1

Bkrϕ
′′
kr(u),

B̂ = [Bkr ; 1 ≤ k, r ≤ d], ϕ′′
kr(u) := ∂2ϕ(u)/∂uk∂ur,

Bkr =
∫
E

ρ(dx)Bkr(x), Bkr(x) =
∫

R

vkvr Φx(dv).
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The proof of Proposition 3.1 is finished by using the asymptotic representation

Lεϕε(u, x) = L̂0ϕ(u) + δε(x)ϕ(u), (18)

and convergence Theorem 6.3 [1, Ch.6]. The negligible term in (18) may be written in
the explicit form. �

3.2. SIP under the Local Balance Condition (LBC). The LBC means that the
average value of jumps is such that

â :=
∫
E

ρ(dx)a(x) �= 0. (19)

The SIP in the series scheme under the LBC (19) with the parameter ε → 0, ε > 0, is
considered in the following scaling:

Sε(t) = u+ ε

ν(t/ε2)∑
n=1

αn(xn)− qât/ε, t ≥ 0. (20)

Proposition 3.2. Under the LBC (19), the weak convergence

Sε(t) ⇒Wσ(t), ε→ 0,

takes place.
The limit Brownian motion Wσ(t), t ≥ 0, is defined by the variance matrix

Ĉ = σ∗σ = qB̂, B̂ = B̂0 + B̂1,

B̂0 =
∫
E

ρ(dx)B0(x), B0(x) =
∫

Rd

v∗vΦx(dv),

B̂1 =
∫
E

ρ(dx)B1(x), B1(x) = 2â∗(x)R0â(x),

â(x) := a0(x) − qâ,

a0(x) := q(x)
∫
E

P (x, dy)a(y).

(21)

Here the potential operator R0 is defined as the solution of the equation

QR0 = R0Q = Π− I

[1, Ch. 3].

Proof of Proposition 3.2. As in the previous section we start using the generator of the
two component Markov process.

Lemma 3.4. The two component Markov process Sε(t), xε(t) := x(t/ε2), t ≥ 0, is
characterized by the generator

Lεϕ(u, x) = ε−2q(x)
∫
E

P (x, dy)
∫

Rd

Φ(dv)[ϕ(u+ εv, y)− ϕ(u, x)]− ε−1â0ϕ
′(u, x). (22)

This generator can be written as follows

Lεϕ(u, x) =
[
ε−2[Q+Q0Φεx]− ε−1

Â0

]
ϕ(u, x) (23)

with Â0ϕ(u) := â0ϕ
′(u)

Φεxϕ(u) =
∫

Rd

Φx(dv)[ϕ(u + εv)− ϕ(u)]

= εa(x)ϕ′(u) + ε2
1
2
B(x)ϕ′′(u) + ε2δε(x)ϕ(u).
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Lemma 3.5. The generator (22) admits the asymptotic expansion

Lεϕ(u, x) =
[
ε−2Q+ ε−1

Â(x) +Q0B(x)
]
ϕ(u, x) + δε(x)ϕ(u, x).

Here

Â(x)ϕ(u) = â(x)ϕ′(u),

â(x) := a0(x)− â0, (24)

a0(x) := q(x)
∫
E

P (x, dy)a(y).

Note that the following balance condition

Πâ(x) = 0 (25)

takes place.

Now a solution of singular perturbation problem [1, Ch.5] can be used for the truncated
operator

Lε0ϕ(u, x) =
[
ε−2Q+ ε−1

Â(x) +Q0B(x)
]
ϕ(u, x). (26)

Lemma 3.6. The truncated operator (26) on a perturbed test function

ϕε(u, x) = ϕ(u) + εϕ1(u, x) + ε2ϕ2(u, x)

admits the asymptotic representation

Lε0ϕ
ε(u, x) =

1
2
Ĉϕ′′(u) + δε(x)ϕ(u).

Proof. Let us consider

Lε0ϕ
ε(u, x) = [ε−2Q+ ε−1

Â(x) +Q0B(x)][ϕ(u) + εϕ1(u, x) + ε2ϕ2(u, x)]

= ε−2Qϕ(u) + ε−1[Qϕ1 + Â(x)ϕ] + [Qϕ2 + Â(x)ϕ1 +Q0B(x)ϕ]

+ δε(x)ϕ(u).

We get the equations
Qϕ(u) = 0,

Qϕ1(u, x) + Â(x)ϕ(u) = 0,

Qϕ2(u, x) + Â(x)ϕ1(u, x) +Q0B(x)ϕ(u) = L̂0ϕ(u).

The first equation is obvious. The second equation satisfies the solvability condition (25).
Hence

ϕ1(u, x) = R0Â(x)ϕ(u).
Now the third equation is

Qϕ2 +
[
Â0(x) +Q0B(x)

]
ϕ(u) = L̂0ϕ(u), (27)

where
Â0(x)ϕ(u) := Â(x)R0Â(x)ϕ(u). (28)

The solvability condition for (27) gives

L̂0Π = Π
[
Â0(x) +Q0B(x)

]
Π.

Using (28), (24), and (15) we calculate the limit generator

L̂0ϕ(u) =
1
2
Ĉϕ′′(u),

where the variance matrix Ĉ is represented in (21).
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Note that (see (24))

Â0(x)ϕ(u) = Â(x)R0Â(x)ϕ(u) = Â(x)R0â(x)ϕ′(u) = â(x)R0â(x)ϕ′′(u) =
1
2
B1(x)ϕ′′(u).

Here
â(x) = a0(x) − â0. � �

4. Large deviation in the scheme of asymptotically small diffusion

The SIP in the scheme of asymptotically small diffusion is considered under two dif-
ferent balance conditions, namely total and local ones.

4.1. The SIP under the total balance condition. The total balance condition means
that the mean values of jumps of SIP equal totaly zero:

a(x) =
∫

Rd

vΦx(dv) ≡ 0. (29)

The SIP in the scheme of asymptotically small diffusion is considered in the following
scaling [3]:

Sε(t) = u+ ε2
ν(t/ε3)∑
n=1

αn(xn), t ≥ 0, ε > 0, u ∈ R
d. (30)

The coupled Markov process

Sε(t), xε(t) := x
(
t/ε3

)
, t ≥ 0,

is defined by the generator

Lεϕ(u, x) = ε−3q(x)
∫
E

P (x, dy)
∫

Rd

Φy(dv)
[
ϕ(u + ε2v, y)− ϕ(u, x)

]
,

which can be rewritten as follows

Lεϕ(u, x) = ε−3[Q+Q0Φεx]ϕ(u, x), (31)

where, by definition,

Φεxϕ(u) :=
∫

Rd

Φx(dv)
[
ϕ
(
u+ ε2v

)
− ϕ(u)

]
= ε4[B(x)ϕ(u) + δε(x)ϕ(u)].

Here
B(x)ϕ(u) :=

1
2
B(x)ϕ′′(u).

Hence the generator (31) admits the asymptotic expansion

Lεϕ(u, x) = Lε0ϕ(u, x) + δε(x)ϕ(u, x), (32)

Lε0ϕ(u, x) =
[
ε−3Q+ εQ0B(x)

]
ϕ(u, x).

The truncated operator (32) on a perturbed test function

ϕε(u, x) = ϕ(u) + ε4ϕ1(u, x),

admits the asymptotic representation

Lε0ϕ
ε(u, x) = ε[Qϕ1 +Q0B(x)ϕ(u)] + δε(x)ϕ(u). (33)

The representations (32) and (33) give

Lεϕε(u, x) = ε
[
Ĉϕ(u) + δε(x)ϕ(u, x)

]
,

where the main part

εĈϕ(u) = ε
1
2
Ĉϕ′′(u)

is the generator of a small diffusion.
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4.2. Large deviation for SIP under the total balance condition. We investigate
the large deviation problem for SIP by using the asymptotic analysis of the exponential
generator of large deviation

Hεϕ(u, x) = e−ϕ/εεLεeϕ/ε (34)

[2, Part I].

Proposition 4.1. The large deviation for SIP (30) under the total balance condition (29)
is realized by the exponential generator of small diffusion

Hϕ(u) =
1
2
Ĉ[ϕ′(u)]2, (35)

Ĉ = q

∫
E

ρ(dx)B(x), B(x) =
∫

Rd

v∗vΦx(dv).

Proof of Proposition 4.1.

Lemma 4.1. The exponential generator (34) on a perturbed test function

ϕε(u, x) = ϕ(u) + ε ln
[
1 + ε2ϕ1(u, x)

]
admits the asymptotic representation

Hεϕε(u, x) = Qϕ1 +
1
2
Q0B(x)[ϕ′(u)]2 + hε(x)ϕ(u)

with the negligible term

‖hε(x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(R).

Proof of Lemma 4.1. Let us calculate

Hεϕε = e−ϕ/ε
[
1 + ε2ϕ1

]−1
εLε[1 + ε2ϕ1]eϕ/ε

= e−ϕ/ε
[
1− ε2ϕ1

]
εLε0[1 + ε2ϕ1]eϕ/ε + hε(x)ϕ(u)

= e−ϕ/ε
[
1− ε2ϕ1

]
ε−2Q

[
1 + ε2ϕ1

]
eϕ/ε + e−ϕ/εε−2Q0Φεxe

ϕ/ε + hε(x)ϕ(u)

= Qϕ1 +
1
2
Q0B(x)[ϕ′(u)]2 + hε(x)ϕ(u). �

Now the solution of the singular perturbation problem [1, Ch.5] gives

Hεϕε(u, x) = Hϕ(u) + hε(x)ϕ(u). (36)

The asymptotic representation (36) completes the proof of Proposition 4.1. �

Remark 4.1. The exponential generator of small diffusion (35) in the Euclidean space Rd,
d ≥ 2, is represented as follows:

Hϕ(u) =
1
2
ϕ′∗(u)Ĉϕ′(u),

where ϕ′∗(u) = (ϕ′
k(u), 1 ≤ k ≤ d) is a vector-row, ϕ′(u) = (ϕ′

k(u), 1 ≤ k ≤ d) is a
vector-column, Ĉ = [Ĉkr;1≤k,r≤d] is the variance matrix.
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4.3. Large deviation for SIP under the local balance condition. The Local Bal-
ance Condition (LBC) means that the average value of jumps is not equal to zero:

â :=
∫
E

ρ(dx)a(x) �= 0. (37)

The SIP under LBC (37) is considered in the following scaling:

Sε(t) = u+ ε2
ν(t/ε3)∑
n=1

αn(xn)− â0t/ε. (38)

Lemma 4.2. The coupled Markov process Sε(t), xε(t) := x(t/ε3), t ≥ 0, is determined
by the generator (compare (22))

Lεϕ(u, x) = ε−3q(x)
∫
E

P (x, dy)
∫

Rd

Φy(dv)
[
ϕ(u + ε2v, y)− ϕ(u, x)

]
− ε−1â0ϕ

′
u(u, x).

Or, in a different form,

Lεϕ(u, x) =
[
ε−3[Q+Q0Φεx]− ε−1

Â0

]
ϕ(u, x),

Φεxϕ(u) =
∫

Rd

Φx(dv)
[
ϕ(u + ε2v)− ϕ(u)

]
.

Proposition 4.2. The large deviation for SIP (38) under the LBC (37) is realized by
the exponential generator of small diffusion

Hϕ(u) =
1
2
Ĉ[ϕ′(u)]2, (39)

Ĉ = q[B̂1 + B̂2],

B̂k =
∫
E

ρ(dx)Bk(x), k = 1, 2, (40)

B1(x) =
∫

Rd

v∗vΦx(dv), B2(x) = 2â(x)R0â(x),

â(x) = a0(x)− â0, a0(x) := q(x)
∫
E

P (x, dy)a(x).

The exponential generator of large deviation (39)–(40) contains two components. One
of them is the variance matrix of the second moment of jumps. The second component B̂2

is defined by the fluctuation of the first moment of jumps.

Proof of Proposition 4.2. To prove the proposition we need the following lemma:

Lemma 4.3. The exponential generator (34) under the local balance condition (37) on
the perturbed test function

ϕε(u, x) = ϕ(u) + ε ln
[
1 + εϕ1(u, x) + ε2ϕ2(u, x)

]
admits the asymptotic representation

Hεϕε(u, x) = ε−1
[
Qϕ1 + Ã(x)ϕ(u)

]
+
[
Qϕ2 − ϕ1Qϕ1 +

1
2
Q0B(x)[ϕ′(u)]2

]
+ hε(x)ϕ(u)

(41)

with the negligible term

‖hε(x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(R).
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Proof. Proof of Lemma 4.3 is based on the following asymptotic representations:

Hε
Qϕ

ε(u, x) := e−ϕ
ε/εε−2Qeϕ

ε/ε = ε−1Qϕ1 + [Qϕ2 − ϕ1Qϕ1] + hεq(x)ϕ(u),

Hε
ϕϕ

ε(u, x) := e−ϕ
ε/εε−2Q0Φεxe

ϕε/ε = ε−1Q0A(x)ϕ(u) +Q0A(x)ϕ1(u, x) + hεϕ(x)ϕ(u),

Hε
aϕ

ε(u, x) := e−ϕ
ε/ε

Â0e
ϕε/ε = ε−1â0ϕ

′(u) + hεa(x)ϕ(u).

Thus, the relation

Hεϕε(u, x) = [Hε
Q +Hε

ϕ −Hε
a]ϕ

ε(u, x)

gives (41) with (see (24)–(25))

Ã(x)ϕ(u) := ã(x)ϕ′(u),

ã(x) := Q0a(x)− â0. �

Now the solution of the singular perturbation problem [1, Ch. 5] may be used for the
equations

Qϕ1 + Ã(x)ϕ(u) = 0,ΠÃ(x) = 0;

Qϕ2 − ϕ1Qϕ1 +
1
2
B1(x)[ϕ′(u)]2 = Ĥϕ(u).

(42)

The first equation in (42) has the solution

ϕ1(u, x) = R0ã(x)ϕ′(u), Qϕ1 = ã(x)ϕ′(u).

Hence, the second equation in (42) may be rewritten as follows

Qϕ2 +
1
2
[B1(x) +B2(x)][ϕ′(u)]2 = Ĥϕ(u)

with B2(x) given in (40).
The solvability condition [1, Ch. 5] for the last equation gives Proposition 4.2. �
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LIFT ZONOID ORDER AND FUNCTIONAL INEQUALITIES
UDC 519.21

ALEXEI M. KULIK AND TARAS D. TYMOSHKEVYCH

Abstract. We introduce the notion of a weighted lift zonoid and show that the ordering condition
on a measure μ, formulated in terms of the weighted lift zonoids of this measure, leads to certain
functional inequalities for this measure, such as non-linear extensions of Bobkov’s shift inequality and
weighted inverse log-Sobolev inequality. The choice of the weight K, involved in our version of the
inverse log-Sobolev inequality, differs substantially from those available in the literature, and requires
the weight v, involved into the definition of the weighted lift zonoid, to equal the divergence of the
weight K w.r.t. initial measure μ. We observe that such a choice may be useful for proving direct
log-Sobolev inequality, as well.
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1. Introduction

The notions of zonoid and lift zonoid, introduced in [9], have a diverse field of applica-
tions. Because the lift zonoid determines the underlying measure uniquely, this concept
can be used in multivariate statistics for measuring the variability of laws of random vec-
tors, and for ordering these laws, see [10]. The concept of zonoid equivalence appears to
be both naturally motivated by financial applications, and useful for proving extensions of
the ergodic theorem for zonoid stationary and zonoid swap-invariant random sequences,
see [12, 13]. Lift zonoids lead naturally to definitions of associated α-trimming and data
depth, see [9] and [7], and to barycentric representation of the points of a space with a
given measure, see [9] and [11].

In this paper, we explore a new field, where the notion of lift zonoid can be applied
naturally. As a straightforward extension of the definition of lift zonoid, we introduce
a weighted lift zonoid Ẑv(μ) with a vector-valued weight function v. We show that, for
properly chosen weights v, the ordering condition on a measure μ, formulated in terms

2010 Mathematics Subject Classification. Primary 26D10, 39B62, 47D07, 60E15, 60J60.
Key words and phrases. Lift zonoid, weight, shift inequality, log-Sobolev inequality.
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# 55518603.

75



76 ALEXEI M. KULIK AND TARAS D. TYMOSHKEVYCH

of the weighted lift zonoid of this measure, leads to certain functional inequalities for
this measure, such as non-linear extensions of Bobkov’s shift inequality [3] and weighted
inverse log-Sobolev inequality. Weighted versions of the classical functional inequalities
(Poincaré, log-Sobolev, etc) have been studied recently in various contexts. The choice
of the weight K, involved in our version of inverse log-Sobolev inequality, is specific
and differs substantially from those available in the literature. This choice is strongly
motivated by (an extension of) the functional form of Bobkov’s shift inequality, and
requires the weight v, involved into the definition of the weighted lift zonoid, to equal the
divergence of the weight K w.r.t. initial measure μ. We observe that such a choice may
be useful for proving (weighted) direct log-Sobolev inequality, as well. In the case of a
bounded weight, this may lead to new sufficient conditions for the log-Sobolev inequality.
We illustrate the range of applications of these conditions in two examples in Section 4.

2. Weighted lift zonoids, non-linear shift inequalities, and weighted

inverse log-Sobolev inequalities

Let μ be a probability measure on the Borel σ-algebra in R
d, and v : R

d → R
d be a

measurable function such that ∫
Rd

‖v(x)‖μ(dx) <∞;

here and below we denote by ‖ · ‖ the Euclidean norm in Rd. We define the weighted
zonoid Zv(μ) with the weight v as the set of all the points in Rd of the form∫

Rd

g(x)v(x)μ(dx) (1)

with arbitrary Borel measurable g : Rd → [0, 1]. The weighted lift zonoid Ẑv(μ) is de-
fined as the weighted zonoid of the measure δ1 × μ in R

d+1. Equivalently, the weighted
zonoid Zv(μ) and the weighted lift zonoid Ẑv(μ) are the sets of the points of the form

E g(X)v(X) ∈ R
d and (E g(X),E g(X)v(X)) ∈ R

d+1 (2)

respectively, where X is a random vector with the distribution μ. This definition is a
straightforward generalization of the definitions of the zonoid and the lift zonoid (see [10],
Definition 2.1), where the function v has the form v(x) = x.

The lift zonoid Ẑ(μ) is a convex compact set in Rd+1, symmetric w.r.t. the point
(1
2 ,

1
2 EX), which identifies the underlying measure μ uniquely; see [10]. On the other

hand, it can be seen easily that the definition of the weighted lift zonoid Ẑv(μ) would
not change if one restricts the class of Borel measurable functions g within it to the class
of the functions of the form

g(x) = G(v(x)), G : R
d → [0, 1] is Borel measurable.

This observation leads immediately to the identity Ẑv(μ) = Ẑ(μ ◦ v−1); that is, the
weighted lift zonoid Ẑv(μ) equals the (usual) lift zonoid of the image of the measure μ
under the mapping v. As a corollary, we get that the weighted lift zonoid Ẑv(μ) is
a convex compact set in R

d+1, symmetric w.r.t. the point ((1/2), (1/2)Ev(X)), and
identifies the image measure μ ◦ v−1 uniquely.

The following theorem motivates the above definition of the weighted lift zonoid. To
formulate it, we need to introduce some notation. Denote by γc the centered Gaussian
measure in Rd with the covariance matrix c2IRd . Let

ϕ(x) =
1√
2π
e−x

2/2, Φ(x) =
∫ x

−∞
ϕ(y) dy, x ∈ R,
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be the standard Gaussian distribution density function and the standard Gaussian cu-
mulative distribution function, respectively, and let

I(p) = ϕ(Φ−1(p)), p ∈ (0, 1), I(0) = I(1) = 0, (3)

be the Gaussian isoperimetric function.
For any measurable f on Rd, we write Eμ f for the integral of f w.r.t. μ; function f

may be vector-valued, then the integral is understood in the component-wise sense. For
a function f taking values in R+, its μ-entropy is defined by

Entμ f = Eμ(f log f)− (Eμ f) log(Eμ f),

with the convention 0 log 0 = 0.
In what follows, we assume that the measure μ has the logarithmic gradient vμ; that

is, a function vμ : Rd → R, integrable w.r.t. μ and such that for every smooth f : Rd → R

with a compact support
Eμ∇f = −Eμ(vμf). (4)

This assumption is equivalent to the following, see Proposition 3.4.3 in [6]: there exists
the density pμ of the measure μ w.r.t. the Lebesgue measure, which belongs to the Sobolev
class W1,1(Rd); in this case

[vμ]i =
∂xipμ
pμ

, i = 1, . . . , d.

Theorem 1. I. The following three statements are equivalent.
A. Ẑvμ(μ) ⊂ Ẑ(γc).
B. For any smooth function f : Rd → [0, 1] with a compact support, one has

‖Eμ∇f‖ ≤ cI(Eμ f). (5)

C. For any h ∈ Rd, A ∈ B(Rd)

Φ
(
Φ−1(μ(A)) − c‖h‖

)
≤ μ(A + h) ≤ Φ

(
Φ−1(μ(A)) + c‖h‖

)
. (6)

II. Under the conditions A–C above, the following inverse log-Sobolev inequality holds
true: for any smooth function f : Rd → [0,∞) with a compact support,

‖Eμ∇f‖2 ≤ 2cEntμ f Eμ f. (7)

Remark 1. By the definition (see Definition 5.1 in [10]), two measures μ1 and μ2 are
related by the lift zonoid order (notation: μ1 �LZ μ2), if

Ẑ(μ1) ⊂ Ẑ(μ2).

Recall that Ẑvμ(μ) equals the lift zonoid of νμ := μ ◦ v−1
μ ; that is, of the distribution

of the logarithmic gradient of the measure μ. Hence statement A can be equivalently
formulated as follows: the distribution νμ of the logarithmic gradient of the measure μ is
dominated in the sense of the lift zonoid order by the canonical Gaussian measure in R

d.

Theorem 1 is not a genuinely new one. The equivalence of the relations B and C is
used by S. Bobkov in [3] as a key ingredient in the proof of the shift inequality (6) (in [3],
the measure μ is supposed to be a product-measure, but the proof of the equivalence
of (5) and (6) in fact does not rely on this assumption). The outline of the proof of (7)
under (5) and (6) is given in [2]. What we would like to emphasize is that condition B,
usually called the functional version of the shift inequality, is equivalent to the relation A,
which according to Remark 1 can be written as the lift zonoid order relation

νμ �LZ γc. (8)

It is instructive to compare (8) with the following necessary and sufficient condition for
the functional version of the shift inequality to hold, given in [3] in the case where the
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measure μ is a product-measure with equal marginals μ1. This condition states that
there exists c > 0 such that (5) holds true, if and only if there exists ε > 0 such that∫

R

eεx
2
νμ1(dx) ≤ 2; (9)

in addition, the optimal constant c in (5) and ε in (9) are connected by the relation
1√
6ε

≤ c ≤ 4√
ε
. (10)

For the product measure μ(dx) =
∏d
i=1 μ1(dxi), respective distribution of the logarithmic

gradient is again a product measure

νμ(dx) =
d∏
i=1

νμ1(dxi),

and in this case, due to Corollary 5.3 in [10], (8) is equivalent to

νμ1 �LZ γ
1
c , (11)

where γ1
c is the N (0, c2)-Gaussian measure on R. Both (9) and (11) are conditions on

the tails of the distribution of the logarithmic gradient of μ1, but (11) is more precise
because it involves the same c with (5).

The main result of this section, Theorem 2 below, is a generalization of Theorem 1
and is motivated by an observation that in Theorem 1 the equivalence of the relations A
and B follows in a very straightforward way from the integration-by-parts formula (4);
see the proof of Theorem 2 below. With this observation in mind, we introduce a wide
class of weights which admit an analogue of the integration-by-parts formula (4). To do
that, we recall that the μ-divergence of a function g : Rd → Rd, if exists, is defined as
the function δμ(g) ∈ L1(Rd, μ) such that for every smooth f : Rd → R with a compact
support

Eμ(∇f, g)Rd = Eμ fδμ(g).
The μ-divergence is well defined, for instance, for any g ∈ C1 bounded together with its
partial derivatives; in this case,

δμ(g) = −
d∑
i=1

[vμ]igi −
d∑
i=1

∂xigi.

This follows directly from (4); see [6], Chapter 6 for more information on this subject.
Let function v : Rd → R be such that, for some function K taking values in d×d-matrices,

vi = δμ(Ki), i = 1, . . . , d, (12)

where Ki denotes the i-th row of the matrix K. Then for every smooth f with a compact
support

Eμ(K∇f) = Eμ fv; (13)

here and below we treat elements of Rd as vectors-columns. Formula (13) is a straightfor-
ward extension of the integration-by-parts formula (4), where the gradient ∇ is replaced
by the “weighted gradient” K∇ with the matrix-valued weight K, and the logarithmic
gradient vμ is replaced by the μ-divergence of K. Furthermore, if K satisfies some extra
regularity condition, e.g.

K : R
d → R

d×d is Lipschitz, (14)

then for every h ∈ Rd there exists a flow of solutions
{
ΨK,h
t (x), t ∈ R, x ∈ Rd

}
of the

Cauchy problem
dΨt(x) = (K∗h)(Ψt(x)) dt, Ψ0(x) = x. (15)
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Theorem 2. I. Let v = (vi)di=1 satisfy (12). Then the following two statements are
equivalent.

A1. Ẑv(μ) ⊂ Ẑ(γc).
B1. For any smooth function f : R

d → [0, 1] with a compact support, one has

‖EμK∇f‖ ≤ cI(Eμ f). (16)

If, in addition, the matrix-valued function K satisfies (14), then A1 and B1 are
equivalent to the following.

C1. For any h ∈ Rd and A ∈ B(Rd)

Φ
(
Φ−1(μ(A)) − c‖h‖

)
≤ μ

([
ΨK,h

1

]−1

(A)
)
≤ Φ

(
Φ−1(μ(A)) + c‖h‖

)
. (17)

II. Under the condition A1, equivalently B1, the following weighted inverse log-Sobolev
inequality holds true: for any smooth function f : Rd → [0,∞) with a compact support,

‖EμK∇f‖2 ≤ 2c2 Entμ f Eμ f. (18)

Note that condition A1 is just the lift zonoid order relation for the image measure of
μ under v:

μ ◦ v−1 �LZ γc. (19)
Before giving the proof of Theorem 2, let us summarize: a lift zonoid order condi-

tion (8) is a criterion for the shift inequality, written either in its explicit form (6), or in
its functional form (5). This equivalence is rather flexible in the following sense: if the
logarithmic gradient vμ in (8) is replaced by another weight v of the form

v = δμ(K) (20)

(see (12)), then respective lift zonoid order condition (19) is still equivalent to the
weighted version (16) of the functional form of a (generalized) shift inequality. The
explicit form of the (generalised) shift inequality in that case is available as well, and
concerns, instead of linear shifts, the transformations of the initial measure μ by the
flows of solutions to (15).

Proof of Theorem 2: statement I. The lift zonoid Ẑ(γ) of a standard Gaussian measure γ
in Rd can be identified in the following way: for a given α ∈ (0, 1), the section of Ẑ(γ) by
the hyper-plane {α} × Rd has the projection on the last d coordinates equal to the ball
centered at 0 and having the radius I(α); see [9], Section 6.3 or [11], Proposition 3.4. It
is easy to see from the definition of the lift zonoid that

Ẑ(γc) = cẐ(γ).

Hence condition A1 can be equivalently written as follows: for every Borel measurable
g : Rd → [0, 1] such that Eμ g = α,

‖Eμ(gv)‖ ≤ cI(α) = cI(Eμ g).

By the standard approximation argument, the above condition is equivalent to a similar
one with Borel measurable g’s replaced by smooth and compactly supported f ’s. Because
for such f by (13)

‖Eμ(fv)‖ = ‖Eμ(K∇f)‖ ,
conditions A1 and B1 are equivalent.

The proof of the equivalence of B1 and C1 follows the same lines with the S.Bobkov’s
proof from [3] for the case of product measures and linear shifts; to make the exposition
self-sufficient here we expose the key steps of this proof.

Denote Rr(p) = Φ(Φ−1(p) + r), r ≥ 0, p ∈ (0, 1). Then the following properties hold
true:
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• for every r ≥ 0 the function Rr is concave;
• the family {Rr, r ≥ 0} is a semigroup w.r.t. the composition of the functions, i.e.

Rr1 ◦Rr2 = Rr1+r2 ;

• the function R0 is an identity, and the “generator” of the semigroup {Rr, r ≥ 0}
equals the Gaussian isoperimetric function I in the sense that

Rr(p)− p

r
→ I(p), r → 0 + .

Similarly, the family of functions Sr(p) = Φ(Φ−1(p) − r), r ≥ 0, p ∈ (0, 1) has the
following properties:

• for every r ≥ 0 the function Sr is convex;
• the family {Sr, r ≥ 0} is a semigroup w.r.t. the composition of the functions;
• the function S0 is an identity, and the “generator” of the semigroup {Sr, r ≥ 0}

equals (−I).
Observe that C1 is equivalent to the following.
C2. For any h ∈ Rd and Borel measurable f : Rd → [0, 1]

Sc‖h‖(Eμ f) ≤ Eμ

(
f ◦ΨK,h

1

)
≤ Rc‖h‖(Eμ f). (21)

Indeed, taking f = �A we get C1 from C2. Inversely, under C1 by the concavity of
Rr and Jensen’s inequality we have

Eμ

(
f ◦ΨK,h

1

)
=
∫ ∞

0

μ
({
x : f

(
ΨK,h

1 (x)
)
≥ t
})

dt ≤
∫ ∞

0

Rc‖h‖ (μ({x : f(x) ≥ t})) dt

≤ Rc‖h‖

(∫ ∞

0

μ({x : f(x) ≥ t}) dt
)

= Rc‖h‖(Eμ f).

The proof of the left hand side inequality in (21) is similar and omitted. Hence C1
and C2 are equivalent.

To get B1 from C2, take th instead of h and differentiate the right hand side inequality
in (21) w.r.t. t at the point t = 0. In more details, denote ft(x) = f

(
ΨK,th

1 (x)
)
, then

ft(x) = f
(
ΨK,h
t (x)

)
,

and therefore there exits a continuous derifative

∂tft(x) =
(
(∇f)

(
ΨK,h
t (x)

)
, (K∗h)

(
ΨK,h
t (x)

))
Rd
.

Because f is smooth and compactly supported and K satisfies (14), this derivative is
bounded as a function of (t, x) ∈ [0, T ]×Rd for every fixed T . Therefore by the dominated
convergence theorem

1
t

(Eμ ft −Eμ f) → Eμ (∇f,K∗h)
Rd = (EμK∇f, h)Rd , t→ 0 + .

Because
1
t
(Rct‖h‖(Eμ f)−Eμ f) = c‖h‖I(Eμ f),

we get from (21)
(EμK∇f, h)Rd ≤ c‖h‖I(Eμ f), h ∈ R

d.

Taking sup over all h with ‖h‖ = 1, we get (16).
To get C2 from B1, consider first the case where f is smooth and compactly supported

and such that 0 < Eμ f < 1. By (16), for a given h ∈ Rd we have that

d

dt

∣∣∣∣
t=0

Eμ ft = (EμK∇f, h)Rd ≤ c‖h‖I(Eμ f).
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Recall that
d

dt

∣∣∣∣
t=0

Rc‖h‖t(Eμ f) = c‖h‖I(Eμ f).

Therefore for every � > 1 there exists δ = δ(f) > 0 such that for every t ∈ (0, δ):

Eμ ft ≤ R�c‖h‖t(Eμ f). (22)

Note that if t1 ∈ (0, δ(f)) and t2 ∈ (0, δ(ft1)), then

Eμ ft1+t2 = Eμ

(
ft1 ◦ΨK,h

t2

)
≤ R�c‖h‖t1(Eμ ft1) ≤ R�c‖h‖(t1+t2)(Eμ f); (23)

here we have used the flow property of
{
ΨK,h
t , t ∈ R

}
, the semigroup property of

{Rr, r ≥ 0}, and monotonicity of Rr. Because the derivative ∂tft is uniformly continuous
w.r.t. (t, x) ∈ [0, T ]× R

d for every fixed T , it can be shown that

δT = inf
t∈[0,T ]

δ(ft) > 0.

Then, applying (23) at most T/δT times, we get that (22) holds true for every t ∈ [0, T ].
Consequently, (22) holds true for every t ∈ R+ and � therein can be replaced by 1.
This gives the right hand side inequality in (21) for smooth and compactly supported
f such that 0 < Eμ f < 1. By an approximation argument, this can be extended to
any measurable f : R

d → [0, 1]. The proof of the left hand side inequality in (21) is
completely analogous and omitted. �

Proof of Theorem 2: statement II. The following lemma is a straightforward extension
of a part of Proposition 2 in [2] (the one which states the equivalence of P1(c) and P2(c)
in the notation of [2]).

Lemma 1. Statement B1 is equivalent to the following.
B2.: For any smooth function f : Rd → [0, 1] with a compact support, one has√

(Eμ I(f))2 +
1
c2
‖EμK∇f‖2 ≤ I(Eμ f). (24)

The proof is completely analogous to the one from [2], therefore we just sketch it.
The implication B2 ⇒ B1 is trivial. To get the inverse implication, recall first that the
standard Gaussian measure γd on Rd satisfies B2 with c = 1 and identity matrix K;
see [2], Section 2. Consider a smooth function f : Rd → [0, 1] with a compact support,
and let F (r) = μ({x : f(x) ≤ r}) be its distribution function w.r.t. μ. Assume that F
is absolutely continuous w.r.t. Lebesque measure on R, and take r ∈ R, ε > 0. Define
ψε(x) = I[0,r](x) + (1 − x−r

ε )I[r,r+ε](x). Applying B1 to the function g = ψε(f) and
tending ε→ 0, we get

F ′(r)‖θ(r)‖ ≤ cI(F (r)) for μ ◦ f−1-a.a. r ∈ R, (25)

where θ(r) = Eμ(K∇f |f = r). Denote k = F−1 ◦ Φ, then k transforms the standard
Gaussian measure γ1 on R to μ ◦ f−1. Taking the derivative in the identity F (k) = Φ,
we get k′F ′(k) = ϕ. Then from (25) with r = k(x) we get inequality

1
c
‖θ(k(x))‖ ≤ k′(x) (26)

valid γ1-a.s. We have already mentioned that a standard Gaussian measure satisfies B2
with c = 1 and identity K; for the case d = 1 this can be written as√(∫

R

I(g)dγ1

)2

+
(∫

R

g′dγ1

)2

≤ I

(∫
R

gdγ1

)
.
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Applying this inequality to g = k and using (26) we get√(∫ 1

0

I(r)dF (r)
)2

+
(∫ 1

0

1
c
‖θ(r)‖dF (r)

)2

≤ I

(∫ 1

0

rdF (r)
)

; (27)

here we have took into account that the image of γ1 under k is μ ◦ f−1, and μ ◦ f−1 is
supported in [0, 1]. Using the inequality∫ 1

0

‖θ(r)‖dF (r) ≥
∥∥∥∥∫ 1

0

θ(r)dF (r)
∥∥∥∥ = ‖EμK∇f‖,

we complete the proof of the required statement. The additional assumption of μ ◦ f−1

to be absolutely continuous can be removed by an approximation argument. �
According to Lemma 1, to prove statement II of Theorem 2 it is enough to show that

B2 implies (18) for any non-negative smooth compactly supported f . Take ε small, then
εf takes values in [0, 1] and one can apply B2. After trivial transformations, we get

1
c2
‖EμK∇f‖2 ≤ I2(εEμ f)− (Eμ I(εf))2

ε2
.

Hence the required statement would follow from the relation

lim
ε→0+

I2(εEμ f)− (Eμ I(εf))2

ε2
= 2Entμ f Eμ f. (28)

This relation can be proved straightforwardly using the following asymptotic expansion:

I(ε) = ε

√
2 log

1
ε
−
ε log(2 log 1

ε )

2
√

2 log 1
ε

+
ε√

2 log 1
ε

+
εκ(ε)√
2 log 1

ε

, (29)

where κ(ε) → 0, ε→ 0+; the detailed exposition is straightforward but cumbersome and
therefore is omitted. The asymptotic expansion (29) follows from the standard expansion

Φ(t) = −1
t
ϕ(t) +

1
t3
ϕ(t) +O

(
t−5ϕ(t)

)
, t→ −∞,

which holds true e.g. by the integration-by-parts formula. �

Remark 2. The above proof of statement II follows, in main lines, the one sketched in [2]
(the proof of the implication P3(c) ⇒ P6(c

√
2) in Proposition 2), where the authors

referred to Beckner’s lectures at the Institut Henri Poincaré. However, instead of using
the equivalence

I(ε) ∼ ε

√
2 log

1
ε
, ε→ 0,

which apparently is not sufficient to provide (28), we use stronger asymptotic expan-
sion (29).

Let us mention that a more explicit condition, sufficient for the lift zonoid relation (19)
tohold true, can be given in a way similar to (9).

Proposition 1. There exists c > 0 such that (19) holds true, if and only if, there exists
ε > 0 such that

Eμ e
ε(v,h)2

Rd ≤ 2, ‖h‖ ≤ 1. (30)

The optimal constant c in (19) and ε in (30) are connected by the relation (10).

Because the lift zonoid order relation is equivalent to the same relation for all one-
dimensional projections (see Section 5 in [10]), statement of Proposition 1 follow imme-
diately from the one-dimensional statement given below.



LIFT ZONOID ORDER AND FUNCTIONAL INEQUALITIES 83

Lemma 2. For a measure ν on R there exists c > 0 such that

ν �LZ γc

with γc ∼ N (0, c) if, and only if, there exists ε > 0 such that∫
R

eεx
2
dx ≤ 2;

in that case, the optimal constants c, ε are connected by the relation (10).

The proof of Lemma 2 is contained, in fact, in the proof of Lemma 4.1 in [3], hence
we omit it here.

At the end of this section, let us indicate one further research possibility related to
the above results. In [4], an approach is proposed, making it possible to give explicit
bounds for ergodic rates of solutions to Lévy driven SDE’s, which has a wide range of
further applications e.g. to limit theorems for functionals of such processes, see [14]–[16].
The key ingredient of this approach is a stochastic control based on perturbations of
time coordinates of jumps of the Lévy noise. A natural question is whether such an
approach remains practical when perturbations of jump amplitudes are used instead,
which is typical in the stochastic calculus of variations for processes with jumps. In this
context, it would be helpful to bound from below the size of the absolutely continuous
part of the image of the Lévy measure of the noise under a non-linear mapping which
corresponds to the perturbation of the noise. The above results seemingly can be useful
here, because shift inequalities yield upper bounds for the size of singular component of
the image of a measure: respective result was obtained in [3] in the context of linear shift
inequalities (6), and can be extended easily to non-linear shift inequalities (17).

3. Weighted log-Sobolev inequalities in R

Theorem 2 above gives a sufficient condition for a weighted inverse log-Sobolev in-
equality, based on a pair of functions v and K related by (20). The main result of this
section, Theorem 3 below, shows that the use of the same pair may lead to sufficient
conditions for the (direct) log-Sobolev inequality, either in a weighted or in a classical
form. What is surprising is that, even in the simplest one-dimensional case, Theorem 3
leads to new sufficient conditions for the log-Sobolev inequality, when compared with
those available in a literature; see below Proposition 2, Proposition 3, and two examples
in Section 4. We believe that the reason for that is a proper choice of the pair of the
weight functions v and K, involved in (31) and connected by (20).

Theorem 3. Let d = 1 and functions v and K be related by (20). Assume that for some
α > 0

Kv′ ≥ α. (31)
Assume in addition that the functions K and

a := 2KK ′ +K2vμ (32)

belong to C∞, have at most linear growth at ∞, and all their derivatives have at most
polynomial growth at ∞.

Then for every smooth f with a compact support

Entμ f2 ≤ 2
α

Eμ(Kf ′)2. (33)

As a corollary, if K is bounded then μ satisfies the (classical) log-Sobolev inequality:
for every absolutely continuous f such that both f and f ′ are square integrable w.r.t. μ,

Entμ f2 ≤ 2
α

(
sup
x
K2(x)

)
Eμ(f ′)2. (34)
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Remark 3. The proof of Theorem 3 is based on the classic Bakry–Emery criterion; see
below. We strongly believe that similar technique is applicable in the multidimensional
case as well, but because of possible non-commutativity of matrix-valued weights which
appear therein, now we can not give a multidimensional version of Theorem 3; this is a
subject for a further research.

Remark 4. The additional assumptions on the functions K and a to be smooth and to
satisfy certain growth bounds, in particular cases, can be removed by an approximation
procedure; see e.g. Propositions 2 and 3 below.

Proof of Theorem 3. Consider a Markov process X defined as the strong solution to
the SDE

dXt = a(Xt) dt+
√

2K(Xt) dWt;

see (32) for the formula for the coefficient a. Then on the Schwartz space S(R) of C∞

functions s.t. all their derivatives decay at ∞ faster than any polynomial, the generator L
of the process X has the form

Lf = af ′ + bf ′′ = vμf
′ + (bf ′)′, b := K2.

By the construction, the measure μ is a symmetric measure for the semigroup {Tt}
generated by the process X :

Eμ fTtg = Eμ gTtf, t ≥ 0;

in particular,
Eμ Ttf = Eμ f, t ≥ 0,

i.e. μ is an invariant measure for X . The class G = S(R) is an algebra, invariant w.r.t.
superpositions with C∞-functions and dense in every Lp(μ), p ≥ 1. In addition, thanks
to the smoothness conditions and growth bounds imposed on coefficients a and K, the
class G is invariant w.r.t. the semigroup Tt and the generator L. Define for f, g ∈ G

Γ(f, g) =
1
2
(L(fg)− fLg − gLf), Γ2(f, g) =

1
2
(LΓ(f, g)− Γ(Lf, g)− Γ(f, Lg)).

We will prove that
Γ2(f, f) ≥ αΓ(f, f), f ∈ G, (35)

then the required statement would follow from the Bakry–Emery criterion [1].
Straightforward calculations give

Γ(f, g) = bf ′g′,

2Γ2(f, f) = (ab′ + bb′′ − 2a′b)(f ′)2 − 2bb′f ′f ′′ + 2b2(f ′′)2

=
(
ab′ + bb′′ − 2a′b− (b′)2

2

)
(f ′)2 +

(
b′f ′
√

2
− bf ′′√2

)2

≥
(
ab′ + bb′′ − 2a′b− (b′)2

2

)
(f ′)2.

Hence to prove (35) it is enough to show that

2ab′ + 2bb′′ − 4a′b− (b′)2 ≥ 4αb. (36)

Recall that
v = δμ(K) = −Kvμ −K ′,

hence we can express the coefficients a and b through the functions K and v:

a = KK ′ −Kv, b = K2.
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Substituting these expressions into (36), after some transformations, which are straight-
forward but cumbersome and therefore omitted, we re-write (36) to the following form:

K3v′ ≥ αK2.

The last inequality clearly holds true under (31). Hence, applying the Bakry–Emery
criterion, we get (33) for every f ∈ S(R).

If K is bounded, then for every f ∈ S(R) (34) holds true as a corollary of (33).
It is a standard procedure to approximate a given absolutely continuous f such that
f, f ′ ∈ L2(μ) by a sequence of smooth compactly supported fn in such a way that
fn → f and f ′

n → f ′ in L2(μ); see e.g. the proof of Corollary 2.6.10 in [6]. Passing to
the limit in (34) for fn, n ≥ 1, we complete the proof. �

There is a wide choice for the pair of functions v and K related by (20). Below we
give two versions of Theorem 3 which correspond to particular choices of this pair. The
first one arise when one just takes v(x) = x− 〈μ〉,

〈μ〉 =
∫

R

y μ(dy).

Proposition 2. Let measure μ on R have the first absolute moment and have a positive
continuous distribution density pμ. Denote

K̄μ(x) =
1

pμ(x)

∫ ∞

x

(y − 〈μ〉)pμ(y) dy, x ∈ R.

The following statements hold true.
I. If infx K̄μ(x) = α > 0, then for every smooth f with a compact support

Entμ f2 ≤ 2
α

Eμ

(
K̄μf

′)2 .
II. If, in addition, supx K̄μ(x) = β < ∞, then for every absolutely continuous f

such that both f and f ′ are square integrable w.r.t. μ,

Entμ f2 ≤ 2c̄μEμ(f ′)2

with

c̄μ =
β2

α
.

In the second version of Theorem 3, we choose K in a more intrinsic way, namely, we
take K such that δμ(K) = v with

v = Φ−1(Fμ), Fμ(x) = μ((−∞, x]), (37)

then μ ◦ v−1 = γ, γ ∼ N (0, 1). Such a choice of the weight v is motivated by our intent
to have

Ẑv(μ) = Ẑ(γ);
that is, to make the order condition (19) with c = 1 as precise as it is possible, i.e. to
replace an inequality by an identity. Because Ẑv(μ) = Z(μ ◦ v−1) identifies the law of
μ ◦ v−1 uniquely, such an intent naturally leads to the formula (37).

Proposition 3. Let measure μ on R have a positive continuous distribution density pμ.
Denote

K̂μ(x) =
I(Fμ(x))
pμ(x)

.

The following statements hold true.
I. For every smooth f with a compact support,

Entμ f2 ≤ 2Eμ(K̂μf
′)2. (38)
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II. If, in addition, K̂μ is bounded, then for every absolutely continuous f such that
both f and f ′ are square integrable w.r.t. μ,

Entμ f2 ≤ 2ĉμEμ(f ′)2

with
ĉμ = sup

x
(K̂μ(x))2.

Remark 5. Define the isoperimetric function of the measure μ by

Iμ(p) = pμ
(
F−1
μ (p)

)
, p ∈ (0, 1), Iμ(0) = Iμ(1) = 1.

Then, clearly, the function I defined by (3) equals Iγ , γ ∼ N (0, 1). The function K̂μ(x)
above can be expressed as the ratio

Iγ(p)
Iμ(p)

∣∣∣∣
p=Fμ(x)

,

and under the conditions of Proposition 3 the function Fμ gives a one-to-one correspon-
dence between (−∞,∞) and (0, 1). Hence the constant ĉμ above can be alternatively
expressed as

ĉμ =

(
sup

p∈(0,1)

Iγ(p)
Iμ(p)

)2

.

Proofs of Proposition 2 and Proposition 3. If v(x) = x−〈μ〉, we have K̄μv
′ = K̄μ, and

therefore the assumption inf K̄μ = α > 0 made in Proposition 2 implies the principal
condition (31). For the function v defined by (37) and the function K̂μ, this condition
takes even a more simple form because straightforward calculation shows that

K̂μv
′ = 1.

Hence one can expect that statements of Proposition 2 and Proposition 3 would follow
from the version of the Bakry–Emery criterion given in Theorem 3. However, we can not
apply this theorem here directly, because of extra smoothness and growth conditions on
functions K and a, imposed therein. The strategy of the proof will be the following: first,
we consider a family of measures, which approximate μ properly and satisfy both (31)
for the respective pair of K and v, and extra smoothness and growth conditions on
respective functions K and a. Then, by passing to a limit, we get respective weighted
log-Sobolev inequality, i.e. prove statements I in Propositions 2, 3. Finally, using the
same approximation procedure as in the proof of Theorem 3 above, we extend the class
of f in the case where the weight K is bounded.

To shorten the exposition, we explain in details the way this strategy is implemented
for the proof of Proposition 3, only. The detailed proof of Proposition 2 is similar
and omitted. We also does not repeat the approximation arguments from the proof of
Theorem 3 above, and concentrate on the proof of (38) for smooth compactly supported f .

Consider first the following auxiliary case: pμ ∈ C∞, and for some R > 0

pμ(x) = ϕ(x), |x| ≥ R. (39)

Then vμ (which, let us recall, equals p′μ/pμ) and K̂μ belong to C∞ and

vμ(x) = −x, K̂μ(x) = 1, |x| ≥ R.

Then the functions K = K̂μ and a defined by (32) satisfy the assumptions of Theorem 3.
Hence, applying Theorem 3, we get (38).

Next, consider the general case. Fix some function χ ∈ C∞ taking values in [0, 1],
such that χ(0) = 0, χ(x) = 1, x ≥ 1, and define

ϕr,δ(x) = ϕ(x)(δ + (1− δ)χ(|x| + r)), x ∈ R;
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then every ϕr,δ, r > 0, δ ≥ 0 belongs to C∞. Denote

M(r) =
∫

R

ϕr,0(x) dx,

then M is a strictly decreasing function on [0,∞) and M(0) < 1. For a given Q > 0,
consider the restriction pQμ of pμ to the segment [−Q,Q], and assume that Q is large
enough for ∫

|x|>Q
pμ(x) dx < M(0).

Then for every δ small enough there exists unique r = r(Q, δ) > 0 such that∫
R

(
pQμ (x) + ϕr,δ(x)

)
dx = 1.

Take some non-negative ψ ∈ C∞, supported in [−1, 1] and such that
∫

R
ψ(x) dx = 1, and

consider the probability measure μQ,ε with the density

pμQ,δ
(x) =

1
δ

∫
[−δ,δ]

pQμ (y)ψ
(
x− y

δ

)
dy + ϕr,δ(x).

By the construction, every μQ,δ has positive C∞ density and satisfy (39) for some largeR.
Therefore, (38) holds true with μQ,δ instead of μ. It can be seen easily that

pμQ,δ
→ pμ, KμQ,δ

→ Kμ, δ → 0, Q→∞,

uniformly on every finite segment. Passing to the limit, we obtain (38) for the initial
measure μ and arbitrary smooth and compactly supported f . �

4. Examples

Example 1. Let μ on R have a positive C1-density pμ, such that for some a,R > 0

vμ(x)x ≥ −ax2, |x| > R (40)

Let us show that then condition inf K̄μ > 0 from Proposition 2 holds true. Changing the
variables x �→ x− 〈μ〉, we can restrict ourselves to the case of 〈μ〉 = 0. Then we have for
x > R

K̄μ(x) =
∫ ∞

x

y exp(log pμ(y)− log pμ(x)) dy

=
∫ ∞

x

y exp
(∫ y

x

vμ(z) dz
)
dy ≥

∫ ∞

x

y exp
(
−a
∫ y

x

z dz

)
dy

= eax
2/2

∫ ∞

x

ye−ay
2/2 dy = 1/a.

Similar relation holds true for x < −R; to see this, one should note that

K̄μ = − 1
pμ(x)

∫ x

−∞
ypμ(y) dy

because μ is centered. Finally, because pμ ∈ C1 is positive, K̄μ has positive infimum over
[−R,R], which completes the proof.

Similarly, if in addition for some b > 0

vμ(x)x ≤ −bx2, |x| > R, (41)

then sup K̄μ <∞. Hence, by statement II of Proposition 2, for a measure μ satisfying (40)
and (41) the log-Sobolev inequality holds true.

Note that (41) is just the well known drift condition, sufficient for the Poincaré in-
equality, e.g. Theorem 3.1 and Remark 3.2 in [8]. However, various sufficient conditions
for the log-Sobolev inequality, available in the literature, typically require additional
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assumptions on the curvature, which in the current context equals −v′μ. Namely, the
famous Bakry–Emery condition ([1])) requires −v′μ ≥ δ > 0; conditions by Wang ([17])
and Cattiaux–Guillin ([8], Theorem 5.1) are more flexible, but still contain a requirement
that the curvature is bounded from below, i.e. in our case

−v′μ ≥ δ (42)

with some δ ∈ R. The above condition (40) can be understood as an “integral” version
of (42), and it is easy to give an example of measure μ satisfying (40) and (41) such
that (42) fails.

Example 2. Let γ3 be a standard Gaussian measure on R3, and BR be a ball of radius
R, touching the origing and with the center located at the first basis vector e1; that is,
BR = B(Re1, R). Denote by γ3,R the measure γ3 conditioned outside the ball BR:

γ3,R(A) =
γ3(A \BR)
γ3(R3 \BR)

.

Consider a measure μR on R which is a projection of γ3,R on the first coordinate. We will
show that there exists some constant ĉ such that uniformly by R ≥ 0 the constants ĉμ
for the measures μ = μR from Proposition 3 are dominated by ĉ. This would yield that
for the family μR, R ≥ 0 the log-Sobolev inequality holds true with uniformly bounded
constants.

For a given x ∈ [0, 2R], the section of the ball BR by the hyperplane

{y = (y1, y2, y3) : y1 = x},
projected on the last two coordinates, is the ball in R2, centered at the origin and having
the radius

rR(x) =
√

2Rx− x2.

Define r(x) = 0 for x /∈ [0, 2R]. Then we have for μ = μR

pμ(x) = CRϕ(x)ψ2(rR(x)),

where
CR =

(
γ3(R3 \BR)

)−1
,

ψ2(r) =
∫
‖y‖≥r

1
2π
e−(y2

1+y2
2)/2 dy1 dy2 =

1
2π

∫ 2π

0

∫ ∞

r

e−ρ
2/2ρ dρ dθ = e−r

2/2.

Consequently,

pμ(x) =
CR√
2π

{
e−Rx, x ∈ [0, 2R],
e−x

2/2, otherwise.
(43)

To bound K̂μ(x) consider separately three cases.
I. x < 0. Recall that I ′(p) = −Φ−1(p). Then for any c > 1 we have

[I(cΦ(x))]′ = −Φ−1(cΦ(x))cϕ(x) ≤ (−x)cϕ(x) = cϕ′(x)

because Φ−1 is an increasing function. Clearly, both I(cΦ(x)) and ϕ(x) vanish as
x→ −∞, hence

I(cΦ(x)) =
∫ x

−∞
[I(cΦ(y))]′ dy ≤ c

∫ x

−∞
ϕ′(y) dy = cϕ(x), x ≤ Φ−1(1/c). (44)

Note that for x < 0
Fμ(x) = CRΦ(x), pμ(x) = CRϕ(x),

and CR > 1. In addition, the half-space {y = (y1, y2, y3) : y1 ≤ x} is contained in R3\BR,
hence

Φ(x) = γ3({y = (y1, y2, y3) : y1 ≤ x}) ≤ 1
CR

⇔ x ≤ Φ−1

(
1
CR

)
,
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and we can apply (44) to get

K̂μ(x) =
I(CRΦ(x))
CRϕ(x)

≤ 1, x < 0.

II. x > 2R. In this case 1 − Fμ(x) = CR(1 − Φ(x)). Recall that I(p) = I(1 − p) and
Φ−1(1−Φ(x)) = −x, hence we can use the same argument as in the case I to show that
K̂μ(x) ≤ 1, because for any c > 1

I(c(1− Φ(x)) = −c
∫ ∞

x

Φ−1
(
c(1− Φ(y))

)
dy ≤ c

∫ ∞

x

yϕ′(y) dy = cϕ(x).

III. x ∈ [0, 2R]. Recall that there exists a constant c∗ such that

I(p) ≤ c∗p
√

log
1
p
, p ∈

(
0,

1
2

)
.

One has

CRγ
3({y = (y1, y2, y3) : y1 > R}) ≤ 1− Fμ(x) ≤ CRγ

3({y = (y1, y2, y3) : y1 > 0}) < 1
2
,

hence we can write, using the identity I(p) = I(1− p),

K̂μ(x) =
I(1− Fμ(x))

pμ(x)
≤ c∗

1− Fμ(x)
pμ(x)

√
log

1
1− Fμ(x)

.

Because CR > 1, we have

log
1

1− Fμ(x)
≤ log

1
1− Fμ(2R)

= log
1

CR(1 − Φ(2R))
≤ log

1
1− Φ(2R)

≤ c∗(1 +R)2

with some c∗ > 2. By (43), we have

1− Fμ(x)
pμ(x)

= eRx

(∫ 2R

x

e−Ry dy +
∫

2R

e−y
2/2 dy

)
,

and the right hand side term can be estimated either by

eRx
∫ ∞

x

e−Ry dy =
1
R
,

(when R is large), or by

e2R
2
∫

0

e−y
2/2 dy =

√
π

2
e2R

2

(when R is small). Then for any R > 0 for μ = μR

ĉμ = sup
x
K̂μ ≤ ĉ := c∗c∗ sup

Q>0
min

(
1 +Q

Q
,

√
π

2
(1 +Q)e2Q

2
)

;

for R = 0 the measure μ just equals γ and therefore ĉμ = 1.
This example is motivated by the manuscript [5], where the problem of estimating of

the Poincaré constant for a Gaussian measure conditioned outside a ball is considered.
One approach proposed therein is based on the decomposition of variance, and requires
an estimate for the Poincaré constant of one-dimensional projection of the “punctured”
Gaussian measure on the line which contains the center of the ball. Such an estimate
depend on the position and the size of the ball, see Lemma 4.7 in [5], and the case of
a large ball touching the origin relates the case (4) of that lemma. Our estimate for
the log-Sobolev constant implies that the Poincaré constant for μ is uniformly bounded
by ĉ, which drastically improves the bound ceR

2
from Lemma 4.7 [5], statement (4).

Heuristically, the reason for this is the following. The measure μ contain “cavities”,
which appear due to the “puncturing” procedure, and if the ball is “large” and is located
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not so “far from the origin”, then these “cavities” make the bounds for the Poincaré
inequality obtained via classic sufficient conditions to be very inaccurate. On the other
hand, the form of the weight K̂μ in Proposition 3 is highly adjusted to these “cavities”,
which makes respective bounds more precise. We believe that similar calculations can
be made in a general setting, i.e. for arbitrary d ≥ 2 and arbitrary position and size of
the ball; this is a subject of a further research.
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grateful to Emmanuel Boissard for fruitful discussions concerning the manuscript [5].

References

1. D. Bakry and M. Emery, Hypercontractivity for diffusion semi-groupes, Comptes rendus des
seances de l’Academie des sciences. Serie 1 299 (1984), no. 15, 775–778.

2. F. Barthe, D. Cordero-Erausquin, and M. Fradelizi, Gaussian shift inequalities and norms of
barycenters, Studia Math. 146 (2001), 245–259.

3. S. G. Bobkov, The size of singular component and shift inequalities, The Annals of Probability
27 (1999), no. 1, 416–431.

4. S. V. Bodnarchuk and A. M. Kulik, Stochastic control based on time-change transformations
for stochastic processes with Lévy noise, Prob. Theory and Math. Stat. 86 (2012), 11–27.

5. E. Boissard, P. Cattiaux, A. Guillin, and L. Miclo, Ornstein–Uhlenbeck Pinball: I. Poincaré
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ASYMPTOTIC BEHAVIOR OF THE INTEGRAL FUNCTIONALS
FOR UNSTABLE SOLUTIONS OF ONE-DIMENSIONAL ITÔ

STOCHASTIC DIFFERENTIAL EQUATIONS
UDC 519.21

G. L. KULINICH, S. V. KUSHNIRENKO, AND Y. S. MISHURA

Abstract. We consider the stochastic one-dimensional differential equations with homogeneous drift
and unit diffusion. The drift satisfies conditions supplying the unstable property of the unique strong
solution. The explicit form of normalizing factor for certain integral functionals of unstable solution is
established to provide the weak convergence to the limiting process. As a result we get the new class
of limiting processes that are the functionals of Bessel diffusion processes.
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1. Introduction

Let (Ω,�,P) be the complete probability space and W = {W (t), t ≥ 0} be one-
dimensional Wiener process on this space. Let the function a = a(x) : R → R be measur-
able and bounded. It is well-known (see, e.g. [15] and [14], Theorem 4) that the stochastic
differential equation with the homogeneous drift and the unit diffusion

dξ(t) = a(ξ(t)) dt+ dW (t), t ≥ 0, (1)

has the unique strong solution ξ = {ξ(t), t ≥ 0} for any initial condition ξ(0) = x0 ∈ R.

Definition 1.1. Solution ξ = {ξ(t), t ≥ 0} of equation (1) is called unstable if for any
constant N > 0

lim
t→∞

1
t

∫ t

0

P{|ξ(s)| < N} ds = 0.

Definition 1.2. Solution ξ = {ξ(t), t ≥ 0} of equation (1) has ergodic distribution G(x)
if for all x ∈ R

lim
t→∞ P{ξ(t) < x} = G(x).

2000 Mathematics Subject Classification. Primary 60H10.
Key words and phrases. Itô stochastic differential equation, unstable solution, asymptotic behavior

of integral functionals.
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Definition 1.3. The family {ζT (t), t ≥ 0} of stochastic processes is said to converge
weakly as T → ∞ to the process {ζ(t), t ≥ 0} if for any L > 0 measures μT [0, L] that
correspond to the processes ζT (·) on the interval [0, L] converge weakly to the measure
μ[0, L] that corresponds to the process ζ(·).

Throughout the paper we suppose that the drift coefficient a satisfies assumption
(A1) there exists such C > 0 that for any x ∈ R

|xa(x)| ≤ C.

In this case we can say that the class of equations (1) is located on the border between
the equations whose solutions have ergodic distribution, and the equations with unstable
solutions. To illustrate this observation, consider the drift coefficient of the form a(x) =
ax

1+x2 and introduce the function

f(x) = exp
{
−2
∫ x

0

a(v) dv
}
. (2)

Note that in our case f(x) = (1 + x2)−a. In the paper [11] two cases were considered,
namely, a < − 1

2 , a > − 1
2 . It was proved that in the case a < − 1

2 the solution ξ of
equation (1) has ergodic distribution, is transient and moreover

lim
t→∞P{ξ(t) < x} =

[∫
R

dv

f(v)

]−1 [∫ x

−∞

dv

f(v)

]
=
[∫

R

(1 + v2)adv
]−1 [∫ x

−∞
(1 + v2)adv

]
.

(3)
At the same time in the case a > − 1

2 the solution ξ of equation (1) is unstable and
recurrent and furthermore the process rT (t) = |ξ(tT )|√

T
with normalizing factor 1√

T
weakly

converges as T →∞ to the Bessel process r(t) that is the solution of the Itô’s equation

dr2(t) = (2a+ 1) dt+ 2r(t) dŴ (t) (4)

with some Wiener process {Ŵ = Ŵ (t), t ≥ 0}. Here the weak convergence is considered
in the uniform topology on the space of continuous functions. The case a = − 1

2 is
critical in the sense that for a = − 1

2 the process is recurrent, P{limt→∞ ξ(t) = +∞} =
P{limt→∞ ξ(t) = −∞} = 1, however, we do not know the normalizing factor that supplies
the weak convergence.

The assertion that value a = − 1
2 is critical can be illustrated by the following examples:

1) If a(x) = − 1
2

x
1+x2 − 2 x

(1+x2) ln(1+x2) then the solution ξ of equation (1) has the

ergodic distribution and moreover, we have in equality (3) f(x) =
√

1 + x2
[
ln(1 + x2)

]2.
2) If a(x) = − 1

2
x

1+x2 + x
(1+x2) ln(1+x2) then the solution ξ of equation (1) is unstable,

and stochastic process ξ(tT )√
T

converges to degenerate process r(t) ≡ 0 as T →∞.
The present paper is devoted to the asymptotic behavior of the integral functionals

β(t) =
∫ t
0
g(ξ(s)) ds as t → ∞. We suppose that g = g(x) : R → R is locally integrable

function, ξ is the solution of equation (1). Also, introduce some additional notations.
Denote Ψ the class of functions ψ = ψ(r) > 0, r ≥ 0, that are non-decreasing and
regularly varying (at infinity) with index α > 0, i.e., limT→∞

ψ(rT )
ψ(T ) = rα for all r > 0.

Now, take function f that is defined via the relation (2), some constant b ∈ R and
denote

q(x) =
f(x)
ψ(|x|)

∫ x

0

g(u)
f(u)

du− b̄(x), b̄(x) = b signx. (5)

Suppose additionally that the drift coefficient a and function g satisfy assumption
(A2) (i) with one of the additional restrictions (ii), (iii) or (iv) and also one of the
assumptions (A3) and (A4):



ASYMPTOTIC BEHAVIOR OF THE INTEGRAL FUNCTIONALS 93

(A2) (i) There exist the constants ci, i = 1, 2 such that

lim
|x|→∞

[
1
x

∫ x

0

va(v) dv − c̄(x)
]

= 0, (6)

where

c̄(x) =

{
c1, x > 0,
c2, x < 0,

and moreover, one of the following restrictions on the coefficients hold:

(ii) c1 = c2 = c0 > − 1
2 ;

(iii) c1 > 1
2 , c2 < 1

2 ;
(iv) c1 < 1

2 , c2 > 1
2 .

(A3) (i) there exists a constant C > 0 such that f(x) ≤ C for any x ∈ R and
(ii) there exist such b ∈ R and function ψ ∈ Ψ that

lim
|x|→∞

1
x

∫ x

0

q2(u)
f(u)

du = 0; (7)

(A4) (i) there exists a constant δ > 0 such that 0 < δ ≤ f(x) for any x ∈ R and
(ii) there exist such b ∈ R and function ψ ∈ Ψ that

lim
|x|→∞

f(x)
x

∫ x

0

q2(u) du = 0. (8)

In the present paper in order to proof that under the conditions (A1), (A2) and one of
the conditions (A3) and (A4) random variable β(t)√

tψ(
√
t)

with normalizing factor 1√
tψ(

√
t)

has the limit distribution as t→∞, we study the limit behavior as T →∞ of the process

βT (t) =
1√

Tψ(
√
T )

∫ tT

0

g(ξ(s)) ds,

with parameter T > 0. Theorems 2.1 and 2.2 describe the limit behavior mentioned
above.

Remark 1.1. It is very easy to see that any of conditions (A3) and (A4) supply the
convergence

lim
|x|→∞

1
x

∫ x

0

q2(u) du = 0. (9)

If condition (A3) holds then

1
x

∫ x

0

q2(u) du ≤ C
1
x

∫ x

0

q2(u)
f(u)

du→ 0 as |x| → ∞.

If condition (A4) holds then

1
x

∫ x

0

q2(u) du ≤ 1
δ

f(x)
x

∫ x

0

q2(u) du→ 0 as |x| → ∞.

Moreover, if 0 < δ ≤ f(x) ≤ C then (9) is equivalent both to (A3), (ii) and (A4), (ii).
However, neither (A3), (ii) and (A4), (ii) nor (9) do not supply convergence q(x) → 0
as |x| → ∞. In other words, under any of these conditions function q can admit “explo-
sions”.

Remark 1.2. The function q(x) (see Example 2.1) satisfies the condition (9). Obviously,
q(x) � 0 as |x| → ∞.
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As to previous results in this direction, it was proved in [11] that under the condi-
tion (A2) solution ξ of equation (1) is unstable. Moreover, in the case when (A2), (ii)
holds then |ξ(tT )|√

T
weakly converges as T → ∞ to process r that is the solution of equa-

tion (4) with a = c0. In the case when (A2), (iii) holds then ξ(tT )√
T

weakly converges to

process r with a = c1, and in the case when (A2), (iv) holds then −ξ(tT )√
T

weakly converges
to process r with a = c2. Asymptotic behavior of the process βT (t) in the case when
conditions (A2), (i) and (ii) hold and additionally q(x) → 0 as |x| → ∞ were considered
in the papers [5] and [12]. The results of the paper [5] are generalized in the present
paper to the case of the functions q = q(x) with possible “explosions” (conditions (A3)
and (A4)) and are extended to the cases when (A2), (i) and (iii) or (A2), (i) and (iv)
hold. Moreover, the proofs from [5] are essentially simplified in the present paper due to
the representation (12). The paper [12] contains similar result for the functional βT (t)
of the solution ξ of equation (1) on the half-axis (0,+∞) with the instant reflection of
the solution at zero point, and in this case it was supposed that ψ(|x|) = |x|α, α ≥ 0,
q(x) → 0 as x→∞.

The most complete results concerning the asymptotic behavior of the functionals βT (t)
are proved for the equations (1) with more restrictive assumption on the drift coefficient,
namely,

∣∣∫ x
0
a(u) du

∣∣ ≤ C (see [8] – [10]). The paper [8] contains the weak convergence of
distributions of βT (t) in the case when q(x) → 0 as |x| → ∞. In the paper [9] the weak
convergence of distributions of βT (t) was obtained under assumption (9) on function
q = q(x). In the paper [10] the necessary and sufficient conditions of weak convergence
were obtained that are connected, in some sense, to (9).

The asymptotic behavior of the integral functionals of the form
∫ t
0
gT (ξT (s)) dμT (s),

where ξT (t) are the solutions of stochastic differential equations and μT (t) is the family of
martingales that converge in probability, was considered in the paper [3, §5, Chapter IX]
under the assumption of locally uniform convergence of the coefficients of the equation.

The paper is organized as follows: principal results are proved in Section 2 while an
auxiliary lemma is relegated to Section 3. Section 4 concludes.

2. The main results

In what follows we denote C or C with some subscripts constants whose values are
not so important and can change from line to line.

Theorem 2.1. Let ξ be the solution of equation (1) with the drift coefficient a satisfying
assumptions (A1), (A2), (i) and one of the assumptions (A2), (ii), (iii) or (iv).

Then the stochastic process

βT (t) =
1√

Tψ(
√
T )

∫ tT

0

g(ξ(s)) ds

converges as T →∞ weakly in the unform topology of the space of continuous functions
to the process

β(t) = 2b
[
rα+1(t)
α+ 1

−
∫ t

0

rα(s) dŴ (s)
]
,

where r(t) ≥ 0 is the solution of stochastic differential equation

dr2(t) = (2a+ 1) dt+ 2r(t) dŴ (t).

Here a = c0 in the case when assumption (A2), (ii) is satisfied, a = c1 in the case when
assumption (A2), (iii) is satisfied and a = c2 in the case when assumption (A2), (iv) is
satisfied.
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Proof. Introduce parameter T > 0 and set

rT (t) =
|ξ(tT )|√

T
, WT (t) =

W (tT )√
T

, ŴT (t) =
∫ t

0

sign ξ(sT ) dWT (s),

PN = P

{
sup

0≤t≤L
rT (t) > N

}
, αT (t) =

1
T

∫ tT

0

[ξ(s)a(ξ(s)) − c̄(ξ(s))] ds,

where L and N are arbitrary positive constants. Evidently, for any fixed T > 0 process
WT = {WT (t), t ≥ 0} is a Wiener process. Furthermore, it follows, e.g., from [2, Chap-
ter 6, §3, Lemma 5] that ∫ t

0

P{ξ(s) = 0} ds = 0

for any t > 0. Therefore ŴT = {ŴT (t), t ≥ 0} for any T > 0 is continuous with
probability 1 square integrable martingale with the quadratic characteristics 〈ŴT 〉(t) = t.
It immediately follows from the Doob’s theorem that ŴT is a Wiener process for any
T > 0. Applying Itô’s formula to the process r2T , we get

r2T (t) =
x2

0

T
+
∫ t

0

[2c̄(ξ(sT )) + 1] ds+ 2
∫ t

0

rT (s) dŴT (s) + 2αT (t).

Consider the function

F (x) = 2
∫ x

0

f(u)
(∫ u

0

g(v)
f(v)

dv

)
du.

Obviously, function F has a continuous derivative F ′ and a.e. w.r.t. to the Lebesgue
measure on R has a second derivative F ′′ that is locally integrable. Therefore we can
apply an Itô’s formula from [6, Chapter 2, §10] to F (ξ(t)) and get the equality

F (ξ(t))− F (x0) =
∫ t

0

[
F ′(ξ(s))a(ξ(s)) +

1
2
F ′′(ξ(s))

]
ds+

∫ t

0

F ′(ξ(s)) dW (s) (10)

with probability 1 for any t ≥ 0. It is easy to see that a.e. w.r.t. to the Lebesgue measure
on R the following equality holds

F ′(x)a(x) +
1
2
F ′′(x) = g(x). (11)

Applying (11) to (10) we get that

F (ξ(t)) − F (x0) =
∫ t

0

g(ξ(s)) ds+
∫ t

0

F ′(ξ(s)) dW (s)

with probability 1 for any t ≥ 0. After some evident transformations we get from the
last equality that

βT (t) =
1√

Tψ(
√
T )

[
F (ξ(tT ))− F (x0)−

∫ tT

0

F ′(ξ(s)) dW (s)

]
.
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Let us consider the first term

F (ξ(tT ))√
Tψ(

√
T )

=
2√

Tψ(
√
T )

∫ ξ(tT )

0

f(u)
(∫ u

0

g(v)
f(v)

dv

)
du

=
2√

Tψ(
√
T )

∫ ξ(tT )

0

(
f(u)
ψ(|u|)

∫ u

0

g(v)
f(v)

dv ± b̄(u)
)
ψ(|u|) du

=
2√

Tψ(
√
T )

(∫ ξ(tT )

0

b̄(u)ψ(|u|) du +
∫ ξ(tT )

0

q(u)ψ(|u|) du
)

= 2b
∫ |ξ(tT )|√

T

0

ψ
(
|u|
√
T
)

ψ(
√
T )

du+
2√

Tψ(
√
T )

∫ ξ(tT )

0

q(u)ψ (|u|) du

= 2b
∫ |ξ(tT )|√

T

0

|u|α du+ 2b
∫ |ξ(tT )|√

T

0

⎛⎝ψ
(
|u|
√
T
)

ψ(
√
T )

− |u|α
⎞⎠ du

+
2√

Tψ(
√
T )

∫ ξ(tT )

0

q(u)ψ (|u|) du,

and transform the last term

1√
Tψ(

√
T )

∫ tT

0

F ′(ξ(s)) dW (s) =
2√

Tψ(
√
T )

∫ tT

0

f(ξ(s))

(∫ ξ(s)

0

g(u)
f(u)

du

)
dW (s)

=
2√

Tψ(
√
T )

[∫ tT

0

b̄(ξ(s))ψ(|ξ(s)|) dW (s) +
∫ tT

0

q(ξ(s))ψ(|ξ(s)|) dW (s)

]

=
2

ψ(
√
T )

∫ t

0

b̄(ξ(sT ))ψ(|ξ(sT )|) dW (sT )√
T

+ 2
∫ t

0

q(ξ(sT ))
ψ(|ξ(sT )|)
ψ(
√
T )

dWT (s)

= 2b
∫ t

0

ψ(|ξ(sT )|)
ψ(
√
T )

dŴT (s) + 2
∫ t

0

q(ξ(sT ))
ψ(|ξ(sT )|)
ψ(
√
T )

dWT (s)

= 2b
∫ t

0

rαT (s) dŴT (s) + 2b
∫ t

0

[
ψ(rT (s)

√
T )

ψ(
√
T )

− rαT (s)

]
dŴT (s)

+ 2
∫ t

0

q(ξ(sT ))
ψ(rT (s)

√
T )

ψ(
√
T )

dWT (s).

Therefore

βT (t) = − F (x0)√
Tψ(

√
T )

+ 2b
∫ rT (t)

0

uαdu− 2b
∫ t

0

rαT (s) dŴT (s) + 2
4∑

k=1

S
(k)
T (t), (12)

where

S
(1)
T (t) = b

∫ rT (t)

0

[
ψ(u

√
T )

ψ(
√
T )

− uα

]
du,

S
(2)
T (t) =

1√
Tψ(

√
T )

∫ ξ(tT )

0

q(u)ψ(|u|) du,

S
(3)
T (t) = −b

∫ t

0

[
ψ(rT (s)

√
T )

ψ(
√
T )

− rαT (s)

]
dŴT (s),

S
(4)
T (t) = −

∫ t

0

q(ξ(sT ))
ψ(rT (s)

√
T )

ψ(
√
T )

dWT (s).
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It is known from [11] that under condition (A1) the process {rT (t), t ≥ 0} converges
weakly as T → ∞ to the process {r(t), t ≥ 0} that is the solution of equation (4) with
a = c0 in the case (A2),(ii), with a = c1 in the case (A2), (iii) and with a = c2 in the
case (A2), (iv). Furthermore, for any L > 0 and ε > 0 we have that

lim
N→∞

lim
T→∞

PN = 0,

lim
h→0

lim
T→∞

sup
|t1−t2|≤h; ti≤L

P {|rT (t2)− rT (t1)| > ε} = 0. (13)

Now we are in position to establish that S(k)
T , k = 1, . . . , 4, uniformly converge to zero

in probability. In particular, it means that they satisfy equalities (13) as well. To start
with, note that it follows from Lemma 3.1, evident inequalities

P {|η + ζ| > ε} ≤ P
{
|η| > ε

2

}
+ P

{
|ζ| > ε

2

}
, P {|η| > ε} ≤ Eh(|η|)

h(ε)

with h = x and h = x2 and the properties of Itô’s integrals that for any ε > 0, L > 0 and
T ≥ TN , where TN are introduced in Lemma 3.1, the following inequalities hold true:

P

{
sup

0≤t≤L
|S(1)
T (t)| > ε

}
≤ PN +

2
ε

E sup
0≤t≤L

|S(1)
T (t)|χ{rT (t)≤N}

≤ PN +
2
ε
|b|
∫ N

0

∣∣∣∣∣ψ(u
√
T )

ψ(
√
T )

− uα

∣∣∣∣∣ du,
(14)

P

{
sup

0≤t≤L

∣∣∣S(2)
T (t)

∣∣∣ > ε

}
≤ P

{
sup

0≤t≤L

∣∣∣∣∣
∫ ξ(tT )√

T

0

q(u
√
T )
ψ(|u|

√
T )

ψ(
√
T )

du

∣∣∣∣∣ > ε

}

≤ PN +
2
ε

E sup
0≤t≤L

∣∣∣∣∣
∫ ξ(tT )√

T

0

q(u
√
T )
ψ(|u|

√
T )

ψ(
√
T )

du

∣∣∣∣∣χ{rT (t)≤N}

≤ PN +
2
ε
CN

∫ N

−N
|q(u

√
T )| du ≤ PN +

2
ε
CN (2N)

1
2

(
1√
T

∫ N
√
T

−N√
T

q2(u) du

) 1
2

,

(15)

P

{
sup

0≤t≤L
|S(3)
T (t)| > ε

}
≤ PN + 4

(
2
ε

)2

b2 E

∫ L

0

∣∣∣∣∣ψ(rT (s)
√
T )

ψ(
√
T )

− rαT (s)

∣∣∣∣∣
2

χ{rT (s)≤N} ds,

(16)

P

{
sup

0≤t≤L
|S(4)
T (t)| > ε

}
≤ PN + 4

(
2
ε

)2

E

∫ L

0

q2(ξ(sT ))

[
ψ(rT (s)

√
T )

ψ(
√
T )

]2

χ{rT (s)≤N} ds

≤ PN + 4
(

2
ε

)2

C2
N E

∫ L

0

q2(ξ(sT ))χ{rT (s)≤N} ds.

(17)
Taking into account the convergence ψ(|x|√T )

ψ(
√
T )

− |x|α → 0 as T →∞, boundedness on
the interval |x| ≤ N and relation (9), we let in inequalities (14) and (15) T → ∞ and
after that N →∞ and get

sup
0≤t≤L

∣∣∣S(k)
T (t)

∣∣∣ P→ 0 (18)

as T →∞ and for k = 1, 2.
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Now we shall establish similar convergence for k = 3, 4. It is known from [4] that for
any 0 < δ < N <∞ the following convergence holds:

sup
0<δ≤|x|≤N

∣∣∣∣∣ψ(|x|
√
T )

ψ(
√
T )

− |x|α
∣∣∣∣∣→ 0

as T →∞. Therefore, taking into account monotonicity of function ψ(r), r ≥ 0, we get
the following convergence for any 0 < δ < N :

E

∫ L

0

[
ψ(rT (s)

√
T )

ψ(
√
T )

− rT (s)

]2

χ{rT (s)≤N} ds

≤ L sup
δ≤|x|≤N

∣∣∣∣∣ψ(|x|
√
T )

ψ(
√
T )

− |x|α
∣∣∣∣∣
2

+ 2
∫ L

0

⎛⎝[ψ(δ
√
T )

ψ(
√
T )

]2

+ δ2

⎞⎠ ds→ 0,

if to tend at first T →∞ and after that δ → 0.
So, taking into account inequality (16) we get that convergence (18) holds for S(3)

T (t)
as well. At last, in order to prove convergence (18) for S(4)

T (t), we apply Itô formula and
get

E

∫ L

0

q2(ξ(sT ))χ{|ξ(sT )|≤N√
T} ds = E [ΦT (ξ(LT ))− ΦT (x0)] ,

where

ΦT (x) =
1
T

∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

χ{|v|≤N√
T} dv

)
du.

Now we consider separately conditions (A3) and (A4). It is easy to see that under
condition (A3) we have the following relations

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ ≤ C

x2

∣∣∣∣∫ x

0

(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣
=
C

x2

∣∣∣∣∫ x

0

u

(
1
u

∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣→ 0 as |x| → ∞.

In turn, under condition (A4) we have the following relations

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ ≤ 1
δ

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v) dv
)
du

∣∣∣∣
=

1
δ

1
x2

∣∣∣∣∫ x

0

u

(
f(u)
u

∫ u

0

q2(v) dv
)
du

∣∣∣∣→ 0 as |x| → ∞.

Therefore, any of conditions (A3) and (A4) supply the following convergence

1
x2

∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du→ 0

as |x| → ∞. Therefore for any ε > 0 there exists such Lε that for |x| > Lε we have
inequality

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ < ε. (19)

Furthermore, since function 1
x2

∫ x
0
f(u)

(∫ u
0
q2(v)
f(v) dv

)
du is bounded at zero, there exists

such Cε > 0 that

sup
|x|≤Lε

1
x2

∣∣∣∣∫ x

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣ ≤ Cε. (20)
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Besides this,

E
|ξ(tT )|2

T
≤ C + C1t. (21)

Relations (19) and (20) together with (21) provide that

E |ΦT (ξ(LT ))| ≤ E
|ξ(tT )|2

T
· 1
|ξ(LT )|2

∣∣∣∣∣
∫ ξ(LT )

0

f(u)
(∫ u

0

q2(v)
f(v)

dv

)
du

∣∣∣∣∣
≤ Cε

T
+ ε(C + C1t),

whence E |ΦT (ξ(LT ))| → 0 as T →∞. Evidently, |ΦT (x0)| ≤ C
T . Therefore,

E

∫ L

0

q2(ξ(sT ))χ{|ξ(sT )|≤N√
T} ds→ 0

as T → ∞. Together with (17) it means that the convergence (18) holds for S(4)
T (t) as

well. Evidently, relation (13) holds for processes ŴT (t).
It means that we can apply Skorokhod representation theorem [13] and for any se-

quence Tn → ∞ to choose the subsequence T ′
n → ∞, probability space (Ω̃, �̃, P̃) and

processes (r̃T ′
n
(t), W̃T ′

n
(t), S̃(i)

T ′
n
(t), i = 1, . . . , 4) on this space so that the couple of processes

will be stochastically equivalent to the process (rT ′
n
(t), ŴT ′

n
(t), S(i)

T ′
n
(t), i = 1, . . . , 4) and

moreover,

r̃T ′
n
(t) P̃→ r̃(t), W̃T ′

n
(t) P̃→ W̃ (t), S̃

(i)
T ′

n
(t) P̃→ S̃(i)(t), i = 1, . . . , 4,

as T ′
n →∞. In our case, according to (18), S̃(i)(t) = 0, i = 1, . . . , 4, and the processes r̃(t),

W̃ (t) satisfy equations (4) with a = c0 in the case (A2), (ii), a = c1 in the case (A2), (iii)
and a = c2 in the case (A2), (iv), see [11].

According to equality (12) we have that the functional βT ′
n
(t) is stochastically equiv-

alent to the functional β̃T ′
n
(t) for which we have similar equality

β̃T ′
n
(t) = − F (x0)√

T ′
nψ(
√
T ′
n)

+ 2b
∫ r̃T ′

n
(t)

0

uα du− 2b
∫ t

0

r̃αT ′
n
(s) dW̃T ′

n
(s)+ 2

4∑
i=1

S̃
(i)
T ′

n
(t). (22)

It is possible to get the limit as T ′
n → ∞ [13] in this equality and get that β̃T ′

n
(t) P̃→

β̃(t), where

β̃(t) = 2b

[∫ r̃(t)

0

uαdu −
∫ t

0

r̃α(s) dW̃ (s)

]
. (23)

It follows from the strong uniqueness of the solution of equation (4) (see, e.g., [7]) that
the distributions of the limit process β̃(t) are unique as well. Therefore, it follows from
arbitrary choice of Tn → ∞ that the finite-dimensional distributions of the processes
βT (t) tend as T → ∞ to the corresponding distributions of the process β̃(t) that is
defined by equality (23). In order to establish the weak convergence of the processes
βT (t) to the process β̃(t), it is sufficient to prove tightness, i.e., to prove that for any
L > 0

lim
h→0

lim
T→∞

P

{
sup

|t1−t2|≤h; ti≤L
|βT (t2)− βT (t1)| > ε

}
= 0. (24)

Tightness of the processes rT (t) was established in [11] and it was mentioned that
tightness of S(i)

T (t) = 0, i = 1, . . . , 4, follows from (18). Furthermore, taking into account
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the properties of stochastic Itô integrals, we get the following bounds for any ε > 0,
L > 0 and N > 0:

P

{
sup

|t1−t2|≤h;ti≤L

∣∣∣∣∣
∫ rT (t2)

0

uαdu−
∫ rT (t1)

0

uαdu

∣∣∣∣∣ > ε

}

≤ PN + P

{
Nα sup

|t1−t2|≤h; ti≤L
|rT (t2)− rT (t1)| >

ε

2

} (25)

and

P

{
sup

|t1−t2|≤h;ti≤L

∣∣∣∣ ∫ t2

t1

rαT (s) dŴT (s)
∣∣∣∣ > ε

}

≤ PN + P

{
4 sup
kh≤L

sup
kh≤t≤(k+1)h

∣∣∣∣∫ t

kh

rαT (s)χ{rT (s)≤N} dŴT (s)
∣∣∣∣ > ε

2

}

≤ PN +
∑
kh<L

P

{
sup

kh≤t≤(k+1)h

∣∣∣∣∫ t

kh

rαT (s)χ{rT (s)≤N} dŴT (s)
∣∣∣∣ > ε

8

}

≤ PN +
∑
kh<L

(
8
ε

)4

E sup
kh≤t≤(k+1)h

[∫ t

kh

rαT (s)χ{rT (s)≤N} dŴT (s)
]4

≤ PN +
∑
kh≤L

(
8
ε

)4(4
3

)4

E

[∫ (k+1)h

kh

rαT (s)χ{rT (s)≤N} dŴT (s)

]4

≤ PN +
(

8
ε

)4(4
3

)4

· 36N4α
∑
kh≤L

h2

≤ PN +
ChN4α

ε4
.

(26)

In the last inequality the following upper bound for the fourth moment of the Itô’s
integral w.r.t. the Wiener process from [1] or [13] was used:

E

(∫ b

a

f(t) dW (t)

)4

≤ 36(b− a)
∫ b

a

E |f(t)|4 dt.

It follows from (25) and (26) that the right-hand side of (12) is tight, i.e., satisfies (24).
So, we have tightness (24) and consequently βT (t) weakly converges as T → ∞ to the
process β(t) whence the proof follows. �

Example 2.1. Consider equation (1) with the drift coefficient of the form a(x) = x
1+x2 .

In this case f(x) = (1 + x2)−1 and the function q(x) from (5) can be rewritten as

q(x) =
1

ψ(|x|)(1 + x2)

∫ x

0

g(u)
(
1 + u2

)
du− b signx.

Let ψ(|x|) = |x| is slowly varying (at infinity) function (α = 1), then∫ x

0

g(u)
(
1 + u2

)
du = bx

(
1 + x2

)
+ q(x)|x|

(
1 + x2

)
= x

(
1 + x2

)
[b+ q(x) sign x] ,

whence

g(x) =
1

1 + x2

[
x
(
1 + x2

)
(b+ q(x) sign x)

]′
a.e. w.r.t. to the Lebesgue measure on R.



ASYMPTOTIC BEHAVIOR OF THE INTEGRAL FUNCTIONALS 101

Consider the continuous function with “explosions”

q(x) =

{
q1(x), x ∈ Δn,

0, x /∈ Δn,

where q1(x) > 0, maxx∈Δn q1(x) = 1, Δn =
(
n;n+ 1

n3

)
, n ∈ N. Continuing q(x) in

a symmetric way to (−∞, 0), we obtain that the function q(x), x ∈ R, satisfies the
condition (7) with the function f(x) = (1 + x2)−1 ≤ C.

If we put q(x) in the last allocated equality we get g(x) such that the stochastic process

βT (t) =
1√

Tψ(
√
T )

∫ tT

0

g(ξ(s)) ds =
1
T

∫ tT

0

g(ξ(s)) ds

converges as T →∞ weakly to the process

β(t) = 2b
[
r2(t)

2
−
∫ t

0

r(s) dŴ (s)
]

where r(t) ≥ 0 is the solution of stochastic differential equation

dr2(t) = 3 dt+ 2r(t) dŴ (t).

In this case β(t) = 3bt.

Remark 2.1. Analyzing the proof of Theorem 2.1 it is easy to see that it is true even
in the case when we establish just the weak convergence of the processes rT (t) to the
process r(t) and the representation (12) in which sup0≤t≤L

∣∣S(k)
T (t)

∣∣ P→ 0, k = 1, . . . , 4 as
T →∞ for any L > 0.

In this connection, we can deduce the following statement as a corollary of Theo-
rem 2.1.

Theorem 2.2. Let ξ be a solution of equation (1) and let convergence relation (6) holds.
Also, let locally integrable real-valued function g is such that there exists non-decreasing
function ψ(r), r ≥ 0 that is regularly varying at infinity of order α > 0 and q(x) → 0 as
|x| → ∞. Here q is defined in (5). Then Theorem 2.1 holds.

Proof. Indeed, apply the representation (12). Similarly to proof of Theorem 2.1 we get
that sup0≤t≤L

∣∣S(k)
T (t)

∣∣ P→ 0 as T → ∞, k = 1, 2, 3. Convergence sup0≤t≤L
∣∣S(4)
T (t)

∣∣ P→ 0
as T →∞ follows directly from inequality (17) and convergence q(x) → 0 as |x| → ∞. In
order to finish the proof of the present theorem, it is sufficient to apply Remark 2.1. �

Example 2.2. Consider the class of equations (1) with the drift coefficient of the form

a(x) =
xc̄(x)
1 + x2

,

where

c̄(x) =

{
c1, x > 0,
c2, x < 0,

c1 = c2 = c0, 2c0 + 1 > 0.

1) Let c0 = 1. In this case f(x) = (1 + x2)−1 and in order to satisfy the assumptions
of Theorem 2.2 the function q(x) can be rewritten as

q(x) =
1

|x|(1 + x2)

∫ x

0

g0(1 + u2) du− b signx.
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If b = g0
3 , g(x) = g0, ψ(|x|) = |x| is slowly varying (at infinity) function (α = 1), then

q(x) → 0 as |x| → ∞ and the stochastic process βT (t) = 1√
Tψ(

√
T )

∫ tT
0
g0 ds = 1

T g0
∫ tT
0

ds

converges as T →∞ weakly to the process

β(t) = 2b
[
rα+1(t)
α+ 1

−
∫ t

0

rα(s) dŴ (s)
]

=
2
3
g0

[
r2(t)

2
−
∫ t

0

r(s) dŴ (s)
]

where r(t) ≥ 0 is the solution of stochastic differential equation

dr2(t) = 3 dt+ 2r(t) dŴ (t).

In this case β(t) = g0t.
2) Let c0 = 1

2 , so f(x) = (1 + x2)
−1
2 . If g(x) = g0, ψ(|x|) = |x|, b = g0

2 and

q(x) =
1

|x|
√

1 + x2
g0

∫ x

0

√
1 + u2 du− g0

2
signx→ 0 as |x| → ∞,

then the stochastic process βT (t) converges as T →∞ weakly to the process β(t) = g0t.
3) If c0 = 1, g(x) = sin2 x, ψ(|x|) = |x|, b = 1

6 , then

q(x) =
1

|x|(1 + x2)

∫ x

0

(
1 + u2

)
sin2 u du− 1

6
signx→ 0 as |x| → ∞.

The stochastic process βT (t) = 1√
Tψ(

√
T )

∫ tT
0 sin2(ξ(s)) ds = 1

T

∫ tT
0 sin2(ξ(s)) ds con-

verges as T →∞ weakly to the process

β(t) =
1
3

[
r2(t)

2
−
∫ t

0

r(s) dŴ (s)
]

=
t

2
.

3. Auxiliary result

Now we prove an auxiliary result concerning regularly varying functions ψ(r), r ≥ 0,
that was applied in the proof of Theorem 2.1.

Lemma 3.1. Let the function ψ(r), r ≥ 0 be positive, non-decreasing and regularly
varying (at infinity) with index α ≥ 0. Then for an arbitrary N > 0 there exist constants
CN <∞, 0 < TN <∞ such that uniformly on T ≥ TN

sup
0≤r≤N

ψ(r
√
T )

ψ(
√
T )

≤ CN .

Proof. It is clear that

sup
0≤r≤N

ψ(r
√
T )

ψ(
√
T )

≤ ψ(N
√
T )

ψ(
√
T )

.

Since for regularly varying function ψ(r) we have convergence

ψ(N
√
T )

ψ(
√
T )

→ Nα,

as T →∞, then for ε = 1 there exists a constant TN <∞ such that for all T ≥ TN the
following inequality holds true

ψ(N
√
T )

ψ(
√
T )

≤ Nα + 1.

Hence the statement of Lemma 3.1 is proved for CN = Nα + 1. �
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POISSON APPROXIMATION OF PROCESSES WITH LOCALLY
INDEPENDENT INCREMENTS WITH MARKOV SWITCHING

UDC 519.21

N. LIMNIOS AND I. V. SAMOILENKO

Abstract. In this paper, the weak convergence of additive functionals of processes with locally inde-
pendent increments and with Markov switching in the scheme of Poisson approximation is investigated.
Singular perturbation problem for the generator of Markov process is used to prove the relative com-
pactness.
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1. Introduction

Let us consider the following stochastic additive functional

ξ(t) = ξ(0) +
∫ t

0

η(ds;x(s)), t ≥ 0,

where x(t), t ≥ 0, is a jump Markov process with the state space (E, E) and η(t, x)
is a family of processes with independent increments, x ∈ E, t ≥ 0 with state space
(Rd,B(Rd)). This is an important process since we have as particular cases the following
well-known stochastic systems:
• The integral functional

α(t) =
∫ t

0

a(x(s)) ds, t ≥ 0

where a is a deterministic measurable function defined on (E, E).
• The dynamical system

u̇(t) = C(u(t), x(t)), t ≥ 0,

where C is a deterministic R
d-function defined on R

d × E.
• The compound Poisson process

ζ(t) =
ν(t)∑
k=1

a(xk),

where xk is the embedded Markov chain of the jump Markov process x(t).

2000 Mathematics Subject Classification. Primary 60J55, 60B10, 60F17, 60K10; Secondary 60G46,
60G60.

Key words and phrases. Poisson approximation, semimartingale, Markov process, independent incre-
ments process, piecewise deterministic Markov process, weak convergence, singular perturbation.
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In this paper we establish weak convergence results in a semimartingale framework.
In fact, we prove that for time scaled switching Markov process x(t/ε), the additive
semimartingale ξε(t), t ≥ 0, ε > 0, weakly converges to a Poisson process with drift.
The main difference from the results obtained in [8] is infinity of the measure of jumps
corresponding to the processes with locally independent increments (see definition (2)
below). The large deviations problem for the processes of this type was studied in [12].

The proof is given in two steps. In the first one we obtain relative compactness of
the semimartingales representation of the family ξε, ε > 0, by proving the following two
facts [4]:

lim
c→∞ sup

ε≤ε0
P

{
sup
t≤T

|ξε(t)| > c

}
= 0,

known as the compact containment condition (CCC), and

E |ξε(t)− ξε(s)|2 ≤ k|t− s|,
for some positive constant k > 0. But due to infinity of the measure of jumps of the
process we should check additional conditions (see Theorem A in Appendix).

In the second step we prove convergence of predictable characteristics of the semi-
martingales, which are integral functionals of the form:∫ t

0

a(ξε(s), xε(s))ds,

by using singular perturbation technique as presented in [7].
Finally, we apply Theorem IX.3.27 from Jacod and Shiryayev [6] in order to prove the

weak convergence of semimartingale.
The original part of this work is the use of relative compactness proof scheme given for

averaging approximation (Bogolubov) to obtain a Poisson approximation result. More-
over, this kind of additive functionals are very useful in practice since they include the
well-known stochastic systems.

The paper is organized as follows. In Section 2 we present the process with locally
independent increments and the switching Markov process. In the same section we
present the main results of Poisson approximation. In Section 3 we present the proof of
the theorem. Two theorems we refer to are presented in the Appendix.

2. Main results

Let us consider the set of real numbers R, and (E, E), a standard state space, (i.e.,
E is a Polish space and E its Borel σ-algebra). Let C3(R) be a measure-determining
class of real-valued bounded functions, such that g(u)/u2 → 0, as |u| → 0 for g ∈ C3(R)
and C2(R) be a measure-determining class of all continuous bounded functions which
are 0 around 0 (see [6, 7]). We note that C2(R) ⊂ C3(R).

The additive functional ξε(t), t ≥ 0, ε > 0, on R in the series scheme with small series
parameter ε→ 0, ε > 0, is defined by the stochastic additive functional ([7, Section 3.3.1])

ξε(t) = ξε0 +
∫ t

0

ηε(ds;x(s/ε)). (1)

The family of processes with locally independent increments ηε(t;x), t ≥ 0, x ∈ E,
on R, is defined by the generators (see [1, Section I.2], [7, Section 1.2.4])

Γε(x)ϕ(u) = bε(u;x)ϕ′(u) +
∫

R

[
ϕ(u+ v)− ϕ(u)− vϕ′(u)�(|v|≤1)

]
Γε(u, dv;x), (2)

where ϕ(u) is real-valued twice differentiable function on R vanishing at infinity, with
the sup-norm ‖ϕ‖ = supu∈R |ϕ(u)|, ϕ(u) ∈ C2

0 (R), bε(u;x) =
∫

R
v Γε(u, dv;x), and
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Γε(u, dv;x) is the intensity kernel that satisfies the condition

Γε(u, {0};x) = 0.

Let B be the Banach space, that is a complete linear normed space, of all bounded real-
valued measurable functions on E, with the sup-norm ‖ϕ‖ = supx∈E |ϕ(x)|, ϕ(x) ∈ B.
The switching Markov process x(t), t ≥ 0, on the standard phase space (E, E), is defined
by the generator

Qϕ(x) = q(x)
∫
E

P (x, dy)[ϕ(y) − ϕ(x)], (3)

where q(x), x ∈ E, is the intensity of jumps function of x(t), t ≥ 0, and P (x, dy) is the
transition kernel of the embedded Markov chain xn, n ≥ 0, defined by xn = x(τn), n ≥ 0,
with 0 = τ0 ≤ τ1 ≤ · · · ≤ τn ≤ . . . the jump times of x(t), t ≥ 0.

It is worth noticing that the coupled process ξε(t), x(t/ε), t ≥ 0, is a Markov additive
process (see, e.g., [7, Section 2.5]).

Let Π be a projector onto null-subspace of reducible-invertible operator Q (see in
details [7, Section 1.2]), defined in (3):

Πϕ(x) =
∫
E

π(dx)ϕ(x).

The following relation is true
QΠ = ΠQ = 0.

The Poisson approximation of Markov additive process (2) is considered under the
following conditions.

C1: The Markov process x(t), t ≥ 0, is uniformly ergodic with π(B), B ∈ E , its
stationary distribution.

C2: Poisson approximation. The family of processes with locally independent in-
crements ηε(t;x), t ≥ 0, x ∈ E, satisfies the Poisson approximation conditions [7, Sec-
tion 7.2.3]:

PA1: Approximation of the mean values:

bε(u;x) =
∫

R

v Γε(u, dv;x) = ε[b(u;x) + θεb(u;x)],

and
cε(u;x) =

∫
R

v2Γε(u, dv;x) = ε[c(u;x) + θεc(u;x)].

PA2: Poisson approximation condition for intensity kernel

Γεg(u;x) =
∫

R

g(v) Γε(u, dv;x) = ε[Γg(u;x) + θεg(u;x)]

for all g ∈ C3(R), and the function Γg(u;x) is bounded for each g ∈ C3(R), that is,

|Γg(u;x)| ≤ Cg (a constant depending on g).

The kernel Γ(u, dv;x) is defined on the class C3(R) by the relation

Γg(u;x) =
∫

R

g(v) Γ(u, dv;x), g ∈ C3(R).

The above negligible terms θεg, θ
ε
b , θ

ε
c satisfy the condition

sup
x∈E

|θε· (u;x)| → 0, ε→ 0.

In addition the following conditions are used:
C3: Uniform square-integrability:

lim
c→∞ sup

x∈E

∫
|v|>c

v2 Γ(u, dv;x) = 0.
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C4: Growth condition: there exists a positive constant L such that

|b(u;x)| ≤ L(1 + |u|) and |c(u;x)| ≤ L(1 + |u|2),
C5: Linear growth of kernel: we assume that Γ(u,B;x) is absolutely continuous with

respect to Lebesgue measure dv in R, that is,

Γ(u, dv;x) = Λ(u, v;x) dv,

thus Λ(u, v;x) is the Radon–Nikodym derivative of Γ(u,B;x) and the following inequality
holds:

|Λ(u, v;x)| ≤ Lf(v)(1 + |u|)
for any real-valued non-negative function f(v), v ∈ R, such that∫

R\{0}
(1 + f(v))v2 dv <∞.

The main result of our work is the following.

Theorem 1. Under conditions C1–C5 the weak convergence

ξε(t) ⇒ ξ0(t), ε→ 0

takes place.
The limit process ξ0(t), t ≥ 0, is defined by the generator

Γϕ(u) = b̂(u)ϕ′(u) +
∫

R

[
ϕ(u + v)− ϕ(u)− vϕ′(u)�(|v|≤1)

]
Γ̂(u, dv), (4)

where the average deterministic drift is defined by

b̂(u) = Πb(u;x) =
∫
E

π(dx)b(u;x),

and the average intensity kernel is defined by

Γ̂(u, dv) = ΠΓ(u, dv;x) =
∫
E

π(dx)Γ(u, dv;x).

REMARK 1. The limit generator in the Euclidean space Rd, d > 1, is represented in
the following view:

Γϕ(u) =
d∑
k=1

b̂k(u)ϕ′
k(u) +

∫
Rd

[
ϕ(u + v)− ϕ(u)−

d∑
k=1

vkϕ
′
k(u)�(|v|≤1)

]
Γ̂(u, dv),

ϕ′
k(u) := ∂ϕ(u)/∂uk, 1 ≤ k ≤ d.

3. Proof of Theorem 1

The proof of Theorem 1 is based on the semimartingale representation of the additive
functional process (1). The method used here to prove the weak convergence is quite
different from the method proposed by other authors ([4]–[6], [9]–[18]): the main point is
to prove convergence of predictable characteristics of semimartingales which are integral
functionals of some switching Markov processes.

According to Theorems 6.27 and 7.16 [2] the predictable characteristics of the semi-
martingale (2) have the following representations:
•Bε(t) = ε−1

∫ t
0
bε(ξε(s);xεs) ds =

∫ t
0
b(ξε(s);xεs) ds+ tθεb — the first predictable char-

acteristic;
•Cε(t) = ε−1

∫ t
0 cε(ξ

ε(s);xεs) ds =
∫ t
0 c(ξ

ε(s);xεs) ds+ tθεc — the second modified char-
acteristic;
•Γε(t) = ε−1

∫ t
0

∫
R
h(v) Γε(ξε(s), dv;xεs) ds =

∫ t
0

∫
R
h(v) Γ(ξε(s), dv;xεs) ds+ tθεh, where

xεt := x(t/ε), t ≥ 0, and supx∈E |θε· | → 0, ε→ 0, h(v) is the truncated function.



108 N. LIMNIOS AND I. V. SAMOILENKO

The jump martingale part of the semimartingale (2) is represented as follows

με(t) =
∫ t

0

∫
|v|≤1

v [με (ξε(s), ds, dv;xεs)− Γε (ξε(s), dv;xεs) ds] .

Here με(u, ds, dv;x), x ∈ E, is the family of counting measures of jumps of the process,
namely

Eμε(u, ds, dv;x) = Γε(u, dv;x) ds.
We can see now that predictable characteristics depend on the process ξε(s). Thus,

to prove convergence of ξε(s) we should prove convergence of predictable characteristics
dependent on ξε(s). To avoid this difficulty, we combine two methods. The one based
on semimartingales theory, is combined with a solution of singular perturbation problem
instead of ergodic theorem.

We split the proof of Theorem 1 in the following two steps.

3.1. Relative compactness. At this step we establish the relative compactness of the
family of processes ξε(t), t ≥ 0, ε > 0, by using the approach developed in [10]. Let us
remind that the space of all probability measures defined on the standard space (E, E)
is also a Polish space; so the relative compactness and tightness are equivalent.

Proposition 1. Under assumption C4,C5,PA1, the following compact containment
condition (CCC) holds:

lim
c→∞ lim

ε→0
P

{
sup
t≤T

|ξε(t)| > c

}
= 0. (5)

Proof. The proof of this corollary follows from Kolmogorov’s inequality by using the
estimation of Lemma 1. �

Lemma 1. Under assumption C4, C5, PA1 there exists a constant kT > 0, independent
of ε and dependent on T , such that

E sup
t≤T

|ξε(t)|2 ≤ kT .

Proof. (Following [10]). For a process y(t), t ≥ 0, let us define the process

y†t = sup
s≤t

|y(s)|.

It follows from PA1 and C4 that for any fixed t > 0∫ t

0

∫
R

v2Γε(ξε(s), dv;xεs) ds = ε

∫ t

0

c(ξε(s);xεs)ds+ εtθεc(u;x)

≤ εt

[
L

(
1 +

(
(ξεt )

†)2
)

+ θεc(u;x)
]
<∞ P -a.s.

The increasing process
∫ t
0

∫
R\{0} v

2Γε(ξε(s), dv;xεs)ds is continuous in t so that by The-
orem 28 from [3, Ch.5] (see also Theorem 1.6.3 [11]) it is the compensator of∫ t

0

∫
R\{0}

v2με (ξε(s), d(s/ε), dv;xεs) .

Therefore, (1) is the special semimartingale with the decomposition

ξε(t) = u+Aεt +M ε
t , (6)

where u = ξε(0); Aεt is the predictable drift (see [4]):

Aεt =
∫ t

0

b (ξε(s), xεs) ds+
∫ t

0

∫
|v|>1

vΓ (ξε(s), dv;xεs) ds+ θεA(t),
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and M ε
t is the locally square integrable martingale

M ε
t =

∫ t

0

∫
R\{0}

v[μ(ξε(s), ds, dv;xεs)− Γ(ξε(s), dv;xεs)ds] + θεM (t),

and for every finite T > 0

sup
0≤t≤T

|θε· (t)| → 0, ε→ 0.

From (6) we have (
(ξεt )

†
)2

≤ 3
[
u2 +

(
(Aεt )

†
)2

+
(
(M ε

t )
†
)2
]
. (7)

Conditions C4–C5 imply that

(Aεt )
† ≤ L

∫ t

0

(
1 + (ξεs)

†
)
ds+ L

∫ t

0

∫
|v|>1

|v|f(v)
(
1 + (ξεs)

†
)
dv ds

≤ L(1 + r1)
∫ t

0

(
1 + (ξεs)

†) ds, (8)

where r1 =
∫

R\{0} v
2f(v) dv.

Now, by Doob’s inequality (see, e.g., [11, Theorem 1.9.2]),

E
(
(M ε

t )
†)2

≤ 4 |E〈M ε〉t| ,

where by condition C5 we obtain

|〈M ε〉t| =
∣∣∣∣∣
∫ t

0

∫
R\{0}

v2Γ (ξε(s), dv;xεs) ds

∣∣∣∣∣ ≤ Lr1

∫ t

0

[
1 +
(
(ξεs)

†
)2
]
ds. (9)

Inequalities (7)–(9) and Cauchy–Bunyakovsky–Schwarz inequality,[∫ t

0

ϕ(s) ds
]2
≤ t

∫ t

0

ϕ2(s) ds

imply

E
(
(ξεt )

†
)2

≤ k1 + k2

∫ t

0

E
(
(ξεs)

†
)2

ds,

where k1 and k2 are positive constants independent of ε.
By Gronwall inequality (see, e.g., [4, p. 498]), we obtain

E
(
(ξεt )

†)2

≤ k1 exp(k2t).

Hence the lemma is proved. �

Lemma 2. Under assumption C4, C5, PA1 there exists a constant k > 0, independent
of ε such that

E |ξε(t)− ξε(s)|2 ≤ k|t− s|.

Proof. In the same manner with (7), we may write

|ξε(t)− ξε(s)|2 ≤ 2|Aεt −Aεs|2 + 2|M ε
t −M ε

s |2.

By using Doob’s inequality, we obtain

E |ξε(t)− ξε(s)|2 ≤ 2 E{|Aεt −Aεs|2 + 8 |〈M ε〉t − 〈M ε〉s|}.
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Now (8), (9), and assumption C5 imply

|Aεt −Aεs|2 + 8 |〈M ε〉t − 〈M ε〉s| ≤ k3

[
1 +
(
(ξεT )†

)2
]
|t− s|,

where k3 is a positive constant independent of ε.
From the last inequality and Lemma 1 the desired conclusion is obtained. �

Finally, we have to use the Theorem 8.2.1 from [11] that states the relative compactness
of semimartingales (see Appendix).

Lemma 3. Under conditions C1–C5 the family of processes ξε(t) is relatively compact.

Proof. To verify the relative compactness we should check the conditions LP1–LP5 of
Theorem A (see Appendix).

We easily see that LP1 follows from the conditions C4–C5.
Show, that under (5) LP2 and second part of LP5 hold. Really, by the condition C5

and the definition of Γ(u, v;x) on the set {supt≤T |ξε(t) ≤ c|} we have for the function

g(v) =

{
0, |v| ≤ l

1, |v| > l
:

∫ T

0

∫
|v|>l

Γε (ξε(s), dv;xεs) ds =
∫ T

0

∫
R

g(v)Γε (ξε(s), dv;xεs) ds

= ε

∫ T

0

∫
R

g(v)Γ(ξε(s), dv;xεs)ds+ εT θεg

≤ εTL(1 + c)
∫
|v|>l

f(v)dv + εT θεg

≤ ε
TL(1 + c)

l

∫
R

v2f(v)dv + εT θεg → 0,

l→∞, ε→ 0.

Using of condition PA2 here is stipulated by the fact that g(v) ∈ C2(Rd) ⊂ C3(Rd).
By the same way we get∫ T

0

∫
|v|≤δ

v2Γ̂ (ξε(s), dv) ds =
∫ T

0

∫
|v|≤δ

∫
E

v2Γ (ξε(s), dv;x) π(dx) ds

≤ TL(1 + c)
∫
|v|≤δ

v2f(v) dv → 0, δ → 0,

and by the conditions Γε(u, {0};x) = 0, PA1 and C5∫ T

0

∫
|v|≤δ

v2Γε (ξε(s), dv;xεs) ds ≤
∫ T

0

∫
R

v2Γε (ξε(s), dv;xεs) ds

= ε

∫ T

0

c(ξε(s);xεs)ds+ εT θεc(u;x) ≤ εTL
(
1 + c2

)
+ εT θεc(u;x) → 0,

ε→ 0, δ → 0.

It is clear, that LP3, LP4 and the first part of LP5 follows from the weak convergence
of predictable characteristics. Thus, the final step in proof of this Lemma will be made
in the next subsection by the verifying of Lemma 4. �
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3.2. Convergence of predictable characteristics. The next step of proof concerns
the convergence of the predictable characteristics. To do that, we apply the results of
Sections 3.2–3.3 in [7] and Theorem 6.3 from [7] (see Appendix).

Lemma 4. Let’s point Aε(t) any of three predictable characteristics of the process ξε(t).
The following weak convergence takes place

Aε(t) ⇒ A0(t),

where

A0(t) :=
∫ t

0

â
(
ξ0(s)

)
ds,

here
â(u) :=

∫
E

π(dx)a(u;x).

Proof. We consider the three component Markov process Aε(t), ξε(t), xεt , t ≥ 0, which
can be characterized by the martingale

μεt = ϕ(Aε(t), ξε(t), xεt )−
∫ t

0

Lεϕ(Aε(s), ξε(s), xεt ) ds.

The generator Lε of the martingale has the following representation [7]

Lε = ε−1Q + Γε + Aε, (10)

with Γε given by (3), Q given by (4), and Aε(u;x)ϕ(v) = Aϕ(v) + θ̃εa, where Aϕ(v) :=
a(u;x)ϕ′(v), and θ̃εa → 0, ε→ 0.

In order to prove the convergence of predictable characteristics, it is sufficient to study
the action of the generator Lε on test functions of two variables ϕ(v, x).

Thus, it has the representation

Lεϕ(v, x) = [ε−1Q + A]ϕ(v, x) + θ̃εaϕ(v, x). (11)

The solution of the singular perturbation problem at the test functions ϕε(v, x) = ϕ(v)+
εϕ1(v, x) in the form Lεϕε = L̂ϕ+ θεϕ can be found in the following manner. We have:

Lεϕε(v, x) = [ε−1Q + A][ϕ(v) + εϕ1(v, x)]

= ε−1Qϕ(v) + [Qϕ1(v, x) + Aϕ(v)] + εAϕ1(u, x) + θ̃εaϕ(v, x).

We may write down the following equalities:

Qϕ(v) = 0,
Qϕ1(v, x) + Aϕ(v) = L̂ϕ.

From the first equality we see that the function ϕ(v) belongs to the null-space of opera-
tor Q and thus does not depend on x. So, using the solvability condition, we have from
the second equality

L̂ϕ(v) = ΠAΠϕ(v) + ΠQΠϕ1(v, x) = ΠAΠϕ(v).

That is

L̂ = Â, (12)

where Âϕ(v) =
∫
E π(dx)a(u;x)ϕ′(v).

Now Theorem B may be applied (see Appendix).
We see from (11) and (12) that the solution of singular perturbation problem for

Lεϕε(u, v;x) satisfies the conditions CD1, CD2. Condition CD3 of this theorem implies
that the quadratic characteristics of the martingale, corresponding to a coupled Markov
process, is relatively compact. The same result follows from the CCC (see Corollary 1 and
Lemma 2) by [6]. Thus, the condition CD3 follows from the Corollary 1 and Lemma 2.
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As soon as Aε(0) = A0(0), ξε(0) = ξ0(0) we see that the condition CD4 is also satisfied.
Thus, all the conditions of above Theorem 2 are satisfied, so the weak convergence
Aε(t) ⇒ A0(t) takes place.

Lemma is proved. �

Thus, by the weak convergence of predictable characteristics, we obtain LP3, LP4
and the first part of LP5. As a result, by the Theorem 8.2.1 from [11] the process ξε(t)
is relatively compact and Lemma 3 is proved.

The final step of the proof of Theorem 1 is achieved now by using Theorem IX.3.27
in [6]. Indeed all the conditions of this theorem are fulfilled.

As we have mentioned, the square integrability condition 3.24 follows from CCC
(see [6]). The strong dominating hypothesis is true with the majoration functions are
presented in the Conditions C4–C5. Condition C5 implies the condition of big jumps for
the last predictable measure of Theorem IX.3.27 in [6]. Conditions iv and v of Theorem
IX.3.27 [6] are obviously fulfilled.

The weak convergence of predictable characteristics is proved by solving the singularly
perturbation problem for the generator (10).

The last condition (3.29) of Theorem IX.3.27 is also fulfilled due to CCC proved in
Proposition 1 and Lemma 2. Thus, the weak convergence is true.

We can see now that the limit Markov process is characterized by the following pre-
dictable characteristics

B0(t) =
∫ t

0

b̂
(
ξ0(s)

)
ds, C0(t) =

∫ t

0

ĉ
(
ξ0(s)

)
ds, Γ0

g(t) =
∫ t

0

Γ̂g
(
ξ0(s)

)
ds.

Here C0(t) is the second modified characteristic of the limit process. So, according to [2]
the limit Markov process ξ0(t) can be expressed by the generator (4).

Theorem 1 is proved.

4. Appendix

Theorem A ([11, Theorem 8.2.1]). Let Qε be the distribution of probabilities for Pε-
semimartingale ξε = (ξε(t),Fεt ) with the triplet of predictable characteristics T ε =
(Bε, Cε,Γε) and Q is the distribution of semimartingale ξ0 = (ξ0(t),DQt ) with triplet
T 0 = (B0, C0,Γ0).

If for the triplet T the following condition is true:
LP1: ∣∣∣∣∫

E

b(ξ(t), x)π(dx)
∣∣∣∣ ≤ L(1 + ξ†(t)),∣∣∣∣∫

E

c(ξ(t), x)π(dx)
∣∣∣∣ ≤ L

(
1 +
(
ξ†(t)

)2)
,

and for any nonnegative measurable function f(v) ≤ v2 ∧ 1∫
E

∫
R

f(v)Γ(ξ(t), dv;x)π(dx) ≤ L
(
1 + ξ†(t)

)
.

And for the triplets T ε for any fixed T > 0:
LP2:

lim
l→∞

lim
ε→0

sup
∫ T

0

∫
|v|>l

Γε(ξε(s), dv;xεs) ds = 0,

lim
δ→0

lim
ε→0

sup
∫ T

0

∫
|v|≤δ

v2Γ̂(ξε(s), dv) ds = 0.
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LP3: For every bounded measurable function f(v)

lim
ε→0

sup
t≤T

∣∣∣∣∣
∫ t

0

∫
|v|>δ

f(v)
[
Γε (ξε(s), dv;xεs)− Γ̂ (ξε(s), dv)

]
ds

∣∣∣∣∣ = 0.

LP4:

lim
ε→0

sup
t≤T

∣∣∣∣∫ t

0

[
bε (ξε(s), xεs)− b̂ (ξε(s))

]
ds

∣∣∣∣ = 0.

LP5:

lim
ε→0

sup
t≤T

∣∣∣∣∫ t

0

[cε (ξε(s), xεs)− ĉ (ξε(s))] ds
∣∣∣∣ = 0,

lim
δ→0

lim
ε→0

sup
∫ T

0

∫
|v|≤δ

v2Γε (ξε(s), dv;xεs) ds = 0,

then under compact containment condition

lim
c→∞ lim

ε→0
P{|ξε(0)| ≥ c} = 0

the family Qε, ε > 0, is relatively compact.

Theorem B ([7, Theorem 6.3]). Put C2
0 (R×E) be the space of real-valued twice contin-

uously differentiable by the first argument functions, defined on R× E and vanishing at
infinity, and C(R × E) is the space of real-valued continuous bounded functions defined
on R× E.

Let the following conditions hold for a family of coupled Markov processes ξε(t), xε(t),
t ≥ 0, ε > 0:

CD1: There exists a family of test functions ϕε(u, x) in C2
0 (R× E), such that

lim
ε→0

ϕε(u, x) = ϕ(u),

uniformly on u, x.
CD2: The following convergence holds

lim
ε→0

Lεϕε(u, x) = Lϕ(u),

uniformly on u, x. The family of functions Lεϕε, ε > 0, is uniformly bounded, and Lϕ(u)
and Lεϕε belong to C(R× E).

CD3: The quadratic characteristics of the martingales that characterize a coupled
Markov process ξε(t), xε(t), t ≥ 0, ε > 0, have the representation

〈με〉t =
∫ t

0

ζε(s) ds,

where the random functions ζε, ε > 0, satisfy the condition

sup
0≤s≤T

E |ζε(s)| ≤ c < +∞.

CD4: The convergence of the initial values holds and

sup
ε>0

E |ζε(0)| ≤ C < +∞.

Then the weak convergence

ξε(t) ⇒ ξ(t), ε→ 0,

takes place.
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MINIMAX-ROBUST FILTERING PROBLEM FOR STOCHASTIC
SEQUENCE WITH STATIONARY INCREMENTS

UDC 519.21

M. M. LUZ AND M. P. MOKLYACHUK

Abstract. The problem of optimal estimation of the linear functional Aξ =
�∞

k=0 a(k)ξ(−k) which
depends on unknown values of a stochastic sequence ξ(k) with stationary nth increments from ob-
servations of the sequence ξ(k) + η(k) at points of time k = 0,−1,−2, . . . is considered. Formulas
for calculation the mean-square error and spectral characteristic of the optimal linear estimate of the
functional are derived under the condition of spectral certainty, where spectral densities of the se-
quences ξ(k) and η(k) are exactly known. The minimax (robust) method of estimation is applied
in the case where spectral densities are not known exactly, but sets of admissible spectral densities
are given. Formulas that determine the least favorable spectral densities and the minimax spectral
characteristics are proposed for some special sets of admissible spectral densities.
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1. Introduction

Traditional methods of solution of extrapolation, interpolation and filtering prob-
lems for stationary stochastic processes and sequences were developed by A. N. Kol-
mogorov [11], N. Wiener [26], A. M. Yaglom [28] under the condition of spectral certainty
where spectral densities of the considered stochastic processes are exactly known. In the
case where spectral densities are not exactly known, but a set of admissible spectral den-
sities is given, we can apply the minimax method for solving extrapolation, interpolation
and filtering problems, which allows us to determine estimates that minimize the value
of the mean-square error for all densities from a given class.

2010 Mathematics Subject Classification. Primary 60G10, 60G25, 60G35; Secondary 62M20, 93E10,
93E11.

Key words and phrases. Sequences with stationary increments, robust estimate, mean-square error,
least favorable spectral density, minimax spectral characteristic.
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A survey of results in minimax (robust) methods of data processing is proposed by
S. A. Kassam and H. V. Poor [10]. The paper by Ulf Grenander [7] should be marked
as the first one where the minimax approach to extrapolation problem for stationary
processes was developed. J. Franke [8], J. Franke and H. V. Poor [9] investigated the mini-
max extrapolation and filtering problems for stationary sequences with the help of convex
optimization methods. In the works by M. P. Moklyachuk [14]–[17] problems of extrap-
olation, interpolation and filtering for stationary processes and sequences were studied.
Methods of solution the minimax-robust estimation problems for vector-valued stationary
sequences and processes were developed by M. P. Moklyachuk and O. Yu. Masyutka [19]–
[23]. Methods of solution the minimax-robust estimation problems (extrapolation, inter-
polation and filtering) for linear functionals which depend on unknown values of periodi-
cally correlated stochastic processes were proposed by I. I. Dubovets’ka and M. P. Mokly-
achuk [2]–[6]. M. M. Luz and M. P. Moklyachuk [12]–[13] investigated the minimax in-
terpolation problem for stochastic sequences ξ(m) with stationary n-th increments from
observations of the sequence with an additive noise and from observations without noise.

In this paper we investigate the problem of optimal linear filtering of a functional
Aξ =

∑∞
k=0 a(k)ξ(−k) which depends on unobserved values of a stochastic sequence ξ(m)

with nth stationary increments based on observations of the sequence ξ(k)+η(k) at points
k = 0,−1,−2, . . . , where η(k) is a stochastic sequence with stationary nth increments
which is uncorrelated with the sequence ξ(k). This filtering problem is solved in the case
of spectral certainty where spectral densities of sequences ξ(m) and η(m) are exactly
known as well as in the case of spectral uncertainty where spectral densities of sequences
are not exactly known, but a set of admissible spectral densities is given. Formulas that
determine the least favorable spectral densities and minimax (robust) spectral character-
istics of the optimal linear estimate of the functional are proposed in the case of spectral
uncertainty for concrete classes of admissible spectral densities.

2. Stochastic stationary increment sequence. Spectral representation

Stochastic processes with stationary n-th increments were introduced and investigated
by A. M. Yaglom [27], M. S. Pinsker [25], A. M. Yaglom and M. S. Pinsker [24].

Definition 2.1. For a given stochastic sequence {ξ(m),m ∈ Z} a sequence

ξ(n)(m,μ) = (1 −Bμ)nξ(m) =
n∑
l=0

(−1)lClnξ(m− lμ), (1)

where Bμ is a backward shift operator with step μ ∈ Z, such that Bμξ(m) = ξ(m − μ),
is called stochastic nth increment sequence with step μ ∈ Z.

For the stochastic nth increment sequence ξ(n)(m,μ) the following relations hold true:

ξ(n)(m,−μ) = (−1)nξ(n)(m+ nμ, μ), (2)

ξ(n)(m, kμ) =
∑(k−1)n

l=0
Alξ

(n)(m− lμ, μ), k ∈ N, (3)

where coefficients {Al, l = 0, 1, 2, . . . , (k − 1)n} are determined by the representation

(1 + x+ · · ·+ xk−1)n =
(k−1)n∑
l=0

Alx
l.

Definition 2.2. The stochastic nth increment sequence ξ(n)(m,μ) generated by stochas-
tic sequence {ξ(m),m ∈ Z} is wide sense stationary if the mathematical expectations

Eξ(n)(m0, μ) = c(n)(μ),

Eξ(n)(m0 +m,μ1)ξ(n)(m0, μ2) = D(n)(m,μ1, μ2)
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exist for all m0, μ, m, μ1, μ2 and do not depend on m0. The function c(n)(μ) is called the
mean value of the nth increment sequence and the function D(n)(m,μ1, μ2) is called the
structural function of the stationary nth increment sequence (or the structural function
of nth order of the stochastic sequence {ξ(m),m ∈ Z}).

The stochastic sequence {ξ(m),m ∈ Z} which determines the stationary nth increment
sequence ξ(n)(m,μ) by formula (1) is called sequence with stationary nth increments.

Theorem 2.1. The mean value c(n)(μ) and the structural function D(n)(m,μ1, μ2) of
the stochastic stationary nth increment sequence ξ(n)(m,μ) can be represented in the
following forms:

c(n)(μ) = cμn, (4)

D(n)(m,μ1, μ2) =
∫ π

−π
eiλm

(
1− e−iμ1λ

)n (
1− eiμ2λ

)n 1
λ2n

dF (λ), (5)

where c is a constant, F (λ) is a left-continuous nondecreasing bounded function with
F (−π) = 0. The constant c and the function F (λ) are determined uniquely by the
increment sequence ξ(n)(m,μ).

From the other hand, a function c(n)(μ) which has the form (4) with a constant c and a
function D(n)(m,μ1, μ2) which has the form (5) with a function F (λ) which satisfies the
indicated conditions are the mean value and the structural function of some stationary
nth increment sequence ξ(n)(m,μ).

Using representation (5) of the structural function of a stationary nth increment se-
quence ξ(n)(m,μ) and the Karhunen theorem [1], we obtain the following spectral repre-
sentation of the stationary nth increment sequence ξ(n)(m,μ):

ξ(n)(m,μ) =
∫ π

−π
eimλ

(
1− e−iμλ

)n 1
(iλ)n

dZ(λ), (6)

where Z(λ) is an orthogonal stochastic measure on [−π, π) connected with the spectral
function F (λ) by the relation

EZ(A1)Z(A2) = F (A1 ∩A2) <∞. (7)

Example 2.1. Consider an ARIMA(0,1,1) sequence defined by the equation

ξm = ξm−1 + εm + aεm−1,

where εm is a sequence of uncorrelated identically distributed random variables with
mean value 0 and variance σ2. If we take ηm = ξm − ξm−1 we obtain a moving average
sequence ηm = εm+aεm−1. Thus, ξm is a stochastic sequence with stationary increments
of the 1st order. The spectral function F (λ) of the sequence ξm can be calculated as
follows

F (λ) =
σ2

4π

∫ λ

−π

u2

1− cosu
(
1 + 2a cosu+ a2

)
du.

Here are some values of the structural function;

D(1)(0, 1, 1) = σ2
(
1 + a2

)
, D(1)(0, 1, 2) = σ2

(
1 + a+ a2

)
,

D(1)(0, 2, 2) = 2σ2(1 + a+ a2),

D(1)(m, 1, 1) =

⎧⎪⎨⎪⎩
σ2(1 + a2), m = 0,
σ2a, m = −1, 1,
0, otherwise,
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D(1)(m, 1, 2) =

⎧⎪⎨⎪⎩
σ2(1 + a+ a2), m = −1, 0,
σ2a2, m = −2, 1,
0, otherwise,

D(1)(m, 2, 2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2σ2(1 + a+ a2), m = 0,
σ2(1 + 2a+ a2), m = −1, 1,
σ2a2, m = −2, 2,
0, otherwise.

3. Filtering problem for the functional Aξ

Let a stochastic sequence {ξ(m),m ∈ Z} define a stationary nth increment ξ(n)(m,μ)
with an absolutely continuous spectral function F (λ) which has spectral density f(λ).
Let {η(m),m ∈ Z} be a stochastic sequence, uncorrelated with the sequence ξ(m), which
determines a stationary nth increment η(n)(m,μ) with an absolutely continuous spectral
function G(λ) whith has spectral density g(λ). Without loss of generality we will assume
that the mean values of the increment sequences ξ(n)(m,μ) and η(n)(m,μ) equal to 0. Let
us suppose that we know values of the sequence ξ(m)+η(m) at pointsm = 0,−1,−2, . . . .
Consider the problem of mean-square optimal linear estimation of the functional

Aξ =
∞∑
k=0

a(k)ξ(−k)

of unknown values of the sequence ξ(m) from observation of the sequence ξ(m) + η(m)
at points m = 0,−1,−2, . . . . We will consider the case where the step μ > 0.

From (1) we can obtain the formal equation

ξ(−k) =
1

(1 −Bμ)n
ξ(n)(−k, μ) =

∞∑
i=k

dμ(i− k)ξ(n)(−i, μ), (8)

where {dμ(i) : i ≥ 0} are coefficients from decomposition
∑∞
i=0 dμ(i)x

i =
(∑∞

l=0 x
μl
)n.

From equation (8) one can find the following relations:
∞∑
k=0

a(k)ξ(−k) =
∞∑
i=0

ξ(n)(−i, μ)
i∑

k=0

a(k)dμ(i− k),

∞∑
k=0

bμ(k)ξ(n)(−k, μ) =
∞∑
i=0

ξ(−i)
min{n,[ i

μ ]}∑
l=0

(−1)lClnbμ(i− lμ).

From the last two relations we obtain the following representation of the functional Aξ:

Aξ =
∞∑
k=0

a(k)ξ(−k) =
∞∑
k=0

bμ(k)ξ(n)(−k, μ) = Bξ,

bμ(k) =
k∑

m=0

a(m)dμ(k −m) = (Dμa)k, k ≥ 0, (9)

where Dμ is a linear operator with elements Dμ
k,j = dμ(k−j) if 0 ≤ j ≤ k and Dμ

k,j = 0 if
j > k; a = (a(0), a(1), a(2), . . . ). Let Âξ denote the mean-square optimal linear estimate
of the functional Aξ from observations of stochastic sequence ξ(m)+η(m) at points m =
0,−1,−2, . . . and let B̂ξ denote the mean-square optimal linear estimate of the functional
Bξ from observations of the stochastic nth increment sequence ξ(n)(m,μ) + η(n)(m,μ)
at points m = 0,−1,−2, . . . .
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Let Δ(f, g, Âξ) = E|Aξ − Âξ|2 be the mean-square error of the estimate Âξ of the
functional Aξ and let Δ(f, g, B̂ξ) = E|Bξ−B̂ξ|2 be the mean-square error of the estimate
B̂ξ of the functional Bξ. Since Aξ = Bξ, the following equality holds true:

Âξ = B̂ξ. (10)

Therefore, the following relations hold true

Δ(f, g, Âξ) = E|Aξ − Âξ|2 = E|Bξ − B̂ξ|2 = Δ(f, g, B̂ξ).

To find the mean-square optimal estimate of the functional Bξ we use the Hilbert space
orthogonal projection method proposed by A. M. Kolmogorov [11]. Suppose that condi-
tions

∞∑
k=0

|bμ(k)| <∞,

∞∑
k=0

(k + 1)|bμ(k)|2 <∞, (11)

∞∑
k=0

|(Dμa)k| <∞,

∞∑
k=0

(k + 1)|(Dμa)k|2 <∞ (12)

are satisfied.
Let H0

(
ξ
(n)
μ +η

(n)
μ

)
be the closed linear subspace of the Hilbert space H = L2(Ω,F,P)

of the second order random variables generated by values
{
ξ(n)(k, μ)+η(n)(k, μ) : k ≤ 0

}
,

μ > 0. Consider also a closed linear subspace L0
2(f + g) of the Hilbert space L2(f + g)

generated by functions {
eiλk

(
1− e−iλμ

)n 1
(iλ)n

: k ≤ 0
}
.

From the formula

ξ(n)(k, μ) + η(n)(k, μ) =
∫ π

−π
eiλk

(
1− e−iλμ

)n 1
(iλ)n

dZξ(n)+η(n)(λ)

one can verify the existence of one to one correspondence between element

eiλk(1− e−iλμ)n/(iλ)n

from the space L0
2(f+g) and element ξ(n)(k, μ)+η(n)(k, μ) from the spaceH0

(
ξ
(n)
μ +η(n)

μ

)
.

Every linear estimate B̂ξ of the functional Bξ admits representation

B̂ξ =
∫ π

−π
hμ(λ) dZξ(n)+η(n)(λ), (13)

where hμ(λ) is the spectral characteristic of the estimate B̂ξ. The optimal estimate B̂ξ
is a projection of the element Bξ on the subspace H0(ξ(n)

μ + η
(n)
μ ). This estimate B̂ξ is

determined by the following conditions:

1) B̂ξ ∈ H0
(
ξ
(n)
μ + η

(n)
μ

)
;

2) (Bξ − B̂ξ) ⊥ H0
(
ξ
(n)
μ + η

(n)
μ

)
.

It follows from condition 2) that for all k ≤ 0 the function hμ(λ) satisfies the relation

E(Bξ − B̂ξ)(ξ(n)(k, μ) + η(n)(k, μ))

=
1
2π

∫ π

−π

(
Bμ
(
eiλ
) (

1− e−iλμ
)n 1

(iλ)n
− hμ(λ)

)
e−iλk

(
1− eiλμ

)n 1
(−iλ)n f(λ) dλ

− 1
2π

∫ π

−π
hμ(λ)e−iλk

(
1− eiλμ

)n 1
(−iλ)n g(λ) dλ

= 0.
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From the previous relation we derive the following relations∫ π

−π

(
Bμ
(
eiλ
) (

1− e−iλμ
)n f(λ)

(iλ)n
− hμ(λ)(f(λ) + g(λ))

) (
1− eiλμ

)n
(−iλ)n e−iλk dλ = 0,

k ≤ 0,

which yields

hμ(λ) = Bμ
(
eiλ
) (

1− e−iλμ
)n 1

(iλ)n
f(λ)

f(λ) + g(λ)
−

(−iλ)nCμ
(
eiλ
)

(1− eiλμ)n (f(λ) + g(λ))
,

Bμ(eiλ) =
∞∑
k=0

bμ(k)e−iλk, Cμ(eiλ) =
∞∑
k=1

cμ(k)eiλk.

It follows from condition 1) we conclude that the spectral characteristic hμ(λ) admits
the representation

hμ(λ) = h(λ)
(
1− e−iλμ

)n 1
(iλ)n

, h(λ) =
0∑

k=−∞
s(k)eiλk,

where ∫ π

−π
|h(λ)|2

∣∣1− eiλμ
∣∣2n f(λ) + g(λ)

λ2n
dλ <∞,

(iλ)nhμ(λ)
(1− e−iλμ)n

∈ L0
2,∫ π

−π

(
Bμ(eiλ)

f(λ)
f(λ) + g(λ)

−
λ2nCμ

(
eiλ
)

(1− e−iλμ)n (1− eiλμ)n (f(λ) + g(λ))

)
e−iλl dλ = 0,

l ≥ 1.
(14)

Let the following conditions holds true:∫ π

−π

f(λ)
f(λ) + g(λ)

dλ <∞,

∫ π

−π

λ2n

|1− eiλμ|2n (f(λ) + g(λ))
dλ <∞. (15)

Set

Rk,j =
1
2π

∫ π

−π
e−iλ(j+k) f(λ)

f(λ) + g(λ)
dλ,

Pμk,j =
1
2π

∫ π

−π
eiλ(j−k) λ2n

|1− eiλμ|2n (f(λ) + g(λ))
dλ,

Qμk,j =
1
2π

∫ π

−π
eiλ(j−k)

∣∣1− eiλμ
∣∣2n f(λ)g(λ)

λ2n(f(λ) + g(λ))
dλ.

Then (14) is equivalent to the following linear system:
∞∑
m=0

Rl,mbμ(m) =
∞∑
k=1

Pμl,kcμ(k), l ≥ 1.

These system can be rewritten as

Rbμ = Pμcμ, (16)

where cμ = (cμ(1), cμ(2), cμ(3), . . . ), bμ = (bμ(0), bμ(1), bμ(2), . . . ), Pμ, R are linear
operators in the space �2 defined by (Pμ)l,k = Pμl,k, l, k ≥ 1, (R)l,m = Rl,m, l ≥ 1, m ≥ 0.
A solution cμ of the last equation defines the linear estimate B̂ξ which is a projection
of the element Bξ from the Hilbert space H on the subspace H0

(
ξ
(n)
μ + η

(n)
μ

)
. Since the

space H0
(
ξ
(n)
μ + η

(n)
μ

)
is closed and convex, the projection Bξ is uniquely determined for
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arbitrary sequence bμ(0), bμ(1), bμ(2), . . . satisfying conditions (11). Thus equation (16)
has a unique solution for an arbitrary bμ �= 0 and the linear operator Pμ : �2 → X ,
X = {xμ ∈ �2 : xμ = Rbμ, wherebμ satisfies (11)}, has the inverse (Pμ)−1.

Consequently, the unknown coefficients can be calculated by the formula

cμ(k) =
(
P−1
μ Rbμ

)
k
,

where (P−1
μ Rbμ)k is the kth element of the vector P−1

μ Rbμ. Thus, spectral characteris-
tics hμ(λ) of the optimal estimate B̂ξ of the functional Bξ is calculated by the formula

hμ(λ) = Bμ
(
eiλ
) (

1− e−iλμ
)n 1

(iλ)n
f(λ)

f(λ) + g(λ)
−

(−iλ)n
∑∞
k=1

(
P−1
μ Rbμ

)
k
eiλk

(1− eiλμ)n (f(λ) + g(λ))
. (17)

The mean-square error of the estimate is calculated by the formula

Δ(f, g; B̂ξ) = E|Bξ − B̂ξ|2

=
1
2π

∫ π

−π

∣∣∣Bμ (eiλ) ∣∣1− eiλμ
∣∣2n g(λ) + λ2n

∑∞
k=1

(
P−1
μ Rbμ

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n (f(λ) + g(λ))2
f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣Bμ (eiλ) ∣∣1− eiλμ
∣∣2n f(λ)− λ2n

∑∞
k=1

(
P−1
μ Rbμ

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n (f(λ) + g(λ))2
g(λ) dλ

=
〈
Rbμ,P−1

μ Rbμ
〉

+ 〈Qμbμ,bμ〉,
(18)

where Qμ is a linear operator in the space �2 defined by elements (Qμ)l,k = Qμl,k, l, k ≥ 0.
Let us summarize our reasoning and present the results in the form of theorem.

Theorem 3.1. Let stochastic sequences {ξ(m),m ∈ Z} and {η(m),m ∈ Z} determine
stationary nth increment sequences ξ(n)(m,μ) and η(n)(m,μ) with absolutely continuous
spectral functions F (λ) and G(λ) which have spectral densities f(λ) and g(λ) satisfying
conditions (15). Let coefficients {bμ(k) : k ≥ 0} satisfy conditions (11). The optimal
linear estimate B̂ξ of the functional Bξ of known elements ξ(n)(m,μ), m ≤ 0, μ > 0
from observations of the sequence ξ(n)(m,μ) + η(n)(m,μ) at points m = 0,−1,−2, . . .
is calculated by formula (13). The spectral characteristic hμ(λ) of the optimal estimate
B̂ξ is calculated by formula (17). The value of the mean-square error Δ(f, g; B̂ξ) is
calculated by formula (18).

As a corollary from theorem 3.1 we can obtain the optimal estimate of the unknown
value of the increment ξ(n)(m,μ), m ≤ 0, from observations of the sequence ξ(k)+η(k) at
points k = 0,−1,−2, . . . . Let us take a vector bμ with element 1 at the (−m)th position
and elements 0 at the remaining positions in (17). Then the spectral characteristic
ϕm(λ, μ) of the estimate

ξ̂(n)(m,μ) =
∫ π

−π
ϕm(λ, μ) dZξ(n)+η(n)(λ) (19)

is calculated by the formula

ϕm(λ, μ) = eiλm
(
1− e−iλμ

)n 1
(iλ)n

f(λ)
f(λ) + g(λ)

−
(−iλ)n

∑∞
k=1

(
P−1
μ rm

)
k
eiλk

(1− eiλμ)n (f(λ) + g(λ))
, (20)
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where rm = (R1,−m, R2,−m, . . . ). The mean-square error of the estimate is calculated by
the formula

Δ
(
f, g; ξ̂(n)(m,μ)

)
=

1
2π

∫ π

−π

∣∣∣eiλm ∣∣1− eiλμ
∣∣2n g(λ) + λ2n

∑∞
k=1

(
P−1
μ rm

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣eiλm ∣∣1− eiλμ
∣∣2n f(λ)− λ2n

∑∞
k=1

(
P−1
μ rm

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
g(λ) dλ.

(21)

Thus, we have the following statement.

Corollary 3.1. The optimal linear estimate ξ̂(n)(m,μ) of the unknown value of the sto-
chastic increment sequence ξ(n)(m,μ), m ≤ 0, μ > 0, from observations of the sequence
ξ(k) + η(k) at points k = 0,−1,−2, . . . can be calculated by formula (19). The spectral
characteristic ϕm(λ, μ) of the optimal estimate ξ̂(n)(m,μ) is calculated by formula (20).
The value of mean-square error Δ(f, g; ξ̂(n)(m,μ)) is calculated formula (21).

Consider now the smoothing problem for the stationary nth increment sequence
ξ(n)(m,μ) which consists of finding the mean-square optimal linear estimate ξ̂(n)(0, μ) of
the unknown value of the increment ξ(n)(0, μ), μ > 0, from observations of the stochastic
sequence ξ(k) + η(k) at points k = 0,−1,−2, . . . .

Let r(k) = Rk,0, k ∈ Z. Then {r(k) : k ∈ Z} are the Fourier coefficients of the function
f(λ)

f(λ)+g(λ) which have the property r(k) = r(−k), k ∈ Z, where r(k) denotes a conjugate
element to r(k). Let {V μk,j : k, j ≥ 1} be the coefficients which determine a linear operator
Vμ = (Pμ)−1. Then we have relations∑

l≥1

V μl,jPk,l = δk,j , k, j ≥ 1, (22)

where δk,j is the Kronecker symbol. Using formulas (20) and (22) we obtain the spectral
characteristic of the optimal estimate ξ̂(n)(0, μ) of the unknown value of the increment
ξ(n)(0, μ):

ϕ(λ, μ) =
(1− e−iλμ)n

(iλ)n

∞∑
k=0

r(k)e−iλk.

The optimal estimate of the increment ξ(n)(0, μ) is calculated by the formula

ξ̂(n)(0, μ) =
∞∑
k=0

r(k)ξ(n)(−k, μ) =
∞∑
j=0

(ξ(−j) + η(−j))
min{n,[ j

μ ]}∑
l=0

(−1)lClnr(j − lμ). (23)

The mean-square error of the estimate ξ̂(n)(0, μ) is calculated by the formula

Δ
(
f, g; ξ̂(n)(0, μ)

)
=

∞∑
j=1

∞∑
k=1

V
μ

k,jr(j)r(k) +
∑
l∈Z

r(l)gμ(−l), (24)

where {gμ(k) : k ∈ Z} are the Fourier coefficients of the function |1− eiλμ|2ng(λ)λ−2n.

Corollary 3.2. The optimal estimate ξ̂(n)(0, μ) of the unknown value ξ(n)(0, μ) of the
stationary nth increment sequence ξ(n)(m,μ), μ > 0, from observations of the sequence
ξ(k) + η(k) at points k = 0,−1,−2, . . . is calculated by formula (23). The value of
the mean-square error Δ(f, g; ξ̂(n)(0, μ)) of the estimate ξ̂(n)(0, μ) is calculated by for-
mula (24).
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Theorem 3.1 and corollaries 3.1, 3.2 determine solutions of the filtering problems for
the nth increment sequence ξ̂(n)(m,μ) and the linear functional Bξ which are based on
the Fourier coefficients of functions

λ2n

|1− eiλμ|2n(f(λ) + g(λ))
,

f(λ)
f(λ) + g(λ)

,
|1− eiλμ|2nf(λ)g(λ)
λ2n(f(λ) + g(λ))

.

However, the problem of finding the inverse operator (Pμ)−1 to the operator Pμ

determined by the Fourier coefficients of the function λ2n

|1−eiλμ|2n(f(λ)+g(λ)) is a complicated
problem in most cases. Therefore, we propose a method of finding the operator (Pμ)−1

under the condition that the functions

|1− eiλμ|2n(f(λ) + g(λ))
λ2n

,
λ2n

|1− eiλμ|2n(f(λ) + g(λ))
(25)

admit the canonical factorizations

|1− eiλμ|2n(f(λ) + g(λ))
λ2n

=

∣∣∣∣∣
∞∑
k=0

ϕμ(k)e−iλk
∣∣∣∣∣
2

, (26)

λ2n

|1− eiλμ|2n(f(λ) + g(λ))
=

∣∣∣∣∣
∞∑
k=0

ψμ(k)e−iλk
∣∣∣∣∣
2

. (27)

Using the coefficients ϕμ(k), ψμ(k), k ≥ 0, from factorizations (26), (27), we define
linear operators Φμ and Ψμ in the space �2. Let (Φμ)k,j = ϕμ(k − j) and (Ψμ)k,j =
ψμ(k − j) if 1 ≤ j ≤ k, (Φμ)k,j = 0 and (Ψμ)k,j = 0 if j > k and k, j ≥ 1. The
defined operators admit the following relation: ΨμΦμ = ΦμΨμ = I, where I is the
identity operator. Moreover, the operator Pμ allows the factorization Pμ = Ψ

′
μΨμ.

Thus, (Pμ)−1 = ΦμΦ
′
μ and the coefficients of the operator Vμ = (Pμ)−1 are calculated

by the formula

V μk,j =
min(k,j)∑
p=1

ϕμ(k − p)ϕμ(j − p), k, j ≥ 1.

These observations can be summarized in the form of the following theorem.

Theorem 3.2. Let functions (25) admit the canonical factorizations (26) and (27) re-
spectively. Then the inverse operator P−1

μ to the operator Pμ is calculated by the formula
P−1
μ = ΦμΦ

′
μ, where the linear operator Φμ in �2 space is determined by the coefficients

(Φμ)k,j = ϕμ(k − j) if 1 ≤ j ≤ k and (Φμ)k,j = 0 if j < k, k, j ≥ 1.

Using theorem 3.1 we can find the optimal estimate

Âξ =
∫ π

−π
h(a)
μ (λ) dZξ(n)+η(n)(λ) (28)

of the functional Aξ. The spectral characteristic of the estimate Âξ is calculated by the
formula

h(a)
μ (λ) = Aμ

(
eiλ
) (

1− e−iλμ
)n 1

(iλ)n
f(λ)

f(λ) + g(λ)
−

(−iλ)n
∑∞

k=1

(
P−1
μ RDμa

)
k
eiλk

(1− eiλμ)n (f(λ) + g(λ))
,

(29)
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where Aμ(eiλ) =
∑∞

k=0(D
μa)ke−iλk. The mean-square error can be calculated by for-

mula

Δ
(
f, g; Âξ

)
=

1
2π

∫ π

−π

∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n g(λ) + λ2n

∑∞
k=1

(
P−1
μ RDμa

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n f(λ)− λ2n

∑∞
k=1

(
P−1
μ RDμa

)
k
eiλk
∣∣∣2

|1− eiλμ|2n (f(λ) + g(λ))2
g(λ) dλ

=
〈
RDμa,P−1

μ RDμa
〉

+ 〈QμDμa,Dμa〉.
(30)

Theorem 3.3. Let uncorrelated stochastic sequences {ξ(m),m ∈ Z} and {η(m),m ∈ Z}
define stationary nth increment sequences ξ(n)(m,μ) and η(n)(m,μ) with absolutely con-
tinuous spectral functions F (λ) and G(λ) which have spectral densities f(λ) and g(λ)
satisfying conditions (15). Let conditions (12) be satisfied. The optimal linear estimate
Âξ of the functional Aξ of unknown elements ξ(m), m ≤ 0, from observations of the
sequence ξ(m) + η(m) at points m = 0,−1,−2 . . . is calculated by formula (28). The
spectral characteristic h(a)

μ (λ) of the optimal estimate Âξ is calculated by formula (29).
The value of the mean-square error Δ(f, g; Âξ) is calculated by formula (30). If the func-
tion |1− eiλμ|2nλ−2n(f(λ) + g(λ)) admits the canonical factorization (26), the operator
P−1
μ from formulas (29) and (30) can be represented as P−1

μ = ΦμΦ
′
μ.

Example 3.1. Consider an ARIMA(0,1,2) sequence {ξ(m),m ∈ Z}. The first order
increments of the sequence ξ(m) are stationary and the increments with step μ = 1 form
a one-sided moving average sequence of order 2. Let the sequence ξ(m) have the spectral
density

f(λ) =
λ2
∣∣1− φe−iλ

∣∣2 ∣∣1− ψe−iλ
∣∣2

|1− e−iλ|2 .

Consider an other stochastic sequence {η(m),m ∈ Z} with stationary increments of or-
der 1 uncorrelated with ξ(m) such that increments of the sequence {ξ(m)+η(m),m ∈ Z}
with step 1 form a moving average sequence of order 1 and the spectral density has the
form

f(λ) + g(λ) =
λ2
∣∣1− φe−iλ

∣∣2
|1− e−iλ|2 .

Consider a real number sequence {a(k) : k ≥ 0} which is defined as follows: a(0) = 1,
a(k) = −2−k for k ≥ 1. This sequence satisfies conditions (12). The problem is to
find the optimal mean-square linear estimate Âξ of the functional Aξ =

∑∞
k=0 a(k)ξ(−k)

of unknown values ξ(k), k ≤ 0, of the sequence ξ(m) from observations ξ(k) + η(k),
k = 0,−1,−2, . . . . To calculate the spectral characteristic of the optimal estimate Âξ
of the functional Aξ we use formula (29). The operator Pμ = P is determined by
coefficients (P)l,k = ψp

1−ψ2 , |k− l| = p, l, k ≥ 1. The inverse operator V = P−1 is defined
by coefficients (V)1,1 = 1, (V)l,l = 1 + φ2 if l ≥ 2, (V)l,k = −φ if |l − k| = 1, l, k ≥ 1,
and (V)l,k = 0 otherwise. The operator R is defined by coefficients (R)1,0 = 1 and
(R)l,k = 0 if l ≥ 1, k ≥ 0, (l, k) �= (1, 0). The operator Dμ = D is defined by coefficients
dμ(k) = 1, k ≥ 0. The spectral characteristic h1(λ) of the estimate Âξ is calculated
by the formula h1(λ) =

∑∞
k=0 s(k)e

−iλk 1−e−iλ

iλ , where s(0) = 1 − 1
2ψ + ψ2 + φψ 2−φ2

1−φ2 ,
s(k) = 2−k−1(2− 5ψ + 2ψ2) + φk+1ψ, k ≥ 1.
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Denote A(j) = min {n, [j/μ]}, j ≥ 0. Then the estimate Âξ of the functional Aξ is
calculated by the formula

Âξ =
∞∑
k=0

s(k)
(
ξ(n)(−k, μ) + η(n)(−k, μ)

)
=

∞∑
j=0

(ξ(−j) + η(−j))
A(j)∑
l=0

(−1)lClns(j − lμ).

4. Minimax-robust method of filtering

The value of the mean-square error Δ(h(a)
μ (f, g); f, g) := Δ(f, g; Âξ) and the spectral

characteristic h(a)
μ (f, g) of the optimal linear estimate Âξ of the functional Aξ of unknown

values ξ(m) based on observations of the stochastic sequence ξ(k) + η(k) are determined
by formulas (29) and (30) under the condition that spectral densities f(λ) and g(λ) of
stochastic sequences ξ(m) and η(m) are known. In the case where spectral densities are
not exactly known, but a set D = Df × Dg of admissible spectral densities is given, the
minimax (robust) approach to estimation of functionals of the unknown values of stochas-
tic sequence with stationary increments is reasonable. In other words we are interesting
in finding an estimate that minimizes the maximum of the mean-square error for all
spectral densities from a given class D of admissible spectral densities simultaneously.

Definition 4.1. For a given class of spectral densities D = Df × Dg spectral densities
f0(λ) ∈ Df , g0(λ) ∈ Dg are called least favorable in the class D for the optimal linear
filtering of the functional Aξ if

Δ(f0, g0) = Δ(h(f0, g0); f0, g0) = max
(f,g)∈Df×Dg

Δ(h(f, g); f, g).

Definition 4.2. For a given class of spectral densities D = Df×Dg a spectral character-
istic h0(eiλ) of the optimal linear estimate of the functional Aξ is called minimax-robust
if there are satisfied conditions

h0
(
eiλ
)
∈ HD =

⋂
(f,g)∈Df×Dg

L0
2(f + g),

min
h∈HD

max
(f,g)∈Df×Dg

Δ(h; f, g) = max
(f,g)∈Df×Dg

Δ
(
h0; f, g

)
.

Using the derived formulas and the introduced definitions we can conclude that the
following statement holds true.

Lemma 4.1. Spectral densities f0
μ ∈ Df (λ), g0

μ ∈ Dg(λ) which satisfy conditions (15) are
least favorable in the class D = Df ×Dg for the optimal linear filtering of the functional
Aξ if operators P0

μ, R0, Q0
μ constructed with the help of the Fourier coefficients of the

functions

λ2n

|1− eiλμ|2n(f0
μ(λ) + g0

μ(λ))
,

f0
μ(λ)

f0
μ(λ) + g0

μ(λ)
,

∣∣1− eiλμ
∣∣2n f0

μ(λ)g0
μ(λ)

λ2n(f0
μ(λ) + g0

μ(λ))

determine a solution of the conditional extremum problem

max
f∈D

(〈
RDμa,P−1

μ RDμa
〉

+ 〈QμDμa,Dμa〉
)

=
〈
R0Dμa,

(
P0
μ

)−1
R0Dμa

〉
+
〈
Q0
μD

μa,Dμa
〉
.

(31)

The minimax spectral characteristic is determined as h0 = hμ(f0
μ, g

0
μ) if hμ(f0

μ, g
0
μ) ∈ HD.

The function h0 and the pair (f0
μ, g

0
μ) form a saddle point of the function Δ(h; f, g)

on the set HD ×D. The saddle point inequalities

Δ
(
h; f0

μ, g
0
μ

)
≥ Δ

(
h0; f0

μ, g
0
μ

)
≥ Δ

(
h0; f, g

)
∀f ∈ Df , ∀g ∈ Dg, ∀h ∈ HD
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hold true if h0 = hμ(f0
μ, g

0
μ) and hμ(f0

μ, g
0
μ) ∈ HD, where (f0

μ, g
0
μ) is a solution of the

following conditional extremum problem

Δ̃(f, g) = −Δ(hμ(f0
μ, g

0
μ); f, g) → inf, (f, g) ∈ D,

Δ
(
hμ
(
f0
μ, g

0
μ

)
; f, g

)
=

1
2π

∫ π

−π

∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n g0

μ(λ) + λ2n
∑∞

k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n
(
f0
μ(λ) + g0

μ(λ)
)2 f(λ) dλ

+
1
2π

∫ π

−π

∣∣∣Aμ(eiλ)∣∣1− eiλμ
∣∣2n f0

μ(λ)− λ2n
∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣2

λ2n |1− eiλμ|2n
(
f0
μ(λ) + g0

μ(λ)
)2 g(λ) dλ.

This conditional extremum problem is equivalent to the unconditional extremum problem

ΔD(f, g) = Δ̃(f, g) + δ(f, g | Df ×Dg) → inf,

δ(f, g|Df × Dg) is the indicator function of the set Df × Dg. Solution (f0
μ, g

0
μ) to this

unconditional extremum problem is characterized by the condition 0 ∈ ∂ΔD(f0
μ, g

0
μ) [18].

5. Least favorable spectral densities in the class Df ×Dg
Consider the problem of optimal linear filtering of the functional Aξ for the set of

spectral densities D = Df ×Dg, where

D0
f =

{
f(λ)

∣∣∣∣ 1
2π

∫ π

−π
f(λ)dλ ≤ P1

}
, D0

g =
{
g(λ)

∣∣∣∣ 1
2π

∫ π

−π
g(λ)dλ ≤ P2

}
.

Let us assume that densities f0
μ ∈ Df , g0

μ ∈ Dg and functions

hμ,f
(
f0
μ, g

0
μ

)
=

∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n g0

μ(λ) + λ2n
∑∞

k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

|λ|n |1− eiλμ|n
(
f0
μ(λ) + g0

μ(λ)
) , (32)

hμ,g
(
f0
μ, g

0
μ

)
=

∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n f0

μ(λ)− λ2n
∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

|λ|n |1− eiλμ|n
(
f0
μ(λ) + g0

μ(λ)
) (33)

are bounded. In this case the functional Δ(hμ(f0
μ, g

0
μ); f, g) is continuous and bounded

in L1 × L1 space. It comes from the condition 0 ∈ ∂ΔD(f0
μ, g

0
μ) that the least favorable

densities f0
μ(λ) ∈ Df , g0

μ(λ) ∈ Dg satisfy the equations∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n g0

μ(λ) + λ2n
∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α1|λ|n

∣∣1− eiλμ
∣∣n (f0

μ(λ) + g0
μ(λ)

)
,

(34)

∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n f0

μ(λ)− λ2n
∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α2|λ|n

∣∣1− eiλμ
∣∣n (f0

μ(λ) + g0
μ(λ)

)
,

(35)

where α1 ≥ 0 and α2 ≥ 0 are constants such that α1 �= 0 if 1
2π

∫ π
−π f

0
μ(λ) dλ = P1 and

α2 �= 0 if 1
2π

∫ π
−π g

0
μ(λ) dλ = P2. Thus, the following statements hold true.

Theorem 5.1. Let spectral densities f0
μ(λ) ∈ Df and g0

μ(λ) ∈ Dg satisfy conditions (15)
and let functions hμ,f (f0

μ, g
0
μ), hμ,g(f

0
μ, g

0
μ) determined by equations (32), (33) be bounded.

The spectral densities f0
μ(λ) and g0

μ(λ) determined by relations (34), (35) are least favor-
able in the class D = Df × Dg for the optimal linear filtering problem for the functional
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Aξ if they determine a solution of the extremum problem (31). The function hμ(f0
μ, g

0
μ)

determined by (29) is the minimax spectral characteristic of the optimal estimate of the
functional Aξ.

Theorem 5.2. Let the spectral density f(λ) be known, the spectral density g0
μ(λ) ∈ Dg

and let conditions (15) be satisfied. Let the function hμ,g(f, g0
μ) be bounded. The spectral

density g0
μ(λ) is least favorable in the class Dg for the optimal linear filtering of the

functional Aξ if it is of the form

g0
μ(λ) = max

⎧⎨⎩0,

∣∣∣Aμ(eiλ)∣∣1− eiλμ
∣∣2n f(λ)− λ2n

∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

α2|λ|n|1− eiλμ|n − f(λ)

⎫⎬⎭
and the pair (f, g0

μ) determines a solution of the extremum problem (31). The func-
tion hμ(f, g0

μ) determined by (29) is the minimax spectral characteristic of the optimal
estimate of the functional Aξ.

6. Least favorable spectral densities in the class D = Dvu ×Dε
Consider the problem of the optimal linear filtering of the functional Aξ for the set of

spectral densities D = Dvu ×Dε, where

Dvu =
{
f(λ)

∣∣∣∣ v(λ) ≤ f(λ) ≤ u(λ),
1
2π

∫ π

−π
f(λ)dλ ≤ P1

}
,

Dε =
{
g(λ)

∣∣∣∣ g(λ) = (1− ε)g1(λ) + εw(λ),
1
2π

∫ π

−π
g(λ)dλ ≤ P2

}
.

Here spectral densities u(λ), v(λ), g1(λ) are known and fixed, and spectral densities u(λ),
v(λ) are bounded.

Let f0
μ(λ) ∈ Dvu, g0

μ(λ) ∈ Dε be spectral densities such that functions hμ,f (f0
μ, g

0
μ),

hμ,g(f0
μ, g

0
μ) determined by (32), (33) are bounded. From the condition 0 ∈ ∂ΔD(f0

μ, g
0
μ)

we find the following equations that determine the least favorable densities∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n g0

μ(λ) + λ2n
∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α1|λ|n

∣∣1− eiλμ
∣∣n (f0

μ(λ) + g0
μ(λ)

) (
γ1(λ) + γ2(λ) + α−1

1

)
,

(36)

∣∣∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n f0

μ(λ)− λ2n
∞∑
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk

∣∣∣∣∣
= α2|λ|n

∣∣1− eiλμ
∣∣n (f0

μ(λ) + g0
μ(λ)

) (
ϕ(λ) + α−1

2

)
,

(37)

where γ1 ≤ 0 and γ1 = 0 if f0
μ(λ) ≥ v(λ); γ2(λ) ≥ 0 and γ2 = 0 if f0

μ(λ) ≤ u(λ); ϕ(λ) ≤ 0
and ϕ(λ) = 0 when g0

μ(λ) ≥ (1− ε)g1(λ). The following statements hold true.

Theorem 6.1. Let spectral densities f0
μ(λ) ∈ Dvu, g0

μ(λ) ∈ Dε satisfy conditions (15).
Let functions hμ,f (f0

μ, g
0
μ) and hμ,g(f0

μ, g
0
μ) determined by (32), (33) be bounded. Spectral

densities f0
μ(λ) and g0

μ(λ) determined by equations (36), (37) are least favorable in the
class D = Dvu ×Dε for the optimal linear filtering of the functional Aξ if they determine
a solution of extremum problem (31). The minimax spectral characteristic hμ(f0

μ, g
0
μ) of

the optimal estimate of the functional Aξ is determined by (29).

Theorem 6.2. Let the spectral density f(λ) be known, the spectral density g0
μ(λ) ∈ Dε

and let conditions (15) be satisfied. Let the function hμ,g(f, g0
μ) determined by (29) be
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bounded. The spectral density g0
μ(λ) is least favorable in the class Dε for the optimal

linear filtering of the functional Aξ if it is of the form

g0
μ(λ) = max {(1− ε)g1(λ), f1(λ)} ,

f1(λ) =
α2

∣∣∣Aμ (eiλ) ∣∣1− eiλμ
∣∣2n f(λ)− λ2n

∑∞
k=1

((
P0
μ

)−1
R0Dμa

)
k
eiλk
∣∣∣

|λ|n|1− eiλμ|n − f(λ),

and the pair (f, g0
μ) determines a solution of the extremum problem (31). The function

hμ(f, g0
μ) determined by (29) is minimax spectral characteristic of the optimal estimate

of the functional Aξ.

7. Conclusions

In this article we found a solution of the filtering problem for linear functionals
Aξ =

∑∞
k=0 a(k)ξ(−k) which depend on unobserved values of a stochastic sequence ξ(m)

with stationary nth increments at points m = 0,−1,−2, . . . . Estimate is based on ob-
servations of a sequence ξ(m) + η(m) at points m = 0,−1,−2, . . . , where η(m) is an
uncorrelated with ξ(m) sequence with stationary nth increments. We derived formulas
for computing the value of the mean-square error and the spectral characteristic of the
optimal linear estimate of the functional in the case where spectral densities of sequences
are exactly known. In the case of spectral uncertainty, where spectral densities are not
exactly known, but a set of admissible spectral densities is specified, the minimax-robust
method is applied. Formulas that determine the least favorable spectral densities and
minimax (robust) spectral characteristics are derived for some special sets of admissible
spectral densities.
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PROPERTIES OF INTEGRALS WITH RESPECT TO FRACTIONAL
POISSON PROCESS WITH THE COMPACT KERNEL

UDC 519.21

Y. MISHURA AND V. ZUBCHENKO

Abstract. We study the properties of the fractional Poisson process with the Molchan–Golosov kernel.
The kernel can be characterized as a compact since it is non-zero on compact interval. The integral of
nonrandom function with respect to the centered and non-centered fractional Poisson processes with
the Molchan–Golosov kernel is defined. The second moments of these integrals in terms of the norm of
the integrand in L1/H([0, T ]) space are obtained. Moment estimates for the higher moments of these
integrals are established via the Bichteler–Jacod inequality.
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1. Introduction

Models based on a fractional Brownian motion are an important tool for the study of
many theoretical and applied problems. Due to the structure of its covariance function,
the fractional Brownian motion that is the process parametrized by its Hurst index,
allows to model the dependence on the past history of the process. It is known that
for Hurst parameter H > 1/2 the fractional Brownian motion has so-called long-range
dependence property, for H ∈ (0, 1/2) it is a process with short memory, and for H = 1/2
we have the standard Brownian motion.

At the same time, many natural, technical and economic phenomena are characterized
by the instantaneous change in the dynamics of the studied characteristics that cannot be
described with the help of the fractional Brownian motion. In particular, such dynamics
is typically seen in “jumps” of interest rates, exchange rates, financial indices. Models
with jumps can be described with the help of stochastic differential equations that include
Poisson measure (see, e.g., [17] and references therein). However, current dynamics of
these processes depends essentially on their past history. So construction of models
which are able to reflect effectively such features of the process is relevant. Particularly,
it is significant for estimation and forecasting of future dynamics of complex financial
instruments based on interest rates and financial indices. That’s why we are interested in

2000 Mathematics Subject Classification. Primary 60G22; Secondary 60G51.
Key words and phrases. Fractional Poisson process; integral representation of the fractional Poisson

process; Mandelbrot – van Ness kernel; Molchan–Golosov kernel; integral with respect to the fractional
Poisson process; Bichteler–Jacod inequality.
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study of the processes that can combine dependence on the past with an instant change
or “jumping” change of the dynamics.

Combining randomness with independence on the past history of the process, the
property of long memory and “jumping” change of the dynamics of characteristics under
investigation can be expressed mathematically correspondingly by the standard Brownian
motion, the fractional Brownian motion and by the Lévy processes.

Mathematical model combining dependence on the past and possibility of instanta-
neous change of characteristics can be expressed, in particular, by the fractional Poisson
process.

There are different approaches to the definition of the fractional Poisson process. In
the paper [1] several methods of the fractional Poisson process construction are proposed.
One of them is the following: it is assumed that for the fractional Poisson process Nν(t),
t > 0, its distribution pk = P{Nν(t) = k}, k ≥ 0, solves the following equation

dνpk
dtν

= −λpk + λpk−1, k ≥ 0,

where p−1(t) = 0 and pk(0) = �{k=0} and for m ∈ N

dνu(t)
dtν

=

{
1

Γ(m−ν)
∫ t
0

1
(t−s)1+ν−m

dm

dsmu(s) ds, for m− 1 < ν < m,
dm

dtmu(t), s ∈ [0, T ], for ν = m,

is the fractional derivative in the sense of Dzherbashyan–Caputo.
Another method is to replace the factorial functions in the distribution of the Poisson

process by the Gamma functions. In works [4, 5, 14] the so-called “renewal” approach is
used. In contrast to classical characterization of the usual Poisson process as a renewal
process, which is constructed as the sum of non-negative independent random variables
with exponential distribution, it is assumed that these random variables have Mittag-
Leffler distribution. One more approach to the fractional Poisson process construction is
the use of so-called “inverse subordinator” method [8].

In order to introduce our approach, we perform certain analogy with a fractional
Brownian motion, see, e.g. [10]. Besides the definition of the latter as a Gaussian process
with some covariance structure, the fractional Brownian motion can be represented as the
integral of a nonrandom kernel with respect to the standard Brownian motion. Examples
of kernels used for such representation are the Mandelbrot – van Ness with infinite support
and the compactly supported Molchan–Golosov kernel.

Using such representation, it is natural to define the fractional Poisson process as
the integral of one of such kernels with respect to the Poisson process (Lévy process).
The fractional Lévy processes was first defined using Mandelbrot – van Ness kernel in
the work [2], the theory was developed in the paper [7]. The general definition of the
fractional Lévy process by using the Molchan–Golosov kernel is given in the work [16].

In this paper we conduct further research of the fractional Poisson processes with
the Molchan–Golosov kernel. The integral of a nonrandom function with respect to the
centered and non-centered fractional Poisson processes with the Molchan–Golosov kernel
is defined. We estimate second moments of such integrals in terms of the norm of the
integrand in L1/H([0, T ]) space. Moment estimates for the higher moments of these
integrals via the Bichteler–Jacod inequality are established.

2. Main definitions

The fractional Brownian motion BH = {BHt , t ∈ R} with Hurst index H ∈ (0, 1) is a
Gaussian process with zero mean and the covariance

EBHt B
H
s =

1
2
(
|t|2H + |s|2H − |t− s|2H

)
.
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In what follows we consider H ∈ (1/2, 1). In order to represent a fractional Brownian
motion via a Brownian motion we can use both the Mandelbrot – van Ness and the
Molchan–Golosov kernel.

The Mandelbrot – van Ness kernel fH(t, s) is given by

fH(t, s) = cH

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
, s, t ∈ R,

where

cH =
(∫ ∞

0

(
(1 + s)H−1/2 − sH−1/2

)2

ds+
1

2H

)−1/2

=
(2H sinπHΓ(2H))1/2

Γ(H + 1/2)
.

The Molchan–Golosov kernel zH(t, s) is given by

zH(t, s) =
CH

Γ(H − 1/2)
s1/2−H

∫ t

s

uH−1/2(u− s)H−3/2 du, 0 < s < t.

In the work [16] it is proved that actually cH = CH .
The dynamics of zH(t, ·) is equivalent to the dynamics of ·1/2−H in the neighborhood

of zero and to the dynamics (t − ·)H−1/2 in the neighborhood of t, see, e.g. [3]. In
particular, zH(t, ·) is locally square integrable on (0, t) for every t ∈ (0,∞). Also, for
H > 1/2 the kernel zH(t, ·) is continuous when s �= 0 and has a continuous derivative
on (0, t).

The fractional Brownian motion can be represented by integration of the nonrandom
kernel with respect to a Brownian motion, in particular:

– by integration over an infinite interval of the Mandelbrot – van Ness kernel:(
BHt
)
t∈R

=
(∫ t

−∞
fH(t, s) dWs

)
t∈R

– or by integration over a compact interval of the Molchan–Golosov kernel:(
BHt
)
t≥0

=
(∫ t

0

zH(t, s) dWs

)
t≥0

. (1)

The right-sided Riemann–Liouville fractional integral operator IαT−f of order α on
[0, T ] is defined as

(IαT−f)(s) :=

{
1

Γ(α)

∫ T
s
f(u)(u− s)α−1 du, s ∈ [0, T ], for α > 0,

f(s), s ∈ [0, T ], for α = 0,

I−αT−f := Dα
T−f, α ∈ (0, 1),

where Dα
T−f is the right-sided Riemann–Liouville fractional derivative operator of order

α on [0, T ], which is defined as

(Dα
T−f)(s) :=

⎧⎪⎨⎪⎩
− d
ds(I

1−α
T− f)(s), s ∈ (0, T ), for α ∈ (0, 1),

− d
dsf(s), s ∈ (0, T ), for α = 1,

f(s), s ∈ (0, T ), for α = 0.

The right-sided Riemann–Liouville fractional integral operator of order α on R is de-
fined as

(Iα−f)(s) :=

{
1

Γ(α)

∫∞
s
f(u)(u− s)α−1du, s ∈ R, for α > 0,

f(s), s ∈ R, for α = 0.

I−α− f := Dα
−f, α ∈ (0, 1),
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where Dα
−f is the right-sided Riemann–Liouville fractional derivative operator of order α

on R:

(Dα
−f)(s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− d
ds

(
I1−α
− f

)
(s) = − 1

Γ(1−α)
d
ds

∫∞
s
f(u)(u− s)−α du,

s ∈ R, for α ∈ (0, 1),
− d
dsf(s), s ∈ R, for α = 1,

f(s), s ∈ R, for α = 0.

The centered fractional Poisson process with the Mandelbrot – van Ness
kernel. Investigation of a fractional Poisson process with the Mandelbrot – van Ness
kernel and the integral with respect to this process is carried out in the work [7]. Below
we give an overview of the main results.

Definition 2.1. Two-sided centered Poisson process (λ̃t)t∈R is defined as follows: λ̃t =
λ̃

(1)
t , if t ≥ 0 and λ̃t = −λ̃(2)

(−t)− := − limε→0+ λ̃
(2)
(−t−ε), if t < 0, where λ̃(1) and λ̃(2) are

independent and identically distributed centered Poisson processes.

Definition 2.2. Let (λ̃t)t∈R be a two-sided Poisson process on R, fH(t, s) is the Man-
delbrot – van Ness kernel. For H ∈ (1/2, 1) a stochastic process

Xt =
∫ t

−∞
fH(t, s) dλ̃s,

is called a fractional Poisson process with the Mandelbrot – van Ness kernel. This integral
exists in L2-sense (as the limit in L2 of integrals of a sequence of approximating fH(t, s)
step functions; the limit does not depend on the choice of the sequence of approximating
functions).

The fractional Poisson process Xt can be represented as follows:

Xt =
∫

R

(
I
H−1/2
− �(0,t)

)
(s) dλ̃s,

where I− is the right-sided Riemann-Liouville fractional integral operator on R.
Define the space H as the completion of L1(R) ∩ L2(R) with respect to the norm

‖g‖H :=
(
λ

∫
R

(
I
H−1/2
− f

)2

(s) ds
)1/2

.

It is known from [7] that for the functions f ∈ L1(R) ∩ L2(R)∫
R

(
I
H−1/2
− f

)2

(s) ds <∞.

Let φ : R → R be a simple function:

φ(s) =
n−1∑
i=1

ai�[si,si+1)(s),

where ai ∈ R, i = 1, . . . , n and −∞ < s1 < s2 < . . . < sn < ∞. Notice that simple
functions belong to the space H.

The integral with respect to the fractional Poisson process with the Mandelbrot – van
Ness kernel is defined for simple functions at first. Let φ be a simple function. Then∫

R

φ(s) dXs =
∫

R

(
I
H−1/2
− φ

)
dλ̃s.

Also from [7] we have the following L2-isometry:

E

(∫
R

φ(s) dXs

)2

= E

(∫
R

(
I
H−1/2
− φ

)
dλ̃s

)2

= λ

∫
R

(
I
H−1/2
− φ

)2

(s) ds = ‖φ‖2
H.
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We can extend the definition of the integral with respect to the fractional Poisson process
for the class of functions f ∈ H. Namely,∫

R

f(s) dXs =
∫

R

(
I
H−1/2
− f

)
(s) dλ̃s

with equality in L2-sense.
The noncentered fractional Poisson process Yt with the Molchan–Golosov kernel is

defined as follows:

Yt =
∫ t

0

zH(t, s) dλs,

where λs is the simple Poisson process with intensity λ, zH(t, s) is the Molchan–Golosov
kernel, and the integral exists in the pathwise sense due to step structure of the Poisson
process and smooth properties of zH(t, s), mentioned above.

The centered fractional Poisson process Ỹt with the Molchan–Golosov kernel is defined
as follows:

Ỹt =
∫ t

0

zH(t, s) dλ̃s,

where λ̃s = λs − λs is the centered Poisson process. Ỹt is defined as the integral with
respect to the square integrable martingale. So the centered fractional Poisson process
exists as the integral in L2 sense.

Later on we shall consider both integrals with respect to the non-centered and centered
fractional Poisson process.

3. Distribution characteristics of the fractional Poisson process with

the Molchan–Golosov kernel

Using well-known formulas for the integrals with respect to the Poisson process, we
obtain the following first and second noncentral moments for the noncentered fractional
Poisson process with the Molchan–Golosov kernel:

m1 = λ

∫ t

0

zH(t, s) ds = λCH

∫ t

0

uH−1/2

∫ u

0

s1/2−H(u− s)H−3/2 ds du

= λCH
π

sin (π(3/2−H))

∫ t

0

uH−1/2 du = λCH
π

sin (π(3/2−H))
tH+1/2

H + 1/2
,

(2)

m2 = λ2

(∫ t

0

zH(t, s) ds
)2

+ λ

∫ t

0

z2
H(t, s) ds

= λ2

(
CH

π

sin(π(3/2−H))
1

H + 1/2

)2

t2H+1 + λt2H .

Here we have used the equality ∫ t

0

z2
H(t, s) ds = t2H

that follows from the representation (1) of the fractional Brownian motion and the form
of its covariance function.

We know that the fractional Brownian motion has stationary increments. Now we
investigate whether the property of stationarity of increments holds for the fractional
Poisson process with the Molchan–Golosov kernel.

Lemma 3.1. Both for centered and noncentered fractional Poisson process with the
Molchan–Golosov kernel the property of stationarity of increments in general does not
hold.
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Proof. Consider the noncentered process, for the centered one the proof is similar. We
investigate whether the characteristic function of the fractional Poisson process

E exp{iuYt}, u ∈ R, 0 < t <∞,

and that of its increment

E exp{iu(Yt+t1 − Yt1)}, u ∈ R, 0 < t, t1 <∞,

are equal.
We use propositions 2.4, 2.6 [13] and results by [7]. Thus if some process Z allows

the representation Zt =
∫

R
f(t, s) dLs, where L is Lévy process with characteristic triplet

(0, 0, ν) without Gaussian component, such that EL1 = 0, EL2
1 <∞, then

E(exp(iuZt)) = exp
(∫

R

∫
R

(
eif(t,s)ux − 1− if(t, s)ux

)
ν(dx) ds

)
.

Therefore for fractional Poisson process Yt with the Molchan–Golosov kernel we obtain
the following characteristic function:

E exp[iuYt] = exp
{∫

R

λ
(
exp{iuzH(t, s)�[0,t](s)} − 1

)
ds

}
. (3)

Further,

Yt+t1 − Yt1 =
∫ t+t1

0

zH(t+ t1, s) dλs −
∫ t1

0

zH(t1, s) dλs

=
∫ t+t1

0

(zH(t+ t1, s)− zH(t1, s)) dλs,

where in the last equality we use that according to definition we have zH(t, s) = 0 if
condition 0 < s < t does not hold. So

E exp{iu(Yt+t1 − Yt1)}

= exp
{∫

R

λ
(
exp{iu(zH(t+ t1, s)− zH(t1, s))�[0,t+t1](s)} − 1

)
ds

}
.

(4)

We compare (3) and (4). It is sufficient to compare

zH(t, s) · �[0,t](s) = cHs
1/2−H

∫ t

s

uH−1/2(u − s)H−3/2 du · �[0,t](s), (5)

and
(zH(t+ t1, s)− zH(t1, s)) · �[0,t+t1](s)

= cHs
1/2−H

∫ t+t1

t1

uH−1/2(u− s)H−3/2 du · �[0,t+t1](s).
(6)

As (5) and (6) are not equal, for the noncentered fractional Poisson process with the
Molchan–Golosov kernel the property of stationarity of increments in general does not
hold. �

4. Integral with respect to the fractional Poisson process with the

Molchan–Golosov kernel and estimate of its second moment in terms

of the norm of the integrand in L1/H([0, T ]) space

Consider the noncentered fractional Poisson process Yt with the Molchan–Golosov
kernel. Let a function f be defined on [0, T ], H ∈ (1

2 , 1). Define the following operator:(
KH
T f
)
(s) = CHs

1/2−H
(
I
H−1/2
T− (·)H−1/2f

)
(s), s ∈ (0, T ),

where IH−1/2
T− is the right-sided Riemann–Liouville fractional operator defined in Sec-

tion 2.
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Introduce the spaces

L2
H,Pois([0, T ]) = {f : [0, T ] → R | KH

T f ∈ L2([0, T ])}
with the norm

‖f‖L2
H,Pois([0,T ]) =

∥∥KH
T f
∥∥
L2([0,T ])

,

and
L̃2
H,Pois([0, T ])

=
{
f ∈ L2

H,Pois([0, T ]) and (·)H−1/2f(·) ∈ Lp([0, T ]) for some p >
1

H − 1/2

}
with the same norm.

Define for f ∈ L2
H,Pois([0, T ]) the integral with respect to the fractional Poisson

processes in the following way:∫ T

0

f(s) dYs =
∫ T

0

(
KH
T f
)
(s) dλs (7)

and ∫ T

0

f(s) dỸs =
∫ T

0

(
KH
T f
)
(s) dλ̃s. (8)

Thus, we have the analogy with the construction of the integral with respect to the
fractional Brownian motion. Note that from (2)

Ỹt =
∫ t

0

zH(t, s) dλ̃s = Yt − λ

∫ t

0

zH(t, s) ds = Yt − EYt,

and ∫ T

0

f(s) dỸs :=
∫ T

0

f(s) dYs −
∫ T

0

f(s) d(EYs),

where both integrals exist in L2-sense.

Lemma 4.1. 1. For f ∈ L2
H,Pois([0, T ]) both integrals (7) and (8) exist in L2 sense.

2. For f ∈ L̃2
H,Pois([0, T ]) integral (7) exists in the pathwise sense.

Proof. 1. Consider the noncentered case, the centered one is considered similarly. It
holds [11] that (KH

T �[0,t))(s) = zH(t, s). Using properties of integrals with respect to the
Poisson process for step functions we have:

E

(∫ T

0

(
KH
T f
)
(s) dλs

)2

= λ2

(∫ T

0

(KH
T f)(s) ds

)2

+ λ

∫ T

0

(
KH
T f
)2

(s) ds

≤ (λ2T + λ)‖f‖2
L2

H,Pois([0,T ]),

E

(∫ T

0

(KH
T f)(s)dλ̃s

)2

= λ

∫ T

0

(
KH
T f
)2

(s) ds = λ‖f‖2
L2

H,Pois([0,T ]),

(9)

where λ is the intensity of the Poisson process. Note that according to [12] step func-
tions are dense in L2

H,Pois([0, T ]). Therefore, we can approximate the function f ∈
L2
H,Pois([0, T ]) by step functions fn in L2

H,Pois([0, T ]) and to define the integral of the
function f with respect to the fractional Poisson process using as follows:∫ T

0

f(s) dYs = lim
n→∞

∫ T

0

fn(s) dYs — convergence in L2(P).

2. Consider the integrand of the right side of equality (7):(
KH
T f
)
(s) = CHs

1/2−H
(
I
H−1/2
T− ·H−1/2 f

)
(s).
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Functions belonging to the space L̃2
H,Pois([0, T ]) satisfies the conditions of the Theo-

rem 3.6 [15]. According to it the function
(
I
H−1/2
T− ·H−1/2 f

)
(s) is Hölder of orderH− 1

2−
1
p

on (0, T ).
In the right side of equality (7) the integration is with respect to the Poisson process,

which is a process of bounded variation on [0, T ]. Also, according to the properties of the
Poisson process a.s. there exists such ε(ω) > 0, that λs = 0 for all s ∈ [0, ε(ω)]. Thus, on
(ε(ω), T ) a.s. we have the continuous function, that can be integrated with respect to the
process of bounded variation. Therefore, integral (7) exists in the pathwise sense. �

Remark 4.1. To estimate the second moment of the integral with respect to the fractional
Poisson process with the Molchan–Golosov kernel we need to estimate

∫ T
0 (KH

T f)2(s) ds.
It can be done similarly to the fractional Brownian motion case [9] with the help of (9).
Denote α = H − 1

2 . Then

E

(∫ T

0

f(s) dYs

)2

= E

(∫ T

0

(
KH
T f
)
(s) dλs

)2

≤
(
λ2T + λ

) ∫ T

0

(
KH
T f
)2

(s) ds

= C

∫ T

0

s−2α

(∫ T

s

f(u)uα(u− s)α−1 du

)2

ds

≤ CB(1 − 2α, α)
∫ T

0

∫ T

0

f(u)f(v)|u− v|2α−1 du dv

≤ C‖f‖2
L1/H([0,T ]).

5. Estimate of higher moments of integral with respect to the

fractional Poisson process with the Molchan–Golosov kernel

Let f ∈ L2
H,Pois([0, T ]). Recall that∫ T

0

f(s) dYs =
∫ T

0

(
KH
T f
)
(s) dλs =

∫ T

0

(
KH
T f
)
(s) dλ̃s +

∫ T

0

(
KH
T f
)
(s)λds, (10)

and the first integral in the right-hand side of (10) exists as the integral with respect to
the square-integrable martingale λ̃s = λs − λs.

Now we are in the position to establish moment inequalities for integral with respect
to the noncentered fractional Poisson process with the Molchan–Golosov kernel. For the
centered process the similar bounds hold with obvious modification.

Theorem 5.1. Let f ∈ L̃2
H,Pois([0, T ]), H ∈ (1

2 , 1). Then for any k such that 0 < k <
1

2H−1 there exists the constant Ck = C(H, k), such that for any T > 0

E

∣∣∣∣∣
∫ T

0

f(s) dYs

∣∣∣∣∣
2k

≤ Ck
∥∥KH

T f
∥∥2k
L2k

[0,T ]
+ Ckλ

2k

(∫ T

0

uH−1/2|f(u)| du
)2k

.

Proof. We consider moments of the order 2k:

E

∣∣∣∣∣
∫ T

0

f(s) dYs

∣∣∣∣∣
2k

= E

(∣∣∣∣∣
∫ T

0

(
KH
T f
)
(s) dλ̃s +

∫ T

0

(
KH
T f
)
(s)λds

∣∣∣∣∣
)2k

≤ 22k E

(∣∣∣∣∣
∫ T

0

(
KH
T f
)
(s) dλ̃s

∣∣∣∣∣
)2k

+ 22k

(∫ T

0

|(KH
T f)(s)|λds

)2k

:= I1 + I2.
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To bound the first integral, we use the Bichteler–Jacod inequality (see, e.g., [6]):

I1 ≤ C

∫ T

0

((
KH
T f
)2k

λ+
((
KH
T f
)2

(s)λ
)k)

ds ≤ Ck

∫ T

0

(
KH
T f
)2k

(s) ds

= Ck‖KH
T f‖2k

L2k
[0,T ]

.

Establish whether the last integral exists:

Ĩ1 :=
∫ T

0

(
KH
T f
)2k

(s) ds = C2k
H

∫ T

0

s(1/2−H)2k
(
I
H−1/2
T− ·H−1/2 f

)2k

(s) ds.

Remind that according to the definition of the space L̃2
H,Pois([0, T ]) there exists some

p > 1
H−1/2 : (·)H−1/2f(·) ∈ Lp([0, T ]. So the same way as in the proof of the Lemma 4.1

we can establish that the function
(
I
H−1/2
T− ·H−1/2 f

)
(s) is Hölder of order H − 1

2 −
1
p on

(0, T ). Thus Ĩ1 is finite if and only if∫ T

0

s(1/2−H)2k ds <∞,

and due to the condition k < 1
2H−1 the integral Ĩ1 is finite.

For estimation of I2 we use the equality∫ T

0

(
KH
T f
)
(s) ds = CH

∫ T

0

s1/2−H
∫ T

s

uH−1/2f(u)(u− s)H−3/2 du ds

= CH

∫ T

0

uH−1/2f(u)
∫ u

0

s1/2−H(u − s)H−3/2 ds du

= CH
π

sin(π(3/2−H))

∫ T

0

uH−1/2f(u) du.

Therefore ∫ T

0

∣∣(KH
T f
)
(s)
∣∣ ds ≤ CH

∫ T

0

uH−1/2|f(u)| du,

and

I2 ≤ Ckλ
2k

(∫ T

0

uH−1/2|f(u)| du
)2k

. �
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Lévy motions, Bernoulli 8 (2002), 97–115.

3. C. Jost, Transformation formulas for fractional Brownian motion, Stochastic Processes and

their Applications 116 (2006), 1341–1357.
4. F. Mainardi, R. Gorenflo, and E. Scalas, A fractional generalization of the Poisson processes,

Vietnam J. Math. 32 (2004), 53–64.
5. F. Mainardi, R. Gorenflo, and A. Vivoli, Renewal processes of Mittag–Leffler and Wright type,

Fract. Calc. Appl. Anal. 8 (2005), no. 1, 7–38.
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QUASI-STATIONARY DISTRIBUTIONS FOR PERTURBED
DISCRETE TIME REGENERATIVE PROCESSES

UDC 519.21

MIKAEL PETERSSON

Abstract. Non-linearly perturbed discrete time regenerative processes with regenerative stopping
times are considered. We define the quasi-stationary distributions for such processes and present con-
ditions for their convergence. Under some additional assumptions, the quasi-stationary distributions
can be expanded in asymptotic power series with respect to the perturbation parameter. We give an
explicit recurrence algorithm for calculating the coefficients in these asymptotic expansions. Applica-
tions to perturbed alternating regenerative processes with absorption and perturbed risk processes are
presented.
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1. Introduction

Many stochastic systems has a random lifetime, the process is terminated due to
some rare event. This means that the stationary distribution of such process will be
degenerated. However, before the lifetime of the system goes to an end, one can often
observe something that resembles a stationary distribution. It is often of interest to
describe such behaviour, so-called quasi-stationary phenomena.

In this paper we study such phenomena for discrete time regenerative processes with
regenerative stopping time. Roughly speaking, such a process ξ(n), n = 0, 1, . . . , regen-
erates at random times τ1, τ2, . . . , and has random lifetime μ which regenerates jointly
with the process.

In particular, such processes includes discrete time semi-Markov processes with ab-
sorption. For example, ξ(n) can be a Markov chain, τ1, τ2, . . . , the return times to some
fixed state and μ, the first hitting time of some fixed state.

As a special case, when μ = ∞ almost surely, this class of processes includes regener-
ative processes without stopping time.

2000 Mathematics Subject Classification. Primary 60K05, 34E10; Secondary 60K25.
Key words and phrases. Regenerative process, Renewal equation, Non-linear perturbation, Quasi-

stationary distribution, Asymptotic expansion, Risk process.
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Under some conditions, it can be shown that for such processes there exists a proba-
bility distribution π(A) such that

P{ξ(n) ∈ A/μ > n} → π(A) as n→∞.

We call this distribution the quasi-stationary distribution and use it to describe the
quasi-stationary phenomena of the process. In the case μ = ∞ almost surely, π(A) is the
usual stationary distribution.

Quasi-stationary distributions have been studied intensively since the 1960’s. Some of
the important early works are Vere-Jones (1962), Kingman (1963), Darroch and Seneta
(1965, 1967) and Seneta and Vere-Jones (1966).

In this paper, we consider the case when ξ(n) is perturbed and that the perturbation
is described by a small parameter ε. Furthermore, it is assumed that some continuity
conditions hold at ε = 0 for certain characteristics of the process ξ(ε)(n), regarded as a
function of ε. This allows us to interpret ξ(ε)(n) as a perturbed version of the process
ξ(0)(n).

We want the quasi-stationary distribution π(ε)(A) of the process ξ(ε)(n) to be an
approximation of the quasi-stationary distribution π(0)(A) of the process ξ(0)(n), that is
π(ε)(A) → π(0)(A) as ε→ 0.

We give conditions such that the quasi-stationary distribution can be expanded as

π(ε)(A) = π(0)(A) + f1(A)ε+ · · ·+ fk(A)εk + o(εk),

where the coefficients f1(A), . . . , fk(A) can be calculated from an explicit recurrence
algorithm.

Theoretical results are illustrated by example to the model of an alternating regenera-
tive process with absorption. Under perturbation conditions on distributions of sojourn
times and absorption probabilities, we give explicit the asymptotic expansion for the
quasi-stationary distribution for such a process.

It is also shown how the results can be used in order to obtain approximations of
the ruin probability for a discrete time risk process. We describe how an asymptotic
expansion of the ruin probability can be obtained under perturbation conditions on claim
probabilities and claim distributions.

The results in the present paper continue the line of research studies of the perturbed
renewal equation in discrete time in Gyllenberg and Silvestrov (1994), Englund and
Silvestrov (1997), Silvestrov (2000) and Petersson and Silvestrov (2012, 2013).

Corresponding results for perturbed regenerative processes in continuous time can be
found in the book Gyllenberg and Silvestrov (2008) where one can also find an extended
bibliography of works in the area.

Some works related to asymptotic expansions for perturbed Markov chains are Kar-
tashov (1988, 1996), Latouche (1988), Hassin and Haviv (1992), Khasminskii, Yin and
Zhang (1996), Yin and Zhang (2003), Altman, Avrachenkov and Núñes-Queija (2004),
Koroliuk and Limnios (2005) and Yin and Nguyen (2009).

2. Quasi-Stationary Distributions for Regenerative Processes

For every ε ≥ 0, let ξ(ε)(n) be a regenerative process in discrete time with a measurable
phase space (X,Γ) and regeneration times 0 = τ

(ε)
0 < τ

(ε)
1 < . . . , and let μ(ε) be a

random variable defined on the same probability space (Ω,F ,P) and taking values in the
set {0, 1, . . . ,∞}.

We call μ(ε) a regenerative stopping time for the regenerative process ξ(ε)(n) if for
any A ∈ Γ, the probabilities P (ε)(n,A) = P

{
ξ(ε)(n) ∈ A, μ(ε) > n

}
satisfies the renewal
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equation,

P (ε)(n,A) = q(ε)(n,A) +
n∑
k=0

P (ε)(n− k,A)f (ε)(k), n = 0, 1, . . . , (1)

where
q(ε)(n,A) = P

{
ξ(ε)(n) ∈ A, μ(ε) > n, τ

(ε)
1 > n

}
and

f (ε)(n) = P
{
τ

(ε)
1 = n, μ(ε) > τ

(ε)
1

}
.

Note that the defect f (ε) of the distribution f (ε)(n) is given by the stopping probability
in one regeneration period for the process ξ(ε)(n), that is,

f (ε) = 1−
∞∑
n=0

f (ε)(n) = P
{
μ(ε) ≤ τ

(ε)
1

}
.

We consider the case where the stopping probability in one regeneration period for
the limiting process may be positive, i.e., f (0) ∈ [0, 1).

Assume that the distributions f (ε)(n) satisfy the following conditions:
A: (a) f (ε)(n) → f (0)(n) as ε → 0, n = 0, 1, . . . , where the limiting distribution is

non-periodic and not concentrated in zero.
(b) f (ε) → f (0) ∈ [0, 1) as ε→ 0.

B: There exists δ > 0 such that
(a) lim 0≤ε→0

∑∞
n=0 e

δnf (ε)(n) <∞.
(b)

∑∞
n=0 e

δnf (0)(n) > 1.
Let us consider the characteristic equation

∞∑
n=0

eρnf (ε)(n) = 1. (2)

The following result from Petersson and Silvestrov (2012, 2013) gives some basic prop-
erties of ρ(ε) that will be used in what follows.

Lemma 2.1. Assume that A and B hold. Then there exists a unique non-negative
solution ρ(ε) of the characteristic equation (2) for ε small enough and ρ(ε) → ρ(0) < δ as
ε→ 0.

For the rest of the paper, assume that A and B hold so that ρ(ε) is well defined for ε
small enough. Also, to avoid repetition, we assume that ε always is small enough to
satisfy the statements of Lemma 2.1. If both sides in (1) are multiplied by eρ

(ε)n, we see
that the transformed probabilities P̃ (n,A) = eρ

(ε)nP (n,A) satisfy

P̃ (ε)(n,A) = q̃(ε)(n,A) +
n∑
k=0

P̃ (ε)(n− k,A)f̃ (ε)(k), A ∈ Γ, (3)

where
q̃(ε)(n,A) = eρ

(ε)nq(ε)(n,A), f̃ (ε)(n) = eρ
(ε)nf (ε)(n).

It follows from the definition of ρ(ε), that (3) is a proper renewal equation. In order
to apply the classical discrete time renewal theorem, the following condition is imposed
on the tail probabilities of τ (ε)

1 ∧ μ(ε).
C: There exists γ > 0 such that

lim
ε→0

∞∑
n=0

e(ρ
(0)+γ)nq(ε)(n,X) <∞.
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For any ε ≥ 0, we define the quasi-stationary distribution of ξ(ε)(n) by

π(ε)(A) =
∑∞

n=0 e
ρ(ε)nq(ε)(n,A)∑∞

n=0 e
ρ(ε)nq(ε)(n,X)

, A ∈ Γ. (4)

Under conditions A, B and C the quasi-stationary distribution is well defined for
sufficiently small ε.

Let us denote

Γ0 =
{
A ∈ Γ: q(ε)(n,A) → q(0)(n,A) as ε→ 0, n = 0, 1, . . .

}
We assume the following:
D: X ∈ Γ0.

Note that Γ0 is an algebra but does not necessarily coincide with Γ.
The first part of the following result motivates why it is natural to call π(ε)(A) quasi-

stationary distributions. The second part gives conditions for convergence of π(ε)(A) for
sets A ∈ Γ0.

Theorem 2.2. Assume that A, B and C hold.
(i) Then there exists ε0 > 0 such that for every ε ≤ ε0,

P
{
ξ(ε)(n) ∈ A/μ(ε) > n

}
→ π(ε)(A) as n→∞, A ∈ Γ.

(ii) If, in addition, condition D holds, then

π(ε)(A) → π(0)(A) as ε→ 0, A ∈ Γ0.

Proof. First note that if the limiting distribution f (0)(n) is non-periodic, then there exists
a finite positive integer N such that

gcd
{

1 ≤ n ≤ N : f (0)(n) > 0
}

= 1.

It follows from condition A that the distributions f̃ (ε)(n) are non-periodic for ε suffi-
ciently small, say ε ≤ ε1. Let m̃(ε)

1 denote the expectation of f̃ (ε)(n). Since ρ(0) < δ we
can choose δ0 > 0 such that ρ(0) < δ − δ0. Let C = supn≥0 ne

−δ0n. Since ρ(ε) → ρ(0)

and condition B holds it follows that

lim
ε→0

m̃
(ε)
1 = lim

ε→0

∞∑
n=0

neρ
(ε)nf (ε)(n) ≤ lim

ε→0

∞∑
n=0

ne(δ−δ0)nf (ε)(n)

≤ C lim
ε→0

∞∑
n=0

eδnf (ε)(n) <∞.

It follows that m̃(ε)
1 is finite for all ε small enough, say ε ≤ ε2. Condition C implies

that for any A ∈ Γ

lim
ε→0

∞∑
n=0

q̃(ε)(n,A) = lim
ε→0

∞∑
n=0

eρ
(ε)n P

{
ξ(ε)(n) ∈ A, μ(ε) > n, τ

(ε)
1 > n

}
≤ lim

ε→0

∞∑
n=0

e(ρ
(0)+γ)n P

{
τ

(ε)
1 ∧ μ(ε) > n

}
<∞,

so there exists ε3 > 0 such that
∑∞
n=0 q̃

(ε)(n,A) <∞ for all ε ≤ ε3.
Define ε0 = min{ε1, ε2, ε3}. It follows from the classical discrete time renewal theorem

that for any ε ≤ ε0,

P̃ (ε)(n,A) → 1

m̃
(ε)
1

∞∑
n=0

q̃(ε)(n,A) as n→∞, A ∈ Γ. (5)
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Part (i) follows from relation (5) and the following equality,

P
{
ξ(ε)(n) ∈ A/μ(ε) > n

}
= P̃ (ε)(n,A) / P̃ (ε)(n,X).

Lemma 2.1, condition C and the definition of Γ0 implies that

lim
ε→0

∞∑
n=0

eρ
(ε)nq(ε)(n,A) =

∞∑
n=0

eρ
(0)nq(0)(n,A) <∞, A ∈ Γ0. (6)

Part (ii) now follows from relations (4) and (6), and condition D. �

3. Asymptotic Expansions of Quasi-Stationary Distributions

A problem with π(ε)(A) is that the expression defining it is rather complicated. Both
numerator and denominator are represented as infinite sums and involves ρ(ε), which is
only given as the solution to the nonlinear equation (2). However, under some pertur-
bation conditions, π(ε)(A) can be expanded in an asymptotic power series with respect
to ε.

In order to do this, we first need to expand ρ(ε). This can be done under some pertur-
bation conditions on the following mixed power-exponential moments of the distributions
f (ε)(n),

φ(ε)(ρ, r) =
∞∑
n=0

nreρnf (ε)(n), ρ ≥ 0, r = 0, 1, . . .

To expand the quasi-stationary distribution, some perturbation conditions on the
following mixed power-exponential moment type functionals of q(ε)(n,A) are also needed,

ω(ε)(ρ, r, A) =
∞∑
n=0

nreρnq(ε)(n,A), ρ ≥ 0, r = 0, 1, . . . , A ∈ Γ.

The perturbation conditions are the following:

P(k)
1 : φ(ε)(ρ(0), r) = φ(0)(ρ(0), r) + a1,rε+ · · ·+ ak−r,rεk−r + o(εk−r), for r = 0, . . . , k,

where |an,r| <∞, n = 1, . . . , k − r, r = 0, . . . , k.

P(k)
2 : ω(ε)(ρ(0), r, A) = ω(0)(ρ(0), r, A) + b1,r(A)ε + · · · + bk−r,r(A)εk−r + o(εk−r), for

r = 0, . . . , k, where A ∈ Γ0 and |bn,r(A)| <∞, n = 1, . . . , k − r, r = 0, . . . , k.
For convenience, we define a0,r = φ(0)(ρ(0), r) and b0,r = ω(0)(ρ(0), r, A) for r = 0, . . . , k

and A ∈ Γ0.
Now we are ready to give the expansion of π(ε)(A). The details are presented in the

following theorem.

Theorem 3.1. Suppose that A, B and P(k)
1 hold.

(i) Then the root ρ(ε) of the characteristic equation (2) has the asymptotic expansion

ρ(ε) = ρ(0) + c1ε+ · · ·+ ckε
k + o(εk).

The coefficients c1, . . . , ck are given by the recurrence formulas
c1 = −a1,0/a0,1,

cn = − 1
a0,1

(
an,0 +

n−1∑
q=1

an−q,1cq

+
n∑

m=2

n∑
q=m

an−q,m ·
∑

n1,...,nq−1∈Dm,q

q−1∏
p=1

c
np
p

np!

)
, n = 2, . . . , k,

(7)

where Dm,q is the set of all nonnegative integer solutions to the system

n1 + · · ·+ nq−1 = m, n1 + · · ·+ (q − 1)nq−1 = q.
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(ii) If, in addition, C, D and P(k)
2 hold, then for any A ∈ Γ0 the following asymptotic

expansion holds,

π(ε)(A) = π(0)(A) + f1(A)ε+ · · ·+ fk(A)εk + o(εk).

The coefficients f1(A), . . . , fn(A) are given by

fn(A) =
1

d0(X)

(
dn(A)−

n−1∑
q=0

dn−q(X)fq(A)

)
, (8)

where
d0(A) = ω(0)(ρ(0), 0, A)

and f0(A) = π(0)(A). The coefficients d1(A), . . . , dk(A) are given by

d1(A) = b1,0(A) + b0,1(A)c1,

dn(A) = bn,0(A) +
n∑
q=1

bn−q,1(A)cq

+
n∑

m=2

n∑
q=m

bn−q,m(A) ·
∑

n1,...,nq−1∈Dm,q

q−1∏
p=1

c
np
p

np!
, n = 2, . . . , k.

(9)

Proof. For the proof of part (i), see Petersson and Silvestrov (2012, 2013). Here we give
the proof of part (ii).

Let Δ(ε) = ρ(ε) − ρ(0). Using the Taylor expansion of the exponential function, we
obtain for any n = 0, 1, . . . ,

eρ
(ε)n = eρ

(0)n

(
k∑
r=0

nr(Δ(ε))r

r!
+
nk+1(Δ(ε))k+1

(k + 1)!
e|Δ

(ε)|nθ(ε)k+1(n)

)
,

where 0 ≤ θ
(ε)
k+1(n) ≤ 1. Since ρ(ε) → ρ(0), there exists β < ρ(0) + γ and ε1 = ε1(β) such

that
ρ(0) + |Δ(ε)| < β, ε ≤ ε1.

Let C̃r = supn≥0 n
re(ρ

(0)+γ−β)n. From condition C it follows that there exists ε2 > 0
and a constant Cr such that

ω(ε)(β, r, A) =
∞∑
n=0

nreβnq(ε)(n,A)

≤ C̃r

∞∑
n=0

e(ρ
(0)+γ)n P

{
τ

(ε)
1 ∧ μ(ε) > n

}
≤ Cr, ε ≤ ε2.

Define ε0 = ε0(β) := min{ε1(β), ε2}. Substituting the Taylor expansion of eρ
(ε)n into

the definition of ω(ε)(ρ(ε), 0, A) yields

ω(ε)(ρ(ε), 0, A) = ω(ε)(ρ(0), 0, A) + ω(ε)(ρ(0), 1, A)Δ(ε) + · · ·

+ ω(ε)(ρ(0), k, A)(Δ(ε))k/k! + r
(ε)
k+1(Δ

(ε))k+1,
(10)

where

r
(ε)
k+1 =

1
(k + 1)!

∞∑
n=0

nk+1e(ρ
(0)+|Δ(ε)|)nθ(ε)k+1(n)q(ε)(n,A).

If ε ≤ ε0, the right hand side of (10) is finite and

r
(ε)
k+1 ≤

1
(k + 1)!

ω(ε)(β, k + 1, A) ≤ Ck+1

(k + 1)!
.
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It follows that there exists a finite constant Mk+1 and numbers 0 ≤ θ
(ε)
k+1 ≤ 1 such

that
r
(ε)
k+1 = Mk+1θ

(ε)
k+1, ε ≤ ε0. (11)

Since A, B and P(k)
1 hold, it follows from part (i) that

Δ(ε) = c1ε+ · · ·+ ckε
k + o(εk). (12)

Substituting (11), (12) and condition P(k)
2 into the right hand side of (10) when k = 0

we see that ω(ε)(ρ(ε), 0, A) → ω(0)(ρ(0), 0, A) as ε → 0, which means that we have the
representation

ω(ε)(ρ(ε), 0, A) = ω(0)(ρ(0), 0, A) + ω
(ε)
0 (A), (13)

where ω(ε)
0 (A) → 0 as ε→ 0.

Now assume that k = 1. If we substitute (11), (12), (13) and condition P(k)
2 into the

right hand side of (10), divide by ε and let ε→ 0, it is found that

ω
(ε)
0 (A)
ε

→ b1,0(A) + b0,1(A)c1 as ε→ 0. (14)

Using (13) and (14) we obtain the asymptotic representation

ω(ε)(ρ(ε), 0, A) = ω(0)(ρ(0), 0, A) + d1(A)ε+ ω
(ε)
1 (A),

where d1(A) = b1,0(A) + b0,1(A)c1 and ω(ε)
1 (A) is of order o(ε).

If k ≥ 2, we can continue in this way and build an asymptotic expansion of order k
for ω(ε)(ρ(ε), 0, A). Once the existence of the expansion is proved, the coefficients can be
found by collecting the coefficients of equal powers of ε in the expansion of the following
expression, (

b0,0(A) + · · ·+ bk,0(A)εk + o(εk)
)

+
(
b0,1(A) + · · ·+ bk−1,1(A)εk−1 + o(εk−1)

)
×
(
c1ε+ · · ·+ ckε

k + o(εk)
)

+ · · ·

+ (b0,k(A) + o(1))
(
c1ε+ · · ·+ ckε

k + o(εk)
)k
/k! + o(εk).

This yields the expansion

ω(ε)(ρ(ε), 0, A) = ω(0)(ρ(0), 0, A) + d1(A)ε+ · · ·+ dk(A)εk + o(εk), (15)

where the coefficients d1(A), . . . , dk(A) are given according to (9).
The quasi-stationary distribution can be written as

π(ε)(A) =
ω(ε)(ρ(ε), 0, A)
ω(ε)(ρ(ε), 0, X)

, A ∈ Γ.

For sets A ∈ Γ0, the numerator can be expanded as in equation (15). By condition D,
we always have X ∈ Γ0 so the denominator can also be expanded. Thus, for any A ∈ Γ0,

π(ε)(A) =
ω(0)(ρ(0), 0, A) + d1(A)ε+ · · ·+ dk(A)εk + o(εk)
ω(0)(ρ(0), 0, X) + d1(X)ε+ · · ·+ dk(X)εk + o(εk)

. (16)

Using (16), we can build the expansion of π(ε)(A) similarly to how we built the ex-
pansion of ω(ε)(ρ(ε), 0, A). To do this, first note that with k = 0 in (16) it immediately
follows that π(ε)(A) → π(0)(A), which means that we have the representation

π(ε)(A) = π(0)(A) + π
(ε)
0 (A), (17)

where π(ε)
0 (A) → 0 as ε→ 0.
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Now put k = 1 in (16). Since ω(0)(ρ(0), 0, X) > 0, it follows that the denominator
of (16) is positive for ε small enough. Substituting (17) into the left hand side of (16), re-
arranging and using the identity π(0)(A)d0(X) = d0(A) gives the following for sufficiently
small ε,

π
(ε)
0 (A)d0(X) + d1(X)f0(A) + o(ε) = d1(A)ε+ o(ε).

Dividing both sides by ε and letting ε→ 0, we conclude that

π
(ε)
0 (A)
ε

→ 1
d0(X)

(d1(A)− d1(X)f0(A)) as ε→ 0.

Using this and (17), the following asymptotic representation is obtained,

π(ε)(A) = π(0)(A) + f1(A)ε+ π
(ε)
1 (A),

where f1(A) = (d1(A) − d1(X)f0(A))/d0(X) and π(ε)
1 (A) is of order o(ε).

This proves part (ii) when k = 1.
If k ≥ 2 we can continuing in this way and prove that the asymptotic expansion of

π(ε)(A) exists. When we know that the expansion exists, the coefficients can be found
in the following way. Consider the equation(

f0(A) + f1(A)ε+ · · ·+ fk(A)εk + o(εk)
)

×
(
d0(X) + d1(X)ε+ · · ·+ dk(X)εk + o(εk)

)
=
(
d0(A) + d1(A)ε+ · · ·+ dk(A)εk + o(εk)

)
.

The coefficients fk(A) are obtained by equating the coefficients of εk in both sides of
this equation. This yields

π(ε)(A) = π(0)(A) + f1(A)ε+ · · ·+ fk(A)εk + o(εk),

where f1(A), . . . , fk(A) are given according to the recurrent relation in equation (8). �

4. Perturbed Alternating Regenerative Processes

In this section, we consider a perturbed alternating regenerative process with absorp-
tion. We assume that the process η(ε)(n) starts in state 1 and stays there for a time with
distribution g(ε)

1 (n) before it jumps down to state 0. Then the process remains in state 0
for a time with distribution g

(ε)
0 (n). Now, with some small probability p(ε) the process

is absorbed in state −1 or with probability 1− p(ε) the process starts over in state 1.
Such a process can be interpreted as the state of a machine which is successively

repaired after break-downs. The states 0 and 1 then represents that the machine is
broken or working while −1 is the absorption state of fatal non-repairable failure.

Respectively, g(ε)
1 (n) is the distribution of the time between repair and failure and

g
(ε)
0 (n) is the distribution of the time to locate the error after a break-down. The ab-

sorption probability p(ε) corresponds to a fatal error such that the machine can not be
repaired. The first hitting time to the state −1 is the lifetime of the system.

We assume the following condition, preventing instant jumps:

E: g(ε)
0 (0) = g

(ε)
1 (0) = 0 for all ε ≥ 0.

Mathematically, this is described by a discrete time semi-Markov process.
Let

(
η
(ε)
k , κ

(ε)
k

)
be a Markov renewal chain with phase space X × {1, 2, . . .}, where

X = {−1, 0, 1}, and with transition probabilities

q
(ε)
ij (n) = P

{
η
(ε)
k+1 = j, κ

(ε)
k+1 = n/η

(ε)
k = i

}
, i, j ∈ X, n = 1, 2, . . . ,
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given by

q
(ε)
ij (n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g
(ε)
1 (n) i = 1, j = 0,

(1− p(ε))g(ε)
0 (n) i = 0, j = 1,

p(ε)g
(ε)
0 (n) i = 0, j = −1,

χ(n = 1) i = j = −1,
0 otherwise.

Let ν(ε)(n) = max{k : γ(ε)(k) ≤ n}, where γ(ε)(0) = 0 and γ(ε)(k) = κ
(ε)
1 + · · · + κ

(ε)
k

for k ≥ 1.
The discrete time semi-Markov process η(ε)(n) can be defined by the following relation,

η(ε)(n) = η
(ε)

ν(ε)(n)
, n = 0, 1, . . . .

Let
ν

(ε)
j = min

{
k ≥ 1: η(ε)

k = j
}
.

Then the absorption time is given by μ(ε) = γ(ε)
(
ν

(ε)
−1

)
and the first regeneration time is

given by τ (ε)
1 = γ(ε)

(
ν

(ε)
1

)
.

The process described above is illustrated in Figure 1.

� n

�

η(ε)(n)

0

1

-1

· · ·

· · ·

� �

� �

�

�

�

γ(ε)(1) τ
(ε)
1

μ(ε)

Figure 1. Realization of the process η(ε)(n).

In the definition of a regenerative process with regenerating stopping time it is assumed
that the regeneration times are proper random variables. In the process defined above
this is not the case. However, the transition probabilities from the absorbing state can be
modified in such a way that the return times to state 1 are proper random variables, and
that the probabilities P

{
η(ε)(n) = i, μ(ε) > n

}
are the same for the modified process. We

can then apply the results from Sections 2 and 3 to the modified process and interpret
the results for the original process.

The weak continuity conditions at ε = 0 are formulated in terms of the local charac-
teristics of the alternating regenerative process as follows.

F: (a) g
(ε)
i (n) → g

(0)
i (n) as ε→ 0, n = 0, 1, . . . , i = 0, 1.

(b) p(ε) → p(0) ∈ [0, 1) as ε→ 0.
We also need the following non-periodicity condition.

G: At least one of the distributions g(0)
0 (n) and g(0)

1 (n) is non-periodic.
We introduce the following mixed power-exponential moment generating functions for

distributions of sojourn times,

ψ
(ε)
i (ρ, r) =

∞∑
n=0

nreρng
(ε)
i (n), ρ ≥ 0, r = 0, 1, . . . , i = 0, 1. (18)



PERTURBED DISCRETE TIME REGENERATIVE PROCESSES 149

Also, consider the following mixed power-exponential moment generating functions,

φ(ε)(ρ, r) =
∞∑
n=0

nreρnf (ε)(n), ρ ≥ 0, r = 0, 1, . . . , (19)

where
f (ε)(n) = P

{
τ

(ε)
1 = n, μ(ε) > τ

(ε)
1

}
, n = 0, 1, . . .

For the exponential moment generating functions, the following relation is obtained,

φ(ε)(ρ, 0) =
(
1− p(ε)

) ∞∑
n=0

eρn P
{
κ

(ε)
1 + κ

(ε)
2 = n

}
=
(
1− p(ε)

)
ψ

(ε)
0 (ρ, 0)ψ(ε)

1 (ρ, 0), ρ ≥ 0.

(20)

From this it follows that existence of (18) and (19) for ε small enough is guaranteed
by the following Cramér type condition:

H: There exists δ > 0 such that
(a) lim 0≤ε→0 ψ

(ε)
i (δ, 0) <∞, i = 0, 1.

(b) (1− p(0))ψ(0)
0 (δ, 0)ψ(0)

1 (δ, 0) > 1.
We will also use the following mixed power-exponential moment generating functions,

ω
(ε)
i (ρ, r) =

∞∑
n=0

nreρnq
(ε)
i (n), ρ ≥ 0, r = 0, 1, . . . , i = 0, 1, (21)

where

q
(ε)
i (n) = P

{
η(ε)(n) = i, τ

(ε)
1 ∧ μ(ε) > n

}
, n = 0, 1, . . . , i = 0, 1.

If condition E–H hold, then condition A−D hold, so the results in Section 2 can be
applied. Lemma 2.1 implies that for ε small enough there exists a unique root ρ(ε) of the
characteristic equation

φ(ε)(ρ, 0) = 1. (22)

It is worth noticing that the solution to equation (22) satisfies ρ(ε) = 0 if and only if
p(ε) = 0, and ρ(ε) > 0 if and only if p(ε) > 0.

It follows from Theorem 2.2 that that for ε sufficiently small,

lim
n→∞ P

{
η(ε)(n) = j/μ(ε) > n

}
= π

(ε)
j

(
ρ(ε)
)
, j = 0, 1,

where

π
(ε)
j

(
ρ(ε)
)

=
ω

(ε)
j (ρ(ε), 0)

ω
(ε)
0 (ρ(ε), 0) + ω

(ε)
1

(
ρ(ε), 0

) , j = 0, 1. (23)

If conditions P(k)
1 and P(k)

2 hold for the generating functions (19) and (21), it follows
from Theorem 3.1 that we can build an asymptotic expansion for the quasi-stationary
distribution (23). However, it is more convenient to use perturbation conditions for local
characteristics of the process η(ε)(n). Therefore, we formulate perturbation conditions
on the generating functions of the distributions of sojourn times and the absorption
probabilities, and then show how these conditions are related to P(k)

1 and P(k)
2 .

We assume the following:

P(k)
3 : p(ε) = p(0) + p[1]ε+ · · ·+ p[k]εk + o(εk), where |p[n]| <∞, n = 1, . . . , k.

P(k)
4 : ψ(ε)

i (ρ(0), r) = ψ
(0)
i (ρ(0), r) + ψi[1, r]ε + · · · + ψi[k − r, r]εk−r + o(εk−r), for r =

0, . . . , k, i = 0, 1, where |ψi[n, r]| <∞, n = 1, . . . , k − r, r = 0, . . . , k, i = 0, 1.
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Observe that for n = 0, 1, . . . ,

P{η(ε)(n) = i, τ
(ε)
1 ∧ μ(ε) > n} =

{
P{κ(ε)

1 ≤ n, κ
(ε)
1 + κ

(ε)
2 > n} i = 0,

P{κ(ε)
1 > n} i = 1.

Using this relation, we obtain for ρ ≥ 0,

ω
(ε)
i (ρ, 0) =

{
ψ

(ε)
1 (ρ, 0)ϕ(ε)

0 (ρ, 0) i = 0,
ϕ

(ε)
1 (ρ, 0) i = 1,

(24)

where, for i = 0, 1,

ϕ
(ε)
i (ρ, 0) =

{
(ψ(ε)
i (ρ, 0)− 1)/(eρ − 1) ρ > 0,

ψ
(ε)
i (0, 1) ρ = 0.

(25)

Under condition H, the derivative of any order of the function ϕ
(ε)
i (ρ, 0) exists for

0 ≤ ρ ≤ β < δ and sufficiently small ε. Denote the derivative of order r of this function
by ϕ(ε)

i (ρ, r). It follows directly from (25) that

ψ
(ε)
i (ρ, 0) = ϕ

(ε)
i (ρ, 0)(eρ − 1) + 1, ρ ≥ 0. (26)

By differentiating equation (26) r times and rearranging, it follows that the derivative
of order r = 1, 2, . . . , of the function ϕ(ε)

i (ρ, 0) is given by the recursive relation

ϕ
(ε)
i (ρ, r) =

{
(ψ(ε)
i (ρ, r)− eρ

∑r−1
j=0

(
r
j

)
ϕ

(ε)
i (ρ, j))/(eρ − 1) ρ > 0,

(ψ(ε)
i (0, r + 1)−

∑r−1
j=0

(
r+1
j

)
ϕ

(ε)
i (0, j))/(r + 1) ρ = 0.

In the following, suppose that condition P(k)
3 holds, together with condition P(k)

4 if
ρ(0) > 0, or together with condition P(k+1)

4 if ρ(0) = 0. Then the following asymptotic
expansion holds,

ϕ
(ε)
i

(
ρ(0), r

)
= ϕ

(0)
i

(
ρ(0), r

)
+ ϕi[1, r]ε+ · · ·+ ϕi[k − r, r]εk−r + o(εk−r). (27)

Denote ϕi[0, r] = ϕ
(0)
i (ρ(0), r).

In the case ρ(0) > 0, the coefficients for i = 0, 1, are given by

ϕi[n, r]
(
eρ

(0) − 1
)

=

{
ψi[n, 0]− δ(n, 0) n = 0, . . . , k, r = 0,
ψi[n, r]− eρ

(0)∑r−1
j=0

(
r
j

)
ϕi[n, j] n = 0, . . . , k − r, r = 1, . . . , k.

(28)

In the case ρ(0) = 0, the coefficients for i = 0, 1, are given by
ϕi[n, r](r + 1)

=

{
ψi[n, 1] n = 0, . . . , k, r = 0,
ψi[n, r + 1]−

∑r−1
j=0

(
r+1
j

)
ϕi[n, j] n = 0, . . . , k − r, r = 1, . . . , k.

(29)

Differentiating equation (20) and (24) r times with respect to ρ and evaluating at
ρ = ρ(0) yields for any r = 0, 1, . . . ,

φ(ε)
(
ρ(0), r

)
=
(
1− p(ε)

) r∑
j=0

(
r

j

)
ψ

(ε)
0

(
ρ(0), j

)
ψ

(ε)
1

(
ρ(0), r − j

)
, (30)

ω
(ε)
0

(
ρ(0), r

)
=

r∑
j=0

(
r

j

)
ψ

(ε)
1

(
ρ(0), j

)
ϕ

(ε)
0

(
ρ(0), r − j

)
, (31)

ω
(ε)
1

(
ρ(0), r

)
= ϕ

(ε)
1

(
ρ(0), r

)
. (32)
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It follows from equations (27)–(32) that conditions P(k)
1 and P(k)

2 are implied by
conditions P(k)

3 and P(k)
4 in the case ρ(0) > 0, and by conditions P(k)

3 and P(k+1)
4 in

the case ρ(0) = 0. We can find the relations between the coefficients by using arithmetic
rules of asymptotic expansions.

The coefficients in condition P(k)
1 are for any n = 0, . . . , k − r and r = 0, . . . , k given

by

a0,r =
(
1− p(0)

)
h0,r, an,r =

(
1− p(0)

)
hn,r −

n∑
i=1

p[i]hn−i,r,

hn,r =
n∑
i=0

r∑
j=0

(
r

j

)
ψ0[i, j]ψ1[n− i, r − j].

(33)

The coefficients in condition P(k)
2 are for any n = 0, . . . , k − r and r = 0, . . . , k given

by

bn,r({0}) =
n∑
i=0

r∑
j=0

(
r

j

)
ψ1[i, j]ϕ0[n− i, r − j],

bn,r({1}) = ϕ1[n, r], bn,r(X) = bn,r({0}) + bn,r({1}).
(34)

It follows from Theorem 3.1 that an asymptotic expansion of order k exists for the
quasi-stationary distribution (23). We can build the expansion using equations (7), (8),
(9), (28), (29), (33) and (34).

5. Perturbed Risk Processes

This section shows how the results of the present paper can be used to obtain approx-
imations for the ruin probability in a perturbed discrete time risk process.

For each ε ≥ 0, let X(ε)
1 , X

(ε)
2 , . . . be a sequence of non-negative, independent and

identically distributed random variables and set

Z(ε)
u (n) = u+ n−

n∑
k=1

X
(ε)
k , n = 0, 1, . . . ,

where u is a non-negative integer.
We can interpret Z(ε)

u (n) as the capital of an insurance company (in units equivalent
to expected premium per time unit) and X(ε)

n as the claims at moment n.
Let us denote p(ε) = P{X(ε)

1 > 0} and μ(ε) =
∑∞
u=0 ug

(ε)(u) where

g(ε)(u) = P
{
X

(ε)
1 = u/X

(ε)
1 > 0

}
, u = 0, 1, . . .

An object of interest is the infinite time horizon ruin probability which is defined as

Ψ(ε)(u) = P

{
min
n≥0

Z(ε)
u (n) < 0

}
, u = 0, 1, . . .

Define α(ε) := EX
(ε)
1 = p(ε)μ(ε). It can be shown that if α(ε) ≥ 1, then Ψ(ε)(u) = 1

for all u ≥ 0. In the case α(ε) ≤ 1, the ruin probability Ψ(ε)(u) satisfies the following
discrete time renewal equation,

Ψ(ε)(u) = q(ε)(u) +
u∑
k=0

Ψ(ε)(u− k)f (ε)(k), u = 0, 1, . . . , (35)

where, for u = 0, 1, . . . ,

G(ε)(u) =
u∑
k=0

g(ε)(k), f (ε)(u) = α(ε) 1−G(ε)(u)
μ(ε)

, q(ε)(u) =
∞∑

k=u+1

f (ε)(k).
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A derivation of this equation can be found, for example, in Petersson and Silvestrov
(2012, 2013). It is similar with the well-known technique for deriving the corresponding
renewal equation for a continuous time risk process, given, for example, in Feller (1966)
and Grandell (1991).

We now introduce the following mixed power-exponential moment generating func-
tions,

ϕ(ε)(ρ, r) =
∞∑
u=0

ureρu
(
1−G(ε)(u)

)
, ρ ≥ 0, r = 0, 1, . . .

Let us assume the following conditions:
I: (a) g(ε)(u) → g(0)(u) as ε→ 0, u = 0, 1, . . .

(b) p(ε) → p(0) as ε→ 0.
J: There exists δ > 0 such that

(a) lim 0≤ε→0 ϕ
(ε)(δ, 0) <∞.

(b) (α(0)/μ(0))ϕ(0)(δ, 0) > 1.
Under conditions I and J there exists a unique non-negative root ρ(ε) for sufficiently

small ε to the characteristic equation
∞∑
u=0

eρuf (ε)(u) = 1. (36)

Using this, we can transform the renewal equation (35) into the following form,

Ψ̃(ε)(u) = q̃(ε)(u) +
u∑
k=0

Ψ̃(ε)(u− k)f̃ (ε)(k), u = 0, 1, . . . , (37)

where

Ψ̃(ε)(u) = eρ
(ε)uΨ(ε)(u), q̃(ε)(u) = eρ

(ε)uq(ε)(u), f̃ (ε)(u) = eρ
(ε)uf (ε)(u).

There is a close connection between renewal equations and regenerative processes. In
fact, the solution x(n) of a discrete time renewal equation where the distribution f(n)
and the forcing function q(n) satisfies 0 ≤ q(n) ≤ 1 −

∑n
k=0 f(k) for all n ≥ 0, can be

related to the one-dimensional distributions of some discrete time regenerative process.
In our case, there exists a discrete time regenerative process ξ(ε)(n), n = 0, 1, . . . ,

with regeneration times 0 = τ
(ε)
0 < τ

(ε)
1 < . . . , and phase space {0, 1} such that for

u = 0, 1, . . . , we have

P
{
ξ(ε)(u) = 1

}
= Ψ̃(ε)(u) (38)

and
P
{
ξ(ε)(u) = 1, τ (ε)

1 > u
}

= q̃(ε)(u), P
{
τ

(ε)
1 = u

}
= f̃ (ε)(u). (39)

We next show how this process can be constructed. It is similar with the construction
in the corresponding continuous time model, given in Ekheden and Silvestrov (2011).

Let κ(ε)
1 , κ

(ε)
2 , . . . , be a sequence of independent random variables, each with distri-

bution f̃ (ε)(n), and let U (ε)
1 , U

(ε)
2 , . . . , be a sequence of independent random variables

uniformly distributed on the interval [0, 1]. Furthermore, we assume that the two se-
quences are independent.

For k = 0, 1, . . . , let

v(ε)(k) =

{
q̃(ε)(k)/(1− F̃ (ε)(k)) if 1− F̃ (ε)(k) > 0,
0 if 1− F̃ (ε)(k) = 0,

where F̃ (ε)(k) =
∑k
u=0 f̃

(ε)(u), k = 0, 1, . . . .
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Let us now, for every n = 1, 2, . . . , define a random process by

η(ε)
n (k) = χ

(
U (ε)
n ≤ v(ε)(k)

)
, k = 0, 1, . . . .

Using this, we can define a regenerative process ξ(ε)(n) with regeneration times τ (ε)
k =

κ
(ε)
1 + · · ·+ κ

(ε)
k , k = 1, 2, . . . , by

ξ(ε)(n) = η
(ε)

ν(ε)(n)+1

(
ζ(ε)(n)

)
, n = 0, 1, . . . ,

where ν(ε)(n) = max
{
k : τ (ε)

k ≤ n
}

is the number of regenerations up to and including
time n, and ζ(ε)(n) = n− τ

(ε)

ν(ε)(n)
is the time since the last regeneration.

By definition, ξ(ε)(n) is a regenerative process with phase space {0, 1} and regeneration
times 0 = τ

(ε)
0 < τ

(ε)
1 < . . . . It can be checked that for this process, relations (38)

and (39) hold.
If conditions I−J hold, then conditions A–D hold for the functions f̃ (ε)(u) and q̃(ε)(u).

It follows from Theorem 2.2 that

P
{
ξ(ε)(u) = 1

}
→ π(ε), u→∞, (40)

where

π(ε) =

∑∞
u=0 P

{
ξ(ε)(u) = 1, τ (ε)

1 > u
}

∑∞
u=0 P

{
τ

(ε)
1 > u

} . (41)

Rewriting in terms of the claim distributions, relations (40) and (41) yield

eρ
(ε)uΨ(ε)(u) →

∑∞
n=0 e

ρ(ε)n
∑∞

k=n+1(1−G(ε)(k))∑∞
n=0 ne

ρ(ε)n(1 −G(ε)(n))
as u→∞. (42)

Relation (42) can be seen as a discrete time analogue of the classical Cramér–Lundberg
approximation.

Let us introduce the following mixed power-exponential moment generating functions,

ψ(ε)(ρ, r) =
∞∑
u=0

ureρug(ε)(u), ρ ≥ 0, r = 0, 1, . . . ,

ω(ε)(ρ, r) =
∞∑
u=0

ureρu
∞∑

k=u+1

(1−G(ε)(k)), ρ ≥ 0, r = 0, 1, . . . .

In order to build an asymptotic expansion for the stationary distribution π(ε), we
impose the following perturbation conditions:

P(k)
5 : p(ε) = p(0) + p[1]ε+ · · ·+ p[k]εk + o(εk), where |p[n]| <∞, n = 1, . . . , k.

P(k)
6 : ψ(ε)(ρ(0), r) = ψ(0)(ρ(0), r) + ψ[1, r]ε + · · · + ψ[k − r, r]εk−r + o(εk−r), for r =

0, . . . , k, where |ψ[n, r]| <∞, n = 1, . . . , k − r, r = 0, . . . , k.
The moment generating functions ϕ(ε)(ρ, 0), ψ(ε)(ρ, 0) and ω(ε)(ρ, 0) are linked by the

relations

ω(ε)(ρ, 0) =

{
(ϕ(ε)(ρ, 0)− ϕ(ε)(0, 0))/(eρ − 1) ρ > 0,
ϕ(ε)(0, 1) ρ = 0,

(43)

and

ϕ(ε)(ρ, 0) =

{
(ψ(ε)(ρ, 0)− 1)/(eρ − 1) ρ > 0,
ψ(ε)(0, 1) ρ = 0.

(44)

Using relations (43) and (44) we can build asymptotic expansions for ϕ(ε)(ρ(0), r) and
ω(ε)(ρ(0), r) using the same techniques as in Section 4. From this one can continue and
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obtain asymptotic expansions for the stationary distribution π(ε) and the root ρ(ε) of the
characteristic equation (36) as follows,

π
(ε)
l = π(0) + π1ε+ · · ·+ πlε

l + o(εl),

ρ(ε)
r = ρ(0) + a1ε+ · · ·+ arε

r + o(εr).
(45)

Using (42) and (45) we obtain approximations of the ruin probability of the form

Ψ̂(ε)
r,l (u) = e−ρ

(ε)
r uπ

(ε)
l . (46)

By different choices of the parameters r and l one can control the highest order of
moments of claim distributions involved in the approximation.

For any non-negative integer-valued function u(ε) → ∞ in such a way that εru(ε) →
λr ∈ [0,∞), as ε → ∞, this approximation has asymptotic relative error zero, meaning
that

Ψ(ε)(u(ε))

Ψ̂(ε)
r,l (u(ε))

→ 1 as ε→ 0.

In the case ρ(0) > 0, the approximation in equation (46) generalises the Cramér–
Lundberg approximation for discrete time risk processes while the case ρ(0) = 0 corre-
sponds to a generalisation of the diffusion approximation.
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Vip. 89, 2013, stor. 156–166 No. 89, 2013, pp. 156–166

ASYMPTOTIC PROPERTIES OF CORRECTED SCORE ESTIMATOR
IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERRORS

UDC 519.21

D. S. PUPASHENKO, S. V. SHKLYAR, AND A. G. KUKUSH

Abstract. The autoregressive model with errors in variables with normally distributed control se-
quence is considered. For the main sequence, two cases are dealt with: (a) main sequence has station-
ary distribution, and (b) initial distribution is arbitrary, independent of the control sequence and has
finite fourth moment. Here the elements of the main sequence are not observed directly, but surrogate
data that include a normally distributed additive error are observed. Errors and main sequence are
assumed to be mutually independent.

We estimate unknown parameter using the Corrected Score method and in both cases prove strict
consistency and asymptotic normality of the estimator. To prove asymptotic normality we apply the
theory of strong mixing sequences. Finally, we compare the efficiency of the Least Squares (naive)
estimator and the Corrected Score estimator in the forecasting problem and conclude that the naive
estimator gives better forecast.
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1. Introduction

Introduce an autoregressive (AR) sequence

Xn − μ = a(Xn−1 − μ) + bεn, n ≥ 1, X0 ∼ N
(
μ, σ2

)
, (1)

where
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• coefficients a, b and mean μ are unknown parameters, such that |a| < 1 and
b > 0,

• {X0, εn, n ≥ 1} are independent random variables, εn ∼ N(0, 1), n ≥ 1.
Properties and applications of such models were studied, e.g., in McQuarrie and

Tsai [10].
We are interested in estimators of the parameters a and μ. In case where there is

no errors in variables, estimators of these parameters can be constructed by the Least
Squares (LS) method with elementary criterion function

qLS(Xk, Xk−1; a, μ) = ((Xk − μ)− a(Xk−1 − μ))2.

Here we consider a situation where elements of the main sequence are not observed
directly, but surrogate data that include additive errors are observed. Control sequence
of the model is normally distributed and main sequence is stationary distributed, or as
a different case, initial distribution is arbitrary, independent of the control sequence and
has finite fourth moment.

Estimation of the parameters in autoregressive model with measurement error was
considered in Dedecker et al. [7]. They proposed an estimation procedure based on
modified least square criterion involving a suitably chosen weight function.

Other consistent estimators exist in this model. Letting q → ∞ as the sample size is
increasing, Chanda [6] applies Yule–Walker ARMA(p, q) estimator for errors-in-variables
AR(p) model. The estimator does not use the error variance. Moreover, the errors are
allowed to be slightly autocorrelated. Under some conditions, Chanda’s estimator is
consistent and asymptotically normal, but it is not

√
n-consistent.

In present paper we apply Corrected Score (CS) method (see Carroll et al. [4, Ch. 4]).
We observe Wk = Xk + Vk, k ≥ 0, where Vk ∼ N(0, σ2

V ) and {X0, Vk, εk, k ≥ 0} are
mutually independent. Consider the elementary score function of LS estimator

ψ0,LS(Xk, Xk−1; a, μ) =
1
2
∂

∂a
qLS(Xk, Xk−1; a, μ).

We construct a new score qCS(Wk,Wk−1; a, μ) as a solution to the deconvolution
equation

Ea0,μ0(ψ0,CS(Wk,Wk−1; a, μ) | Xk, Xk−1) = ψ0,LS(Xk, Xk−1; a, μ) a.s.,

for all a, μ ∈ R. Then the CS estimator (ân, μ̂n)T is defined as a solution to equation
n∑
k=1

ψ0,CS(Wk,Wk−1; a, μ) = 0, a, μ ∈ R.

The true parameter a satisfies |a| < 1, and it will be shown below that |ân| < 1, for all
n ≥ n0(w) a.s.

In this paper we construct the CS estimator explicitly and study its asymptotic prop-
erties as n→∞.

The paper is organized as follows. The CS is given explicitly in Section 2. The strict
consistency and asymptotic normality of the estimator are presented in Section 3, and
Section 4 concludes. Proofs of the main results are given in Appendix.

We use the following notations. zT is transposed vector z, E stands for expectation of
a random variable, P1→ and d→ denote the convergence a.s. and in distribution respectively,

an
P1≈ bn means that an − bn

P1→ 0, as n→∞.

2. Construction of corrected score estimator

Rewrite model (1) in a more convenient way.
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Lemma 2.1. For the model (1) it holds

Xn − μ = b

n∑
i=1

an−iεi + an(X0 − μ), n ≥ 1. (2)

Proof. This statement is straightforward and can be proved by induction. �
From now on we suppose that {Wk, k = 0, . . . , n} are observed instead of

{Xk, k = 0, . . . , n},
where the additive error Vk ∼ N(0, σ2

V ) and {Vk, Xk, k ≥ 0} are mutually independent.
First, for the unknown AR coefficient a and mean μ we construct the LS estimators

(LSEs). To do that we introduce the objective function:

QLS(W0, . . . ,Wn; a, μ) =
1
n

n∑
k=1

((Wk − μ)− a(Wk−1 − μ))2,

and minimize it with respect to a and μ. Necessary and sufficient conditions for mini-
mizing are: {

∂QLS

∂a = 2
n

∑n
k=1(a(Wk−1 − μ)− (Wk − μ))(Wk−1 − μ) = 0,

∂QLS

∂μ = 2
n

∑n
k=1(a(Wk−1 − μ)− (Wk − μ))(1 − a) = 0.

Solving this system of equations, we get the LSE of the mean μ

μ̂n =
∑n

k=1WkWk−1

∑n
k=1Wk−1 −

∑n
k=1W

2
k−1

∑n
k=1Wk

n(
∑n
k=1WkWk−1 −

∑n
k=1W

2
k−1) + (

∑n
k=1Wk−1)2 −

∑n
k=1Wk−1

∑n
k=1Wk

,

provided the denominator is nonzero, and the LSE of the parameter a is

âLS
n =

∑n
k=1(Wk − μ̂n)(Wk−1 − μ̂n)∑n

k=1(Wk−1 − μ̂n)2
. (3)

Because the LSE μ̂ is too complicated to be investigated, we use the sample mean
that provides a strict consistent estimator of the mean μ,

μ̂n =
1
n

n−1∑
k=0

Wk
P1→ μ, as n→∞.

We prove that the μ̂n is asymptotically normal using the Central Limit Theorem
(CLT) (see Billingsley [1, Th 27.4]) and results of Bosq and Blanke [3, p. 47–48] in order
to ensure that we deal with a geometrically strong mixing sequence.

Next we construct an estimator of the regression coefficient a by the CS method. We
introduce a function ψLS(X0, . . . , Xn; a, μ) as

ψLS(X0, . . . , Xn; a, μ) =
1
2
∂QLS
∂a

=
a

n

n∑
k=1

(Xk−1 − μ)2 − 1
n

n∑
k=1

(Xk − μ)(Xk−1 − μ).

We search for a function ψCS(W0, . . . ,Wn; a, μ) that satisfies the deconvolution equa-
tion

E(ψCS(W0, . . . ,Wn; a, μ) | X0, . . . , Xn) = ψLS(X0, . . . , Xn; a, μ) a.s. (4)
To do that we obtain polinomial functions h(Wk;μ) and g(Wk−1,Wk;μ) that solve

equations
E(h(Wk;μ) | Xk) = (Xk − μ)2 a.s., (5)

E(g(Wk−1,Wk;μ) | Xk−1, Xk) = (Xk − μ)(Xk−1 − μ) a.s. (6)
of the following form

h(Wk;μ) = (Wk − μ)2 − σ2
V ,

g(Wk−1,Wk;μ) = (Wk−1 − μ)(Wk − μ).
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Hence we get a polynomial solution to (4)

ψCS(W0, . . . ,Wn; a, μ) =
a

n

n∑
k=1

(
(Wk−1 − μ)2 − σ2

V

)
− 1
n

n∑
k=1

(Wk−1 − μ)(Wk − μ).

Plugging-in the sample mean μ̂n and equating ψCS(W0, . . . ,Wn; a, μ̂n) to zero we get
the CS estimator of a,

ân =
∑n

k=1(Wk − μ̂n)(Wk−1 − μ̂n)∑n
k=1(Wk−1 − μ̂n)2 − nσ2

V

. (7)

Remark 2.1. The denominator of (7) is nonzero starting from certain random number,
i.e., for all n ≥ n0(ω) a.s.

Proof of Remark 2.1 is a part of proof of Theorem 3.2, see Appendix.

3. Main results

Asymptotic properties of CS estimator. We state the consistency and asymptotic
normality of the CS estimator (7) as n→∞.

Theorem 3.1. In model (1), let {Xk, k ≥ 1} be a stationary process. Assume that
variables {X0, εk, Vk−1, k ≥ 1} are mutually independent, then the CS estimator (7) is
strictly consistent.

For Theorems 3.2 and 3.4, do not assume that X0 has a stationary distribution of
underlying AR sequence. In particular, assume (1) without requirement that X0 ∼
N(μ, σ2).

Theorem 3.2. Assume that {Xk, k ≥ 1} in AR (1) has an arbitrary initial distribution
with finite fourth moment and variables {X0, εk, Vk−1, k ≥ 1} are mutually independent.
Then CS estimator (7) is strictly consistent.

Theorem 3.3. In AR (1) let {Xk, k ≥ 1} be a stationary process. Assume that vari-
ables {X0, εk, Vk−1, k ≥ 1} are mutually independent. Then the CS estimator (7) is
asymptotically normal with positive asymptotic variance

σ2
∞ = 1− a2 + 2

(
1− a2

) σ2
V

σ2
+
(
2a2 + 1

) σ4
V

σ4
. (8)

Theorem 3.4. Assume that {Xk, k ≥ 1} in AR (1) has arbitrary initial distribution
with finite fourth moment and variables {X0, εk, Vk−1, k ≥ 1} are mutually independent.
Then the CS the estimator (7) is asymptotically normal with positive asymptotic variance

σ2
∞ = 1− a2 + 2

(
1− a2

)2 σ2
V

b2
+
(
2a2 + 1

) (
1− a2

)2 σ4
V

b4
. (9)

Remark 3.1. In case of known parameter μ, the CS estimator of a is defined by (7)
setting μ̂n = μ. Then the estimator remains strictly consistent and asymptotically normal
with unchanged asymptotic variance (8).

Proofs of Theorems 3.1 to 3.4 can be found in Appendix.

Comparison of the LS and CS estimators. We compare the efficiency of the LS
estimator (3) and CS estimator (7) in the forecasting problem.

As two forecasts of the forthcoming observation Wn+1 we take the values

WLS
n+1 = μ̂n + âLS

n (Wn − μ̂n), WCS
n+1 = μ̂n + âCS

n (Wn − μ̂n).
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To find an optimal forecast E(Wn+1|Wn) first we calculate the correlation coefficient
between Wn and Wn+1,

ρ =
aσ2

σ2 + σ2
V

.

Then we use a theorem from Kartashov [8] which states that for jointly Gaussian random
variables (ξ1, ξ2) ∼ N(μ1, μ2, σ1, σ2, ρ), the conditional expectation can be calculated as

E(ξ1 | ξ2 = y) = μ1 + ρ
σ1

σ2
(y − μ2).

Thus, the optimal forecast is

E(Wn+1 | Wn) = μ+ ρ(Wn − μ) = μ+
aσ2

σ2 + σ2
V

(Wn − μ).

But the parameters of the model are unknown, and instead one can use two forecasts
constructed above. Because the CS estimator is strictly consistent, i.e. âCS

n
P1→ a, as

n→∞, and

âLS
n

P1→ a
σ2

σ2 + σ2
V

as n→∞,

we have:
WCS
n+1 − μ = (a+ o(1))(Wn − μ) a.s.

and for the LS forecast,

WLS
n+1 − μ = âLS

n (Wn − μ) =
(
a

σ2

σ2 + σ2
V

+ o(1)
)

(Wn − μ) a.s.,

where o(1) is a sequence of random variables that converges to 0 a.s.
Hence like in the example from Cheng and Van Ness [5, p. 70], we conclude that the

naive LS estimator yields better forecast.

4. Conclusion

In this paper we considered the autoregressive model with measurement error. We
proved the strict consistency and asymptotic normality of the CS estimator. Also we
compared the efficiency of the LS (naive) estimator and CS estimator in the forecasting
problem and showed that the naive estimator gives better forecast, though the naive
estimator is inconsistent as n→∞.

Appendix

Proof of Theorem 3.1. We suppose that the main sequence of AR (1) has stationary
distribution. Initial distribution is X0 ∼ N(μ, σ2), therefore using stationarity of the
process we get that σ2 = b2

1−a2 .
To show the strict consistency rewrite the estimator (7):

ân =
1
n

∑n
k=1 VkVk−1 + 1

n

∑n
k=1(Xk − μ̂n)(Xk−1 − μ̂n)

1
n

∑n
k=1(Xk−1 − μ̂n)2 + 1

n

∑n
k=1 V

2
k−1 + 2

n

∑n
k=1(Xk−1 − μ̂n)Vk−1 − σ2

V

+
1
n

∑n
k=1(Xk − μ̂n)Vk−1 + 1

n

∑n
k=1 Vk(Xk−1 − μ̂n)

1
n

∑n
k=1(Xk−1 − μ̂n)2 + 1

n

∑n
k=1 V

2
k−1 + 2

n

∑n
k=1(Xk−1 − μ̂n)Vk−1 − σ2

V

.

(10)

We find the limits as n→∞ for all terms in (10) separately.
First consider the sequence

1
n

n∑
k=1

(Xk−1 − μ̂n)2.
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Rewriting it as

1
n

n∑
k=1

(Xk−1 − μ̂n)2 =
1
n

n∑
k=1

(Xk−1 − μ)2 + (μ− μ̂n)
2
n

n∑
k=1

(Xk−1 − μ) + (μ− μ̂n)2

and using strict consistency of sample mean μ̂n, we get that the last two terms are
vanishing as n→∞, hence

1
n

n∑
k=1

(Xk−1 − μ̂n)2
P1≈ 1

n

n∑
k=1

(Xk−1 − μ)2.

To get the limit of the sequence

1
n

n∑
k=1

(Xk−1 − μ)2,

we use the ergodic theorem for stationary processes (see Korolyuk et al. [9]). Conditions
of the ergodic theorem can be verified, and we get a limit of the first term in denominator
of (10),

1
n

n∑
k=1

(Xk−1 − μ̂n)2
P1≈ 1

n

n∑
k=1

(Xk−1 − μ)2 P1→ E(X0 − μ)2 = σ2 as n→∞. (11)

To get a limit for the second term we use the strong law of large numbers (SLLN):

1
n

n∑
k=1

V 2
k−1

P1→ EV 2
0 = σ2

V as n→∞. (12)

By similar technique we get limits of all terms in (10) as n→∞:

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk−1
P1→ 0, (13)

1
n

n∑
k=1

VkVk−1
P1→ 0, (14)

1
n

n∑
k=1

(Xk − μ̂n)(Xk−1 − μ̂n)
P1→ aσ2, (15)

1
n

n∑
k=1

(Xk − μ̂n)Vk−1
P1→ 0, (16)

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk
P1→ 0. (17)

Plugging limits (11)–(17) in expression (10), we get that ân
P1→ a as n→∞. �

Proofs of Remark 2.1 and Theorem 3.2. We denote stationary distributed random vari-
ables satisfying (1) as {Xst

k , k ≥ 1}, with initial distribution Xst
0 ∼ N(μ, σ2). We assume

that {X0, X
st
0 , εk, Vk−1, k ≥ 1} are mutually independent.

Equality (2) implies that

Xn − μ = (Xst
n − μ) + an

(
X0 −Xst

0

)
, (18)

hence Xn −Xst
n

P1−→ 0 as n→∞.
Now we have to find a limit of (10) as n→∞.
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First consider
1
n

n∑
k=1

(Xk−1 − μ̂n)2
P1≈ 1

n

n∑
k=1

(Xk−1 − μ)2.

We plug expression (18) in the latter sequence, hence

1
n

n∑
k=1

(Xk−1 − μ)2 =
1
n

n∑
k=1

(
(Xst

k−1 − μ) + ak−1(X0 −Xst
0 )
)2

=
1
n

n∑
k=1

(
Xst
k−1 − μ

)2 +
2
n

(
X0 −Xst

0

) n∑
k=1

ak−1
(
Xst
k−1 − μ

)
+

1
n

(
X0 −Xst

0

)2 n∑
k=1

a2(k−1).

(19)

In the proof of Theorem 3.1, we have shown convergence of the first term in expres-
sion (19):

1
n

n∑
k=1

(
Xst
k−1 − μ

)2 P1→ σ2 as n→∞.

Since |a| < 1, we get that

1
n

(
X0 −Xst

0

)2 n∑
k=1

a2(k−1) P1→ 0 as n→∞.

For the second term of (19) we proceed as follows. Denote corresponding random
sequence as

Yn =
2
n

n∑
k=1

ak−1
(
Xst
k−1 − μ

)
:

• First using Chebyshev’s inequality
∞∑
n=1

P(|Yn| > C) ≤
∞∑
n=1

E |Yn|2
C2

<∞

we show that for each C > 0, it holds
∑∞

n=1 P(|Yn| > C) <∞.
• Then Borel–Cantelli lemma implies that ∀C > 0 ∃n0 ∀n ≥ n0 : |Yn| ≤ C a.s.

Therefore, to prove that Yn
P1→ 0 as n→∞, it is enough to show

∑∞
n=1 E |Yn|2 <∞.

After quite cumbersome calculations, we can show that

∞∑
n=1

E

(
2
n

n∑
k=1

ak−1(Xst
k−1 − μ)

)2

converges.
Hence

2
n

(
X0 −Xst

0

) n∑
k=1

ak−1
(
Xst
k−1 − μ

) P1→ 0 as n→∞.

Therefore, plugging all limits found above in (19), we obtain

1
n

n∑
k=1

(Xk−1 − μ̂n)2
P1→ σ2 as n→∞. (20)
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Similarly we get limits of all terms in (10) as n→∞:

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk−1
P1→ 0, (21)

1
n

n∑
k=1

(Xk−1 − μ̂n)(Xk − μ̂n)
P1→ aσ2, (22)

1
n

n∑
k=1

(Xk − μ̂n)Vk−1
P1→ 0, (23)

1
n

n∑
k=1

(Xk−1 − μ̂n)Vk
P1→ 0. (24)

We plug (12), (14), (20)–(24) in expression (10) and get that ân
P1→ a, as n→∞, hence

the estimator (7) is strictly consistent. A limit of the denominator in (10) is nonzero,
therefore, the statement of Remark 2.1 holds true. �

Now, we state lemmas for mixing coefficients and mixing sequences.
First note that for two σ-algebras G and H on a probability space (Ω,F ,P), the strong

mixing coefficient is defined as follows:

α(G,H) = sup
A∈G,B∈H

|P(A ∩B)− P(A)P(B)|.

For a random sequence {Xk, k ≥ 0}, denote

αX(m) = sup
k≥0

α(σ(X0, . . . , Xk), σ(Xk+m, Xk+m+1, . . .)).

The sequence {Xk, k ≥ 0} is called a strong mixing process if limm→∞ αX(m) = 0. It is
called a geometrically strong mixing (GSM) process if

αX(m) ≤ brm, m ≥ 0,

for some 0 < r < 1 and b > 0.
Now, we state a helpful lemma which is a direct consequence of the definition of strong

mixing sequences (see Billingsley [2]).

Lemma 4.1. Let {Xn, n ≥ 0} be a random sequence and Zn = (Xn−l, . . . , Xn)T , n ≥ l.
Then for α-mixing coefficients associated to sequences {Xn, n ≥ 0} and {Zn, n ≥ l}, the
following relation holds true:

αX(m) = αZ(m+ l), m ≥ 0

Corollary 4.1. Let {Xn, n ≥ 0} be a random sequence and Zn = (Xn−l, . . . , Xn)T ,
n ≥ l. For a Borel measurable vector function f , consider a sequence

f(Z) = {f(Zn), n ≥ l}.
Then

αX(m) ≥ αf(Z)(m+ l), m ≥ 0.
If {Xn, n ≥ 0} is a strong mixing sequence then {f(Zn), n ≥ l} is a strong mixing
sequence as well. If {Xn, n ≥ 0} is a GSM sequence then so is {f(Zn), n ≥ l}.
Lemma 4.2. Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces. Let G1 and H1

be two sub-σ-algebras of F1 and let G2 and H2 be two independent sub-σ-algebras of F2.
Then

α(σ(G1 × G2), σ(H1 ×H2)) = α1(G1,H1),
Here for the calculating mixing coefficient α1 we use measure P1; and for α product
measure P = P1×P2 is used.
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Proof. Denote G = σ(G1 ×G2), H = σ(H1 ×H2). Expectation in (Ω2,F2,P2) is denoted
as E2. For A ∈ σ(F1 ×F2), denote the section Aω2 := {ω1 ∈ Ω1 | (ω1, ω2) ∈ A} ∈ F1.

Let A ∈ G and B ∈ H. Then P1(Aω2) and P1(Bω2) are independent random variables.
Hence

P(A)P (B) = E2(P1(Aω2)) E2(P1(Aω2)) = E2(P1(Bω2) P1(Bω2)).

We have
|P1(Aω2 ∩Bω2)− P1(Aω2)P1(Aω2)| ≤ α1(G1,H1) P2 -a.s.,

|P(A ∩B)− P(A)P(B)| = |E2(P1((A ∩B)ω2))− E2(P1(Aω2) P1(Bω2))|
= |E2(P1(Aω2 ∩Bω2)− P1(Aω2) P1(Bω2))| ≤ α1(G1,H1).

Varying A and B, we get
α(G,H) ≤ α1(G1,H1). (25)

From the other hand
α(G,H) = sup

A∈G, B∈H
|P(A ∩B)− P(A)P(B)|

≥ sup
A1∈G1, B1∈H1

|P((A1 × Ω2) ∩ (B1 × Ω2))− P(A1 × Ω2)P(B1 × Ω2)|

= sup
A1∈G1, B1∈H1

|P1(A1 ∩B1)− P1(A1)P1(B1)| = α1(G1,H1).

(26)

Inequalities (25) and (26) imply the statement of Lemma. �

Under conditions of Lemma 4.2, a similar relation holds true for φ-mixing coefficients:

φ(σ(G1 × G2), σ(H1 ×H2)) = φ1(G1,H1),

where
φ(G,H) = sup

A∈G, B∈H,P(B) �=0

∣∣P(A | B)− P(A)
∣∣.

Proof of Theorem 3.3. Now, the process {Xk, k ≥ 0} is stationary, X0 ∼ N(μ, σ2) and
σ2 = b2

1−a2 .
From expression (7) for estimator α̂n we get

√
n(ân − a) =

1√
n

∑n
k=1(Wk−1 − μ̂n)(Wk − μ̂n − a(Wk−1 − μ̂n)) +

√
naσ2

V

1
n

∑
k=1 n

∑n
k=1(Wk−1 − μ̂)2 − σ2

V

=:
An
Bn

.

From the proof of Theorem 3.1 we get a limit of the denominator:

Bn
P1−→ σ2. (27)

Now, rewrite the numerator. Because
∑n
k=1(Wk−1 − μ̂n) = 0, we have

An =
1√
n

n∑
k=1

(Wk−1 − μ̂n)(Wk − aWk−1) +
√
naσ2

V

=
1√
n

n∑
k=1

(Wk−1 − μ)(Wk − μ− a(Wk−1 − μ)) +
√
naσ2

V

− μ̂n − μ√
n

n∑
k=1

(Wk − μ− a(Wk−1 − μ)).

By the classical CLT,

1√
n

n∑
k=1

(Wk − μ− a(Wk−1 − μ)) =
1√
n

n∑
k=1

(Vk − aVk−1 + bεk)
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converges in distribution. Remember that μ̂n is a consistent estimator of μ. Then by
Slutsky lemma,

μ̂n − μ√
n

n∑
k=1

(Wk − μ− a(Wk−1 − μ)) P→ 0 as n→∞.

Denote
Zk = (Wk−1 − μ)(Wk − μ− a(Wk−1 − μ)) + aσ2

V

= (Wk−1 − μ)(Vk − aVk−1 + bεk) + aσ2
V .

With this notation, An
P≈ Ã = 1√

n

∑n
k=1 Zk.

The AR process {Xk−μ, k ≥ 0} is a GSM sequence, see Bosq, Blanke [3, Ex. 1.5, p. 47].
By Lemma 4.2 {(Xk − μ, Vk)T , k ≥ 0} is a GSM sequence too. Then by Corollary 4.1
{Zk, k ≥ 1} is a GSM sequence. Also {Zk, k ≥ 1} is a strictly stationary process with
EZk = 0 and EZ12

k <∞. Applying CLT, we get

1√
n

n∑
k=1

Zk
d→ N

(
0, σ2

A

)
with σ2

A = EZ2
1 + 2

∑∞
k=2 EZ1Zk. After some calculations we have

EZ2
1 =

(
1− a2

)
σ4 + 2σ2σ2

V +
(
2a2 + 1

)
σ4
V ,

EZ1Z2 = −a2σ2σ2
V ,

EZ1Zk = 0, k ≥ 3.

Therefore
σ2
A =

(
1− a2

)
σ4 + 2

(
1− a2

)
σ2σ2

V +
(
2a2 + 1

)
σ4
V .

Finally,

An
d→ N

(
0, σ2

A

)
, (28)

√
n(â− a) =

An
Bn

d→ N(0, σ2
∞)

with

σ2
∞ =

σ2
A

σ4
= 1− a2 + 2

(
1− a2

) σ2
V

σ2
+
(
2a2 + 1

) σ4
V

σ4
.

Obviously σ2
∞ > 0. Thus, α̂n is an asymptotically normal estimator of a. �

Proof of Theorem 3.4. Proof of this theorem differs from the proof of Theorem 3.3 only
when we deal with numerator Ãn. For the case of stationary initial distribution we denote
it as Ãst

n . Then using relation (18) we rewrite Ãn for an arbitrary distribution as follows:

Ãn =
1√
n

n∑
k=1

VkVk−1 +
1√
n

n∑
k=1

(Xk − μ)(Xk−1 − μ) +
1√
n

n∑
k=1

(Xk − μ)Vk−1

+
1√
n

n∑
k=1

Vk(Xk−1 − μ)− a√
n

n∑
k=1

(Xk−1 − μ)2 − a√
n

n∑
k=1

V 2
k−1

− 2a√
n

n∑
k=1

(Xk−1 − μ)Vk−1 + a
√
nσ2

V

= Ãst
n +

1√
n

(X0 −Xst
0 )

n∑
k=1

ak−1(Vk − aVk−1 + bεk).
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Because Ãst
n converges in distribution, it remains to prove only that the last term

1√
n

(X0 −Xst
0 )

n∑
k=1

ak−1(Vk − aVk−1 + bεk)

converges to 0 in probability. We have

E

∣∣∣∣∣ 1√
n

n∑
k=1

ak−1(Vk − aVk−1 + bεk)

∣∣∣∣∣ ≤ 1√
n

E
n∑
k=1

|ak−1|(|Vk|+ |aVk−1|+ |bεk|)

≤ 1√
n

n∑
k=1

|ak−1|(E |Vk|+ E |aVk−1|+ E |bεk|).

Because the sum (E |Vk|+E |aVk−1|+E |bεk|) can be bounded by some constant c and
|a| < 1, we have:

E

∣∣∣∣∣ 1√
n

n∑
k=1

ak−1(Vk − aVk−1 + bεk)

∣∣∣∣∣ ≤ c√
n

1− |a|n
1− |a| → 0 as n→∞.

Hence we obtain that An
P≈ Ãst

n and from (27), (28) with Slutsky lemma for all |a| < 1
we get:

√
n(ân − a) =

An
Bn

d→ ζ ∼ N
(
0, σ2

∞
)

as n→∞. �
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MIXED STOCHASTIC DELAY DIFFERENTIAL EQUATIONS
UDC 519.21

G. SHEVCHENKO

Abstract. We consider a stochastic delay differential equation driven by a Hölder continuous process Z
and a Wiener process. Under fairly general assumptions on coefficients of the equation, we prove that
it has a unique solution. We also give a sufficient condition for finiteness of moments of the solution
and prove that the solution depends on the driver Z continuously.
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1. Introduction

This paper is devoted to a stochastic differential equation of the form

X(t) = X(0) +
∫ t

0

a(s,X) ds+
∫ t

0

b(s,X) dW (s) +
∫ t

0

c(s,X) dZ(s),

where W is a Wiener process, Z is a Hölder continuous process with Hölder exponent
greater than 1/2, the coefficients a, b, c depend on the past of the processX . The integral
with respect to W is understood in the usual Itô sense, while the one with respect to Z is
understood in the pathwise sense. (A precise definition of all objects is given in Section 2.)
We will call this equation a mixed stochastic delay differential equation; the word mixed
refers to the mixed nature of noise, while the word delay is due to dependence of the
coefficients on the past.

In the pure Wiener case, where c = 0, this equation was considered by many au-
thors, often by the name “stochastic functional differential equation”. For overview of
their results we refer a reader to [9, 12], where also the importance of such equations is
explained, and several particular results arising in applications are given.

In the pure “fractional” case, where b = 0, there are only few results devoted to such
equations, considering usually the case where Z = BH is a fractional Brownian motion
(for us, it is also the most important example of the driver Z). In [4, 5], the existence
of a solution is shown for the coefficients of the form a(t,X) = a(X(t)), b(t,X) =
b(X(t − r)), and H > 1/2. It is also proved that the solution has a smooth density,
and the convergence of solutions is established for a vanishing delay. A similar equation

2010 Mathematics Subject Classification. 60H10, 34K50, 60G22.
Key words and phrases. Fractional Brownian motion; Wiener process; stochastic delay differential

equation; mixed stochastic differential equation.
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constrained to stay non-negative is considered in [1]. Existence and uniqueness of solution
for an equation with general coefficients, also in the caseH > 1/2, are established in [2, 8].
For such equation, it is proved in [8] that the solution possesses infinitely differentiable
density, and in [3], that the solution generates a continuous random dynamical system.
In [13], the unique solvability is established for an equation with H > 1/3 and coefficients
of the form f(X(t), X(t− r1), X(t− r2), . . . ).

Concerning mixed stochastic delay differential equations, there are no results known
to author. There are some literature devoted to mixed equations without delay. The
existence and uniqueness were proved, under different conditions, in [6, 7, 10, 11, 16].
Integrability and convergence results for mixed equations were established in [11, 15, 16,
17], and Malliavin regularity was proved in [17].

In this paper we show that a mixed stochastic delay differential equation has a unique
solution under rather general assumptions about coefficients. We also provide a condition
for the solution to have finite moments of all orders, and a result on the continuity of
the solution with respect to the driver Z. The latter result allows, in particular, to
approximate the solution to a mixed stochastic delay differential equation by solutions
to usual stochastic delay differential equations having a random drift.

2. Preliminaries

Let
(
Ω,F ,F = {Ft, t ≥ 0},P

)
be a complete filtered probability space satisfying the

usual assumptions.
First we fix some notation: throughout the article, |·| will denote the absolute value

of a real number, the Euclidean norm of a vector, or the operator norm of a matrix.
The symbol C will denote a generic constant, whose value may change from one line
to another. To emphasize its dependence on some parameters, we will put them into
subscripts.

We need some notation in order to introduce the main object. For a fixed r > 0,
let C = C([−r, 0]; Rd) be the Banach space of continuous Rd-valued functions defined
on the interval [−r, 0] endowed with the supremum norm ‖·‖C . For a stochastic process
ξ = {ξ(t), t ∈ [−r, T ]} and t ∈ [0, T ] define a segment ξt ∈ C by ξt(s) = ξ(t + s),
s ∈ [−r, 0]. Let a : [0, T ]×C → Rd, bi : [0, T ]×C → Rd, i = 1, . . . ,m, cj : [0, T ]×C → Rd,
j = 1, . . . , l, be measurable functions, Z = {Z(t), t ∈ [0, T ]} be an F-adapted process in
R
l such that its trajectories are almost surely Hölder continuous of order γ > 1/2. Let

also η : [−r, 0] → Rd be a θ-Hölder continuous function with θ > 1− γ.
Our main object is the following stochastic delay differential equation in Rd:

X(t) = X(0) +
∫ t

0

a(s,Xs) ds+
m∑
i=1

∫ t

0

bi(s,Xs) dWi(s)

+
l∑

j=1

∫ t

0

cj(s,Xs) dZj(s), t ∈ [0, T ],

(2.1)

with the “initial condition” X(s) = η(s), s ∈ [−r, 0]. In the rest of the paper a shorter
notation will be used for equation (2.1) and its ingredients:

X(t) = X(0) +
∫ t

0

a(s,Xs) ds+
∫ t

0

b(s,Xs) dW (s) +
∫ t

0

c(s,Xs) dZ(s). (2.2)

We remark that it is possible to consider an equation with coefficients depending on the
whole past of the process X . This can be achieved by just taking r = T

The integral with respect toW in (2.2) will be understood in the Itô sense. The integral
with respect to Z is a generalized Lebesgue–Stieltjes integral, defined as follows [18]. For
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α ∈ (0, 1), define the fractional derivatives(
Dα
a+f
)
(x) =

1
Γ(1 − α)

(
f(x)

(x − a)α
+ α

∫ x

a

f(x)− f(u)
(x− u)1+α

du

)
,

(
D1−α
b− g

)
(x) =

e−iπα

Γ(α)

(
g(x)

(b − x)1−α
+ (1− α)

∫ b

x

g(x)− g(u)
(u− x)2−α

du

)
.

Assuming that Dα
a+f ∈ L1[a, b], D1−α

b− gb− ∈ L∞[a, b], where gb−(x) = g(x) − g(b), the

generalized (fractional) Lebesgue–Stieltjes integral
∫ b
a
f(x) dg(x) is defined as∫ b

a

f(x) dg(x) = eiπα
∫ b

a

(
Dα
a+f
)
(x)
(
D1−α
b− gb−

)
(x) dx.

Moreover, we have the estimate∣∣∣∣∣
∫ b

a

f(x) dg(x)

∣∣∣∣∣ ≤ C ‖g‖0,α;[a,b]

∫ b

a

(
|f(s)|

(s− a)α
+
∫ s

a

|f(s)− f(u)|
(s− u)1+α

du

)
ds, (2.3)

where

‖g‖α;[a,b] = sup
a≤u<v≤b

(
|g(v)− g(u)|
(v − u)1−α

+
∫ v

u

|g(u)− g(z)|
(z − u)2−α

dz

)
.

In what follows we fix some α ∈ (1 − γ, θ ∧ 1/2) and put h(t, s) = (t − s)−1−α. Define
‖X‖∞,t = sups∈[−r,t] |X(s)|, ‖X‖1,t =

∫ t
0
‖X· +t−s −X·‖∞,s h(t, s) ds, ‖X‖t = ‖X‖∞,t +

‖X‖1,t. It is clear that both ‖X‖∞,t and ‖X‖1,t are non-decreasing in t.
By a solution to equation (2.2), we will understand a pathwise continuous F-adapted

process X such that ‖X‖T <∞ a.s., and (2.2) holds almost surely for all t ∈ [0, T ].
The following assumptions on the coefficients of (2.2) will be assumed throughout the

article:
H1. Linear growth: for all ψ ∈ C, t ∈ [0, T ],

|a(t, ψ)|+ |b(t, ψ)|+ |c(t, ψ)| ≤ C(1 + ‖ψ‖C).

H2. For all t ∈ [0, T ], ψ ∈ C, c has a Fréchet derivative ∂ψc(t, ψ) ∈ L(C,Rd), bounded
uniformly in t ∈ [0, T ], ψ ∈ C:

‖∂ψc(t, ψ)‖L(C,Rd) ≤ C.

H3. The functions a, b and ∂ψc are locally Lipschitz continuous in ψ: for any R > 1,
t ∈ [0, T ], and all ψ1, ψ2 ∈ C with ‖ψ1‖C ≤ R, ‖ψ2‖C ≤ R,

|a(t, ψ1)− a(t, ψ2)|+ |b(t, ψ1)− b(t, ψ2)|+ ‖∂ψc(t, ψ1)− ∂ψc(t, ψ2)‖L(C,Rd)

≤ CR ‖ψ1 − ψ2‖C .
H4. The functions c and ∂ψc are Hölder continuous in t: for some β ∈ (1− γ, 1) and for

all s, t ∈ [0, T ], ψ ∈ C
|c(s, ψ)− c(t, ψ)| ≤ C|s− t|β(1 + ‖ψ‖C), ‖∂ψc(s, ψ)− ∂ψc(t, ψ)‖L(C,Rd) ≤ C|s− t|β .

The condition H4 allows, for instance, to consider an important particular case, namely,
a linear equation.

3. Auxiliary results

First we establish some a priori estimates for the solution of (2.2).

Lemma 3.1. Let X be a solution of (2.2), and p ≥ 1, N ≥ 1. Let also AN,t ={
‖Z‖α;[0,t] ≤ N

}
for t ∈ [0, T ]. Then

E
[
‖X‖pT �AN,T

]
≤ CN,p.
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Proof. Assume without loss of generality that p > 4/(1− 2α).
For R > 0 define BR,t =

{
‖X‖∞,t + ‖X‖1,t ≤ R

}
and �t = �AN,t∩BR,t .

Let ω ∈ AN,t. Write for t ∈ [0, T ]

|X(t)| ≤ |X(0)|+ |Ia(t)|+
∣∣Ib(t)∣∣+ |Ic(t)| ,

where Ia(t) =
∫ t
0 a(s,Xs) ds, Ib(t) =

∫ t
0 b(s,Xs) dW (s), Ic(t) =

∫ t
0 c(s,Xs) dZ(s). Esti-

mate, using (2.3),

|Ia(t)| ≤
∫ t

0

|a(s,Xs)| ds ≤ C

∫ t

0

(1 + ‖Xs‖C) ds ≤ C

(
1 +
∫ t

0

‖X‖∞,s ds

)
;

|Ic(t)| ≤ CN

∫ t

0

(
|c(s,Xs)| s−α +

∫ s

0

|c(s,Xs)− c(u,Xu)|h(s, u) du
)
ds

≤ CN

∫ t

0

(
(1 + ‖Xs‖C) s−α

+
∫ s

0

(
|s− u|β (1 + ‖Xs‖C) + ‖Xs −Xu‖C

)
h(s, u) du

)
ds

≤ CN

(
1 +
∫ t

0

(
‖X‖∞,s s

−α + ‖X‖1,s
)
ds

)
.

Therefore, we have

|X(t)| ≤ CN

(
1 +
∫ t

0

(
‖X‖∞,s s

−α + ‖X‖1,s
)
ds

)
+
∣∣Ib(t)∣∣ ,

whence

‖X‖∞,t ≤ CN

(
1 +
∫ t

0

(
‖X‖∞,s s

−α + ‖X‖1,s
)
ds

)
+
∥∥Ib∥∥∞;[0,t]

. (3.1)

Further, let 0 ≤ s ≤ t. Then for u ≤ s− t,

|X(u+ t− s)−X(u)| = |η(u+ t− s)− η(u)| ≤ Hη(t− s)θ,

where Hη = sup−r≤x<y≤0
|η(y)−η(x)|

(y−x)θ is the θ-Hölder seminorm of η. Similarly, for u ∈
(s− t, 0],

|X(u+ t− s)−X(u)| ≤ |X(u+ t− s)−X(0)|+ |η(0)− η(u)|
≤ |X(u+ t− s)−X(0)|+Hη(t− s)θ.

Consequently, we can write

‖X‖1,t ≤ Hη

∫ t

0

(t− s)θ+α−1ds+ Ja(t) + Jb(t) + Jc(t) ≤ C + Ja(t) + Jb(t) + Jc(t),

where Jb(t) =
∫ t
0

supu∈[s−t,s]
∣∣∣∫ u+t−s
u∨0

b(v,Xv) dW (v)
∣∣∣ h(t, s) ds,

Ja(t) =
∫ t

0

sup
u∈[s−t,s]

∣∣∣∣∫ u+t−s

u∨0

a(v,Xv) dv
∣∣∣∣ h(t, s) ds

≤ C

∫ t

0

max
u∈[s−t,s]

∫ u+t−s

u∨0

(
1 + ‖Xv‖C

)
dv h(t, s) ds

≤ C

(
1 +
∫ t

0

∫ t

s

‖X‖∞,z dz h(t, s) ds
)
≤ C

(
1 +
∫ t

0

‖X‖∞,z (t− z)−α dz
)

;

Jc(t) =
∫ t

0

sup
u∈[s−t,s]

∣∣∣∣∫ u+t−s

u∨0

c(v,Xv) dZ(v)
∣∣∣∣ h(t, s) ds ≤ CN (Jc1(t) + Jc2(t))
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with

Jc1(t) =
∫ t

0

max
u∈[s−t,s]

∫ u+t−s

u∨0

|c(v,Xv)| (v − u ∨ 0)−α dv h(t, s) ds

≤ C

∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

(
1 + ‖Xv‖C

)
(v − u ∨ 0)−α dv h(t, s) ds

≤ C

(
1 +
∫ t

0

∫ t

s

‖X‖∞,z (z − s)−α dz h(t, s) ds
)

≤ C

(
1 +
∫ t

0

‖X‖∞,z (t− z)−2α dz

)
;

Jc2(t) =
∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∫ v

u∨0

|c(v,Xv)− c(z,Xz)|h(v, z) dz dv h(t, s) ds

≤ C

∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∫ v

u∨0

(
|v − z|β + ‖Xv −Xz‖C

)
h(v, z) dz dv h(t, s) ds

≤ C

∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

(
|v − u ∨ 0|β−α + ‖X‖1,v

)
dv h(t, s) ds

≤ C

∫ t

0

(
(t− s)β−2α +

∫ t

s

‖X‖1,v dv h(t, s)
)
ds

≤ C

(
1 +
∫ t

0

‖X‖1,v (t− v)−α dv
)
.

To estimate Jc1 , we have used the computation∫ z

0

(z − s)−α(t− s)−1−α ds =
∣∣∣s = z − (t− z)v

∣∣∣ = (t− z)−2α

∫ z
t−z

0

v−α(1 + v)−1−α dv

≤ (t− z)−2α

∫ ∞

0

v−α(1 + v)−1−α dv = B(1− α, 2α)(t− z)−2α.

Summing the estimates for ‖X‖1,t, we get

‖X‖1,t ≤ CN

(
1 +
∫ t

0

(
‖X‖∞,s (t− s)−2α + ‖X‖1,s (t− s)−α

)
ds

)
+ Jb(t). (3.2)

Combining this with (3.1), we obtain

‖X‖t ≤ CN

∫ t

0

‖X‖s g(t, s) ds+
∥∥Ib∥∥∞;[0,t]

+ Jb(t)

for ω ∈ AN,t, where g(t, s) = s−α + (t− s)−2α.
Using the Hölder inequality, we can estimate

‖X‖pt ≤ CpN
p

∫ t

0

‖X‖ps g(t, s) ds
(∫ t

0

g(t, s) ds
)p/q

+ Cp

(∥∥Ib∥∥p∞;[0,t]
+
(
Jb(t)

)p)
,

whence

E [‖X‖pt �t] ≤ CN,p

(∫ t

0

E [‖X‖ps �s] g(t, s) ds+ E
[∥∥Ib∥∥p∞;[0,t]

�t

]
+ E

[(
Jb(t)

)p
�t

])
.

(3.3)
We now proceed to the estimation of the last two expressions. It is obvious that for any
0 ≤ u ≤ s ≤ t, ∣∣∣∣∫ s

u

b(v,Xv) dW (v)
∣∣∣∣ �t ≤ ∣∣∣∣∫ s

u

b(v,Xv)�v dW (v)
∣∣∣∣ .
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Therefore, by the Burkholder inequality,

E
[∥∥Ib∥∥p∞;[0,t]

�t

]
= E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

b(v,Xv) dW (v)
∣∣∣∣p �t

]

≤ E

[
sup
s∈[0,t]

∣∣∣∣∫ s

0

b(v,Xv)�v dW (v)
∣∣∣∣p
]

≤ CpE

[(∫ t

0

|b(s,Xs)|2 �s ds
)p/2]

≤ Cp

∫ t

0

E [(1 + ‖Xs‖C �s)
p] ds

≤ Cp

∫ t

0

(1 + E [‖Xs‖pC �s]) ds ≤ Cp

(
1 +
∫ t

0

E
[
‖X‖p∞,s �s

]
ds

)
.

Further, we have

E
[(
Jb(t)

)p
�t

]
≤ CpE

[(∫ t

0

sup
u∈[s−t,s]

∣∣∣∣∫ u+t−s

u∨0

b(v,Xv)�v dW (v)
∣∣∣∣ h(t, s) ds

)p]
. (3.4)

It follows from the Garsia–Rodemich–Rumsey inequality that for any r, z ∈ [0, t]∣∣∣∣∫ z

r

b(v,Xv)�v dW (v)
∣∣∣∣ ≤ Cpξ(t) |r − z|1/2−2/p ,

where

ξ(t) =

(∫ t

0

∫ y

0

∣∣∫ y
x b(v,Xv)�v dW (v)

∣∣p
|x− y|p/2

dx dy

)1/p

.

We can estimate

E [ξ(t)p] =
∫ t

0

∫ y

0

E
[∣∣∫ y

x b(v,Xv)�v dW (v)
∣∣p]

|x− y|p/2
dx dy

≤ Cp

∫ t

0

∫ y

0

E

[(∫ y
x

(1 + ‖Xv‖2C)�v dv
)p/2]

(y − x)p/2
dx dy

≤ Cp

∫ t

0

∫ y

0

(y − x)p/2−1E
[∫ y
x

(
1 + ‖X‖p∞,v �v

)
dv
]

(y − x)p/2
dx dy

≤ Cp

(
1 +
∫ t

0

∫ y

0

E
[
‖X‖p∞,v �v

] ∫ v

0

(y − x)−1 dx dv dy

)
= Cp

(
1 +
∫ t

0

E
[
‖X‖p∞,v �v

] ∫ t

v

log
y

y − v
dy dv

)
≤ Cp

(
1 +
∫ t

0

E
[
‖X‖p∞,v �v

]
dv

)
.

Therefore, taking into account that p > 4/(1 − 2α), i.e. 2/p + 1/α − 1/2 < 0, we get
from (3.4)

E
[
Jb(t)p�t

]
≤ CpE [ξ(t)p]

(∫ t

0

(t− s)−2/p−1/2−α ds
)p

≤ Cp

(
1 +
∫ t

0

E
[
‖X‖p∞,v �v

]
dv

)
.

Plugging the estimates of Ib and Jb into (3.3), we get

E [‖X‖pt �t] ≤ CN,p

(
1 +
∫ t

0

E [‖X‖ps �s] g(t, s) ds
)
.
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Since g(t, s) ≤ (Tα+ 1)t2αs−2α(t− s)−2α, we can apply the generalized Gronwall lemma
[14, Lemma 7.6] and obtain E [‖X‖pT �T ] ≤ CN,p. By letting R→∞ and using the Fatou
lemma, we arrive at the required statement. �

The following lemma establishes estimates for the distance between solutions of mixed
stochastic delay differential equations with different drivers. To formulate it, assume
that Z is another γ-Hölder F-adapted process, and consider the equation

X(t) = X(0) +
∫ t

0

a(s,Xs) ds+
∫ t

0

b(s,Xs) dW (s) +
∫ t

0

c(s,Xs) dZ(s) (3.5)

with the same initial condition X(s) = η(s), s ∈ [−r, 0].

Lemma 3.2. Let X and X be the solutions of (2.2) and (3.5) respectively, p ≥ 4/(1−2α),
N ≥ 1, R ≥ 1. Assume also that ‖Z‖α;[0,T ] ≤ N and

∥∥Z∥∥
α;[0,T ]

≤ N . Then

E
[∥∥X −X

∥∥p
∞,T

�BR,T

]
≤ CN,R,pE

[∥∥Z − Z
∥∥p
α;[0,T ]

]
,

where BR,t =
{
‖X‖t ≤ R,

∥∥X∥∥
t
≤ R

}
for t ∈ [0, T ].

Proof. The proof will be similar to that of Lemma 3.1, so we will omit some details. Put
Δ(t) =

∥∥X −X
∥∥
t
, Δd(t) = d(s,Xs)−d(s,Xs) for d ∈ {a, b, c}, and ΔZ(t) = Z(t)−Z(t).

By assumption H3, Δd(t) ≤ CR
∥∥Xt −Xt

∥∥
C ≤ CRΔ(t).

Let ω ∈ BR,t. Write for t ∈ [0, T ]∣∣X(t)−X(t)
∣∣ ≤ |Ia(t)|+

∣∣Ib(t)∣∣+ |Ic(t)|+
∣∣IZ(t)

∣∣ ,
where Ia(t) =

∫ t
0

Δa(s) ds, Ib(t) =
∫ t
0

Δb(s) dW (s), Ic(t) =
∫ t
0

Δc(s) dZ(s), IZ(t) =∫ t
0 c(s,Xs) dΔZ(t). We estimate the terms one by one, starting with Ia:

|Ia(t)| ≤
∫ t

0

|Δa(s)| ds ≤ CR

∫ t

0

Δ(s) ds.

Similarly to Ic(t) in the proof of Lemma 3.1,

∣∣IZ(t)
∣∣ ≤ C ‖ΔZ‖α;[0,t]

∫ t

0

(∥∥X∥∥∞,s
s−α +

∥∥X∥∥
1,s

)
ds ≤ CR ‖ΔZ‖α;[0,t] .

Further,

|Ic(t)| ≤ CN

∫ t

0

(
|Δc(s)| s−α +

∫ s

0

|Δc(s)−Δc(u)|h(s, u) du
)
ds

≤ CRN

∫ t

0

(
Δ(s)s−α +

∫ s

0

|Δc(s)−Δc(u)|h(s, u) du
)
ds.

Similarly to [14, Lemma 7.1], it can be shown that assumptions H3 and H4 imply that
for any s, u ∈ [0, T ] and ψ1, . . . , ψ4 ∈ C with ‖ψi‖ ≤ R, i = 1, . . . , 4,

|c(s, ψ1)− c(u, ψ2)− c(s, ψ3) + c(u, ψ4)|

≤ CR

(
‖ψ1 − ψ2 − ψ3 + ψ4‖C

+ ‖ψ1 − ψ3‖C
(
|s− u|β + ‖ψ1 − ψ2‖C + ‖ψ3 − ψ4‖C

))
.

(3.6)
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Therefore, we can estimate |Ic(t)| ≤ CRN
∑d

k=1 I
c
k(t), where

Ic1(t) =
∫ t

0

Δ(s)s−α ds;

Ic2(t) =
∫ t

0

∫ s

0

∥∥Xs −Xs −Xu +Xs

∥∥
C h(s, u) du ds ≤

∫ t

0

∥∥X −X
∥∥

1,s
ds

≤
∫ t

0

Δ(s) ds;

Ic3(t) =
∫ t

0

∫ s

0

∥∥Xs −Xs

∥∥
C (s− u)β−α−1 du ds ≤ C

∫ t

0

∥∥X −X
∥∥
∞,s

ds ≤ C

∫ t

0

Δ(s) ds;

Ic4(t) =
∫ t

0

∫ s

0

∥∥Xs −Xs

∥∥
C
(
‖Xs −Xu‖C +

∥∥Xs −Xu

∥∥
C
)
h(s, u) du

≤
∫ t

0

∥∥Xs −Xs

∥∥
∞,s

(
‖X‖1,s +

∥∥X∥∥
1,s

)
≤ 2R

∫ t

0

Δ(s) ds.

Therefore, we have∥∥X −X
∥∥
∞,t

≤ CN,R

(
‖ΔZ‖α;[0,t] +

∫ t

0

Δ(s)s−α ds
)

+
∥∥Ib∥∥∞;[0,t]

. (3.7)

Further, let 0 ≤ s ≤ t. Then for u ≤ s− t,∣∣X(u+ t− s)−X(u+ t− s)−X(u) +X(u)
∣∣ = 0;

for u ∈ (s− t, 0]∣∣X(u+ t− s)−X(u+ t− s)−X(u) +X(u)
∣∣ = ∣∣X(u+ t− s)−X(u + t− s)

∣∣ .
Consequently, we can write∥∥X −X

∥∥
1,t
≤ Ja(t) + Jb(t) + Jc(t) + JZ(t),

where

Ja(t) =
∫ t

0

sup
u∈[s−t,s]

∣∣∣∣∫ u+t−s

u∨0

Δa(v) dv
∣∣∣∣ ,

Jb(t) =
∫ t

0

sup
u∈[s−t,s]

∣∣∣∣∫ u+t−s

u∨0

Δb(v) dW (v)
∣∣∣∣ ds,

Jc(t) =
∫ t

0

sup
u∈[s−t,s]

∣∣∣∣∫ u+t−s

u∨0

Δc(v) dZ(v)
∣∣∣∣ ,

JZ(t) =
∫ t

0

sup
u∈[s−t,s]

∣∣∣∣∫ u+t−s

u∨0

c(Xv, v) dΔZ(v)
∣∣∣∣ .

Estimate

Ja(t) ≤ CR

∫ t

0

max
u∈[s−t,s]

∫ u+t−s

u∨0

Δ(v) dv h(t, s) ds ≤ C

∫ t

0

Δ(z)(t− z)−α dz.

Similarly to Jc(t) in the proof of Lemma 3.1,

JZ(t) = C ‖ΔZ‖α;[0,t]

(
1 +
∫ t

0

( ∥∥X∥∥∞,s
(t− s)−2α +

∥∥X∥∥
1,s

(t− s)−α
)
ds

)
≤ CR ‖ΔZ‖α;[0,t] .

Further, using (3.6), we can estimate, analogously to Ic(t) above,

Jc(t) ≤ CN,R

4∑
k=1

Jck(t),
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where

Jc1(t) =
∫ t

0

max
u∈[s−t,s]

∫ u+t−s

u∨0

|Δc(v)| (v − u ∨ 0)−α dv h(t, s) ds

≤ CR

∫ t

0

∫ t

s

Δ(z)(z − s)−α dz h(t, s) ds ≤ C

∫ t

0

Δ(z)(t− z)−2α dz;

Jc2(t) =
∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∫ v

u∨0

∥∥X −X −X +X
∥∥
∞,z

h(v, z) dz dv h(t, s) ds

≤ C

∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∥∥X −X
∥∥

1,v
dv h(t, s) ds

≤ C

∫ t

0

∫ t

s

∥∥X −X
∥∥

1,v
dv h(t, s) ds ≤ C

∫ t

0

Δ(v)(t− v)−α dv;

Jc3(t) =
∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∫ v

u∨0

∥∥X −X
∥∥
∞,v

(v − z)β−α−1 dz dv h(t, s) ds

≤ C

∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∥∥X −X
∥∥
∞,v

dv h(t, s) ds

≤ C

∫ t

0

∫ t

s

∥∥X −X
∥∥
∞,v

dv h(t, s) ds ≤ C

∫ t

0

Δ(v)(t− v)−α dv;

Jc4(t) =
∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∫ v

u∨0

∥∥X −X
∥∥
∞,v

(
‖Xv −Xz‖C +

∥∥Xv −Xz

∥∥
C
)

× h(v, z) dz dv h(t, s) ds

≤ C

∫ t

0

max
u∈[−r,s]

∫ u+t−s

u∨0

∥∥X −X
∥∥
∞,v

(
‖X‖1,v +

∥∥X∥∥
1,v

)
dv h(t, s) ds

≤ CR

∫ t

0

∫ t

s

∥∥X −X
∥∥
∞,v

dv h(t, s) ds ≤ CR

∫ t

0

Δ(v)(t − v)−α dv.

Summing the estimates for
∥∥X −X

∥∥
1,t

, we get

∥∥X −X
∥∥

1,t
≤ CN,R

(
‖ΔZ‖α;[0,t] +

∫ t

0

Δ(s)(t− s)−2α ds

)
+ Jb(t).

Combining this with the estimate(3.7), we obtain∥∥X −X
∥∥
t
≤ CN,R

(
‖ΔZ‖α;[0,t] +

∫ t

0

‖X‖s g(t, s) ds
)

+
∥∥Ib∥∥∞;[0,t]

+ Jb(t)

for ω ∈ BR,t, where g(t, s) = s−α + (t − s)−2α. The rest of the proof goes exactly as in
the Lemma 3.1. Namely, denoting �t = �BR,t , we obtain

E [‖X‖pt �t] ≤ CN,p

(
E
[
‖ΔZ(t)‖pα;[0,t]

]
+
∫ t

0

E [‖X‖ps �s] g(t, s) ds
)
,

which implies the required statement with the help of the generalized Gronwall lemma.
�

4. Existence and uniqueness of solution

Now we have everything to establish the unique solvability of (2.2).

Theorem 4.1. Equation (2.2) has a unique solution.

Proof. For convenience, the proof will be divided into several logical steps.
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Step 1. Approximations by usual stochastic delay differential equations. Fix some N ≥ 1
and define τN = inf

{
t > 0: ‖Z‖α;[0,t] ≥ N

}
, ZN (t) = Z(t ∧ τN ), t ≥ 0. For each integer

n ≥ 1 define a smooth approximation of ZN by

ZN,n(t) = n

∫ t

(t−1/n)∨0

ZN(s) ds

and consider the equation

XN,n(s) = X(0) +
∫ t

0

a
(
s,XN,n

s

)
dt+

∫ t

0

b
(
s,XN,n

s

)
dW (s) +

∫ t

0

c
(
s,XN,n

s

)
dZN,n(s)

with the same initial condition XN,n(s) = η(s), s ∈ [−r, 0]. Since ZN,n is absolutely
continuous, this is a usual stochastic delay differential equation (or, in the terminology
of [12], stochastic functional differential equation)

XN,n(s) = X(0) +
∫ t

0

dN,n
(
s,XN,n

s

)
dt+

∫ t

0

b
(
s,XN,n

s

)
dW (s) (4.1)

with a random drift dN,n(s, ψ) = a(s, ψ)+ c(s, ψ) ddsZ
N,n(s). Clearly,

∣∣ d
dsZ

N,n(s)
∣∣ ≤ nN .

Therefore, the coefficients of (4.1) satisfy the linear growth condition: for all s ∈ [0, T ],
ψ ∈ C, ∣∣dN,n(s, ψ)

∣∣+ |b(s, ψ)| ≤ CN,n (1 + ‖ψ‖C) , (4.2)

and the local Lipschitz condition: for any R > 0 and all s ∈ [0, T ], ψ1, ψ2 ∈ C with
‖ψ1‖C ≤ R, ‖ψ2‖C ≤ R,∣∣dN,n(s, ψ1)− dN,n(s, ψ2)

∣∣+ |b(s, ψ1)− b(s, ψ2)| ≤ CN,n,R ‖ψ1 − ψ2‖C . (4.3)

In [12, Theorem I.2] and in [9, Chapter 5, Theorem 2.5], the unique solvability of (4.1) was
formulated for non-random coefficients satisfying conditions (4.2) and (4.3). However,
the arguments given there are easily seen to extend to adapted coefficients satisfying (4.2)
and (4.3) with a non-random constant, which is the case here. Thus, (4.1) has a unique
solution.

Step 2. Convergence of approximations. First we show that, for a fixed N ≥ 1, the
sequence

{
XN,n, n ≥ 1

}
is fundamental in probability in the norm ‖·‖T . Indeed, it is

easy to show (see e.g. [11, Lemma 2.1]) that
∥∥ZN,n − ZN

∥∥
α;[0,T ]

→ 0, n → ∞, a.s.

Then, in view of the boundedness, E
[∥∥ZN,n − ZN

∥∥p
α;[0,T ]

]
→ 0 for any p ≥ 1. Therefore,

Lemma 3.2 and the Markov inequality imply that

P
(∥∥XN,n −XN,m

∥∥
T
> ε,

∥∥XN,n
∥∥
T
≤ R,

∥∥XN,m
∥∥
T
≤ R

)
→ 0, n,m→∞, (4.4)

for any ε > 0, R ≥ 1. Hence,

lim sup
n,m→∞

P
(∥∥XN,n −XN,m

∥∥
T
> ε
)
≤ 2 sup

n≥1
P
(∥∥XN,n

∥∥
T
> R

)
for any ε > 0, R ≥ 1. The convergence E

[∥∥ZN,n − ZN
∥∥p
α;[0,T ]

]
→ 0, n→∞ implies that

supn≥1 E
[∥∥ZN,n∥∥p

α;[0,T ]

]
<∞. Then, due to Lemma 3.1 and the Markov inequality,

sup
n≥1

P
(∥∥XN,n

∥∥
T
> R

)
→ 0, n→∞,

whence, letting R→∞ in (4.4), we deduce P
(∥∥XN,n −XN,m

∥∥
T
> ε
)
→ 0, n,m→∞, as

required. Therefore, there exists some random process XN such that
∥∥XN,n −XN

∥∥
T
→

0, n→∞, in probability. There is an almost surely convergent subsequence, and without
loss of generality we can assume that

∥∥XN,n −XN
∥∥
T
→ 0, n→∞, a.s.
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Step 3. The limit provides a solution. In order to prove that XN solves equation (2.2)
with Z replaced by ZN , we need to show that the integrals in (4.1) converge to the
correspondent integrals for XN . Since the convergence

∥∥XN,n −XN
∥∥
T
→ 0, n → ∞,

implies the uniform convergence on [0, T ], we easily obtain∫ t

0

a(s,XN,n
s ) ds→

∫ t

0

a(s,XN
s ) ds a.s., n→∞,

Similarly to Ic(t) and IZ(t) in the proof of Lemma 3.2, we have∣∣∣∣∫ t

0

c
(
s,XN

s

)
dZN (s)−

∫ t

0

c
(
s,XN,n

s

)
dZN,n(s)

∣∣∣∣
≤ CN

(∥∥XN
∥∥
t
+
∥∥XN,n

∥∥
t

)(∥∥ZN − ZN,n
∥∥
α;[0,t]

+
∫ t

0

∥∥XN −XN,n
∥∥
t
ds

)
→ 0

as n→∞ a.s. Finally, denoting �t = �‖XN‖t<R,‖XN,n‖t<R
, we have

E

[(∫ t

0

b
(
s,XN

s

)
dW (s)−

∫ t

0

b
(
s,XN,n

s

)
dW (s)

)2

�t

]

≤
∫ t

0

E
[(
b
(
s,XN

s

)
− b
(
s,XN,n

s

))2
�s

]
ds

≤
∫ t

0

E
[∥∥XN −XN,n

∥∥2
s
�s

]
ds→ 0, n→∞.

So we have that(∫ t

0

b
(
s,XN

s

)
dW (s)−

∫ t

0

b
(
s,XN,n

s

)
dW (s)

)
�t → 0, n→∞

in probability. Thanks to the convergence
∥∥XN,n −XN

∥∥
T
→ 0, n → ∞, the event{∥∥XN

∥∥
t
< R

}
implies

{∥∥XN,n
∥∥
t
< R

}
for n large enough, therefore we have the con-

vergence of the integrals in probability on
{∥∥XN

∥∥
t
< R

}
and arbitrary R ≥ 1, therefore

on Ω. Thus, we have that XN is a solution to

XN(s) = X(0) +
∫ t

0

a
(
s,XN

s

)
dt+

∫ t

0

b
(
s,XN

s

)
dW (s) +

∫ t

0

c
(
s,XN

s

)
dZN (s)

with XN(s) = η(s), s ∈ [−r, 0].
From Lemma 3.2, it is obvious that the processes XN and XM with M ≥ N coincide

a.s. on the set AN,R =
{
‖Z‖α;[0,T ] ≤ N

}
. Therefore, there exists a process X such that

for each N ≥ 1, XN = X a.s. on AN,T . Consequently, X solves (2.2) on each of the sets
AN,T , N ≥ 1, hence, almost surely.

Finally, the uniqueness follows from Lemma 3.2: each solution to (2.2) must coincide
with X on each of the sets AN,T , hence, almost surely. �

5. Integrability and convergence of solutions

Now we investigate the question when the moments of X are finite. Naturally, we
need to require certain integrability of the driver Z. It is quite involved to prove the
integrability under assumptions H1–H4 (for equations without delay, the corresponding
result is proved in [15]). So we prove the integrability under an additional assumption
that b is bounded.

Theorem 5.1. Assume, that, in addition to H1–H4, |b(t, ψ)| ≤ C for any t ∈ [0, T ],
ψ ∈ C, and E

[
exp
{
c ‖Z‖1/(1−α)

α;[0,T ]

}]
<∞ for all c > 0. Then the solution of (2.2) satisfies

E [‖X‖pT ] <∞ for all p ≥ 1, in particular, all moments of the solution are finite.
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Proof. The proof follows the scheme of [16, Lemma 4.1]. We will use the notation of
Lemma 3.1.

Define for λ > 0, t ∈ [0, T ], a ∈ {1,∞} ‖X‖λ;a = sups∈[0,T ] e
−λs ‖X‖a,s. Denote also

ζ =
∥∥Ib∥∥∞;[0,T ]

+ Jb(T ). Then from (3.2) we get for ω ∈ AN,t

‖X‖λ;∞ ≤ CN

(
1 + sup

s≤T
e−λs

∫ s

0

(
‖X‖∞,u u

−α + ‖X‖1,u
)
du

)
+ ζ

≤ CN

(
1 + sup

s≤T

∫ s

0

eλ(u−s)
(
e−λu ‖X‖∞,u u

−α + e−λu ‖X‖1,u
)
du

)
+ ζ

≤ CN

(
1 + sup

s≤T

∫ s

0

eλ(u−s)
(
u−α ‖X‖λ;∞ + ‖X‖λ;1

)
du

)
+ ζ

≤ CN
(
1 + λα−1 ‖X‖λ;∞ + λ−1 ‖X‖λ;1

)
+ ζ,

where we have used the estimate

sup
s≤T

∫ s

0

eλ(u−s)u−α du = sup
s≤T

λ−1

∫ λs

0

e−z(s− z/λ)−α dz

= sup
s≤T

λα−1

∫ λs

0

e−z(λs− z)−α dz ≤ λα−1 sup
a>0

∫ a

0

e−z(a− z)−α dz = Cλα−1.

Similarly, from (3.1),

‖X‖λ;1 ≤ N

(
1 + sup

s≤T
e−λs

∫ s

0

(
‖X‖∞,u (s− u)−2α + ‖X‖1,u (s− u)−α

)
du

)
+ ζ

≤ N

(
1 + sup

s≤T

∫ s

0

eλ(u−s)
(
e−λu ‖X‖∞,u (s− u)−2α

+ e−λu ‖X‖1,u (s− u)−α
)
du

)
+ ζ

≤ N

(
1 + sup

s≤T

∫ s

0

eλ(u−s)
(
‖X‖λ;∞ (s− u)−2α + ‖X‖λ;1 (s− u)−α

)
du

)
+ ζ

≤ CN
(
1 + λ2α−1 ‖X‖λ;∞ + λα−1 ‖X‖λ;1

)
+ ζ.

Therefore, we have arrived at the system of inequalities

‖X‖λ;∞ ≤ KN
(
1 + λα−1 ‖X‖λ;∞ + λ−1 ‖X‖λ;1

)
+ ζ,

‖X‖λ;t ≤ KN
(
1 + λ2α−1 ‖X‖λ;∞ + λα−1 ‖X‖λ;1

)
+ ζ.

Setting λ = 4KN1/(1−α), it is easy to deduce from this system that

‖X‖λ;∞ + ‖X‖λ;1 ≤ CN1/(1−α)(1 + ζ),

whence

‖X‖T ≤ eλT
(
‖X‖λ;∞ + ‖X‖λ;1

)
≤ C exp

{
CN1/(1−α)

}
(1 + ζ)

for ω ∈ AN,t. Thus, in order to prove the required result, it remains to show that all
moments of ζ are finite. The argument is similar to the estimation of Ib and Jb in
Lemma 3.1, so we omit some details.
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Take arbitrary p > 4/(1− 2α). By the Burkholder inequality,

E
[∥∥Ib∥∥p∞;[0,T ]

]
≤ CpE

⎡⎣(∫ T

0

|b(s,Xs)|2 ds
)p/2⎤⎦ <∞. (5.1)

Further, we have

E
[
Jb(T )p

]
≤ CpE

[(∫ T

0

sup
u∈[s−T,s]

∣∣∣∣∣
∫ u+T−s

u∨0

b(v,Xv)dW (v)

∣∣∣∣∣ h(T, s)ds

)p]
. (5.2)

By the Garsia–Rodemich–Rumsey inequality, for any r, z ∈ [0, T ]∣∣∣∣∫ z

r

b(v,Xv)�v dW (v)
∣∣∣∣ ≤ Cpξ(T ) |r − z|1/2−2/p ,

where

ξ(T ) =

(∫ t

0

∫ y

0

∣∣∫ y
x
b(v,Xv) dW (v)

∣∣p
|x− y|p/2

dx dy

)1/p

.

From the estimate

E [ξ(T )p] =
∫ T

0

∫ y

0

E
[∣∣∫ y

x b(v,Xv) dW (v)
∣∣p]

|x− y|p/2
dx dy

≤ Cp

∫ T

0

∫ y

0

E

[(∫ y
x
|b(v,Xv)|2 dv

)p/2]
(y − x)p/2

dx dy ≤ Cp

∫ T

0

∫ y

0

1 dx dy <∞

we obtain, as in Lemma 3.1, E
[
Jb(T )p

]
< ∞. Taking into account (5.1), we get that

E [ζp] <∞, thus finishing the proof. �

Remark 5.2. The assumption on Z from Theorem 5.1 is fulfilled e.g. for a fractional
Brownian motion with Hurst parameter H > 1/2 (with any α > 1 − H), see e.g. [16,
Theorem 4].

Finally, we state a result on stability of solutions to (2.2) with respect to the driver Z.
Its proof virtually repeats Step 3 of the proof of Theorem 4.1 and therefore is omitted.
Let for n ≥ 1

Zn = {Zn(t), n ≥ 1}
be an F-adapted γ-Hölder continuous process, and Xn be a solution to

Xn(s) = X(0) +
∫ t

0

a(s,Xn
s ) dt+

∫ t

0

b(s,Xn
s ) dW (s) +

∫ t

0

c(s,Xn
s ) dZn(s) (5.3)

with the initial condition Xn(s) = η(s), s ∈ [−r, 0].

Proposition 5.3. Let X and Xn be solutions of (2.2) and (5.3) respectively, and
‖Z − Zn‖α;[0,T ] → 0, n → ∞, in probability. Then ‖X −Xn‖T → 0, n → ∞, in
probability.
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