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ON COUPLING MOMENT INTEGRABILITY FOR

TIME-INHOMOGENEOUS MARKOV CHAINS
UDC 519.21

V. V. GOLOMOZIY AND N. V. KARTASHOV

ABSTRACT. In this paper, we find the conditions under which the expectation of the first coupling
moment for two independent, discrete, time-inhomogeneous Markov chains will be finite. We consider
discrete chains with a phase space {0,1,...} and as the coupling moment we understand the first
moment of visiting zero state by the both chains at the same time.

AHoTAulsA. B maniit pobori 3HAXOAATHCS YMOBH 33 SIKUX FAPAHTOBAHO iCHYBAHHS MAaTEMATHIHOTO CIIO-
MiBAHHS MOMEHTY CKJICIOBAHHS [JJIsl JBOX HE3AJIEXKHWX, TUCKPETHHUX, HEOJHOPIAHUX 33 1acoM Mapkis-
CHKHX JIAHIIOTIB. Po3risapaorbesa auckpeTHi tanmora 3 daszosuM mpocropom {0,1,. ..} ta mix momen-
TOM CKJICIOBaHHSI PO3yMIi€ThCsl MEPIITUNA MOMEHT OJHOYACHOTO MOTPAIISIHHS B HYJIb 000X JIAHIFOTIB.

AnHOTAIMA. B maHoit pabora paccMaTpuBarOTCS YCJIOBUS MPH KOTOPBIX T'APAHTHPOBAHO CYINECTBY-
eT KOHEeYHOE MaTeMAaTHUeCKOe OXKHUJAHNE MOMEHTA CKJIEMBAHHS [ JBYX HE3aBUCUMBIX, TUCKDETHBIX,
HEOTHOPOJHBIX 10 BpeMmeHH reneii Mapkosa. PaccmarpuBaiTcst JUCKPETHBIE MU C MPOCTPAHCTBOM
cocrostamii {0, 1,...} ¥ MOZ MOMEHTOM CKJIEMBAHHS Mbl HOHMMAeM IEepPBLIfi MOMEHT OJHOBPEMEHHOIO
[OMaJaHNsI B HYJIEBOE COCTOSIHHE ODeuX Ijereii.

1. INTRODUCTION

The problem of finiteness for the moment of simultaneous hitting for two chains into
certain set (or simultaneous renewal of two renewal processes) play a crucial role in
evaluation of the stability estimates using coupling method. Similar estimates one can
find in the authors’ works [4, 5]. The problem of stability for a time-inhomogeneous
Markov chain is investigated there using a coupling method as a key method of the
research. Similar problems, but for the homogeneous Markov chains, are also considered
in the work [7].

The key question for the stability estimate evaluation in these papers is how we can
estimate the expectation for the moment of simultaneous hitting for two Markov chains.
The coupling setup can be found in the following work [5].

The problem of integrability and finiteness for the coupling moment can be reduced
to the problem of integrability and finiteness for the moment of simultaneous hitting
into certain set or to the problem of finiteness for the moment of simultaneous renewal.
Similar task is considered in the Lindvall’s book [14]. It worth to mention, that this
monograph is a classical book on the coupling method. There introduced different types
of coupling: week coupling, maximal coupling, Ornshtein coupling, Mineka coupling and
so on. Another famous book on the coupling method is a Torrison’s work [15].

The coupling method is also used in many other works. The first works on coupling
method are [1, 12, 13]. An example of how the coupling method is used to establish stabil-
ity estimates for time-homogeneous chain with different initial distributions is proposed
in [2].
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However, the problem of coupling only the same homogeneous Markov chain and re-
lated problems were considered in books mentioned above. In particular, the theorem
about integrability of the coupling moment in the book by Lindvall [14] had been proved
for two copies of the same time-homogeneous Markov chain whith different initial dis-
tributions. In the investigation of stability there arises the necessity to extend coupling
moment for different, not necessarily homogeneous Markov chains. So, well-known classi-
cal Lindvall’s and Thorrison’s results do not work in this case. Meantime, it is important
to note that the main theorem of this article uses the same proof schema as Lindvall’s
theorem 4.2 [14, p. 27].

The paper [9] is devoted to the investigation of such problem as integrability of the
coupling moment for two different Markov chains. In this work the estimates for the
expectation of a coupling moment for two different time-homogeneous Markov chains
starting with a random delays are presented. The conditions under which these estimates
were obtained are the strong aperiodicity (gi+g¢? > 0) and the finiteness of second renewal
moments.

The maximal coupling for two time-inhomogeneous chains is considered in other au-
thor’s papers [10, 11].

In the current paper these results extended to the time-inhomogeneous case. It is
important that in this case the fundamental principle of independence of the renewal
times does not hold true anymore. Instead, the conditional independence should be
considered given the fixed moments of the previous renewal process.

The main theorem of this paper gives the general conditions which guarantee the
integrability of the coupling moment. They are the condition of the separation from a
zero for renewal probabilities (in the time-homogeneous case this condition automatically
holds true for the non-periodic renewal distribution with a finite mean) and the uniform
integrability of the renewal distributions. It is interesting that similarity of the condition
can be noted for homogeneous and inhomogeneous case. In particular, for the time-
homogeneous case, an estimate similar to the one from the work [9] is derived in a
principal different way.

2. DEPENDENCE OF RENEWAL MOMENTS FOR TIME-INHOMOGENEOUS MARKOV CHAIN

The fundamental fact defining the proof schema in the time-inhomogeneous case is
that elements of a renewal sequence are not independent and the distribution of the
k + 1-st renewal moment is completely defined by the k-th renewal value.

Let’s examine an example that leads to the renewal sequence generated by the time-
inhomogeneous Markov chain.

Consider some time-inhomogeneous discrete Markov chain (X, ¢ > 0) with a phase
space {0,1,2,...}. Its transition probabilities are defined in the following way:

P{Xe=j| X =i} =R, j)=p", t>0 (1)

In the zero moment of time the chain is in the zero state. Let’s introduce the following
notation:

01 :Hlf{t >0: Xy = 0}

0, = inf{t >0 Xy = 0} (2)

0 = inf{t > 0,,_1: X; = 0}, m > 1,
where 6, is time of the first returning to zero, 6 is time between first and second zero
hitting, and so on. In this case 7, = Z?:l 0 is the k-th hitting moment.

The sequence {0,,, m > 1} is a renewal sequence generated by the time-inhomogeneous
Markov chain X;. In general case, for the chain starting from a non-zero state we may
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consider an initial delay 8y. It is time that a chain takes till hitting zero for the first
time.

Let’s now investigate a problem of dependence for the 6, variables. In the homo-
geneous case, these variables are independent. But if the chain is time-inhomogeneous
there is dependence between 6,,’s. Let’s see an example below.

The random variable 6; has a following distribution:

pr{91 Zk}ZP{XkZO,Xk_l 750,...,X1 #O,X():O}

k—1
; 3
= > [1».. ®)

10=0,217#0,12#0,...,i—17#0,i, =0 j=0

So, we can see that a distribution potentially depends from all X, t < k.
The distribution of the random variable 05 is as follows

k—1
P{02 =k} = ZP{HQ =k,0, =3}
j=1
4
:ZP{Xk:O7Xk—17&07Xj+17507Xj:0, ( )

J
X, 1#0,..., X #0,Xo=0}.

Note, that for each term in the last sum, the following equality holds true:
D P{Xk=0,X51#0,X;11 # 0| X; =0} P{6; = j}
= P{Xp=0,X51#0,X;11 #0| X; =0} P{r = j}.

So, the distribution of the random variable 65 depends on the variable 7y and all X,
t > 7. We'll show that this situation holds true for the other 6,, as well.

Let us now consider

P{Om =k} = P{Xp=0Xp1#0,....X;11 #0| X; =0}P{r_1 =j}. (5)

So the distribution of the 6,, depends on probabilities pg) where t > 7,,_1. In other
words, in order to write down a distribution for the 6,,, one should know the value of the
variable 7,,_1 but now necessarily the values of variables 61, ...,0,,_1. Moreover, under
fixed 7,,_1 the distribution of #,,, does not depend on the values 61,...,6,,_1.

Now we have:

P{Om =i,0m—1 =7 | Tm_1 =1t}
=P{0,, =1,0m_1 =37 | Xt =0,X; =0, exactly m — 2 times, | <m — 1}
=P{X, =0,k € {i,t,t — j}, Xp # 0 otherwise, A} P~'(A)
=P{X;=0,X; #0,

I=t+1,...,i—1|X=0,X,1#0,...,X,;=0,X,_;_1 #0, A}
X P{X,=0,X; 1 #0,.... X_; =0,X,_j_1 #£0| A}

=P{X;=0,X;#£0,l=t+1,...,i—1| X4 =0} P{lpn1 =75 | Tm—1 =t}
=P{X;=0,X,#0,0l=i—1,...,t+1|X; =0,B}P{lp_1 =j | Tm_1 =t}
=P{0n=1i|Tm-1 =t} P{Om_1 =3 | Tm-1 =1},

where the set A = {X; = 0,X; = 0, exactly m — 2 times, | <m — 1} = {7,,—1 = t},

B = {exactly m — 1 zero hittings happened till time ¢ — 1}.
So we have proved that

P{em =1,0m_1 =7 | Tm—1 = t} = P{em =1 | Tm—1 = t} P{em—l =J | Tm—1 = t}, (6)
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which means that variables 6,, and 6,,_1 are conditionally independent given 7,,_1.

Let us also note, that formula (5) implies that the distribution of the 6, is parame-
terized by only one parameter j (values of a 7,,,—1), and does not depend on index m.
So we can write:

gh =P{Om =n|7m1 =3}
This fact leads us to consideration of the random variables 6(t) which have the same

distribution as (g%, ),>0. This variables can be handled as moments of the first after time
t returning to zero, if we know that a chain is in the zero state at the moment ¢.

3. KEY DEFINITIONS

In this section and further on we’ll consider two time-inhomogeneous Markov chains
(X}, t > 0) and (X?,t > 0) defined on a phase space E = {0,1,...}. The chains are
defined by their transition probabilities on the s-th step Ps(x, A, 1), Ps(x, A, 2) for chains
X}, X? respectively. Let’s define transition probabilities for n > 0 steps:

Pt (z, A,l) (H Pt+k> z, Al). (7)

Having this set of transition probabilities and the initial conditions p!(-) we can build
a probability space (€2, F,P) where both chains (X}), I € {1,2}, are defined and

P{X! e A} :/ pH(dz)P%*(z, A1),  P{X! ., €A|X.=a}=P(z,A1l).
E

Let’s define renewal intervals 6%, [ € {1,2}:
0h =inf{t >0: X, =0}, 6, =inf{t >0, _1: X; =0}, m>1, (8)

which are defined on the same probability space (£2,F,P). The classes of variables
{01} k>0 and {62 }1>0 are independent. 0} for each [ € {1,2} and k > 0 have only positive
integer values while ), take non-negative integers. Let’s define renewal sequences in the
following way:

- zn:% le{1,2}. (9)
k=0

We will assume that neighboring variables inside each class are conditionally indepen-
dent giving 7. In other words, for each k, t, [ the following equality holds true:

Ef(61) 9 (Ohsr) [ 7] =E[f (61) | 7i] E9 (6hir) | 7] (10)

for any bounded Borel functions f and g.
Let’s introduce a definition for the conditional distribution of the 92 variable (please,
note that this distribution does not depend on k):

gt =P{O, =n| 1 =1}, I =€ {1,2}, n >0, (11)

and we assume that gi' = P{0 = 0| 7,1 = t} = 0. The variables 6!, k> 1 will be
interpreted as renewal steps and 6}, as a delay.
We'll say that T' > 0 is a coupling (or simultaneously hitting) moment if:

T=min{t>0:3Im,n:t=r1, =72}. (12)

Our goal is to find conditions which guarantee T' < oo a.s. and E[T] < cc.
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By qu D) e define a renewal sequence for the process 7'. In other words, usf D s a
probability of a renewal at the moment ¢ 4+ n having renewal at the moment ¢. Formally

ug D can defined in a following way:

wrl =l = 3w (13)

4. FORMAL DEFINITION OF THE 6'(t) VARIABLE

As we've seen before, the distribution of the k + 1-st renewal interval is completely
defined by the value of the 74 variable, i.e. by the moment of the previous renewal and
does not depend on the index k. That’s why we have introduced the notations g%’ and

(t D our goal is to define random variables §'(t) in such a way that g% be a distribution
for 01( ).

For simplicity we’ll omit index [ in this section.

Assume X; is some time-inhomogeneous Markov chain with transition probabilities
on the t-th step equal to P;(z, A). As before, let’s define:

PthTA (Hpt-"_k)

transition probability for the time from ¢ to t + n.
For each ¢ we define probability space (£2;, F¢,P;) as a canonical space for the Markov
chain X4, which starts at zero. Let’s note that

0(t) = min{j > 0: Xy1; =0}, (14)
and ¢!, = P{0(t) = n} is the distribution of the variable 6(¢). Then,
gfl = / Pt(O,dxo)PtH(xo,dxl) ...PtJrn,l(iL'n,l,{O}). (15)
(E\{op)n—!

As in the previous section let’s define 6! (¢) as a moment of the first hitting zero state for
the chain (X/,,,k > 0) which starts from zero. Then a variable 6'(t) has the distribution

(gﬁil)nzo-
Let’s define an overshoot:

The variable D, (t) should be understood as a time that has left till hitting {0} after
moment t + n having X; = 0. Note that variables D, (¢) and 6(t) are defined on the
common probability space (4, Fr, Py).

The following lemma is a key in proving the main theorem (the proof will be given
later):

Lemma 4.1. If a distribution family g, (or, a family of random variables 0(t)) is uni-
formly integrable then for each p € (0, 1) there exists a constant C = C(p) > 0, such that
for each t the following inequality holds true:

E/[Dn(t)] < pn+ C.

5. MAIN THEOREM

Theorem 5.1. Assume that (in notations introduced before):

1) The set of random variables 0'(t) is uniformly integrable (or, in other words, the
family of distributions g&' is uniformly integrable).

2) There exists a constat v > 0 and a positive integer ng > 0 such that for all t,
and n > ng: qu’” > .
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Then the coupling moment is integrable: E[T] < oc.

6. SETUP FOR THE PROOF OF THE THEOREM 5.1

Following the Lindvall approach (see. [14, p. 27]) let’s define the following random
variables:

By 41 Bs -1

no no

B1 B3

2 2
b
no vi ng V3

I ::min{jz 1: le >n0},

1
Bo = 7—1/07

21 ::min{j > vyt TJ-Q—Tulo > ng, OI“T]-Q—TI}O 20}7

2 1
By =1, — 1,
and further on

Vo = Iin {j > Vom—1: le — 7'327”71 > ng, Or le — 7'327”71 = 0} ,
Bapm = Tl:/lQm, - TV22m—1’
Vom+1 = min {j > Vom: Tj2 — T,}zm > ng, Or 7]2 — T,}zmzo} ,
Bomy1 = 7'32m+1 — ’7'”12m.

vy, is called as coupling trials. Let’s define 7 = min{n > 1: B,, = 0} and a sequence
of sigma-fields ®B,,, n > 0 in the following way:

‘ana[Bk,l/k,le-,kgn,j Syn].

Let’s also define random variables: DX = min{j: 3Im, 7}, = 7} + n + j}.

7. THE PROOF OF THE THEOREM 5.1

At the beginning we assume that 63 = 0.
The following inequality is true:

T < 95+ZBn :95+23nu472n. (17)
n=0 n>0

According to the lemma 8.4 for each n > 0, p € (0,1) the following inequality holds
true:

E[By | B 1] < pBu 1+ C, (18)
which implies that
k—1
E[BiW¥:>k | Br—1] = E | B H“‘Bk;eo Br_1| =¥ >, E[B, | Bp_1]
n=0

<Krsn(pBp-1+C) = pBn_iWr>n + CHrxy
é anfl'Hé‘anfl + C,Hé-,-zn,

where the latest equality follows from the relation {7 > n} C {r > n — 1} and so
HZTZTL < J’lérzn—l-
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So we’ve proved the following inequality:
E[Br>n] < pE[Bp_iH¥r>n_1] + CP{r >n}. (19)
It follows from lemma 8.5 that
Plr>n}<(1-9)"
Let’s define a,, = E[B,#;>,]. Then (19) implies:

an < pan_1+C(1=7)" <CY pF1—)""* < Cnmax(p, (1-7))".
k=0

Note, since p is arbitrary, we can choose it be equal to (1 — 7). In this case
an < Cn(l—~)".
So
E[T) <E[65) + ) an <E[05] + % < 0. (20)
n>0

Recall our assumption 62 = 0. Now we will get rid of it. Let’s define as 7" a coupling
moment for the processes with the following delays:

6y = max (6,65) — min (65,65) ,
0 = 0.
Note that T = T’ + min(6}, 63). So
E[T] < E [min (65, 65)] + E[T"] < oo.
Note that
el < E[67] + 5.
or

E[T|<E [maX (9(1),98)] + %

8. AUXILIARY LEMMAS

Lemma 8.1. Let xg), yn) be some inhomogeneous sequences of real numbers, un be

some inhomogeneous renewal sequence defined by the formula (13): (()t) =0, for all t.
Assume the following conditions are true

z) = Zg“’x“*’“) il (21)
290 > Z g0, + 4O, (22)
Then for any t, n:
a:%t) < x?L.
Proof. Let’s show that
k
xglt) - Z (t)yibt-i-k). (23)
k=0

We’ll do this by induction:
For the n = 0: x(()t) (t) (t) + y( ) = y(()t) = U(()t)y(()t)-
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Assuming the statement holds true for all k& < n, lets prove it for the n + 1.

n+1 n+l—k
t t t+k t t t+k) (t+k+ t t t
211—29” Sy = Zg” Z u Py + 0 v

k k
=S = S
Then for any ¢, n:

t
<(E(0 Zg() ?L k>

t 0 t t+k 0
20 <3 U@, Zu() g0 (24)
k=0 =0

Let us consider the second term

n—1
t t+k 0 (t t+k t t+k t t
Zu() g0, ji%zulggg k)+xozuzi)gfb B4 a0y
7=0

_ ZWS) = Zu(t) 0

Applying the last relation to the (24) we derive:
D < S Sl =l =t e

Lemma 8.2. Assume A is a some set defined by the variables 7, , vi, k < mn. Then:

l/k’
50 | B ot =t 4] < B o]

k‘-‘rno ’ Vn

Proof. Let’s denote t + k + ng = ¢q. Then:
P {Derln =7, By = k,Tll,n =t, v, =m, A}

=P{X) ,=0Xl ,#0s=0,....r—1,X{=0,7, =t v, =m,Bny1 =k, A}

= </ ptktno (0,dxo, 1) Py(xo,dx1,1) ... Pyyr—1(xr_1,dxr, 1) Pyyr(zr, 0, l))
(E\O)™

x P {Xt =0, Tin =t,vp=m,Bni1 =k, A}
=P {D;Hno t)y=r}P {Tin =t,vn=m, By =k, A}. O

Lemma 8.3.
E[Bay, | Bon—1] ZEt D}, (1) “471 =B =k

E[Ban+1 | Ban] = ZEt [Disny O] ¥z i Ba=i-

Proof. At the beginning we should note that the sigma-field 9B,, is generated by the
finite amount of random variables, and each of them takes only no more than countable
number of values. So, for each m, B,, is generated by the finite number of events.
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Let us define a set of events {A,(i),i € J,} as An(i) = {7} = tu, vk = i, k < n}
and note that J,, is a countable set. Let’s add the following notation

Cn(s, t,m, k) = {T,? =1, 7. =8, Van_1 =k, Vop_o = m,AQn_g(i)} i
Note that it follows from the definition of By, that
Boy = D=+ nq, (25)
which implies

E[Ba2n, — no | Ban—1]

1
= Z E [D;n s+no

s<t,m,k,i€Tan_3

Cn(s,t,m, k), Agn_3(i )} We, s,tm i) Az _s(i)-

Using lemma 8.2 we derive that the last term is equal

Z Es [Dg s+no( )] ¥e, (s tam ¥ Az s (i)

s<t,m,k,i€Jon_3

= Z Es [Dtl s+no( )]%Cnstmk) ZE t s4no )}Hﬂﬁ =th|4le —s

s<t,m,k s<t

= S B (D Foy, Kook

2

where we used the following equality Ba,—1 = 7'3271 — TV12n_ , in the last relation.

The corresponding statement for E[Bay,+1 | B2,] can be derived in a similar way. O

Lemma 8.4. Assuming the conditions of the theorem 5.1 holds true for each p € (0,1)
there exists a constant C € (0,00), that for every n > 0 a following inequality is true

E[By | Bp_1] < pBu_y +C.

Proof. Using lemmas 8.3 and 4.1 we will get

E[Bon | Bon—1] = Y B¢ Dy ()] ¥ sy 1=k

<D (p(k+no) + CWers — _Wpy, =k = pBanr + C".
t,k
The same statement holds true for the E[Bayny1 | Banl. O
Lemma 8.5. The following inequality is true
P{r>n}<(1—-7)".
Proof. Recall that 7 = min(n: B, = 0). An event {7 > n} = {[[;_, Br # 0}.
E I:HAHZ:O Bk?'éo} = E {HLHZ;OI By #0 E [HABn?EO | %n_l]}

=E {“‘l—[z;ol Bk750:| P {9% > B, + anl}

<E Ko P{6) >no} <E |[Wrn (1—7) <(1—7)"

= TT3=o Br#0 n = oy = TT3=o Br#0 7= )

where 7 is a number of the next after B, _; renewal in the [-th series. O
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9. THE PROOF OF THE LEMMA 4.1

Let’s consider the random variable D, (t)¥g+)—;, 7 < n. By the direct calculation it
is easy to verify that

Pe{Dn(t) = k,0(t) = j} = Pi{0(t) = j}Peyj{Dn—;(t +J) = k}. (26)
The following inequality holds true:
Dn(t)“ée(t»n = (9(75) - n)We(t)>n- (27)

Then, having in mind inequalities (26) and (27) we’ll get

NE

E, [Dn(t)] = E; [Dn(t)“ée(t):j} + Eq [Dn(t)“ée(t)>n]

<.
3 |
—

(Z H{Dn(t) = k,0(t) —.7}) +Ee [(0(t) — n)Woe)>n]

j=1

Il
M: I

P{0(t) = j} (Z kPt j{Dp—j(t +j) = k?}) + E[(0() — n)¥ot)>n]

k=0

<.
Il
—

'Et+j [Dn—j(t +.7)] + Ey [(H(t) - n)We(t)>n] .

I
M§

<.
Il
—

So we have the following equality

n
Ei[Dn(t)] = g5 B 5[Dnj (¢ + )] + B [(0() — n)¥o1y>n) - (28)
=1
After that we’ll use the lemma 8.1. Let’s define:
ngt) = Et[Dn(t)]a

Y =By Foy=n(0(t) —n)]
then (28) implies the condition (21).
We define as
2 = pn + C.
Let’s proof that the condition (22) of the lemma 8.1 holds true. For doing that we should
show, that for any p € (0,1) there exists such C = C(p), that

pn+C =3 gipln—j)+C)+> (j—n)g}, (29)

§=0 i>n
We'll derive the following from the statement (29)

(29) & pn+C>ang]+CZgj —pZJngrZJgj —nG,

i>n
& npG, + CG; > E, [0(t )“‘a(t)wﬂ - P]Et [0t o(1y<n] — nG,,

& n(p+1)G;, + CGy + pEq [0(tWory<n] = Ee [0(E)Fo()>n]

& n(p+1)G,, + CG + pEe [0(1)] > (14 p)Ee [0 o)>n]
So, the inequalities (29) are equivalent to (30). Note that, in the case of G, = 0 the
equality (30) holds true automatically. Assume than Gf, > 0. But E;[6(¢)] > 1 and the
uniform integrability implies that there is a number ng, such that for all ¢ > 0,1 > ng:

E¢ [0t ot)>n] < p/(1 4 p). The constant C' we’ll choose in the way to satisfy (30) for
n < ng.
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Let’s show now, that C could be chosen disregarding of ¢. For ¢ = p/(1+ p) we’ll find
such § > 0, that for each set A, such that P(A) < § it follows that E;[0(t) 4] < e. Tt is
possible, since 0(t) are uniformly integrable. Let’s define then

(14 p)supE[0(t)] — P

C .= 5

Now having GY, < ¢ inequality (30) holds true automatically. In the case of Gf, > §, we’ll

get:

10.

11.

12.

13.

14.

15

n(p+1)G,, + CGy + pE[0(t)] > (1+ p) sup B, [0(1)] = (1 + p)E¢[0(1)]

> (14 p)E; [H(t)“ée(t)>n] .
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SEMI-MARKOV APPROACH TO THE PROBLEM OF DELAYED

REFLECTION OF DIFFUSION MARKOV PROCESSES
UDC 519.21

B. P. HARLAMOV

ABSTRACT. An one-dimensional diffusion process with positive values, reflecting from zero, is consid-
ered. All the variants of reflecting with preservation of the semi-Markov property are described. This
property is characterized by a family of Laplace images of times from the first hitting of zero up to
the first hitting of a level r for any r > 0. The parameter C'(\) of this family is used for construction
of a time change, transforming a process with instantaneous reflection to the process with delayed
reflection.

AHoTAuls. Posrmsimaerbes ogHOBUMIpHUN nudy3ifiHuil mporec 3 IOJATHHMH 3HAYEHHSIMH, L0 BijI-
buBaerncs Big Toukm Hysnb. Ouucaxo Bci BapianTu BigburTs i3 30eperkeHHSIM HAMIBMAPKOBCHKOI BIIa-
CTHUBOCTI IpoIlecy, IO XapaKTePU3YeThbCs CiMeHCTBOM IepeTBOpeHb Jlalraca MOMEHTIB BiJ mepiioro
JIOCSAATHEHHSI HYJIST JI0 MEPIIOTO JOCATHEHHS 33JJaHOr0 piBHs 7 1y1st Beix 1 > 0. [Tapamerp-dyuknis C(N)
IBOrO CiMeHCTBA BUKOPUCTOBYETHCS JJIs HOOYTOBH 3aMiHU 4acy, IO IIePeTBOPIOE MPOIEC i3 MUTTEBUM
BigburTsaM y mporec i3 ynosisbHeHEM BigOHTTSIM.

AuHoTAnusi. PaccmarpuBaercst ogHOMepHBIH auddy3HMOHHBIH MPOIECC C MOTOKUTEILHBIMY 3HAME-
HUSIMU, OTpaxKaroumiics or Touku 0. ONUCHIBAIOTCS BCE BAPUAHTHI OTPAYKEHUsI C COXPAHEHUEM ITOJIy-
MapKOBCKOTO CBOMCTBa IIpOIlECCa, KOTOPOE XapaKTepU3yeTcCs ceMeicTBOM Ipeobpa3oBaHuit Jlammaca
BPEMEH OT IEPBOr0 JOCTUXKEHUs HyJIsd 0 NEePBOrO JIOCTHXKEHMsS 3a/JaHHOI0 yPOBHHA T 1y Bcex 17 > 0.
ITapamerp-dyuaknus C(A) 3TOro ceMeiicTBa UCIONB3YETCs IS BHIBOAA XaPAKTEPUCTHK 3aMEHBI BpeMe-
HHU, IIPEBPAIIAOINIEH IPOIECC ¢ MITHOBEHHBIM OTPAaXK€HHEM B IPOIECC C 3aMe/JIEHHBIM OTPa’KEHUEM.

1. INTRODUCTION

Apparently Gihman and Skorokhod were the first who investigated reflection with
delaying of one-dimensional Markov diffusion processes ([1, p. 197]). They applied a
method of stochastic integral equations which takes into account preserving the Markov
property while reflecting. However there exist examples of interaction between a process
and a boundary of its range of values, which can be interpreted like reflection, when
the Markov property is being lost, although the property of continuous semi-Markov
processes is preserved. Here is a simple example.

Let w(t), t > 0, be Wiener process. Let us consider on the segment [a, b], a < w(0) < b,
the truncated process

b, w(t) >b
w(t) =qw(t), a<w(t)<b
a, w(t) <a

for all t > 0. It is clear that this process is not Markov. However it remains to be
continuous semi-Markov [4]: the Markov property is fulfilled with respect to the first
exit time from any open interval inside the segment, and also that from any one-sided
neighborhood of any end of the segment.

2000 Mathematics Subject Classification. Primary 60J25, 60J60.

Key words and phrases. Diffusion, Markov, continuous semi-Markov, reflection, delaying, first exit
time, transition function, Laplace transformation, time change.
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The semi-Markov approach to the problem of reflection consists in solution of the
following task: to determine a semi-Markov transition function for the process at a
boundary point for the process preserving its diffusion form inside its open range of
values, i. e. that up to the first exit time from the region and any time when it leaves the
boundary. A more specific task to find reflection, preserving a global Markov property,
is reduced to a problem to find a subclass of Markov reflected processes in the class of
all the semi-Markov ones. Tasks of such a kind are important for applications where
one takes into account interaction of diffusion particles with a boundary of a container,
leading to a dynamic equilibrium of the system (see, e. g. [7]).

In paper [3] all class of semi-Markov characteristics of reflection for a given locally
Markov diffusion process is described. In paper [5] conditions for a semi-Markov charac-
teristic to give a globally Markov process are found. In the present paper we continue to
investigate processes with semi-Markov reflection. The aim of investigation is to find for-
mulae, characterizing a time change, transforming a process with instantaneous reflection
into the process with delaying reflection,

In paper [6] while analyzing a two-dimensional diffusion process in a neighborhood of
a flat screen a time change in a tangential component of the process with respect to a
normal component time run is factually treated. This splitting of the process on two
components makes the situation easier to be understood, but at the same time it masks
the true mechanism of transformation. In fact the time change could be learned on the
initial stage of semi-Markov approach to the problem of reflection. In the present paper
this shortcoming of our first paper on this theme is removed.

2. SEMI-MARKOV TRANSITION FUNCTION ON A BOUNDARY

We will consider a diffusion process X (¢) on the half-line ¢ > 0 with one boundary at
zero. We assume that the process does not go to infinity and from any positive initial
point it hits zero with probability one. For example, it could be a diffusion Markov
process with a negative drift and bounded local variance. We had substantiated above
why it is expedient to consider semi-Markov reflection. Semi-Markov approach permits
to consider from unit point of view an operation of instantaneous reflection as well as an
operation of truncation.

In frames of semi-Markov models of reflection it is natural to assume that X (¢) is
a semi-Markov process of diffusion type. Let (P.), x > 0, be a consistent family of
measures of the process, depending on initial points of trajectories. On interval (0, c0)
semi-Markov transition generating functions of the process

ap) (N 7)== By (67270 X (0(0,) = a) ;
hay (N ) =B (€727 X (0(0,)) =),
a < x < b, satisfy the differential equation

S+ AW~ BOLa)f =0,

with boundary conditions

g(a,b)(Av a+) = h(a,b)(Av b_) =1, g(a,b)(Av b_) = h(a,b) (>‘a a+) =0.
The coefficients of the equation are assumed to be piece-wise continuous functions of
x > 0, and for any x function B(\,x) is non-negative and has completely monotone
partial derivative with respect to A. First of all reflection of the process from point
x = 0 means addition of this point to the range of values of the process. Further all
the semi-closed intervals [0,7) are considered what the process can only exit from open
boundary. Corresponding semi-Markov transition generating functions are denoted as
hio,7)(A, ) with main distinction from exit from an open set hjg,)(A,0) > 0. Function
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K(X,7) := hjo (X, 0) plays an important role for description of properties of reflected
processes. Using semi-Markov properties of the process, we obtain

hio,n (A @) = hior) (A 2) + g0,m (A 2) K (A, 1),
and also
K\ r)=KA\r—e)(hornAr—2¢)+gonAr—e)K(A\r)).
Assuming that there exist derivatives with respect to the second argument we have
9(aby N @) = 14 g(, 4y (A at)(z — a) + o(z — a),
9(at) (A @) = =G40y (X 0=) (b — ) + o(b — ),
Rap) (N @) = hiy (N, at)(z — a) + o(z — a),
han) (A @) =1 = hig ) (A, 0=)(b— 2) + o(b — ),
and obtain the differential equation
K'(\ ) + KA m)hig (A, r=) + K2 (A, 7)g{g. 9 (A, 7—) = 0.
Its general solution is
higpy (A, 0+)
CON) — gl )N 0F)’
where arbitrary constant C(A) can depend on A. In order for K(A,r) to be a Laplace

transform it is sufficient that function C(A) to be non-decreasing, C(0) = 0, and its
derivative to be a completely monotone function [5]. Under our assumptions it is fair

K\ r)=1-C(\r+o(r), r— 0.

Our next task is to learn a time change in the process with instantaneous reflection
which derives the process with delayed reflection.

K(\r)=

3. TIME CHANGE WITH RESPECT TO TIME RUN UNDER INSTANTANEOUS REFLECTION

Let us denote 6; the shift operator on the set of trajectories; oa the operator of the
first exit time from set A. For any Markov times 71, 72 (with respect to the natural
filtration) on set {71 < oo} let us determine the following operation

TI+Te =T + T2 00,,.
It is known [4], that for any open (in relative topology) sets Ay, Ag, if A; C Ag, then

OAy, = O0A,TOA,-

In this case oa(§) =0, if £(0) ¢ A.
Let us introduce special denotations for some first exit times and their combinations,
and that for random intervals as e > 0

Q= 006, B = 00,00)5 7(0) := B,
vi=atB, )= -1y, n>1,

b(O) = [Ovﬂ)v a(n) = [7(” - 1))7(” - 1)4_@); b(n) = [7(71 - 1)+a77n)~
The random times «, y(n), and intervals a(n), b(n), n = 1,2,..., depend on e. In some
cases we will denote this dependence by the lower index.

Let us remark that sequence (y(n)) forms moments of jumps of a renewal process.
Besides if X (¢) > 0 then for any ¢ > 0 there exist € > 0, and n > 1 such that ¢ € b.(n).
It implies that for ¢ — 0 random set |Jg—, b-(k) covers all the set of positive values of
process X with probability one. On share of supplementary set (a limit of set ;- a-(k))
there remain possible intervals of constancy and also a discontinuum of points (closed
set, equivalent to continuum, without any intervals, [2, p. 158]), consisted of zeros of
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process X. The linear measure of it can be more than or equal to 0. This measure is
included as a component in a measure of delaying while reflecting.

It is known ([4, p. 111]) that continuous homogeneous semi-Markov process is a Markov
process if and only if it does not contain intrinsic intervals of constancy (it can have
an interval of terminal stopping). This does not imply that a process with delayed
deflection cannot be globally Markov. Its delaying is exceptionally at the expense of
the discontinuum. A process without intervals of constancy at zero, and with the linear
measure of the discontinuum of zeros which equals to zero is said to be a process with
instantaneous reflection.

We will construct a non-decreasing sequence of continuous non-decreasing functions
Ve(t), t > 0, converging to some limit V(¢) as ¢ — 0 uniformly on every bounded interval.

Let X(0) > 0, and V.(t) = ¢ on interval b(0), and V.(¢) = § on interval a(1). On
interval b(1) the process V. increases linearly with a coefficient 1. On interval a(2)
function V; is constant. Then it increases with coefficient 1 on interval b(2), and so on,
being constancy on intervals a(k), increasing with coefficient 1 on intervals b(k). Noting
that if &1 > eq, for any iterval a,(k) there exists n such that a.,(k) C ae (n), we
convince ourself that the sequence of constructed functions does not decrease, bounded
and consequently tends to a limit.

Let us define a process with instantaneous reflecting obtained from the original process
X as a process, obtained after elimination of all its intervals of constancy at zero, and
contraction of a linear measure of its discontinuum of zeros to zero. This process can be
represented as a limit (in Skorokhod metric) of a sequence of processes X.(t), determined
for all ¢ by formula

X.(t) =X (V.'®),

€

where V."!(y) is defined as the first hitting time of the process V.(t) to a level y.
Hence X (t) has jumps of value £ at the first hitting time to zero and its iterations.
Let us denote the process with instantaneous reflecting as Xo(t), and the map X — X
as ¢y. Such a process is measurable (with respect to the original sigma-algebra of sub-
sets) and continuous. Let P = P, o d)‘_,l be the induced measure of this process.

Then it is clear that V is an inverse time change transforming the process Xy into the
process X, i.e. X = Xgo V. In this case for any open interval A = (a,b), 0 < a < b, or
A =10,7), r >0, it is fair

oa(Xoo V) =V oa(Xp)).

The function V! we call a direct time change, which corresponds to every “intrinsic”
Markov time of the original process (in given case Xy(t)) the analogous time of the
transformed process.

Remark, that for e; > e2 the set {7, (n),n = 0,1,2,...} is a subset of the set
{Ve,(n),n =0,1,2,...}. That is why every Markov time 7.(n) is a Markov regeneration
time of the process V, what permits in principle to calculate finite-dimensional distrib-
utions of this process. On the other hand this process is synonymously characterized by
its inverse, i.e. the process

V= y) :=1inf{t > 0: V() >y}, y > 0.

This process is more convenient to deal with because Laplace transform of its value at a
point y can be found as a limit of a sequence of easy calculable Laplace images of values

Vo (y).

Theorem 1. A direct time change V~1(y), mapping a process with instantaneous re-
flection into a process with delayed reflection satisfy the relation

Egexp (—AV ! (y)) = Egexp(—Ay — C(\)W (y)), (1)
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where W ~1(t) is a non-decreasing process with independent increments for which

Eq exp (=AW ~1(t)) = exp (920,00)(/\7 O—I—)t) : (2)

Short proof. Without loss of generality we suppose that X (0) = 0. Let N.(¢t) = n if and
only if

Z|b |<t<2|b

(la(k)| and |b(k)| are lengths of intervals a(k), b(k)). Then

Egexp (—AV ™' (y)) = lim Egexp (-AV."(y))
Ne(y)
= Ehi%EO Ay — A Z la(k)| | -
k=1
We have

Ne(y)
Eg exp (—)\ (V;l(y) _ y)) =Egexp (—)\ Z |a(k)|)

Mg

0exp< Aza097(k 1); Ne(t) = )

n=0

=P.(3> +ZE0 (exp(—/\ZaOHV(kl)> Z|b |<y<2|b )
k=1
=P.(8=y)
[oe) n n—1
Z Eo <exp (—)\a — /\Z oo ev(k1)> ;8004 + Z Bo0a00, k1)
n—1 k=2 k=2

k=2

P.(B>y) +Z/ Eo<exp< )\a—)\ZQOQ(k 1)> Bob, €dx,
n—1
> 00000, 1><y—x<26o9 © 0 (- 1>>

k=2 k=2

<y<ﬂo9a+§jﬂooaoey<k_1>>

oo

y
+ Z/o Eq (e_’\“;ﬁo 0, € dx)
n=1
x Eq <exp (—)\ Z oo 97(1@2)) ;
k=2

n—1 n
Zﬂogaoev(k—ﬂ <y—z< Zﬂogaoey(k—2)>

k=2 k=2
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=P.(B>vy)

i Y
+ Z/O P.( € dx)Ey (e_)‘o‘)
n=1
n—1
X EO (exp <—A Z [eel 07(1@1)) 3
k=1

n—2 n—1
Zﬂogaoev(k—l) <y—zx< Zﬂoeaog'y(k—l)>

k=1 k=1
Y 0 n
0 n=0 k=1

=P(Bzy)+ /Oy P.( € dz)Eo (e ) Egexp (=M (V. ' (y —2) — (y — 2))) -

Let us denote Z(y) := Egexp(=A(V. 1 (y) —y)), F(z) := P.(8 < z), F(z) :=1—F(x),
A :=Ey(e **). We obtain an integral equation

20 =Fle) +4 | " 2ty - 2y dF (),

with a solution which can be written as follows
Z2(y) =Y A (FO(y) - F (),
n=0

where F(™ is n-times convolution of distribution F. Let us consider a sequence of
independent and identically distributed random values |b(n)|, n = 1,2,.... Let PX is the
distribution of a renewal process N, (y) with this sequence of lengths of intervals, and E}
is the corresponding expectation. Then

ELAN0) = 3" 4PNy =) = 30 47 (PO ) - FOH )
n=0 n=0

Thus

Eq exp (—)\Vefl(y)) =e ME! (Eoe*)‘a)Na(y) .
On the other hand it is clear that there exists a version of the process N.(y), measurable
with respect to the basic sigma-algebra, and adapted to the natural filtration of the
original process, and having identical distribution with respect to measure Py. Preserving
denotations we can write

E: (Eoef)\a)NE (y) _

EO (Eoef)\a)Ns(y) )

Moreover, measures Py and PY) coincide on sigma-algebra F'*, generated by all the random
values 3% 0 0pe 00 )s, € >0, k=1,2,.... From here

oy Ne e N
Eo (Eoe*) ¥ = B (Bpe=2) @
Taking into account that o depends on € and using our former denotations we can write
Eoe ™ = K(\,e) =1 — C(\e + o(e).

We will show that the process We(y) := eN.(y) tends weakly to a limit W (y) as € — 0,
which is an inverse process with independent increments with known parameters, and
measurable with respect to sigma-algebra F*. Actually, the process W.(y) does not
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decrease and is characterized completely by the process W 1(t). The latter has indepen-
dent positive jumps on the lattice with a pitch . Hence it is a process with independent
increments. Evidently a limit of a sequence of such processes, if it exists, is a process with
independent increments too. Its existence follows from evaluation of Laplace transform
of its increment. We have

[t/e]
Ele 2o = B exp [ —A Z b(k)| | = (E e_’\ﬁ)[t/s]

[t/e]

= (14 glop M D)e +0(2)) | = eSlom @O g,

Using the sufficient condition of weak convergence of processes in terms of convergence
of their points of the first exit from open sets ([4], p. 287), we obtain

Egexp (=AV ™ (y)) = Egexp (—Ay — C(ANW (y)) ,

what can be considered as description of the direct time change in terms of the process
with instantaneous reflection and the main characteristic of delaying, function C'(A). O

We use this formula for deriving the Laplace transform of a difference between the
first exit times from an one-sided neighborhood of the boundary point for processes with
delayed and instantaneous reflection.

Denote
B" =00, 7"(0) =0,
Vi=atf, AT (n) =" (n =14, n>1,
b'(n) = [y (n—1)4a,7"(n)),  n=>1,
M :=inf{n>0: X(v"(n)) >r}.
Hence

By(M! =n) = Py(X(v"(1)) = 0,
X(Y"(n=1)) =r) = (ple,r)" " (1 = ple,r)),
where p(e,7) := Po(X (7"(1)) = 0).

Theorem 2. A difference between the first exit times from a semi-closed interval [0, 1)
for processes with delayed and instantaneous reflection obeys to the relation

-G 2 (04)
_ 0 _ (0,r)
Eq exp ( A (U[Oﬂ“) 0'[0,7"))) C(/\) — G/(O T)(O+) )

where G g (%) = g(0,r) (0, 7).

3)

Short proof. Let X(0) = 0. Then evidently, ojg,) = 'yM, for any € < r. On the other
hand, it is clear, that " = 7 on the set {X (") = 0}, and by induction we conclude that

¥"(n) =~(n) on the set ﬂ {X(y"(k)) = 0}.
From here

YV (I(MI =n) = (y"(n—1)+") <ﬂ {(X(y 0}> N{X("(n) =r}

= (y(n = 1)) I(M] = n).
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Let us denote O'PO’T) the first exit time from interval [0, ) of the process with instantaneous
reflection (formally it means O'PO’T) = V(o70,,))). Then V~ (0'[0 T)) = 070,), and from
formula (1) it follows that

Eg exp (—)\ (0[07,«) — 0?077"))) = E8 exp (—C()\)W (JPO7T)))

= Eg exp(—~C)W(y"(M!))) = > EJ (exp(~C(A)W (3" (n))); ML = n)

M

EJ exp (~C(NW (y(n — 1)+47) ; MI = n)

=) ES <exp(—C(>\)W (Z(Ia(/f)l + 0" (R)]) + la(n)| + Ibr(n)l> ML = n) :
n=1 k=1

Taking into account PJ-almost sure convergence EkM;1(|a(k)| — 0 as ¢ — 0, we have

Elig(l)z::l]Eg (exp(—C(A)W <kz_1(la(k)l +[0"(K)]) + la(n)| + Ibr(n)l> s M = n)
Mr—1

I 0 _ r r T
= m ES [ exp(~CO)W Z b7 ()] + b (M)

MI—-1
I 0 _ r T r
= lim Eg | exp(—C(N)eN: Z b7 (k)| + |b" (ML)

From the definition of the process N.(t) it folows that

(ZW )+ 167 ( )|>=n7 n=12....

Consecuently

Eoexp (A (009 = ofy,)) ) = lim E§ exp (—C(N)eM?)

oo

= lim e “NE (p(e, ) (1 = ple, 7))
n=1
L 1—p(e,r)
_ C(N)e pis,
= lime 1—eCWMep(e,r)’

and taking into account that
p(e,r) = Po(X (L) = 0) = Po(X (e=+pL) = 0) = Py(X (L) © 0. = 0)
= Po(X(B0) = 0) := Go,r)(e),
and that the last expression (the partial case g( (A, €) for A = 0) has an asymptotic
Go,n(€) =14 Glg ) (0+)e + o(€), we obtain at last
-G, (0
Eo exp (—A (0[0,r) - UPo,r))) - cN _(Oélz(f r)+(2)+)' O

It is interesting to note that for a linear function C(A) = kA, when a reflecting locally
Markov process is globally Markov [5], the difference between the first exit times from a
semi-closed interval [0, 7) for processes with delayed and instantaneous reflection has the
exponential distribution with parameter —G({, ,,(0+)/k.
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4. EXAMPLE

Let us consider the standard Wiener process truncated in its negative values

_.+_ )0 w(t) <0,
O =), wit) >0,

In frames of the semi-Markov model of reflection it is characterized by the function

h! A, 0+ i
K\ r) = (0,1 ) _ V2)\/ sinh7v/2)

C(A) = 9(0.»(A,04)  C(A) — V2 coshrv/2)/ sinh V2N

Taking into account the origin of this process one can write
K(\ r)=E{ exp (—)\0(_0077")) = exp (—r\/ 2)\) .

Comparing derivatives at zero of these two representations of the same function, we
obtain C'(\) = v/2X. Now we can obtain the main characteristic of delay of this process
under reflection (including lengths of all the intervals of constancy) from the first hitting
time of the level 0 up to the first hitting time of the level r:

what relates to tabulated values of Laplace transforms, and here is not exposed.
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ON A CONJECTURE OF ERDOS ABOUT ADDITIVE FUNCTIONS
UDC 519.21

KARL-HEINZ INDLEKOFER

ABSTRACT. For a real-valued additive function f: N — R and for each n € N we define a distribution
function 1
Fae) i= = 4t{m < s f(m) < a}.

In this paper we prove a conjecture of Erdos, which asserts that in order for the sequence Fj, to be
(weakly) convergent, it is sufficient that there exist two numbers a < b such that limy, — 0 (Frn (b)—Frn(a))
exists and is positive.

The proof is based upon the use of the Stone—Cech compactification SN of N to mimic the behaviour
of an additive function as a sum of independent random variables.

AnoTaurs. as gificaoi amgurusaol dyukmil f: N — R mpum Bcix n € N Mu Bu3nagaemo dyHKIiO
PO3IOILITY
1
Fp(z) := ;#{m <n: f(m) <z}

V¥ crarri Mu goBoguMo rinoredy Eppemna, sika cTBepiaKye, mo as (c1abkoi) 36iKHOCTI mOCIi JOBHOCTI
F’,, 1OCTATHBOI YMOBOIO € ICHyBaHHS ABOX dHuCeN a < b Takux, mo rpaHuns limp,— oo (Fn(b) — Fr(a))
icHye 1 momaTHa.

Josenenns 6a3yerbcs Ha BukopucranH! kommakrudikanii Croyra—Texa (Stone—Cech) BN gs N,
10 Ja€ 3MOTY JOCJiTUTH MOBETIHKY aJUTHBHOI (DYHKIIIT, TPAKTYOUH 11 K CyMYy HE3aJIeXKHUX BHUIAJ-
KOBUX BE€JIMYUH.

AnnoTAnUs. [lis BemectBennoit agurusHo# dyukmuu f: N — R nopu Bcex n € N Mbl onpegensiem
GYHKIHIO pacIpe/eneHus

Fn(z) := %#{m <mn: f(m) <z}

B crarbe MBI JOKAa3bIBaeM THUIOTE3Y DpJelia, B KOTOPOil yTBep:kaaercs, 4ro as (ciaaboil) cxoqumocTn
[I0CJIeI0BATENBLHOCTH Fy, T0CTATOYHBIM YCJIOBHEM SIBJISIETCsI CYIeCTBOBaHME JBYX 4uces a < b Takux,
gT0 npenes limy— oo (Fn(b) — Frn(a)) CyImecTByeT u moJIOXKUTEEH.

Jloka3aTesbCTBO OCHOBAHO HA MCIIOJIb30BaHuM KoMmmnakTudukamun Croyna—dexa (Stonef(vlech) BN
st N; 9T0 aeT BO3MOXKHOCTH UCCJIEAOBATH MOBEJEHUE AJAUTUBHON (DYHKIMM, TPAKTYS €€ KaK CyMMY
HE€3aBUCHUMBIX CJ'[y‘IafIHbIX BEJIMYUH.

1. INTRODUCTION

A function f: N — R is called additive if f(mn) = f(m) + f(n) for any coprime
integers m and n. Then f is defined by its values f(p¥) on prime powers p* (p prime,
k e N) and f(1)=0.

Given a real-valued additive function f, one can define, for each n € N, a distribution
function

F,(z):= %#{m <n: f(m) <z} (1.1)

An old conjecture of Erdos in 1947 (see Erdos [4]) asserts that in order for the se-
quence F,, to be (weakly) convergent (in this case we say that the additive function f
possesses a limit distribution), it is sufficient that there exist two numbers a < b such

2000 Mathematics Subject Classification. Primary 11N37, 11N60, 11K65.
Key words and phrases. Probabilistic number theory, additive functions.
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22 KARL-HEINZ INDLEKOFER

that
lim (F,(b) — F,,(a)) exists and is positive. (1.2)

n—oo

In 1992 A. Hildebrand [6] could show that the conclusion of Erdés’ conjecture is valid,
provided (1.2) is strengthened to

Ly := lim Fy(a) and Lp:= lim F,(b) (1.3)

n—oo

both exists and L, # Lp. Some further discussions are contained in [10] and [11].
In this paper we show that the above conjecture of Erdos holds.

Theorem. Let f: N — R be an additive function. In order for the distributions (1.1) to
converge, it is sufficient that (1.2) holds for some a < b.

The proof is based upon a method, introduced in [7, 8] using the Stone-Cech compact-
ification ON of N to mimic the behaviour of an additive function as a sum of independent
random variables.

2. FINITELY DISTRIBUTED ADDITIVE FUNCTIONS

An additive function f is said to be finitely distributed if there are positive constants c¢;
and c2, and an unbounded sequence n; < mo < ... so that for every i there exists a

sequence
agi) < aéi) << ag) <ny
satisfying
‘f(af)) —f(aff))‘ < cq, t; > cong, 1 <r;s <t
The necessary and sufficient condition that f should be finitely distributed is that
there should exist a constant ¢ and an additive function h so that

f(n) =clogn+ h(n) (2.1)

where both the series

: 3 h>(p) (2.2)

p

D=

2
|h(p)I>

converge (Erdds [3], 1946). Further characterizations of finitely distributed additive
functions can be found in Ch. 7 of Elliott’s book [2]. For our purpose we shall apply the
following ([2, p. 259]).

1 P
|h(p)|<1

Proposition. If the additive function has a representation (2.1) with convergent series
(2.2), then, if we define

h(p)
a(n) =cl + — 2.3
(n) = clogn ; » (2.3)
psn
|n(p)I<1
the distribution functions
1
Gn(z) = E#{m <n: f(m)—an) <z} (2.4)

weakly converge to some distribution function G(x).
If (1.2) holds then f is finitely distributed. Now, assume that (2.1) holds and «(n) is

unbounded. Then, if a(n}) — oo, k — oo, for some subsequence (n},), by (1.2),

lim {Gn; (b— a(n)) — Gy (a — a(n;))} = lim (Fn (b) — Fuy (a)) >0 (25)

k—oo k—oo
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whereas the left side in (2.5) tends to zero since G,, converge weakly to some distribution
function. Then, since a(n) = clogn 4+ O(loglogn), we conclude ¢ = 0, i.e. f = h, and

An):= Y % =0(1) forallneN. (2.6)
<

In the following we assume that

g fp) diverges, (2.7)
) p
If(p)I<1

which implies (see [3], Theorem II) that G(z) is continuous and strictly increasing for all
xR
For each n € N define the additive function f,, by

B
O
and put, for A C N,
on(4) == %#{m <n:m e A}.
If the limit
d(A) = nlinéo on(A) (2.8)

exists we say that A possesses the asymptotic density 6(A).
If some sequence {n} } is given we write

§'(A) = klg)go dny (A) (2.9)
in the case the limit (2.9) exists.
With these notations we show
Lemma 1. Assume that (1.2) holds. Then
nlirrgo d{m: fn(m) € (a,b]}) = 6({m: f(m) € (a,b]}) =: ¢o > 0. (2.10)

Proof. Observe that 6({m: f,(m) € (a,b]}) always exists. Assume that (2.10) does not
hold. Then there exists a sequence {ny} of natural numbers such that

T 5({m ¢ fo, (m) € (a1])) = ¢ # co.
Since A(ny) = O(1) there exists some subsequence {n} } of {n;} so that
klijgo A(n}) = A’
exists. Choose ki such that for every kg > k;
(e < )
o' ({m: fuy, (m) € (a,b]}) = 8({m: f(m) € (a,8]})] (2.11)

s leo—¢l Cl'.
- 2
On the other hand we shall show that
lim  lim 6,/ ({m: ‘f(m) = fuy, (m)‘ > e}) =0 (2.12)

ko—o00 k—o0

for every € > 0 which contradicts (2.11).
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For the proof of (2.12) put
Po :=A{p: |f(p)| > 1}U{pk: k>2}.

= > [

p*(lm

pFePo
’

pP>ng

> )

pllm
If(p)\lél
p>nk0

Define the functions

and

From our definitions of these functions
f(m) — fn;m (m) = j(m) — (A(n;) —A (n;m)) +h'(m) + (A(nk) —A (n%o)) )
We shall prove that for every ¢ > 0 each of the three expressions
Li(ko) = hm Ot ({m ‘ j — (A(ny) — A(ny,))| > €}),
La(ko) = Tim 8 ({m: [W'(m)| > e})

and
Ls(ko) = hm 5y ({m: |A(ny) — A (ng,)] > €})

converge to zero as kg — oc. We may readily estimate the first of these three expressions
by appealing to the Turan—Kubilius inequality. In our present circumstances it becomes

1ok , SN2 |f(p)?

o 2 litm) = (A A )< 30

k m=1 nﬁm<p§n;C
[f(p)|<1

Appealing to the convergence of the second sum in (2.2) we see that

Ly (ko) < 1 > /@) =o0(1) as ko — oo.
g2« D
L <p
If(p)I<1
The estimate L3(ko) = o(1) as ko — oo is obvious.
If an integer m is counted in the expression La(kg) it must satisfy one of two divisibility
criteria.
First, it may be divisible by the square of a prime p > n} . The frequency of these
integers is at most

Sy, ({m: plm,p > n ) < Y L o(1) sk — oo,

n;co <p p
Next, it may be exactly divisible by a prime in the range nj < p for which |f(p)[ > 1.
From the hypothesis (2.2) we deduce that the frequencies of such integers is at most

1
Z —=o(l) asky— o0
p

n§€0<p
[f(p)I>1

and thus L2 (ko) = o(1) as kg — oco. We have now shown that (2.12) holds and completed
the proof of Lemma 1. O
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In the next step we identify the additive function f with a sum
pendent random variables.

X, of inde-

p prime

3. ADDITIVE FUNCTIONS AS A SUM OF INDEPENDENT RANDOM VARIABLES

For the sake of simplicity we restrict ourselves to strongly additive functions. Then f
can be written in the form
f= Z f(p)ep
P

where

0, otherwise.

1 if p|n,
sp<n>={ |

If A denotes the algebra generated by the sets

A, :={neN:pn}, p prime,

then obviously each A € A possesses an asymptotic density §(A) and §(4,) = ]—1) (p

prime). Thus ¢ defines a content on A. Now the construction runs as follows. (For
details see [7, 8].) We embed N, endowed with the discrete topology, in the Stone-Cech
compactification BN,
N — ON
and, if for any A C N, the closure of A in AN is denoted by A, then
A:={ACpPN: Ae A}

is an algebra, too. The extension § of &

5(A):=6(4), Ac A,
defines a premeasure on A and leads to a measure P, induced by

§*(A) := lim 6,(A) forall ACN,

and to a probability space (2, 0(A), P) with Q = ON and with P(A,) = 1/p, p prime.
There is a unique extension of ¢, to a function &, on §, and putting X, = f(p)é,

F=Y P —X=> fPEm=> X,

fo—= =X,
p<n
with )
P(Xp = f(p)) = -
p
and )
P(X,,:O):l—];.

The €, are independent, i.e. X = 3 X, is a sum of independent random variables.
If (1.2) holds then, by Lemma 1,

lim P(S, € (a,b]) =¢co >0

n—oo

and, by Proposition, Zp X, is essentially convergent (for the definition see [13, p. 262]).
Putting

ap = E(X9), YV, =X,—a, T.:=) Y

P
p<n
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then lim, o T}, holds a.s.. (Here X denotes the truncation of X, at (a positive) ¢, i.e.
we replace X, by X, = X or 0 according as | X,| < cor |X,| > ¢.) Denote Y :=1limT,,
a.s.

It is well-known that the a.s. convergence of Y = ZPY}, is equivalent to the weak
convergence of the distributions of the partial sums of that series. Moreover, by Kol-
mogorov’s three series theorem, Y = Zp Y, converges a.s. if and only if the series

S E(Y), > PV, > o), > Var (Yy) (3.1)

converge.
We choose ¢ = 1, i.e. a, = E(X}}) and put (see (2.6))

A(n) =" ap.

p<n
Then A(n) = O(1) and, the divergence of the sequence A(n) implies (see [3, Theorem 2]).

Lemma 2. LetY =3 Y, with Y, = X;,—a, as above, where the partial sums }_ _y ap
are bounded and divergent. Then the distribution function G(z) = P(Y < z) is continu-
ous and strictly monotone for all x € R.

Remark. The divergence of the sequence A(n) implies

E a, = —00,

? (3.2)
e = 4o0
P

where o} = max(ap,0) and a, = max(—a,,0). Then the strict monotonicity of the

distribution function G(x) in Lemma 2 can be directly proved by a result of A. Hilde-
brand [6].

For this we define, following the notation of Hildebrand in [6], p. 1206, the range of a
random variable X as the set

R(X)={z eR: P(|X —z| <¢e) >0 for every € > 0},

that is, it is equal to the set of points of increase of the distribution function F(z) =
P(X < z). The form of this set was described by A. Hildebrand in Lemma 2 of [6]
when X is given as an a.s. convergent series of independent random variables. A special
version of this result is contained in the following lemma.

Lemma 3. Let ZZOZO X, be an a.s. convergent series of independent random variables
and let X denote its sum. Suppose that for every € > 0 and n > ng = ng(e) there exist
numbers c,; = ¢, (€), ¢ = ¢ () € R(X,,) with |, | < e and |c}| < e such that

N
lim E ¢, = —00

N—oo
n=no
and
N
: +_
]\}gnoo Z ¢, = +00.
n=no
Then R(X) =R.

Now it is easy to prove the assertions of Lemma 2. Put

C_{f(p)—ap if —5 < /(p) <0,

0, otherwise.
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and

oF = f(p)_ap if0<f(p)§%,
P 0, otherwise.
Then obviously, ¢, , ¢ € R(Y,), ¢, | < § +lay| < e and |¢}] < § + |ap| < € for
p > ng = no(e) since |apy| < 1/p. Further,
2 w= 2 - )
no<p<N no<p<N no<p<N
—5<f(p)<0

< > —f(p)+0(1)
no<p<N
—£<f(p)<0

< > M+0(1)
no<p<N
—1<f(p)<0

= Z a, +0(1) - —oc as N — oo.
no<p<N
Here the last inequality holds because of the convergence of the second series in (3.1).

Similarly,
lim Z c;r = 4o0.

N—o0
no<p<N

We use Lemma 3 and recall that the divergence of the series (2.7) implies, by Levy’s
theorem, the continuity of G(z) to end the proof of Lemma 2.
This ends the remark.

For every subsequence n’ = (n},) of the natural numbers we defined
/ T
§(4) = Jim 6, (4)
if the limit exists. This leads to a content 6’ on A and a measure P’ on SN induced by
§*(A) = Tim 6,/ (A) for all ACN.
k—oo  F

Obviously, if 9 C SN is P-measurable it is P’-measurable and P(£2) = P’(Qp).
Since every bounded real-valued function g on N extends uniquely to a (continuous)
function g on AN (for details see R. Walker [14, p. 8 et seq.]), we conclude

Qo :={m: f(m) € (a,b]} = {w: f(w) € [a, ]},
where f is the unique extension of the (bounded) function J(a,p), defined by

f b(m):{f(m)’ if f(m) € (a,b],
(a,b] la|+ |b] + 1, if f(m) ¢ (a,b].

If (1.2) holds then
P(QO) =cp > 0.

4. PROOF OF THE CONJECTURE OF ERDOS

We suppose that A(n) is not convergent so that
A = liminf A(n) < limsup A(n) =: A, (4.1)
n—oo

n—00

and we shall show that this leads to a contradiction.
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We fix two increasing sequences n’ = {n}.} and n” = {n}/} of positive integers so that

A= klim A(n}) and A= klim A(n},).

We put
gn = Z(f(p)gp — ap)
p<n

and define

o0

gl =gny + Z (g”;c-u - gn;) : (42)

k=1

Then

{m: g/(m) € (a—A,b—A)} = {m: f(m) € (a,5]}
since g'(m) = f(m) — A for every m € N. Further
& ({m:g'(m) € (a—A,b—A]}) = klijgoé' ({m: GRS (a—Z,b—Z]}) = ¢p.

In the same way we define

k=1
with ¢’ (m) = f(m) — A, m € N, and obtain
8" ({m: ¢"(m) € (a— A,b = A}) = lim 6" ({m: guy(m) € (a = A,b-A]}) = co.

Defining the corresponding extensions ¢’ and ¢’ and P’ and P”, respectively, we arrive
at

Qo ={w: g (w)€la—Ab—Al} ={w: ¢"(w) € [a— A,b— A]}
together with
P ({w: g (w)€la—A,b—A]}) =P ({w: ¢"(w) € [a— A,b— A]}) = co.

Since
g corresponds to Y’ = lim T,
k
k—oo
g’ corresponds to YY" = lim T~
k—o0 k
and since

VY=2.% = lm T,
converges a.s. with respect to P and possesses an everywhere continuous distribution
function we conclude
(i) {w:Y'(w) € [a—A,b— A} = Q) with P'(Q & Q) =0,
(ii) P{w: Y'(w)ela—A,a—A]}) < P({w: Y'(w) #Y"(w)}) =0 and
(ili) P'({w: Y'(w) € [a—A,b— A]}) = co.
Observe, that (iii) implies that

a—A<b-— A
Since P({w: Y(w) € [a — A, a — A]}) exists it must be zero by (ii), i.e.
P({w: Y(w) € la—Aa—A}) =0. (43)
In the same way we show
P{w:Y(w)epb—-4,b-A4]}) =0 (4.4)

(4.3) and (4.4) contradict the monotonicity of G(z), and thus the assertion of Theorem 1
holds.
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CONSISTENCY AND ASYMPTOTIC NORMALITY OF
PERIODOGRAM ESTIMATOR OF HARMONIC OSCILLATION
PARAMETERS
UDC 519.21

A. V. IVANOV AND B. M. ZHURAKOVSKYI

ABSTRACT. The problem of detection of hidden periodicities is considered in the paper. In the capacity
of useful signal model the harmonic oscillation observed on the background of random noise being a
local functional of Gaussian strongly dependent stationary process is taken. For estimation of unknown
angular frequency and amplitude of harmonic oscillation periodogram estimator is chosen, for which
sufficient conditions of asymptotic normality are obtained and limit normal distribution is found.

AHOTALISA. Y cTaTTi PO3IIsATAECTHCS 3339 BUSBJICHHS IPUXOBAHOI mepioguunocri. B sikocti momesi
KOPHCHOTO CHT'HAJIY B34TO I'apMOHIYHe KOJIMBAHHS, IO CIOCTEPIra€ThCs Ha (DOHI BHIAIKOBOrO LIyMY,
SKUH € JIOKAJIbHUM (DYHKI[IOHAJIOM BiJf rayCiBCHKOIO CHJIBHO 3aJIEXKHOI'O CTAI[iOHAPHOrO mporecy. s
OIiIHKM HeBiIOMHUX KyTOBOI YaCTOTHU Ta AMILIITY A TaPMOHIYHOTO KOJTUBaHHA Oysia oOpaHa mepiogorpaM-
HA OIiHKA, IS SIKOT OTPUMAHO JOCTATHI yMOBH ACHMIITOTHYIHO! HOPMAJIBHOCT] Ta 3HAMEHO IDAHUIHIH
HOPMAJIbHUAN PO3IIOIiJI.

AunHOTAIUSA. B crarbe paccMaTpuBaeTcs 3ajada BBISBJIEHUs CKPBITON MEpUOAMYHOCTH. B KadecTse
MOJIEJIM TIOJIE3HOI'O CHUTIHAJIA B3siTO FapMOHUYECKOe KoJiebaHue, KOTOpoe HabJromaercss Ha (DOHE CiIy-
YARHOrO IIyMa, SIBJISIOIIAMCS JIOKAJIHHBIM (DYHKIIMOHAJIOM OT IayCCOBCKOTO CHJIBHO 3aBUCHMOTO CTa-
IMUOHAPHOTO IIpoIlecca. ﬂ.}'[ﬂ OIIEHKW HEU3BECTHBIX yFHOBOﬁ 9aCTOTHI U AMILIUTYAbl I'aPMOHHYIECKOTO
KosebaHust ObLIa BBIOpaHA MEPUOJOrpPAMHAs OLEHKA, JJIsi KOTOPOil MOJIyYeHbl JOCTATOYHBIE YCIIOBUS
ACUMITOTHUYECKO HOPMAJIbHOCTH M HANEHO IPejebHOe HOPMAJIbHOE PaCIpe/esIeHue.

1. INTRODUCTION

Detection of hidden periodicities is a problem that has a long history started by
Lagrange in XVIII century [1].

In statistical setting the detection of hidden periodicities is the estimation of unknown
amplitudes and angular frequencies, generally speaking, of the sum of harmonic oscil-
lations by observation of this sum on the background of a random noise masking these
oscillations.

There are many publications on the subject. Among them first of all we have to
mention the works by Whittle [2], Walker [3], Hannan [4], Dorogovtsev, Grechka [5],
Ivanov [6], Knopov [7], Quinn and Hannan [8], etc. A good survey of the topic one can
find in [9].

In the paper the problem of detecting hidden periodicities is considered in the case
when we observe the only harmonic oscillation on the background of random noise being
a local functional of Gaussian stationary process with strong dependence. For estimation
of unknown parameters the periodogram estimator is chosen.

In the proofs we use approach of the paper [4] where the case of weakly dependent
Gaussian stationary noise has been considered.

2000 Mathematics Subject Classification. Primary 62J02; Secondary 62J99.
Key words and phrases. Hidden periodicities, periodogram estimator, harmonic oscilation.
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2. THE MAIN RESULT

Suppose the observed random process is of the form
X(t) = Ag cos pot + £(t), (1)
where Ag > 0, po € (¢,P), 0 < ¢ < P < oo, and the random noise £(t) satisfies the
following conditions:

Al. £(t), t € Rl is a local functional of a Gaussian stationary process £(t), that
is e(t) = G(&)), G(z), * € R, is a Borel function such that Ee(0) = 0,
E&2(0) < oo.

A2. £(t), t € RL, is a real mean square continuous measurable Gaussian stationary
process defined on the probability space (2, F,P), E£(0) = 0.

Assume also that one of the next conditions is fulfilled:

A3. Covariance function (c.f.) of the process £(t) is E€(¢)€(0) = B(t) = L(|t])|t|” %,
a € (0,1), where L(t), t > 0, is a nondecreasing slowly varying at infinity
function, E£2(0) = B(0) =

A4. C.. of the process (1)
number, @g # .

Suppose that for a function G(z) € Ls (Rl, o(x) da:),

() = (2m) e /2,

—a/2
/,a

1
is B(t) = cost(1 + t2) € (0,1), ¢ > 0 is some

Ci(G)#0o0r C1(G) =+ = Cp—1(G) =0, Cp,(G) # 0, where
a@) = [ cwmWetydr, k>0

and Hj(t) are Hermite polynomials. Then the number m > 1 is said to be Hermite rank
of G.
We also assume that function G(-) from condition Al satisfies assumption

B1. ma > 1, where « is a parameter of c.f. B.

We need in a result proved in [10].

Lemma 1. If conditions A1, A2, and A3 or A4 are satisfied, then

1|
E| sup = / e Me(t)dt
rerr T' 0

Consider the functional

2
) — 0, T — 0.

2

Q)= |7 [ X ¢l

The periodogram estimator of the frequency ¢ is said to be any random variable (r.v.)
o1 € [@, @] such that Qr (pr) = MaX,e(p 7] Qr (o) .

Theorem 1. If conditions of Lemma 1 are satisfied, then op AR o, T — o0.

Proof. For any fixed ¢ consider a behavior, as T' — oo, of the value

2 T .
/ e(t)e'! dt
0

+
/ cos pote?’ dt/ e(t)e tdt| | .
0 0

2

4 T )
Qr(e) = = | 43 / cospote™ ! dt
0

4
+ ﬁ <2A0 Re




32 A. V. IVANOV AND B. M. ZHURAKOVSKYI

T
T_l/ cos pote Pt dt| < 1,
0

then due to lemma 1, the 2nd and the 3rd summands in the right-hand side of (3) tend

to 0, as T' — oo, in probability. Next we have for ¢ € [p, ]

T etle—v0)T _1 eilete)T _q
' i(o— ‘ © # o
T cosuterta = forepT TR |
0 SigeT T L ® = ©o.

From (3) and (4) it follows that

uniformly on any set

O ={pc @) lp—wl>0d}, >0
By definition of ¢r
P (lor — @ol = 8) = P (lor — ¢ol = 8, Qr (or) = QT (00))

§P<sup QT(@EQT(%)) — 0, T — oo,
peDs

according to (5) and (6).
We define the periodogram estimator of amplitude Ay as Ap = 1T/ Q(QDT).
Lemma 2. If conditions of Lemma 1 are satisfied, then
Qr (pr) KR A2, T — oo.
Proof. Using (3), one can write
0<Qr(¢r) = Qr (¥0)

2 2
42| (T , 4A2| [T ;
= T—20 / cos pote™Ttdt| — T—20 / cos pote’ Pt dt| +nr,
0 0
nr i 0, T — o0.
As from (4) we have
T ‘ 1] T A
sup — / cospote™ dt| <1 and lim — / cos pote™ldt| =1,
w€[p,7 0 —oo T Jo
then
_ a2l (T ‘ 2 2| T A 2
lim sup T—20 / cos pote Pt dt| — T—QO / cos pote' Pt dt <0.
T—o0 996&@] 0 0

Taking into account relations (7), (8), we get

Qr (¢r) — Qr (o) Lo, T — oo.
According to (5) Qr (¢o) L A%, T — o0, so

Qr (o7) e A2 as T — oo.

(4)

()
(6)

(8)



CONSISTENCY AND ASYMPTOTIC NORMALITY OF PERIODOGRAM ESTIMATOR 33

Theorem 2. If conditions of Lemma 1 are satisfied, then
T(SOT_SOO)E)Oa T — oo.

Proof. From lemma 2 and (7) it follows
2

2
T T
T2 / cos pote Tt dt| — T2 / cos pote ot dt 2o, T — oo. 9)
0 0

In order to satisfy (9), it is necessary and sufficient that (see. (4))

i(pr—9o)T _ i(er+e)T _ 1|2 ipoT _ 2
AR N ———+1] Lo, (10)
i(er =) T i(pr+¢o)T 2ipoT
or
1
L(pr — )T
—Slrll 3P ~ #0) 21 oas T — .
31 — )T
But the latter is possible if and only if
T(er — ¢q) iR 0, T — 0. O

Consider a vector function

a(t) = (ar1(t),aa(t),...,aq(t)),  t>0, (11)
jl=1’

it @9 = (hzm) ([ ko] ) o ([ bl a) "

— 00 — 00

and family of matrix measures pup (d\) = (,ujTl(d)\))

T
aJT(A)z/O eMay(t) dt, i l=1,...,q.

Assume that pr(d)\) weakly converges, as T — oo, to a matrix measure p(d)), that is
for any continuous bounded function b(\), A € R,

+oo +oo
/ bOV) i (d2) — /_ B (), T — oo

— 00

Then the measure p(d\) is said to be spectral measure of vector function (11).
To determine the spectral measure of vector (11) one can use the relations [11]

T +oo
Tlimoo d;Tld;Tl/ a;(t + s)a;(t)dt = / e i (dN), ,j=1,...,q,
- 0 —o0
with
T
dfT:/ a?(t) dt, i=1,...,q.
0
Let for j > m

J
P = [ 10=da o) [T e
it i=2

be the j-th convolution of the spectral density f(X) of the random process £. Note that
B¥(\) e Ly (Rl), k > m, so all the f*()\), k > m, are continuous bounded functions.

Further we formulate the general theorem on asymptotic normality of certain vector
integrals [12] and will use in the paper partial cases of this result.
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Theorem 3. Suppose assumptions A1, A2, B1, and A3 or Aj are fulfilled. In addition
the vector function (11) possesses spectral measure p (d\) and

sup di! |ai(t)| < ki -T2 i=1,....q, (12)
t€[0,T]

ki < +o0,i=1,...,q, are some constants.
Then the vector

T
br = d;l/ G (£(t)) a(t) dt, dr = diag (dir)_; .
0

is asymptotically, as T — oo, normal N (0, K) where

= Z k'/ RO 1 (dX, 0) . (13)

Corollary. If the conditions of Lemma 1 and B1 are satisfied, then the random vector

T T ’
(dl% / e(t)sinpot dt, dyp | e(t)tsin ot dt)
0 0

is asymptotically, as T — oo, normal N (0, K1) with

(2 1
]
Kl_aﬂz_ <ﬁ

2

-
N——

It follows from this fact that the vector

T T !
<T1/2/ e(t) sin ot dt,T*B/Q/ e(t)tsin gootdt> (14)

0 0
is asymptotically, as T — oo, normal N (0, K3) with

= C? 11

Ko =23 S (o) (% %) |
= 0 1%
Similarly, one can obtain asymptotic normality of the vector

T T '
(TW/ £(t) cos pot dt,T*m/ e(t)t cos pot dt)
0 0

with the same covariance matrix Ko

(15)

Lemma 3. If the conditions of Lemma 1 and B1 are satisfied, then T~2Q(po) is
asymptotically, as T — oo, normal N (0, K3) with

4 = CF .
Ks=gmA3 > <117 (vo).
j=m
Proof. Obviously
4| " ’
QT(ga):ﬁ / X (t) cos pt dt +— / X(t)sinptdt| .
0
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Then

T T
T-12Q (o) = —%/ X(t) cosgpotdt/ X (t)tsin ot dt
0 0

8 T T
T 7572 / X (t) sin pot dt / X (t)t cos pot dt
T 0 0

s [1 /T T
=———|= Agcos?pot dt/ Agt sin 2¢gt dt
T5/2 |9 /0 o
T T
+/ Agcos®pot dt/ e(t)t sin pot dt
0 0
1 (T T
+ 3 / Apt sin 2¢¢t dt/ e(t) cos pot dt
0 0
T T
+ / e(t) cos ot dt / e(t)tsin pot dt
0 0
g [1 /7 T
+ 752 |3 / Ag sin 2¢ppt dt/ Aotcos2goot dt
0 0

1 /7 T
+ 5 / Ag sin 2t dt / e(t)t cos pot dt
0 0

T T
+ / Agtcos®pot dt / e(t) sin ot dt
0 0

T T
+ / e(t) sin ot dt / ()t cos pot dt]
0 0

8
=> S
i=1

Evidently S1,S55 — 0, T'— oco. Using lemma 1, we have S3 KR 0, T — oo. Conver-
gence to 0 in probability of summands Sy, Sg and Sg arises from asymptotic normality
of integrals

T T
T*?’/Q/ e(t)tsinpotdt and T73/2/ e(t)t cos pot dt.
0 0
So,

T2Q0 (po) = So+ S 41, P 20, T — o
and

T T
T=2Ql (po) = 240T 2 / e(t)sin ot dt — 4AgT 2 / e(t)tsin pot dt + 1)
0 0

= 2A0(bir — 2bar) + U(T?’)a 77(T$) 5 0, T — oo.

Using asymptotic normality of vector (14), find the variance 4A2D (b11 — 2bar). Let
A= (M, \2), by = (b, bar). It is easily seen that

; 1
EeMor) —>exp{—§<K2)\, A}} , T — .
Taking A = (7, —27) we obtain

2
Eeim(bir=2bar) _ oxp {_% (Kt — 4Ky + 4K222)} :
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that is r.v. by — 2bar is asymptotically normal N (O7 %) So, T_l/QQ’T (o) is asymptot-
ically, as T — oo, normal N (0, K3). O

Lemma 4. If conditions of Lemma 1 and B1 are fulfilled, then for any r.v. o1 satisfying
inequality |@T — po| < |or — @o| with probability 1, for all T >0,

1 . p 1
T2 7 (1) = —EA(Q), T — oo.
Proof. Write

1 - T _
T2 T (pr) =8 l/ tsinprt X (t) dt
0

N o

T T
- 1 -
/0 cos prt X (t) cltﬁ /O t2 cos prt X (t) dt

Lot
+38 T2 / tcosprtX (1) dt
0

1

T
W/ﬁm@m@ﬁ
0

g (T
- = / sin gt X (t) dt
T Jo

4
Yo
i=1
Then the integral

I I
— / cos prtX (t) dt = — / cos prt [Ag cos ot + €(t)] dt
T Jo T Jo

Ay [T ~ 1 (7 -
== cos prt cos pot dt + — cos prte(t) dt
T Jo T Jo

1 /7 _ ~
=57 Ag (cos (T — @o)t + cos (Pr + ¢o) t) dt + ngfl)
0
Ay (T
:ﬁ(l cos(goT—gao)tdt—l—né?),
0

P
#W?HQ

Using the lemma conditions and the result of the theorem 2 we obtain

T — o0.

1T p Ao
—/ cos prtX () dt — —, T — 0.
Using similar calculations we get
17 _ A
75 J, t2 cos prtX (t) dt KR FO’ T — oo,

80, Qo LR —%A%. Similarly, @3 LR A2/2, and Q1, Q4 LR 0, T — oo. Then

1, ~.p 243 A A2
Tz TI“(SDT)_’_T"'?:_?a T — oo. O

Theorem 4. If the conditions of Lemma 1 and B1 are satisfied, then T3/? (o1 — @) is
asymptotically, as T — oo, normal with zero mean and variance

> 2
A8 Z j_]!f*] (¢0)-
j=m



CONSISTENCY AND ASYMPTOTIC NORMALITY OF PERIODOGRAM ESTIMATOR 37

Proof. As Qf (¢r) =0, then

Q7 (vo) + Q7 (@1) (o1 — 0) =0 (17)

with some r.v. @, satisfying

|&T — wol < lor —wol, T — oo.
From (17)
. T71/2 /
T3/2 (QOT _ (po) — _%T’(j%)
T2Q7(¢r)
The theorem follows now from lemmas 3 and 4. O

Theorem 5. If the conditions of Lemma 1 and B1 are satisfied, then the normed esti-
mator T/? (A1 — Ap) is asymptotically, as T — oo, normal with zero mean and variance

Gal e
4m Z j—]!f*] (¢0)-
j=m
Proof. Write

T2 (Ar — A0) = T2 [QY* (pr) — Ao] = T2 [@r (or) — A3] [@4* (o) + 4d]

From Lemma 2

;/2 ((pT) —|— AO i) 2140, T — OQ. (18)

We have

T2 (Qr (¢1) — Q1 (v0)] = T?Q (o) (01 — o) + %Tm@% (@) (pr — o)’

with some @r such that |pr — @o| < |1 — po|. The value

TY2Ql (o) (1 — w0) = T~ 2Q% (90) T (o1 — o) (19)
tends to 0 in probability, according to theorem 2 and lemma 3. The expression
T1/2 _ 1 _
5@ (8r) (o1 = 90)” = 55 Q7 (Br) T2 (o7 = 0) T (1 = 90)

tends to 0 in probability as it follows from lemma 4 and theorems 2 and 4. Using (18)
and (19) we can conclude that asymptotic distribution of T%/2 (A7 — Ap) is the same as
asymptotic distribution of

T1/2

2—140 [QT (@0) - A(ﬂ . (20)

From (3) and (4) it is seen that Q7 (¢o) — A2 behaves at infinity as

Ao 84 T A T ,
Zr (po) = 73 / e(t)e’*" dt| + -5 Re / coseppte’?"! dt/ e(t)e ol dt b .
T2/ T 0 o
Consider
1 4 t ipot dt ’ _ 1 r t ipot dtl T " —ipot dt P 0 T
T3/2 0 6( )e - T1/2 0 6( )e ? ) 5( )6 — 0, — 00,

because the 1st integral is asymptotically normal and the 2nd tends to 0 in probability.
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So, it remains to analyze the behavior of

T T
T=3/?Re {/ cospote' ot dt/ e(t)eieot dt}
0 0
T T
=732 / cos? ot dt / e(t) cos pot dt
0 0

T T
+1773/2 / cospot sin @ot dt / e(t) sin ot dt
0 0
1
- o71/2
As it was shown earlier, T—1/2 fOT e(t) cos pot dt is asymptotically normal with parame-

2 .
ters 0 and 7 E;‘;m ;—’,f*ﬂ (o). Using this fact we obtain that T/2 (Qr (¢o) — A3) is as-

T
/ €(t)cos<p0tdt+77§§), néfj) 0, T — oo.
0

2 .
ymptotically normal with parameters 0 and 16mAF >3 %f*f (¢0), so TY? (Ar — Ay)
2 .
is asymptotically normal with zero mean and variance 4w Z]Oim 3—1 £ (o). O

Theorem 6. If conditions A1, A2, B1, and A3 or A4 are satisfied, then the random
vector

!
<T1/2 (Ar — Ao), T%? (pr — 800))

is asymptotically normal, as T — oo, with zero mean and covariance matriz

2”2 ]f“ (0 2431 )

Proof. In the proofs of lemma 3, theorems 4 and 5 it was shown that

T
T (o1 — o) = 1245173 / £(t)sin pot dt
0
[ . (21)
- 24A61T*‘3/2/ e(t)tsin pot dt + 77(7)
0
T
TY? (Ap — Ag) = 2T_1/2/ e(t) cos potdt + nyp ) T — o0; (22)
0
& 20, D B0, T oo,
We have, for any w1, us,
u T2 (A — Ao) + uaT?/? (o1 — 0)
T T
= u12T_1/2/ e(t) cos pot dt + u212A51T_1/2/ e(t)sin ot dt
0 0
T (23)
— ug24 Ay T2 / ()t sin pot dt + n(S)
0
=v1§ir + v2lor + v3&3T + 77( )
where v; = ulﬁ, Vg = ungol, vy = ungO ,ar = \/_T_l/Qf e(t) cos gt dt,

=27 1/2 fOT e(t) sin ot dt, E3p = /6T /2 fo e(t)t sin pot dt, 77T L 0, T — oo.
Note that the spectral measure u (d)) of the vector (cos pot, sin pgt, t sin pot) is

a —if —ip
p(d)) = | —ip a |, (24)

Q
—i03 @a o
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o is a measure concentrated at +¢g, and o ({£po}) = 3, B is a signed measure

concentrated at +¢g and 3 ({£po}) = 1.
Using result of the Theorem 3, we obtain

E@W{MM&T+UﬁM“+%&TH—*ﬂp{—%QQUW},

where, from (13) and (24) it follows

10.

11.

12.

13.

oo
Cc? .,
(Kv,v) =2m Z k—’f (o) (vf + 02 + v + \/51)21)3)
k=m

[e.¢] 02
=27 Z k—’f “*(0) (2u] + 24A45%u3) . O
k=m
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QUANTITATIVE AND QUALITATIVE LIMITS FOR EXPONENTIAL
ASYMPTOTICS OF HITTING TIMES FOR BIRTH-AND-DEATH

CHAINS IN A SCHEME OF SERIES
UDC 519.21

N. V. KARTASHOV

ABSTRACT. We consider time-homogeneous discrete birth-and-death Markov chain (X3) and investi-
gate the asymptotics of the hitting time 7, = inf(¢ > 1: X; > n) as well as the chain position before
this time in the scheme of series as n — oco. In our case one-step probabilities of the chain vary simul-
taneously with n. The proofs are based on the explicit two-side inequalities with numerical bounds
for the survival probability P(7, > t). These inequalities can be used also for the pre-limit finite-time
schemes. We have applied the results obtained for construction the uniform asymptotic representations
of the corresponding risk function.

AHOTALIsI. Mu pO3risigaeMo OTHOPIAHWI 33 9aCOM JUCKPETHUH JIAHIIOT HAPOIKEHHS Ta 3arubesti
(X¢) Ta BUBYaEMO aCHMITOTHKY MOMEHTY JOCATHEHHS Tn = inf(t > 1: X; > n) i crany mammoora g0
IBOIO MOMEHTY y CXeMi cepiii, Jle n — 00 Ta OJHOYACHO 3MIHIOKTHCS HepexijgHi iMOBIpHOCTI JraHIfOra
3a OAuH KPOK. JlOBegeHHSI CIHpPAIOTHCSI HA BiAMOBIAHI ABOOIYHI SBHI HEpIBHOCTI AJsT AMOBIpHOCTI BHU-
sxuBauHst P(7n > t) 3 unciaoBumu rpanunsvu. OCTaHHI MOXKHA, BUKOPHCTATH 1 y JOTPAHWIHHX CXEMaX.
Hapeneno 3acTocyBaHHS y BHUIVISAAI aCUMITOTHYHUX PO3BHHEHb JJIs BiAmOBiTHOT DYHKINT pU3UKY.

AnHOTAIMSI. MBI paccMaTrpuBaeM OZHOPOJHYI JUCKDETHYIO [emb PoxkjaeHus u rubemn (X¢) m u3y-
JaeM ACHMIOTOTHKY MOMEHTa JOCTHXKeHus Tn, = inf(t > 1: Xy > n) u HOJIOXKEHHS LEen:u J0 3TOro
MOMEHTa, B CXeMe CepHii, rjie n — 00 U OJHOBPEMEHHO M3MEHSIOTCS IEePEeXO/IHbIe BEPOATHOCTHU LEHH 3a
onuH mar. Jloka3aTeapCTBa OCHOBAHBI HAa COOTBETCTBYIOIIUX ABYCTOPOHHHUX HEPABEHCTBAX JI BEPO-
SITHOCTH BBUKMBaHUSA P (7, > t) C SBHBIMH YHCJIOBBIMH OrPAHUYEHHSMH. [[OCIEAHHE MOXKHO HCIIOJIb-
30BaTh U B JOIpEeJETbHBIX cXeMaX. IIpuBeeHEl IpUMEHEHHUS B BHJE aCHMITOTHYHBIX IIPEICTABICHHH
JIJIST COOTBETCTBYIOMUX (DYHKIHH PHCKA.

1. INTRODUCTION

The task of investigation of the distribution stability for general Markov chains under
the broad assumptions about the nature of jumps is expounded in details in the author’s
monograph [2]. Some applications of the theory are included there as well. The proofs
are based on the analytical operator methods. The book includes some new inequalities
for the renewal process asymptotics and the solutions of the renewal equation.

Foundations of the stability theory for stochastic models are set in the monograph by
Zolotarev [5]. Important achievements in the stability theory are included in the book
by Mayn and Tweedie [4].

This paper is based on the author’s results placed in [2, Ch.7]. These results were
obtained earlier but they have not been published. The comparison with paper [3] can
be useful. The similar but not identical results were obtained earlier in [6].

2. MAIN RESULTS
Let us consider the time-homogeneous birth-and-death Markov chain

X:(Xt,t:(),].,...)

2000 Mathematics Subject Classification. Primary 60J45; Secondary 60A05, 60K05.
Key words and phrases. Birth and death Markov chains, hitting times, exponential asymptotics.
40
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with values in a discrete space £ = Z;. A matrix of one-step transition probabilities
P = (pij,i,j € E) has entries p;;—1 = ¢, Diiy1 = Pi, Pii = 78 = 1 — p; — q; when
i > 1, and po1 = po, Poo = 1 — po = qo. We assume that the chain is not reducible: p;,
¢; > 0. The symbols P;(:) and E;(-) will be used to denote the conditional probability
and expectation given {Xo = i}.

Let us define the hitting moment of the ”distant” level as

T =inf(t > 1: X; > n). (1)

We investigate the asymptotics of the time 7,, in a scheme of series where n — oo. In
our case the one-step transition probabilities (p;, ¢;) could change. For instance, they
could depend on n.

Let’s introduce the following notation for ¢ > 0

0= [ (ai/p), 0o =1, o=y 0 s =1/(pbe),  t=0. (2)
1<i<t 0<i<t
Consider the aggregate parameters
-1

1
A= 14+ Y sl —<1+Z%i(0n_0i)> ,
i<jeB, i€E,
wn =X — A+ XL Y b0
i<j<k<IleE,
:)\n—)\i—i—)\i Z si(ok — o) (00 — OF).
i<k€E,

3)

Hereafter we will use the summation sign without upper and lower indexes assuming
summation on the hole index set E, = {0,1,...,n — 1}. It worth to mention that the
process continuity implies the entire determination for the distribution of the time 7,, by
(pia ini € E’ﬂ)

The following estimation can be applicable to any scheme of series as well as for the
fixed n.

Theorem 2.1. The following inequality holds true
sup |Po(ry > ) = (1~ m)!| < 200 (14 An)po/Anu(1 = wn), (4)
where
myt =M\ /(1+wp).
Remark 2.1. It follows from the definitions (3) that 0 < w, < 1/2 in (4).
Corollary 2.1. Let n — oo in a scheme of series in such a way that A, — 0 and
wnpo = 0(Anon), n — o0. (5)

Then

sup |Po(7n/my > ) — exp(—2)| — 0, n — 00.
x>0

This convergence is uniform in the scheme of series if the relation (5) is uniform too.

Corollary 2.2. Let the chain X be unchangeable for the scheme of series, irreducible
and ergodic, and n — oo. Then N\, — 0, w, — 0, and the following representation is
true

sup |Po(An7n > ) — exp(—2)| = O(wy), n — 0. (6)
x>0
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Corollary 2.3. Let n and the distribution of the chain X be fized excepting py — 0.
Then the following representation holds true

sup [Py (po7n > ) — exp(~x)| = Ofpo),  po —0. (7)

We can obtain from (4) the limit results for the specially structured schemes of series
at one time. Here are some examples.

Corollary 2.4. Let the transition probabilities in a scheme of series for the birth-and-
death chain satisfy the relationship
pi = env; + 0(en), gi = enu; + o(ey), i1>1, n— oo, (8)

for some €, — 0, and v;,u; > 0. Let us use the denotations
t

b = H(U;/Uz), ot = z_:es; Xt = 1/(Ut9t); t>1. (9)

i=1
We assume that in a scheme of series
Op — 00, th =x=0(1), n — oo. (10)
t>1
Then, subject to
Tp=o0,! Z Xi(ok —0i)x, = o(1), n — 00,
1<i<k<n
the uniform convergence is true
sup P0(7n>t)—(1—m;1)t}:O(wn—i—a,:l) =o(1), n — oo.
t>0

Remark 2.2. If the coefficients v;, u; are bounded and separated from zero, then the
conditions (10) are equivalent to the ergodicity of the the birth-and-death chain with
jump probabilities (u;/(w; + v;), vi/(u; +v;)), i > 1.

To analyze the asymptotics of joint distribution of the time 7,, and the chain value X
till this time (the comparison can be made with [6]) we additionally assume that there
is a systematic shift to zero

4 > Dis i>1, (11)
and state 0 in a scheme of series is asymptotically positive and attainable:
lim M\,0, >0, 0 < lim po < lim po < 1. (12)
n— o0 n—oo n— 00

It was established in the proof of the Corollary 2.2 (see the limit relation (38)) that
the conditions (12) hold for any fixed irreducible ergodic birth-and-death chain.
We define the speed-of-mixing indicator as

Op = 11Snii£1n(qi —pi) > 0. (13)

Theorem 2.2. Let the conditions (11), (12) and A, — 0, w, — 0 hold true in a scheme
of series as n — oo so that

AIn At = 0(82), n — oo. (14)
Then, for every so > 0 the uniform representation holds true

sup |P0()\n7'n > s, Xg/a, € B) —7"(B) exp(—s)‘
s>s0,BCE (15)

= O(wn 4+ M0, In(1/X,68,)) = o(1), n — oo,
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where the discrete distribution © = (7,9 € E™) can be defined through (2), (3) by
equalities

T = An, T = Apoti(0p — 04), i<mn, 7" (B) = Z . (16)
icB
Corollary 2.5. Let the chain X do not change in a scheme of series and be irreducible
and ergodic. Then, the sufficient condition for the convergence to zero of the left-hand
part of (15) is
lim né,/Inn > 3/2. (17)

Remark 2.3. For comparison with (17) we remark that
(a) in a class of birth-and-death chains satisfying the conditions (13) and §,, — 0,
n — oo the sufficient condition of ergodicity is

lim néd,/lnn > 1,

n—oo
(b) under additional assumptions r; =0 and ¢; — p; | 0, i — oo, it follows from the
condition
lim nd, < 1/2

n—oo
that the chain is not ergodic.

3. PROOFS

The proofs in this section are based on the Corollary 7.5 [2, Ch.VII].

In order to use it we consider the auxiliary finite chain X™ = (X[, ¢ > 0) with the set
of states E" ={0,1,...,n} = E, U{n} and the transition probabilities

P, = (pij(n),i,j € E™),
where p;;(n) = pi; as i € E,, and
Pro(n) = 1.

It is evident that the distributions for the time 7, in (1) for chains (X;) and (X[*) are

equal.

Lemma 3.1. A chain X™ has the unique invariant probability 7™ = (n?',i € E™) where
T = An, T = Anstj(on —05) = Ay Z 0;;, j<n. (18)
i<j€En
Proof. The system of equations for z; = 7} has a form

Toqo + 191 + Tn = Ty,

Tic1Pim1 + Tiri + Tig1Giy1 = Ty, 1<i<n—1,
Tnp—2Pn—2 + Tp1Th-1 = Tn—1,
Tn—1Pn—1 = Tp- (19)

We obtain the following equations from the first and the second rows
Ti—1Pi—1 — TiGi = TiPi — Tit1qi+1 = Tn, 1<i<n-L (20)

And finally, using the third, the forth rows of (19) and from (20) we recurrently
calculate when 0 < k <n

n—3
Tk = anlzlelzil lz 0; + 9n—3qn—2(pn—1 + Qn—l)/pn—Qpn—I]
= (21)

n—1
i=k

i=k
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The condition of normalization Y ;_, z; = 1 implies (18). O

In order to prove the Theorem 2.1 we shall use the Corollary 7.5 [2, Ch.VII] for the
chain X™ with a set E™ and invariant probability 7”. Let us mention that every tran-
sition kernel @Q(z, A) and the corresponding linear operator in the descrete space can be
defined by the matrix Q(z, A) = 3 c 4 Quy, Quy = Q(z, {y}). Operation of multiplica-
tion kernels by measures, functions and kernels corresponds to the multiplication of the
matrices by rows, columns and matrices.

In particular, the system for the kernel R = (R, >,y € E™) in the formulation of the
Corollary 7.5 [2, Ch.VI]] is as following

R,y = Z Pei(n)Riy + Pay(n) — 7y,
keEn

Z ) Riy = 0, z,y € E", (22)
kEEﬂ

where the last equation arises from the Lemma 3.1 since 7™ is the eigenvector for the
matrix P,.

Moreover, it follows from the defining R as a sum of series of powers of P, (Corol-
lary 7.5 [2, Ch.VII]) that the operators R and P, commutate so the equations (22) are
equivalent to the system

Ray =Y RorPry(n) + Poy(n) — 7,
ke E™

Z Ry =0, z,y € E". (23)
keEn

Lemma 3.2. The solutions of systems (22), (23) for x =n or y =n are as following

Rnn = —Wn, (24)
Rin =An Y 5605 + Ay — wy, k<n, (25)
1<j<k
Rk = s6(0n — 0k) A —wn) + A Y sn(on — 03)sgi(0i —0k),  k<n. (26)
k<i<n

Proof. Denote z = Ry,. Taking into account (18) we put y = n into (22) and obtain
the system

To = qoTo + PoT1 — An,
T = ¢iTi—1 + TiTi + PiTit1 — An, 0<i<n-—1,
Tn-1 = Gn-1Tn-2 + Tn-1Tn—1 + Pn—1Tn + Pn—1 — An,
Ty = To — An- (27)
The following equalities are deduced from the first and the second rows

po(z1 — o) = An,

(le—xi)/f)i:)\n%i—i—(xi—xi,l)/f)i,l, 1<i<n-—1.
By recurrent calculation we get
k
mk+1—xk=/\n2%i9k, 0<k<n-1,
i=0
J
xk:mo—l—/\nZZ%ﬂj, 0<k<n. (28)

j<k i=0
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Putting the equalities (28) and (27) into the second equation (22) we obtain that

J
0= Z szkzxo—Ai+>\n Z ZZ%Z‘QJ‘

keE™ keE, j<k i=0
2 2 2 2
:il,'o—)\n-i-)\n E %ﬂj%k(an—ak):xo—)\n—f—wn—)\n—f—)\n
i<j<kE€En,
=20+ wn — A,

and deduce from (27) the identities in (24), (25).

For proving (26) we use the denote xj, = R, and use (23) when z =n

o = qoTo + 11 + Tn + 1 — 7,
T = Pk—1Th—1 + ThTk + Qi 1Tht1 — Ths 1<k<n-—1,
Tpn—1 = Pn—2Tn—2 + Tm—1Tpn—1 — 77271,

Tn = Pn—1Tn—-1 — 7727 (29)

where the probabilities 7} are defined in the Lemma 3.1.
Using the first two equations (29) and the recurrent calculations we deduce that

k n
pkmk—qk+1xk+1:—27r?+1+xn: Z T+ T, 0<k<n-—2. (30)
i=0 i=k+1

Multiplying (30) by 6 and summing over k = 0,...,n — 3 we obtain

n—3 n
TkOkpr = Tn—20n—2pn—2 + Z 05 | v + Z .
Jj=k 1=j+1

Taking into account the last two equations in (29) and the identity

9n—2(pn—1 + Qn—l)/pn—l =0p_2+0nh_1
we deduce that
n—1 n
xp = xn(on — o) + Z 23,0 Z T, 0<k<n. (31)
=k i=j+1

And finally, putting there the values 77 from (16) and z,, = R,,,, from (24) concludes
the proof of the Lemma 3.2. g

Proof of Theorem 2.1. Let us utilize the inequality (7.40) from the Corollary 7.5 [2,
Ch.VII] to the chain X = X™ on F = E™ with time 7 = 7,, and the set H = {n}. An
invariant measure and the chain potential are calculated in the Lemmas 3.1 and 3.2.

In the notations of (7.39) [2, Ch.VII]

THH = sup ‘F| (z,H) = ‘an‘ = Wn, (32)
r€H
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under (24) since w, > 0. It follows from (25), (18), (3)

ToH = /W(dm) |}_%‘ (x,H) = Z?TZ |}_%;m‘
k=0

n—1
< A ‘E,m| + Z Aot (0n — o) max | wp, An + Ap Z PAZ
k=0 i<j<k
n—1
= AWy + max | Apwhy Z sk (on — Ok), (33)
k=0
n—1
)\% wp(on —og) | 14+ Z ;0
k=0 i<j<k
< AWy + max [/\nwn(/\ ! 1),/\n( )] 4+ Wn — A\ +)\2
= Awp + max|w, (1 — Ay),wn] = wn(1+ Ayn).
Furthermore, according to the equality (7.41) [2, Ch. VII]
my' = (Eerm) ™ =)y (-1 =An(ltwn) T =myt (34)

t>0

And finally, the constant a in the Corollary 7.5 [2, Ch.VII] is the upper limit for the
density of the initial distribution of « (it is concentrated in 0) regarding the measure 7"

a=1/my =1/ A\pse00n = Po/An0on. (35)

Putting the relations (32), (33), (34) and (35) into the inequality (7.40) of the Corol-
lary 7.5 [2, Ch.VII] we have proved the estimate (4) in the Theorem 1. O

Proof of Remark 1. The positiveness of w,, > 0 follows from condition A, < 1 in defini-
tion (3). Let us denote as
Sp = Z %1-93« >0

1<jEER

the sum included in (3). Using the last definition
A= (14 5,)71

W = | Sp + Z %igj%kgl / (1 -+ Sn)2

i<j<k<I€EE,
(36)
< [|sp+1/2 Z 2,05 Z a0 |/ (L+ Sn)2
i<j€En k<IEE,
= (sn+52/2)/(1+5,) <1/2< 1. O

Proof of Corollary 2.1. The proof can be concluded from the inequality (4) since the
right-hand part of (4) equals to O(pown/Anoy) in view of (36). From the other side, the
relation in the left-hand part after the substitution ¢ = [zm,,] is equivalent to

(1= mpHleme) S exp(—2), 0 oo, (37)

uniformly on z > 0 since mfbl <A, —0. O



ASYMPTOTICS OF HITTING TIMES 47

Proof of Corollary 2.2. The well-known recurrence and positivity criteria for the birth-
and-death chain [1] correspond to the divergence of o, — oo and convergence of » =

Z’iZO 7; < 00.
Let us calculate

Apon) =0t [ 1+ Z 7 | = ot + Z%z — 0,0 ) Ticn
i<jeE, i>0 (38)
—>Z%i:%€(0,oo), n — 0o,
i>0

using the Lebesgue theorem on majorized convergence.
So, A ~ 1/3x0, — 0, n — oo.
Similarly, it follows from the representation

Wn = Ap, — )\i + )\i Z si(ok — o) (0n — o)
0<i<k<n

<A+ (Mnon)? Y ssa(on — o) oy Lickan,
i,k€E,

and the monotonicity of ¢, using the Lebesgue theorem on majorized convergence, that
limy, 00 wy, = 0.

Taking into account (38) and the Remark 1 we can conclude that the right-hand part
of (4) 2wn (1 4+ Ap)po/Anon (1l —wy) is equal to O(wy,).

Utilization of approximation (37) in its left-hand part, convergence of w,, — 0 and the
estimate |exp(—z — ze) — exp(—z)| <&, x,& > 0 result in (6) O

Proof of Corollary 2.3. Let us use the representations (4) of the Theorem 2.1, where n is
fixed. Since pg is included into (3) only as a part of s, then A\, =1/(1+ L/po) ~ po/L,
po — 0, wn = po/L + o(po), po — 0, 02 = C for some constants L,C > 0. Thus, (7)
follows from (4). O

Proof of Corollary 2.4. Tt follows from the definitions (3), (8), (9) that

)\;1:14‘071/170"'5;1 Z Xi(on — i) ~ onx/en — 0, n — 0.

1<i<n
Simultaneously,
Wn =Xy — A2 402 Z 2% (08 — 0)Xp(On — 0k) ~ Ay + A202w, /2
1<i<k<n
~ A+ X 2@, = o(1), n — oo. O

Proof of Theorem 2.2. Let us use the inequality (7.43) of the Corollary 7.5 [2, Ch.VII]
to the chain X = X™ on E = E™ with time 7y = 7, and the set H = {n}. An invariant
probability and the potential of the chain X™ are calculated in the Lemmas 3.1 and 3.2.

The estimate for new variation of the potential in (7.42) can be deduced from the
equalities (24), (26) since

erl—l—sup‘R‘ (z,FE) —1+Z‘Rnk‘
k=0

§1+|Erm|+(/\n+wn)2%ka _Uk +)\ Z %k i — Ok %z( n_Uk) (39)

k<n k<i<n
=1+wn+Antwn) (N =1) 4+ (wo = A £ A2) A =1+ 20,0,

The relations (3) are also used in the expressions above.
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Since w(H) = 7' = )\, then utilizing (32) to the firs term in the right-hand part
of (7.43) [2, Ch. VII] we obtain the inequality

T(H)2rg /(1 —rgm) < A2 (1+ an)\;l) /(1 —wy) =O(wn), n — oo, (40)

where Remark 2.1 is taken into account as well. The representation A, = O(w,,) is the
evident conclusion from (3).

Thus, in order to apply (7.43) we need to find such constants 7, € (0,1) and b < oo
that

|Po(X) € B) — 7"(B)| < b(1 —1,)" (41)

forallt >0, B C E.

Let us use the Theorem 3.6 [2, Ch.III].

We define the following norm on the space of measures p = (u,;,7 € E™)

Il = D7 v il (42)
icEn
where the constant v > 1 will be choose later. The form of the corresponding operator
norm on L(E™) is placed in [2, p. 1.1]. Let us mention that since v > 1:

IPo(X{* € B) — "(B)| < |aP} — 7| (E™) < ||aP — | = ||a(P} — IL,)||

(43)
< o[BS ~ L] = [P}~ 11,

)

where P! = (P,)! and «; = §; is the initial distribution of the matrix II,, that has equal
rows of the type 7™.
Let us transform the matrix P, as P, = T,, + h o 3, where the function

h = (00,1 € E™),
the measure 8 = (po, 1 — po,0,...,0) = (Py;(n),j € E™), and the matrix
T, = (Py(n)Lis0,isj € B").
So, the condition (C) [2, p.3.3] is true when n =1 (in denotations of [2]).

Let us calculate the operator norm p,, = ||T5.]|:
o=t 3 VIR ()i
jeEn
= max {gﬁxnv_i (giv" ™"+ riv’ + pi'™h) ,v_"} (44)

= I1—(w=1)(gvt=p))=1—(v—1Dov ! min (¢ —pi — (v —1)p;
@afn( (v—1) (giv pi)) (v—1)v 1212n(% pi — (v—1)p;)

<1— (=1 (0, — (v —1)/2),

taking into account (13) and the condition (11) under which 4,, > 0 and p; < 1/2.
Let us put v =1+ §,,. Then (44) implies the following inequalities

Pp <1 —=02/21+6,) <1-52/4

The condition (T) from [2, p. 3.3] is fulfilled when m =1 (in denotations of [2]) and the
following representation holds true uniformly in a scheme of series

(1-p,) =0 (572) , n — oo. (45)

n

Thus, all the conditions of the Theorem 3.6 [2, Ch. III] are true and in the denotations
of the Theorem: n=m =1, a=p,h=h, P=P,, n=mn,, U=1,, T =T,, p=p,,
and the norm |+|| is defined in (42). In particular, for the parameter ¢ in (3.31) [2] we
get the estimate

o <kla|/(1=p)=0(5,%), n— oo (46)
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In order to applied (3.30) we choose (3.29) according to (3.32)
w < wy =2exp(—(1 — wh) In(ah)/Th(l — (ah))) — 1= O(1), n — 00, (47)

where we used the equalities 7h = 7fy = \,,04,/po, ah = py and the condition of distancing
from zero (12).

From (45), (46), (47) we can calculate the asymptotics for the parameter 6y in (3.29)
[2]:

(1—6p)"'=0((1-p,) ") O(ow) =0 ((5;4) , n — 0. (48)

Let us choose in (3.30) [2, p. 3.3] the parameter § = (1 + 6)/2.

Since 0 — 60y = (1 —69)/2,1 — 60 = (1 — 6y)/2 so from (46), (48) and from (3.30) [2,
p. 3.3] we deduce the inequality (41) in the form

| PE =L, || < bu(1 =71, (49)

where
7";1 = max ((l—pn)_l,(l—f))_l) :0(5;4) , n — 00, (50)
by=(1+0)/(0—00)=0(5,°), n— o0 (51)

Finally, we deduce the following inequality for the second term in the right-hand part
of (7.43) [2, Ch. VII]

7(H)ar,  In(1 4 be/an(H)) = Aar, ' In(1 + bye/a),)
< X010 (5, In (0 (6,°) A1) (52)
=0 (M, In(1/6,Mn)) s n— o0,

taking into account the identity (35) under the boundedness conditions (12) and the
estimates (50), (51).

The relation (14) A, In A\ = 0(6%), n — oo is equivalent to the convergence to zero of
the last term in (15): A6, *In(\, "6, ') — 0, n — co. Really, (14) follows from (15) since
An — 0, 8, — 0. From the other hand, from (14) we deduce that §,* = o(1/A, In A, ")
implying

And 400 = Ao ((An ;") (A, 1nA;1)*1) —o(l), n— oo,

which concludes (15).
Since after putting in (7.43) [2, Ch. VII] ¢t = X, 's it follows from the inequality
s > sg > 0 that

Mlso>tg=r Int(b/ar(H)) = O (5;4 In(1/6,Mn)), n — 00,

as the consequence from the convergence to zero of the right-hand part of (15) and
therefore ¢t > tg in the Corollary 7.5.
This substitution and taking into account (40) and (52) prove (15). O

Proof of Corollary 2.5. The convergence \,, — 0, w, — 0 was proved in the Corol-
lary 2.2. Correctness of (12) follows from (38).

If lim 6,, > 0 then the uniform ergodicity holds true and the Corollary statement will
be evident since under the condition A\, + w,, — 0, n — oo.

So, we can assume that §, — 0.

From the relation (38) A, ~ »0,!, 0 < 3 < oo we find

Mo\t~ ot ng,, n — oo. (53)
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Furthermore, it follows from the definition (13) that
t
0, = H(l + (¢ — pi)/pi) > (1 +265,),

on = _z:et > (26,) (1 +25,)™ — 1),

t<n

These relations and (17) imply that
(1+26,)" > exp((2 — €)ndy,) > exp((3 + &) Inn) = n®Te,
o, b =0(5,n7379),

n
for some ¢ > 0 starting from some number.

So, in the consequence of (53) the condition (14) hold true:
AnIn Xt =0 (6,m ¢ 1n(5;1n3+6)) =o0 (5;11) , n — 00,

since 5ib_“n1+5/3 — oo for all sufficiently small «,e > 0 given (17). Hereof,
_ -3
(6un=2 "I, Y) /o4 = (8,m /% (e, ) 7Y T =0, n— oo O

Proof of Remark 2.3. According to [1] the ergodicity of the chain is equivalent to the
convergence of the series Y 34, which corresponds to the convergence of the series
> o1 11— (pi/q:)- By the definition (13) the convergence of the last series follows from
the convergence of the following series

ST = 6n/a) <301 —6,)" < 0.

n>1:=1 n>1

In the conditions (b) the equality 0,41 = ¢; — p; hold true, so ¢; > 1/2 and

Z H(pz'/qz') > Z H(l —28;41) = oo. 0

n>1i=1 n>1i=1

We are grateful to the anonymous referee for the insightful comments that have sig-
nificantly improved the paper.
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COMPOUND KERNEL ESTIMATES FOR THE TRANSITION

PROBABILITY DENSITY OF A LEVY PROCESS IN R"
UDC 519.21

VICTORIA KNOPOVA

ABSTRACT. We construct in the small-time setting the upper and lower estimates for the transition
probability density of a Lévy process in R™. Our approach relies on the complex analysis technique and
the asymptotic analysis of the inverse Fourier transform of the characteristic function of the respective
process.

AnoTalls. [To6ymoBaHO BEPXHIO Ta HHUXKHIO OI[HKH JJIS [MEPEXiJHOI IijbHOCTI mporecy Jlesi B R™
Ipy MaJIuX 3HAUEHHSX IacoBoro mapamerpy. Ilinxin, skuit 6yB Bukopucrauuii y crarri, 6a3yerscs Ha
3aCTOCYBAaHHI TEXHIKM KOMIIJIEKCHOTO AaHAJII3y, Ta ACHMITOTHYHOIO aHAJiI3y 00epHEHOrO MepeTBOPEHHH
®yp’e xapakrepucTudHOl dyHKIil, 10 Binmosigae mpomecy.

AuHOTANUs. [ToCcTpOEHBI BepXHSIS ¥ HUXKHSIS OLEHKHU JIJIsI MEPEXOJHOM MIIOTHOCTH mpouecca JleBu B
R"™ npu MasIbIX 3HAYEHHSAX BPEMEHHOrO mapamerpa. Vcmosb3yeMblil MOAX0J OCHOBAH HA IMPUMEHEHUU
TeXHUKU KOMILIEKCHOTO AHAJIN3a, U ACHUMITOTHYIECKOrO aHaJIM3a 0O0paTHOro mnpeobpa3oBaHus Pypbe
XapPAaKTEePUCTUIECKON (DYyHKI[HH, COOTBETCTBYIOMIEH IPOIECCy.

1. INTRODUCTION

Let Z; be a real-valued Lévy process in R™ with characteristic exponent 1, i.e.
Eeif %t = ¢ t(0), e R™

It is known that the characteristic exponent 1 admits the Lévy-Khinchin representation

Y(€) =ia-§ — %f - Q¢ +/]R (1 — et i€ - U11||u”<1) p(du), (1.1)

n

where a € R", @) is a positive semi-definite n x n matrix, and p is a Lévy measure, i.e.
Jrn (LA [Ju]|?) p(du) < oo. In what follows we assume that @ = 0, and

p(R™) = oo. (1.2)

Clearly, (1.2) is necessary for Z; to possess a distribution density.

In the past decades such questions as the existence and properties of the transition
probability density of Lévy and, more generally, Markov processes, attracted a lot of
attention. Although some progress is already achieved, this problem is highly non-
trivial. One can prove the existence of the transition probability density of a symmetric
Markov process and study its properties by applying the Dirichlet form technique, see
[2, 8, 4, 3, 5, 6, 7]. The other approach relies on versions of the Malliavin calculus for
jump processes, see [20], [9]-][10], [23]-[25], and provides the pointwise small-time as-
ymptotic of the transition probability density of a Markov process which is a solution to
a Lévy-driven SDE. Under certain assumptions on the Lévy measure estimates on the
transition probability density are obtained in [11, 12], see also the references therein for
earlier results. In [16], which is the one-dimensional predecessor of the current paper, we
investigated the transition probability density pi(z) of a Lévy process, and proposed a
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specific form of estimates, which we call the compound kernel estimates, see Definition 1
below. The approach described in [16] relies on the asymptotic analysis of the inverse
Fourier transform of the respective characteristic function. The analysis made in [16]
shows that under rather general assumptions the bell-like estimate

pi(x) < org(|[xflor) (1.3)

where g € L1(R"), and oy is some “scaling function”, is not possible. We also point
out, that in the case of a Lévy process the results obtained in [23]-[25] and [10] fit in
our observation. At the same time, the upper and lower compound kernel estimates give
an adequate picture of behaviour of the transition probability density. In [18, 19] we
investigate possible applications of the compound kernel estimates for the construction
of the transition probability density of some class of Markov processes.

In this paper we investigate the transition probability density of a Lévy process in
the multi-dimensional setting. In Section 2 we set the notation and formulate our main
result Theorem 1. Section 3 is devoted to the proof of Theorem 1. In Section 4, Theo-
rems 2 and 3, we treat the particular cases in which it is possible to construct a bell-like
estimate (1.3). In Section 5 we illustrate our results by examples. As already mentioned,
even if one can construct an estimate of the form (1.3), it may prove to be not informa-
tive. In particular, in Example 2 we consider the discretized analogue of an a-stable Lévy
measure, and show that in the multi-dimensional setting the bell-like estimate for the
respective transition probability density, which is given by Theorem 2, is not integrable
in x. At the same time, the compound kernel estimate provided by Theorem 1 gives an
adequate answer.

2. SETTINGS AND THE MAIN RESULT

Notation: We denote by S™ a unit sphere in R™; £ -1 and ||€|| denote, respectively,
the scalar product of £,n7 € R™ and the Euclidean norm of £ in R™. We write f < g
if there exist constants ci,cz > 0 such that ¢;f(z) < g(x) < caof(x) for all z € R;
a Ab:= min(a,b).

To formulate the regularity assumption on the characteristic exponent 1 we introduce
some auxiliary functions. For x € R put

L(z) := .132]1{|x|<1}, U(z) := 2 A 1, (2.1)

and define for £ € R™ the functions

W@ [ pempan = [ (),
W(©) = [ U wndn = [ (€ 0P A1) aldu),

Observe that we always have

(1 —cos1)y"(€) < Rew(€) < 297(€). (2.3)

In addition, we assume that functions ¢ and ¥V are comparable, i.e. the assumption
below holds true.

A. There exists 3 > 1 such that sup;cg. ¥V (rl) < Binfiesn L (rl) for all r large
enough.

In particular, assumption A implies the existence of the transition probability density
of Z;, see Lemma 1 in Section 3.
Define
¢*(r) == sup Y (rl),

lesn
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and
pt = inf{r: ¢*(r) = 1/t}. (2.4)
We decompose Z; into a sum
Zy =2+ 7y — ay, (2.5)
where
e a; € R" is a vector with coordinates

(at)i =t (ai + /l/pt<||u|<1 u; u(du)) , (2.6)

where the vector a € R™ is that from representation (1.1), and p; is defined in (2.4);
e for each t > 0 the random variables Z; and Z; are independent; the variable Z; is
infinitely divisible for each ¢ > 0, with respective characteristic exponent

GelE) =t / (1 - e 4 i€ - u) u(du), (2.7)
pellul| <1

and Z; admits for each ¢ > 0 the compound Poisson distribution with the intensity
measure

Ag(du) :=t p(du) g, u)>13- (2.8)
If condition A is satisfied, then Z; possesses a distribution density (see Lemma 2 below),
which we denote by pi(z). Therefore, we can represent p;(z) as

pi(r) = (P * Py % 0-q,)(2), (2.9)
where

Py(dy) := e~ M 'R">Z A*m (dy), (2.10)

and A;™ denotes the m-fold convolution of the measure A;; by Aj? we understand the
d-measure at 0.

We are looking for a specific form of the estimate for p;(x), called the compound kernel
estimate, see the definition below.

Definition 1. Let 0,(: (0,00) — R, h: R" — R be some functions, and (Q¢)i>0 be
a family of finite measures on the Borel o-algebra in R™. We say that a real-valued
function g defined on a set A C (0, 00) x R™ satisfies the upper compound kernel estimate
with parameters (o, h, ¢, Q), if

D<o [ on-na @, Gwea @

If the analogue of (2.11) holds true with the sign > instead of <, then we say that the
function g satisfies the lower compound kernel estimate with parameters (oy, h, (¢, Q¢).

Let us put a lexicographical order on R™; namely, we say that < y, z = (21, ..., %),
y=(y1,.-.,Yn) € R™, if there exists 1 < m < n, such that for all i < m either x; = y;,
or z; < y;. Introducing such an order, we can define in the lexicographical sense the first
argument of maximum z; of the function p;(x). Below we show that z; indeed exists,
and for every to > 0 there exists L = L(to) such that

el < L/pe,  t€(0,t0).

Below we present our main result on the behaviour of the transition probability density
of a Lévy process in R".

Theorem 1. Suppose that condition A is satisfied. Then for every ty > 0 there exist
constants b; > 0, i = 1,...,4, such that the statements below hold true.
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1. The function
pt(m + a/t)7 (ta J)) € (Oa tO] X Rn7
satisfies the upper compound kernel estimate with parameters (p}, fuppers Pty At),
where

Fupper(w) = bre= 2171, (2.12)
II. The function
pe(z +ap — xy), (t,x) € (0,t0] x R",

satisfies the lower compound kernel estimate with parameters (py, fiowers Pty At),
where

Jiower () = 031z <p, - (2.13)
One can obtain in the same fashion as in the statement I of the preceding theorem
that p.(-) € Cg°(R"™), and construct the upper estimates for derivatives.

Proposition 1. Suppose that condition A is satisfied. Then there exist constants by > 0
and by > 0 such that for any N > 1, k; >0,i=1,...,n, such that ky +---+k, = N,
the function

8N
oo aa @t e (ba) € (0.l xR

satisfies the upper compound kernel estimate with parameters (prrNa Juppers Pt; At).

Clearly, in the case of a symmetric Lévy measure and a zero drift the statement of
Theorem 1 holds true with a; = x; = 0. Moreover, one can get the sharper upper
estimate for p;(z) and its derivatives.

Proposition 2. Suppose that the process Z; is symmetric, and condition A holds true.
Then the first statement of Theorem 1 and Proposition 1 hold true with a; replaced by
zero, and fupper Teplaced by

fupper(x) = ble*b2l|ml| ln(HxHJrl). (214)
3. PROOFS

We start with the proof of the auxiliary lemma on the growth of V.

Lemma 1. Under condition A we have for ||&|| large enough

U (&) = cllél*’”, (3.1)
where ¢ > 0 is some constant.
Proof. For l € S™ and r > 0 let
0Y (rl) := Y (e"1), 0L (1) ==y (e"l). (3.2)
Note that the functions L and U satisfy
U(zz) —U(x1) = /$2 %L(m) dz, T1 < Ta.

Then, taking two parallel vectors & and &, and applying the above relation with x; =
§1-u, v3 =& - u, where u € R™ and ||&1]| < ||&2|, we derive by the Fubini theorem

W () — V(&) = / [U((€2,)) — U((€1,))] p(du)

Il g
= [ e e (33)

[[€2]]
- / 2yt (ir) dr
e 7
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where [ := & /||&1]]. Thus, by (3.3) and condition A we have

[[€2]]
o) -V 2 5 [ e (3.4)
1€l

implying that exp{—%”@”}@lj(@) > eXp{—%Hle}GU(fl). Thus,
ny (ensgnl> — 0V (&) > credlel,

where ¢ = el infjesn 0V (€1) > 0. Taking infjcgn in the left-hand side of the
preceding inequality, we arrive at (3.1). |

The proof of Theorem 1 and Proposition 1 rely on the following lemma.
Lemma 2. For each t > 0 the variable Z; possesses the density p(x), which satisfies
oN
ot o @)

forany N >0, k; >0,i1=1,...,n, such that ky +---+ k, = N.

< byl e beedllell z e R, te (0,1, (3.5)

Proof. For n =1 we have

tufu: prllul > 1} < 06" (o) = 1.

For n > 2 the situation is similar, but a bit more complicated: since

pfus full > < 3 pfus fugl > 1)+ pfus lull > vl <ri=1,...,n)

i=1

< Zu{u: lug| >r}+pfu:r/2 <|u| <ri=1,...,n}
i=1

=3 wu ui] >} (3.6)

+pfu: Jul > 1 <i<n}—pfu: |Ju| >r/2,1 <i<n}

n
< Zu{u: lug| > r} 4+ pfu: Fi: |ug) <7}

< (n+ Dy (1),

we arrive at tu{u: ptljul| > 1} < n + 1. Therefore,

mm@=w%@4/mxuwwawmm
> tRe(€) — 2p{us pollul > 1)
= tRey)(€) — 2(n+ 1) > ¢t <ﬂ

54
> e t)|€)?P - 2(n+1).

(3.7)
)w%@—2m+m

where in the last line we used (3.1). Thus, by Lemma 1 the variable Z; possesses a
distribution density p, € C;°(R"), and for any N >0, k1 + ...+ k, = N, we have

oN _ “n ‘ . i
mpt(x) = (271’) /n(—le)kl N (—an)kﬂ'e £=1u(8) df (38)
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Put H(t,z,z) := —iz-x —(z). Note that by the structure of 1; the function H(t,z, z)
can be extended analytically (with respect to z) to C™. Applying the Cauchy theorem,
we derive

aN = -n . . €,z
ok ok ) = 2 / (mim)M (i)t e dz

N
= (QW)_n/ [ (=iy; + nj)rsern—izv=velvtin gy,
R"
j=1

for any n € R™ satisfying ||n|| < p;. Since the proof of the above equality repeats line by
line the proof of [16, Lemma 3.4], see also [14] and [15] for the n-dimensional case, we
omit the details.

For ||n|| < pt we have

ReH(t,x,y—i—in)zxm—t/ (1—=n-u—e ") p(du)
pellull<1

— e (1 —cos(y-u du
e sy )

<@ -n—i(in) — e Reir(y),
which implies the upper bound

8N

a— . — L —_ -1
— i Pi()] < cpe” V) / (Il + Iyl Ve Beve@ay. (3.9)
Oxi*...0xy" R»
Put
1_ _ —S8
c:= sup # , s €R.
[s|<1 §

Using again the inequality ||n|| < p; and that {u: p||ul| < 1} C {u: |n-u| < 1}, we derive
i et [ neuPatdn) < et (o) =
pellull<1
Thus, taking in (3.9) the vector n with coordinates n; = —p;signz;, i = 1,...,n, we get

o _
kn Py (.23)

ozt ... Oy, < cpe ! / (P + Iy V) 7 Fev ) ay, (3.10)

where ¢35 = ¢3(n, N) > 0 is some constant. Recall that in (3.7) we proved that

Re vy (y) > teaypV (y) — 2,

where ¢4 := % Therefore,
aN

P (@)] < ese P sup (o) I—1(t, c6,1) + Inqn—1(t, 6,1))

Oxi* ...0xyn" lesn
where cg := e~ ley, and

o0
Lt A1) == / e AT EDHEADY gy >, (3.11)
0

To finish the proof we need to show that

sup I (t, A\, 1) < crpPtt (3.12)
lesn
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We get
& U U U
sup Ik(t, )\71) _ pic-i-l sup/ 67)\15[0 (v1)=0% (ve )]+ (k+1) (v—0vs) = AtO” (vel) dv

lesn lesn Jo
[e.e] . U U . U
<pk+1/ e—Atlgg’L[e (vl)—6 (Uf,l)]+(k+1)(v—v,,)—kt11€n§1;0 (vel) d

0
phtl [ / T / ‘T o MR D=6 (DA )
0 UVt

where v; := In p;, and in the last line we used that 6V is non-negative. To estimate the
first integral observe that

on o A
/ oA (01) =07 (v )]+ (k1) (v=v1) g, < eAth(lpt)/ e (w=ve) gy, < . (3.13)
Using condition A and (3.4) we derive
[0Y (vl) — 0Y (vel)] =2 9L rl)dr > = / 6Y (r1) dr
2 U L
= 59 (vel) (v — ) 0 (sl)dsdr
2 U
> BG (vel)(v —vy) + F N 9 (sl)dsdr
> 290 (il LoV (1 2
= (ve )(U—Ut)+@ (vel) (v — ve)”.
Further, by (2.3) and condition A we have
. t(1 —cosl) t(1 —cosl) 1—cosl
tinf OV (v l) > ———"— Ypl) = ~——"~ * = — 3.14
jnf 67 (vel) = 25 lsellggw (pel) 25 P ¥ (pe) 2 (3.14)

implying

tllenSf [0V (v1) — Y (0)] > bv — vy) + 2687 (v — vy)?,

where b = (1 — cos 1)/3%. Thus,

/OO e—tAinficon [0V (W) =0V (wel) [+ (k+1) (v=00) gy < /Oo (bt yw—bhw—2® g o (3.15)

UVt 0

Combining (3.13) and (3.15) we get (3.12), which finishes the proof. O

If the Lévy measure p is symmetric, one can refine the upper estimate in (3.5).

Lemma 3. Let condition A hold true, and suppose in addition that the Lévy measure p
is symmetric. Then for any N >0, and any k; >0,i=1,....,n, k1 +...+ k, =N, we
have

aN

87xk1 81‘kN < blpiv-‘rneszptuwu ln(PtHGL’HJrl)7 = Rn’ te (O,to]. (316)
1 - n

pi()

Proof. By the same argument as in [16, Lemma 3.6] we have for any n € R™

oN _
8:611“1 . 8xﬁ” Pi(2)

< (27T)’"6"“’1‘“(i")/ (lyll + [l e~ e @y, (3.17)
]Rn
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By Lemma 2, the integral in (3.17) is estimated from above by ¢; (||| p +pN ™), where
¢1 > 0 is some constant. For ;(in) we have

—ulin) =1 / oS ) = 1] () = 0/ ) / (- u)? pu(du)

¢ flul| <1

< (1l 1) I/ sup / P20 - u)? )

pellull<1

< (cosh([|nl/pe) = 1)tw* (pr)
= cosh(||nl|/pt) — 1,

where 0(s) := s72(coshs — 1), s > 0, is increasing. Since sofar n was arbitrary, take 7
with coordinates satisfying signn; = —signa;, ¢ = 1,...,n. Then

oN _
oo )

Minimizing the expression under the exponent in (3.18) in ||n||, we arrive at (3.16). O

< CQpi\”rne—HxHHTIH+COSh(HTIH/m). (3.18)

Proof of Theorem 1. Upper bound. The proof of the upper bound follows from Lemmas 1
and 2, and representation (2.9).

Lower bound. From Lemma (2) we know that the function p,(z) is continuous in z,
and bounded from above by bipy. Without loss of generality we may assume that

fpt||x||§1 Dy(x)dx > 1/2. Then

1/2 < / pu(x) dz < U oy 3, (a),
pellzl|<L py  wER™

where w;, is the volume of a unit ball in R™. Let x; be the ”smallest” in the lexicographical
sense point in which the maximum of p,(x) is achieved. For the off-diagonal lower bound
we get using the Taylor formula:

n

Z(x—a:t /5‘ De(xs +r(x — a¢)) dr

> Py(x¢) (

P = cr(n)pf |l — |

Pi(x) = py(ze) —

pt xe +r(x—x))

5\ 1/2
dr) [z — @l (3.19)

>
= 2w, L"
= c2(n)p} (1 — cz(n)pel|lz — z4])),
where in the second line form below we used the on-diagonal estimate
9 = n+1
5. P\Y)| = . O
)] < el

4. BELL-LIKE ESTIMATES

In this section we discuss some particular cases in which we pose more restrictive
assumptions on the regularity of the tail of the Lévy measure. We show that under
certain assumptions it is possible to write more explicit upper and lower estimates for
pt(x). At the same time, we emphasize that although such estimates can be more explicit,
they suppress the vital information about the transition probability density, given by the
compound kernel estimates. Moreover, as we will see below, a bell-like estimate may
heavily depend on the space dimension.

We begin with some notions on sub-exponential distributions in the multi-dimensional
setting, see [22] and [21] for more details. We keep the notation of Theorem 1.
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Definition 2. [22] We say that G is a sub-exponential distribution on R™ (and write

G € L(R™)) if for all z € R™ such that min; z; < oo, we have
1— G*2(tz)

lim ———= = 1. 4.1

% 1- G(tr) (4.1)

Theorem below generalizes the one-dimensional result, proved in [16].

Theorem 2. Let condition A hold true, and suppose that there exist a distribution
function G € L(R™), such that

tp ({u: [lpeu] > flofl}) < C(1 = G(v),  loll =1, t € (0, %], (4.2)

where C' > 0 is some constant, independent of t. Then for every to > 0 there exist some
constant Cy > 0, such that

pt(x + Clt) < Cl/)? (fupper(ptx) +1-— G(xpt)) ) T e ]Rn7 te (O7t0]a (43)
where fupper 15 defined by (2.12). If the inequality (4.2) holds true with the sign >, then
pt(x +a;— xt) > CQP?(flower(ptx) +1- G(ptx))a T € Rna te (OatO]v (44)

where Cy > 0 is some constant, and fiower i defined in (2.13).

In [16] we proved a version of Theorem 2 in the case when the measure y is absolutely
continuous, and the density is sub-exponential in the sense of [13]. Up to our knowledge
sub-exponential densities are not studied in the multi-dimensional case, see, however, [22]
for a brief comment. We strongly believe that the result analogous to those proved in
[16] also can be proved in the multi-dimensional setting, after establishing the necessary
properties of sub-exponential densities analogous to those presented in [13]. However, it
is possible to prove a version of Theorem 2 under the assumption of a power decay of
the Lévy density.

Theorem 3. Let condition A hold true. Suppose that p(du) = m(u)du, and for ||ul] > 1
we have the estimate
tp;nm (up;l) < HuH_n_b7 te (O,to], (45)
where b > 0. Then
P

(14 pellz))+0
If the inequality (4.5) holds true with the sign >, then
o
(1 + pel| ]+

The proof of Theorem 2 relies on the results obtained in [22]. In order to make the
presentation self-contained, we quote these results below.

It is shown in [22, Theorem 7, Corollary 11] that for a distribution function G the
conditions

G1. For Va, z € R", a > 0, x > 0, such that min; z; < oo, tlim % =1;

G2. All marginals G; of G are sub-exponential (i.e., G; € L(R)),
are equivalent to G € L(R™), and imply that for x > 0, minz; < oo, and a € R", a > 0,
one has

pe(r+ar) < e z e R, t e (0,1 (4.6)

pe(x + ar — x) > co x € R", t€(0,t]. (4.7

1— H(tx —
lim (tr —a)

Jm e =M (4.8)

where

e k
H(z) =) %G*k(x), A€ (0,00). (4.9)
k=1
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We also need [22, Theorem 10], which states that if the distribution function G satis-
fies G1 and G2, and the distribution functions R and F' are such that

. 1-F(tx —a)
e R (410
1—R(tz —a)

li = 4.11
B e (4.11)
for some «, 5 € R, and any a,x € R", a,z > 0, min; z; < oo, then

1—-R«xF(tx —a)

li = . 4.12
L e I (412)
Proof of Theorem 2. By (4.9) we have
D) < 0 Fupper(ipr) + 17 /|  Foelap ) Gla). (4.13)
v[|>1

Note that for any ¢ > 0 the tail of a sub-exponential distribution in R decays slower than
el as |y| — oo, (see [13], also the comment in [16]), which implies that for any ¢ > 0
the tail of a sub-exponential distribution in R"™ decays slower than e~I#ll as ||z| — oco.
Hence, for R(x) =1 — fupper(x) we have (4.11) with 5 = 0. Thus, by sub-exponentiality
of G we have the relation (4.12) with o =1, 8 =0, i.e.
‘ vaIIZI flzs —v)dG(v)

lim =1

s—00 1 —G(sx)
Since p; — 0o as t — 0, we finally derive (4.3) for ¢ small enough.

Similar argument works for the lower bound: in this case we take

R(x) =1 — fiower(2). O
Proof of Theorem 3. Let q(v) := (1+ ||v||)™"~?, and put

(o)
Q) := z:q*k(v)/k:!7 veR"
k=1
By Theorem 1 and (4.5) we get

(o) < et (Fpperap) 4 [ Fupprlons = 0)Q) a0 ) (4.14)

Let us estimate Q(v). We have:
/ 1
re (L [[ol)" (1 + [w — o) 40

ST
{llw—v[|<2=Hw]|} {llw=v[| =2~ w]|}

=1 + I5.

7 (w) = dv

1
(L4 [l + [lw — vl )+

dv

To estimate I; observe that if |w — v|| < 27 ||w]], then [Jw|| < [[v]| < Z[w]], or 3[w]| <
[v]l < flwll, implying
1 2
< .
L+ lol] = 2+ [Juw]]

;- ( 9 >n+b/ 1 iy < ( 2 >n+b
1 > a 1 AV S C| ——— .
2+ [Ju g (L+ [[o])m+ 1+ [|wl]

Therefore,
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Analogously, if ||w — v|| > 27}|lw]|, then
2 1
> ;
2+ [Jwl] 7 1+ [lw =]

I ( 9 >n+b/ 1 iy < ( 2 >n+b
2 > a 1 AV S C| ——— .
2+ [Jw g (L+ [[o])"+? 1+ [|wl]

Thus, there exists a constant C' > 0 such that ¢*2(v) < Cq(v). By induction, ¢**(v) <
C*=1q(v), implying Q(v) < ¢1q(v), v € R. Finally, observe that

upper\& — dv = upper - d
/mf (@ = v)Q)dv /|xv||>2—1||z|| +/nzv|<2—1|x|] Jupper(r = 0)Q L) v
< szupper(x/Q) +e3Q(x) < csQ(x).

implying

Thus, we arrive at

pi(z) < 05#,
(1 + pefl])m*
which proves the first part of the theorem. The same argument applies for the lower
bound. g

5. EXAMPLES

Example 1. Let Z; be an a-stable process, a € (0,2), with the Lévy measure u(du) =
Collu]| "~ *du, and the drift vector b € R™. One can easily verify that condition A is
satisfied, and p, = t~1/®. Applying Theorem 3, we arrive at

pel@ + bt) =t A = tnlaf (t_l/“||ac||) . zeR", te (0t

][t
where

fy=1Az79"" z >0, (5.1)
and for the lower bound we used that due to the symmetry of the Lévy measure we have
x; = 0. Note that by the structure of u the above estimates hold true for all ¢ > 0,
r € R", and coincides in the case b = 0 with the well-known estimate for the transition
probability density of a symmetric a-stable process.

Observe that for 1 < a < 2 we have
¢ o — bl > e — bl > 2] - eflbll,  t € (0, ).
Thus, for such a we arrived at
pe(x) <tV z])),  t€(0,t], € R™

Example 2. Consider a ”discretized version” of an a-stable Lévy measure in R"™. Let
my,o(dy) be a uniform distribution on a sphere Sy, centered at 0 with radius 2-kv,
v > 0, k € Z. Consider a Lévy process with characteristic exponent of the form (1.1),
where

pldy) = > 2y, (dy), 0 <y <2,

k=—oc0

and some drift coefficient @ € R™. Let us check that in this case ¥V (&) < L (¢) < [|€]|#,
where a = v/v.
Let ko := v~ llog, [|£]|. We have

WY€) < / (IElZlly]2 A1) pu(dy)
.

= |¢I1? % u(dy) + d
ol /nyngngn ol i) /|y|>1/||&|| )
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— ||€||2 Z 27k—2kv +c Z 2'yk

k>ko k<ko
1— 27k
29ko(v7—2v) —(k—ko)(2v—) Yo~ =
< |l€]1?2 > 2 t+en 27—
k>ko
221177 2

g €122 Tom el 3 oma el < g

The above calculations and the inequality (1 — cos 1)p5(€) < [p.(1 — cos(€ - y)) u(dy)
imply that
P (&) < eayp” (€) < o5l

For the lower bound we have

v 2 /H 1>1/1¢l 1€ yI? ul(dy) = mig,o{l € Se,o: | cos(le - 1)] > e} €] 2270020
yliz

= clll
where l¢ := £/||€]|, implying
inf ¢ (|l]1) > €]

=1

Thus, condition A is satisfied, and (&) < Y (&) < ||€]|*, which in turn gives p; =< ¢t~/
Note that for ||z|| > 1 we have

tu({u: pellu)l > e}y =t > 2 < crevloaldPh = ¢z~ = C|lz)| =,
n<n(t,z)

where n(t,z) := +logy(p¢/||@]|). Therefore, condition (4.2) of Theorem 2 holds true with
1—G(x) = ||z~ ||z|| > 1. By this theorem we have the following estimate for the
respective transition probability density:

pe(@ +at) < ext ™ f (7)) (5.2)

where

fz)y=1Az2"% z> 0. (5.3)
However, as one may notice, such upper estimate is informative only in the case n = 1
and 1 < a < 2, see [16] for the detailed analysis. In the other cases the upper bound is
not integrable! On the other hand, Theorem 1 together with Proposition 2 provides that
the transition probability density satisfies the upper compound kernel estimates with
parameters (£~ fupper, 1%, Ay), with

Fupper(w) = bre P2 I#Nos(HIe) = and Ay (du) = t1 {54170y s(du).
In this case the obtained upper bound is integrable.

Remark 1. The above example illustrates that even if the (re-scaled) Lévy measure
can be dominated by a reasonably good function, the explicit upper estimate obtained
in Theorem 2 can be extremely inexact. Heuristically, the condition (4.2) is imposed on
the tail of the re-scaled measure, which suppresses its intrinsic behaviour. See, however,
[12] for another approach in a similar situation. On the other hand, the condition on the
behaviour of the density can lead to adequate results, as we saw in Example 1. Possibly,
one can modify the assumption Theorem 2 and get more reasonable explicit estimates,
but in fact it is not needed, since the compound kernel estimates obtained in Theorem 1
already contain the information, sufficient for many applications, see [18] and [19].
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STORAGE IMPULSIVE PROCESSES ON INCREASING TIME
INTERVALS
UDC 519.21

V. S. KOROLIUK, R. MANCA, AND G. D’AMICO

ABSTRACT. The Storage Impulsive Process (SIP) S(t) is a sum of (jointly independent) random vari-
ables defined on the embedded Markov chain of a homogeneous Markov process.

The SIP is considered in the series scheme on increasing time intervals t/e, with a small parameter
e — 0, € > 0. The SIP is investigated in the average and diffusion approximation scheme. The large
deviation problem is considered under corresponding scaling with an asymptotically small diffusion.
Anoraus. ImoynbcHi npomecu makonmuenHs (II[TH) 3amarorbes cymamu (He3a€KHUMH B CyKYIIHO-
CTl) BUIAJKOBUX BEJIMYNH, BU3HAYEHUX HA BKJIAJEHOMY JIAHIFOrY MapKoBa OJHOPIZHOrO MapKOBCHKOTO
IpOIfecy.

IITH po3ruisigarorhest y cxeMi cepiif Ha 3pocTaro4uux iHTepBasax Jacy t/e, 3 MaJuM mapaMerpoM cepil
e — 0, e > 0. IITH mocmimKyroThCsS y cxeMaxX ycepemaHeHHs Ta audysiiinol ampokcumarii. [Ipobiaema
BEJIMKUX BiJIXWUJIEHb PO3IJIsSiJA€THCs PU BiAOBIHOMY HOPMYBAHHI 3 ACUMIITOTHYHO MaJIOK0 audy3iero.

AnHOTALMA. VMmynbcHble nporeccsl Hakomrenus (MITH) 3amatorcsa cymMmaMu (HE3aBHCHMBIME B CO-
BOKYIIHOCTH) CJIy9alHBIX BEJHMYHH, OLDEJEJICHHBIX HA BJIOXKEHHOH menu MapKoBa OZHOPOJHOTO Map-
KOBCKOTO IIPOIeCCa.

WITH paccmaTpuBaroTCsi B CXxeMe Cepuil Ha BO3DACTAIOIIMX MHTEPBAJIAX BPEMEHM /e, C MAJbIM Ma-
pamerpoM cepunt € — 0, ¢ > 0. UIIH uccrenyrorcsa B cxemMax YKpymHeHus U Aud@dy3UOHHONR ammpo-
kcumanuu. [Ipobiema GOJbIIMX YKJIOHEHUH pPacCMaTPUBAETCS MPH COOTBETCTBYIOMIEH HOPMUPOBKE C
ACHMITOTHYECKH Majoi nuddysueii.

1. INTRODUCTION

The Storage Impulsive Process (SIP) S(t) is a sum of (jointly independent) random
variables defined on the embedded Markov chain of a homogeneous Markov process

v(t)
St)=u+Y an(zy), t>0, ueR’ (1)
n=1

The time homogeneous Markov process z(t), t > 0, is defined on a standard phase space
(E, ) by the generator

Qo) = ala) [ Plady)lets) ~pla)l. =€ F.
for a real valued test function ¢(x), x € E, with a bounded sup-norm:
le(@)| := sup |p(x)].
zeE
The embedded Markov chain x,,, n > 0, is defined by

X = 2(Th), n >0,

2000 Mathematics Subject Classification. Primary 60J45; Secondary 60KO05.
Key words and phrases. Storage impulsive process; average, diffusion approximation; large deviation
problem.
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where the renewal moments of jumps are given by
Tnt+l = Tn + Ont1, n >0, 1o =0,
and the sojourn times 60,, 1, n > 0, are such that
P(Opsr >t |z =2) = 1@ = P(, >1).

The stochastic kernel P(z, B), x € E, B € &, defines the transition probabilities of
the embedded Markov chain

P(z,B) = P{zpt1 € B |z, = x}.
The counting process is defined by
v(t) :=max{n > 0: 7, < ¢}, t>0.
The random variables in (1) have the distribution functions
O, (dv) = P{an(z) € dv} = P{ay(z,) € dv | x, =z}, x€FE.

The SIP may be considered as a random evolution process [1, Ch.2]. The switching
Markov process z(t), t > 0, describes a random environment.

A1: The main assumption is the uniform ergodicity of the Markov process x(t), t > 0,
with the stationary distribution 7(B), B € &, satisfying the equation:

r(da)g(e) = apldz), g = /E r(dz)q(z).

The stationary distribution p(B), B € &, of the embedded Markov chain z,, n > 0,
satisfies the equation

p(B) = /Ep(da:)P(a:,B), Beé&, p(E)=1.

Provided that the main assumption A1l takes place the potential operator Ry may be
given by a solution of the equation [1, Ch. 2]

QRy=RyQ=1-1, Ip(z) := /Ew(dx)ga(x).

2. SIP ON INCREASING TIME INTERVALS IN AVERAGE SCHEME.

The SIP on increasing time intervals in average scheme is considered in the series
scheme with the small parameter € — 0, € > 0, in the following scaling:

v(t/e)
St)=u+e > an(zn), t>0,e>0 ueR% (2)
n=1

The random evolution approach [1, Ch. 3, 5] is an effective method of asymptotic analy-
sis (2) when € — 0.
Proposition 2.1. The SIP (2) in the average scheme convergences weakly

Se(t) = S°(t) = u + aot, e —0, (3)

where the average velocity is such that
ap = qa, a= / p(dz)a(z), a(z) = / v P, (dv). (4)
E Rd

Proof of Proposition 2.1 is based on the random evolution approach [1, Ch. 3] by using
a solution of the singular perturbation problem [1, Ch. 5].
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Remark 2.1. For simplcity without loss of generality the proof is realized for the SIP
given on real line R, d = 1.

According to the definition of a random evolution [1, Ch. 2] we consider the two
component Markov process

SE(t), z°(t) = x(t/e), t>0. (5)

Lemma 2.1. The Markov process (5) is characterized by the generator
Leo(u,z) = e 1q(x) /E P(z,dy) /Rd D, (dv)[p(u + ev,y) — o(u, z)]. (6)

The proof of Lemma 2.1 is a direct consequence of the definition of the generator [1,
Ch. 3].

Remark 2.2. The generator (6) may be rewritten as follows

Lop(u,x) = e [Q + Qo®Z] p(u, ), (7)
where, by definition,

Qop(z) == q(fﬂ)/EP(w,dy)@(y),

W)= [ @oldn)fplu+e0) — plu)]
On a test function ¢(u) being smooth enough,

Lp(u) = ela(z)¢’ (u) + 0% (2)p(u)]

with the negligible term:
165 (@) (u
Lemma 2.2. The generator (7

Lép(u,z) = [e_lQ + QoA(x) + (55(33)} o(u,x),

) =0, e—0, ¢u) e C*(R).
)

admits the following asymptotic expansion:

where
A(@)p(u) = a(z)¢ (u),
and the negligible term is such that

sup [|6°(z)p(u, )| = 0, =0, p(u,-) € C*(R).
zeE

Then a solution of the singular perturbation problem [1, Ch. 5] may be used for the
truncated operator

Lip(u, x) = [e7'Q + QoA(x)] p(u, z). (8)
Lemma 2.3. The truncated operator (8) on a perturbed test function
0" (u, ) = p(u) + o1 (u, ),

admits the following asymptotic representation [1, Proposition 5.1]:

Lt (u, ) = G’ (u) + 6°(z)p(u).
The negligible term may be written in explicit form.:

0% () p(u) = eQuA(2) RoA () o ().

Az) = Ao — QoA(z),  Ag:=TIQuA(x)IL
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Conclusion 2.1. The generator (6) of the random evolution (5) admits the asymptotic
representation
LF¢®(u, ) = oy’ (u) + 0% (2)p(u) 9)
with the negligible term 6°(x)o(u).
The representation (9) implies the weak convergence (3)—(4) [1, Ch. 6] because the
limit operator

Lop(u) = a0y’ (u),  p(u) € CH(R), (10)
defines the evolution

SO(t) = u + aot, t>0, S°0) = u.

Remark 2.3. The limit operator (10) in the Euclidean space R? has the following repre-
sentation:

d
dog'(u) == S @k (w),  @h(u) == Dplu)/Duy.,

W=, o= [ e, o) = [ wb.)
E R

3. SIP IN DIFFUSION APPROXIMATION SCHEME.

It is well known that the diffusion approximation of stochastic systems may be realized
under some additional Balance Condition (BC).
We consider two different BC for SIP, namely the total and local ones.

3.1. SIP under total balance condition. The SIP in the series scheme with the
parameter ¢ — 0, € > 0, in the diffusion approximation scheme under the Total Balance
Condition (TBC):

a(x) = / v®,(dv) =0, (11)
Ra
is considered in the following scaling:

v(t/e?)
SE(t)=u+e Z an (Tn), t>0, e>0.
n=1

Proposition 3.1. Under the TBC (11), the weak convergence
SE(t) = W, (t), e — 0,

takes place.
The limit Brownian motion process W, (t), t > 0, is defined by the variance matriz

~

C=0'c= qB,
B:/Ep(dx)B(x), B(@:/Rd vt B (dv).

Proof of Proposition 8.1. As in Section 2, we start by characterizing the coupled Markov
process.
Lemma 3.1. The Markov process

SE(t), 2°(t) =z (t/e?), t>0,

is characterized by the generator

L p(u,z) = e2q(z) /E Pz, dy) / B (do)lp(u +ev.y) — pluz).  (12)

d
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The generator (12) may be rewritten as follows

Lfo(u,x) = e 2[Q + Qod]o(u, ), (13)
where
2 1 " £
PLp(u) = /Rd Co(dv)[p(u + v) = p(u)] = e | 5 B(2)¢" (u) + 8" (2)p(w)| . (14)

with the negligible term §¢(x)p(u).
Lemma 3.2. The generator (13)-
Lé(u, ) = [e72Q + QoB(2)] ¢(u, x) + 6°(2)p(u)

with negligible term 6°(x)p(u). Here by definition

B(x)p(u) = 5 B@)¢! (u). (15)

Then the solution of singular perturbation problem [1, Ch. 5] can be used for the truncated
operator

(14) admits the asymptotic expansion

Lop(u,z) = [72Q + QuB(2)] ¢(u, z). (16)
Lemma 3.3. The truncated operator (16) on a perturbed test function
¢€(uax) = Sﬁ(u) +E2302(u,$), (17)

admits the asymptotic representation
1~
Lop™(u,z) = 509" (u) + % (2)p(u).
Proof. Considering (16) and (17),
50" = [e72Q + QuB(2)] [p(u) + epa(u, z)]
= e 2Qup(u) + [Qpa(u, ) + QoB(x)p(u)] + 6°(2)p(u).
It is obvious
Qep(u) = 0.
The equation

Qs (u, ) + QuB(x)p(u) = Lop(u)
can be solved under the solvability condition [1, Ch.5]:

Loll = IQoB(x)1L.
Transforming (15) gives us

Eoolw) = 50" ().
Indeed

Fopte) = [ wlda)ate) [ Ple.dy)5B)e )

= 50 [ o) B () = 50 w). 0

Remark 3.1. The limit generator Eo in the Euclidean space R is represented as follows:
d
7 q
LOQO(U') = 5 kzl Bk?"@;{}l’r(u))
sT=

~

B = [Byr;1 < k,r <d], o) (u) := 0%p(u)/durdu,,

Biy = [E (d2)Bir (@), Bun(z) = /]R Oty By (d).
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The proof of Proposition 3.1 is finished by using the asymptotic representation

L#¢* (u,2) = Lop(u) + 6 (@) (u), (18)
and convergence Theorem 6.3 [1, Ch.6]. The negligible term in (18) may be written in
the explicit form. O

3.2. SIP under the Local Balance Condition (LBC). The LBC means that the
average value of jumps is such that

a ::/ p(dx)a(zx) # 0. (19)
E

The SIP in the series scheme under the LBC (19) with the parameter ¢ — 0, € > 0, is
considered in the following scaling:

v(t/e?)
SEt)=u+e Z an (zyn) — qat/e, t>0. (20)

n=1
Proposition 3.2. Under the LBC (19), the weak convergence
SE(t) = W, (t), e —0,

takes place.
The limit Brownian motion W, (t), t > 0, is defined by the variance matrix

aza*a:qg, §:§o+§17
Bo= [ planBofe).  Be) = [ ved(a)
E R4

B = [E p(d2)Bi(z),  Bi(z) = 20" (2) Rot(x), (21)
a(z) = aolz) — q@,
aola) = a(a) [ Plasdy)a(y)
Here the potential operator Ry is defined as the solution of the equation
QRo=RyQ =TI — I
[1, Ch. 3].

Proof of Proposition 3.2. As in the previous section we start using the generator of the
two component Markov process.

Lemma 3.4. The two component Markov process S€(t), x°(t) = z(t/e?), t > 0, is
characterized by the generator

Eptu) = < a(a) [ Plady) [ (@litu+ ev.9) = plu,)] =g (. 0). (22
This generator can be written as follows
Lop(u,w) = [£72Q + Qo®3] — =7 Ao| (u, ) (23)
with Ao (u) = oy’ (u)

B0 = [ @uldv)lolu +20) = pla)]

= ca(e)p!(u) + 25 Ba)g! () + 0% (@) (u).
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Lemma 3.5. The generator (22) admits the asymptotic expansion
Lio(u,z) = |e72Q + e 'Ax) + QQB($):| o(u, ) + 0%(x)p(u, x).
Here

Note that the following balance condition
IMa(z) =0 (25)
takes place.

Now a solution of singular perturbation problem [1, Ch.5] can be used for the truncated
operator

Lip(u,z) = |e72Q + e A(z) + QoB() | ¢(u, ). (26)
Lemma 3.6. The truncated operator (26) on a perturbed test function
¢° (u,2) = p(u) + 1 (u, 2) + £%p2(u, )
admits the asymptotic representation
Ly (u,2) = 50" (u) + 6 (@)p(w).
Proof. Let us consider
Lo (u,2) = [72Q + e 1A (2) + QoB(@)][(u) + £1 (u, @) + %0 (u, )
= e7Qp() + 7' Q1 + A(@)¢] + [Qpz + A(z)o1 + QoB(x)y]
+ 0% (x)p(u).
We get the equations
Qp(u) =0,
Q1 (u,7) + A@)p(u) =0,
Qea(u,7) + A(z)1 (u, 7) + QoB(x)p(u) = Lop(u).

The first equation is obvious. The second equation satisfies the solvability condition (25).
Hence

¢1(u, @) = RoA(z)p(u).
Now the third equation is

Qp2 + [Bo(@) + QoB(x)] p(u) = Low(w), (27)
where

Ro(2)p(u) = Alx) RoA () (). (28)
The solvability condition for (27) gives

Loll = II [&O(x) n QOIB%(x)} IL.
Using (28), (24), and (15) we calculate the limit generator
~ 1 ~
LOSO(U) = 5050”(’“'))

where the variance matrix C is represented in (21).
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Note that (see (24))
Ao(2)p(u) = A(@)RoA(2)p(u) = A(z)Rod(z)¢’ (u) = a(z)Rod(z)¢" (u) = = Bi(z)@" (u).
Here
a(z) = ao(x) — ao. o d
4. LARGE DEVIATION IN THE SCHEME OF ASYMPTOTICALLY SMALL DIFFUSION

The SIP in the scheme of asymptotically small diffusion is considered under two dif-
ferent balance conditions, namely total and local ones.

4.1. The SIP under the total balance condition. The total balance condition means
that the mean values of jumps of SIP equal totaly zero:

a(z) = /]R 0 (d) = 0. (29)

The SIP in the scheme of asymptotically small diffusion is considered in the following
scaling [3]:
v(t/e®)
SE(t) = u +¢e? Z an(zn), t>0, >0, uc R (30)
n=1

The coupled Markov process
Se(t), 2°(t) ==z (t/e%),  t>0,
is defined by the generator

Leo(u,z) = e 3q(x) /EP(x,dy) /Rd Py (dv) [p(u+*v,y) — o(u, z)]
which can be rewritten as follows

LESO(U@) = 673[@"_@0@;]50(“7%)7 (31)
where, by definition,

Bp() 1= [ B0 [ (u+220) = (] = Bl + 5 @)l
Here
B(x)p(u) = 3 B(x)e! (u).
Hence the generator (31) admits the asymptotic expansion
Lop(u, z) = Lop(u, ) 4 6% (2)p(u, x), (32)
Lip(u,x) = [e7°Q + eQoB(2)] p(u, ).
The truncated operator (32) on a perturbed test function
¢° (u,2) = p(u) + o (u, ),
admits the asymptotic representation
L§e® (u, @) = e[Qp1 + QoB(x)p(u)] + 6% (2)p(w). (33)
The representations (32) and (33) give
L (u,w) = & [Coplu) + 0 (@)p(u, )
where the main part
Cp(u) = e5C¢" (1)

is the generator of a small diffusion.
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4.2. Large deviation for SIP under the total balance condition. We investigate
the large deviation problem for SIP by using the asymptotic analysis of the exponential

generator of large deviation
Hep(u, x) = e #/c[Fe?/¢

[2, Part I].

(34)

Proposition 4.1. The large deviation for SIP (30) under the total balance condition (29)

is realized by the exponential generator of small diffusion

Cle' (W),

N}Ir—\

Ho(u) =

~

C= q/ p(dx)B(z), B(z) :/ v*v @, (dv).
E Rd
Proof of Proposition 4.1.
Lemma 4.1. The exponential generator (34) on a perturbed test function
¢ (u,2) = p(u) + en [1 + 21 (u, 7)]
admits the asymptotic representation
Ho (0,2) = Qg1 + 5QoB@) ()] + 1 (z)o(u)
with the negligible term
Ih*(@)e(u)]| =0, €0, p(u) € C*(R).
Proof of Lemma 4.1. Let us calculate

Hep® = e ¥/¢ [14—5 01 5L€1+e gal]e"’/e

= [1—5 p1|elgll+¢ gal]e“p/s—khe() (u)

I
]

= e_“’/6 [1—e2p1] e72Q [1+£%p1] €95 + e ¥/5c72Qo@%e¥/® + h¥ () ()
)

(35)

1 I
= Q1+ 5QoB()[p ") + b (2)p(u). H
Now the solution of the singular perturbation problem [1, Ch.5] gives
He ¢ (u, ) = Ho(u) + h*(x)p(u). (36)
The asymptotic representation (36) completes the proof of Proposition 4.1. g

Remark 4.1. The exponential generator of small diffusion (35) in the Euclidean space R?,

d > 2, is represented as follows:

Hep(u) = =" (w)Cy' (u),

2

where ¢'*(u) = (¢} (u),1 < k < d) is a vector-row, ¢'(u) = (¢} (u),1 < k < d) is a

vector-column, C = [Clr.1<k,r<d] is the variance matrix.
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4.3. Large deviation for SIP under the local balance condition. The Local Bal-
ance Condition (LBC) means that the average value of jumps is not equal to zero:

= / p(dz)a(z) £ 0. (37)
E

The SIP under LBC (37) is considered in the following scaling:

v(t/e?)
SE(t)=u+e > an(wn) —dot/e. (38)

n=1

Lemma 4.2. The coupled Markov process S€(t), x°(t) := x(t/e3), t > 0, is determined
by the generator (compare (22))

Loo(u,x) = e 3q(x) /E P(x, dy) /R @y (d0) [l + 0,y) — p(u,2)] — & o ().
Or, in a different form,
Lop(u,a) = [e71Q + Qo] — Ao w(u, @),
B = [ @) [olu+20) — o(w)].

Proposition 4.2. The large deviation for SIP (38) under the LBC (37) is realized by
the exponential generator of small diffusion

Heo(w) = 5l )], (39)
C = Q[gl + EQ],
B — /Ep(da:)Bk(a:), k=12, (40)

The exponential generator of large deviation (39)—(40) contains two components. One
of them is the variance matrix of the second moment of jumps. The second component Bs
is defined by the fluctuation of the first moment of jumps.

Proof of Proposition 4.2. To prove the proposition we need the following lemma:

Lemma 4.3. The exponential generator (34) under the local balance condition (37) on
the perturbed test function

o (u,z) = p(u) +eln [1 + ey (u, ) + %o (u, x)}
admits the asymptotic representation

H o (u,) = 7" | Qo1 + A@)p(w)|

: (a)
+ @6 - 1001+ JQBEI W] + 1 @)et)

with the negligible term
[p°(@)p(u)]| =0, =0, p(u) € C*(R).
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Proof. Proof of Lemma 4.3 is based on the following asymptotic representations:
Hoo" (u,2) = ¢ /%2Qe?"/* = e71Qp1 + [Qp2 — ¢1Q1] + hy(@)p(u),
Heof (u,x) i= o9 /e 72Qu@5e? /= 7' QoA (@)p(u) + QoA(@)pr (u, x) + hy(x)o(u),
H o (u,z) := e ¥ /e hge? /e = e a0’ (u) + hE () p(u).

Thus, the relation
Hf ¢ (u,x) = [Hf2 + pr — H:]¢®(u, x)
gives (41) with (see (24)—(25))
A@)p(u) = a(x)e' (u),
a(z) := Qoa(z) — ap. O

Now the solution of the singular perturbation problem [1, Ch. 5] may be used for the
equations

Qe1 + A(z)p(u) = 0,ITA(z) = 0;

1 N
Q2 = ¢1Qp1 + 5 Bi(2)[¢' (w)]* = Hep(u).
The first equation in (42) has the solution

(42)

p1(u,7) = Roa(z)¢'(u),  Qpr=a(z)¢' (u).
Hence, the second equation in (42) may be rewritten as follows

Qi+ 51B1(2) + Ba(a)]l¢! (u)]? = Hilw)

with Ba(z) given in (40).
The solvability condition [1, Ch. 5] for the last equation gives Proposition 4.2. O
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LIFT ZONOID ORDER AND FUNCTIONAL INEQUALITIES
UDC 519.21

ALEXEI M. KULIK AND TARAS D. TYMOSHKEVYCH

ABSTRACT. We introduce the notion of a weighted lift zonoid and show that the ordering condition
on a measure pu, formulated in terms of the weighted lift zonoids of this measure, leads to certain
functional inequalities for this measure, such as non-linear extensions of Bobkov’s shift inequality and
weighted inverse log-Sobolev inequality. The choice of the weight K, involved in our version of the
inverse log-Sobolev inequality, differs substantially from those available in the literature, and requires
the weight v, involved into the definition of the weighted lift zonoid, to equal the divergence of the
weight K w.r.t. initial measure pu. We observe that such a choice may be useful for proving direct
log-Sobolev inequality, as well.

AHOTALIsSI. BBemeHo MOHATTS 3BayKEHOTO JIiDT 30HOIAA Ta MOKA3AHO, IO YMOBA MOPSIKY HA MIpy L,
HAKJIQJEHA y TepMiHAX 3BaKeHUX JidT 30HOIAIB I[i€T MipH, IPUBOAUTH 10 TAKUX (DYHKIIOHAJBHUX HE-
piBHOCTe Ha ITF0 Mipy, K HeJiHiliHe y3araJbHeHHS HepiBHOCTI 3cyBy BoOKoBa Ta 3BakeHOi 0HGepHEHOT
snorapudmianol Hepisaocti CoboseBa. Bubip Baru K y mamiit Bepcii obeprenol sorapudmitaoi mepis-
HocTi CoboJieBa iCTOTHO BiZpi3HAETHCA BiJl HASBHUX Yy JIiTEPATYpi, Ta BUMAarae, mob Bara v 3 O3HaAY€HHS
3BaskKeHOTO JiT 30HOIJA JOpiBHIOBAJIA AuBeprenmnil Baru K BigHOCHO BuxigHO! Mipu pu. Mu mokasye-
MO, IO TaKwil BUOIp TaKOXK MOXKe OyTH KOPHCHHUM HpH JOBEJEHHI IpsaMol ysorapudMidHol HepiBHOCTI
Coboesa.

AHHOTAIUs. BBemeno mouaTwe B3BEIEHHOTrO Ju(T 30HOUJA W MOKA3AHO, UTO YCJIOBHE MOPSIKA HA
Mepy U, HAJIOXKEHHOE B TEPMHUHAX B3BEIIEHHBIX JIN(DT 30HOUJOB STOH MepPhl, IPUBOAUT K TAKUM (DyHKIIH-
OHAJILHBIM HEPABEHCTBAM JJIsI 3TOH Mephl, KaK HeJuHelHoe 00600IIeHre HepaBeHCTBA CaBuUra bobkosa
7 B3BEIIEHHOr0 oOpaTHOro jorapudmudeckoro nepaserncTsa CoboseBa. Bribop Beca K B Hameil Bep-
cuu 06paTHOrO JorapudmMuueckoro HepaBeHCTBA Cob0OIeBa CYyNIeCTBEHHO OTIMYIAETCS OT MMEIONIUXCS B
smTeparype, 1 Tpedyer, ITOOBI BeC v U3 OLPEJEJICHHSI B3BEIICHHOTO JudT 30HOHUA OLLI PABEH IUBED-
reHiuu Beca K OTHOCHTEIHLHO HMCXOTHONW MephbI f. MBI MOKA3BIBAEM, UTO TAKOW BHIOOD TAKIKE MOMKET
OBITH IOJIE3HBIM IIPU JI0KA3ATE/ILCTBE MPSMOro JiorapudmMudeckoro HepaseHcrsa CobosieBa.

1. INTRODUCTION

The notions of zonoid and lift zonoid, introduced in [9], have a diverse field of applica-
tions. Because the lift zonoid determines the underlying measure uniquely, this concept
can be used in multivariate statistics for measuring the variability of laws of random vec-
tors, and for ordering these laws, see [10]. The concept of zonoid equivalence appears to
be both naturally motivated by financial applications, and useful for proving extensions of
the ergodic theorem for zonoid stationary and zonoid swap-invariant random sequences,
see [12, 13]. Lift zonoids lead naturally to definitions of associated a-trimming and data
depth, see [9] and [7], and to barycentric representation of the points of a space with a
given measure, see [9] and [11].

In this paper, we explore a new field, where the notion of lift zonoid can be applied
naturally. As a straightforward extension of the definition of lift zonoid, we introduce
a weighted lift zonoid Z”(,u) with a vector-valued weight function v. We show that, for
properly chosen weights v, the ordering condition on a measure u, formulated in terms

2010 Mathematics Subject Classification. Primary 26D10, 39B62, 47D07, 60E15, 60J60.
Key words and phrases. Lift zonoid, weight, shift inequality, log-Sobolev inequality.
The second author was partially supported by the Leonard Euler program, DAAD project
# 55518603.
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of the weighted lift zonoid of this measure, leads to certain functional inequalities for
this measure, such as non-linear extensions of Bobkov’s shift inequality [3] and weighted
inverse log-Sobolev inequality. Weighted versions of the classical functional inequalities
(Poincaré, log-Sobolev, etc) have been studied recently in various contexts. The choice
of the weight K, involved in our version of inverse log-Sobolev inequality, is specific
and differs substantially from those available in the literature. This choice is strongly
motivated by (an extension of) the functional form of Bobkov’s shift inequality, and
requires the weight v, involved into the definition of the weighted lift zonoid, to equal the
divergence of the weight K w.r.t. initial measure . We observe that such a choice may
be useful for proving (weighted) direct log-Sobolev inequality, as well. In the case of a
bounded weight, this may lead to new sufficient conditions for the log-Sobolev inequality.
We illustrate the range of applications of these conditions in two examples in Section 4.

2. WEIGHTED LIFT ZONOIDS, NON-LINEAR SHIFT INEQUALITIES, AND WEIGHTED
INVERSE LOG-SOBOLEV INEQUALITIES

Let p be a probability measure on the Borel o-algebra in R?, and v: R? — R? be a
measurable function such that

/ (@)l u(de) < oo

here and below we denote by || || the Euclidean norm in R?. We define the weighted
zonoid Z°(u) with the weight v as the set of all the points in R? of the form

/ 9(2)v(z) p(da) (1)
Rd

with arbitrary Borel measurable g: R? — [0,1]. The weighted lift zonoid Z”(u) is de-
fined as the weighted zonoid of the measure 81 x p in R¥*1, Equivalently, the weighted
zonoid Z¥(u) and the weighted lift zonoid ZV(u) are the sets of the points of the form

Eg(X)v(X) € R and (Eg(X),Eg(X)v(X)) € R*! (2)

respectively, where X is a random vector with the distribution g. This definition is a
straightforward generalization of the definitions of the zonoid and the lift zonoid (see [10],
Definition 2.1), where the function v has the form v(z) = x.

The lift zonoid Z (u) is a convex compact set in R4+ symmetric w.r.t. the point

(%, % E X), which identifies the underlying measure p uniquely; see [10]. On the other

hand, it can be seen easily that the definition of the weighted lift zonoid Z”(u) would
not change if one restricts the class of Borel measurable functions g within it to the class
of the functions of the form

g9(z) = G(v(x)), G: R — [0, 1] is Borel measurable.

This observation leads immediately to the identity Z(u) = Z(u o v~1); that is, the
weighted lift zonoid Z¥(y) equals the (usual) lift zonoid of the image of the measure u
under the mapping v. As a corollary, we get that the weighted lift zonoid Z”(,u) is
a convex compact set in RIT! symmetric w.r.t. the point ((1/2),(1/2)Ev(X)), and
identifies the image measure p o v~! uniquely.

The following theorem motivates the above definition of the weighted lift zonoid. To
formulate it, we need to introduce some notation. Denote by . the centered Gaussian
measure in R? with the covariance matrix ¢?Iza. Let

1 2 *
o)== e@) = [ ey zem
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be the standard Gaussian distribution density function and the standard Gaussian cu-
mulative distribution function, respectively, and let

I(p) = (@ (p)), pe(0,1), I(0)=1I(1)=0, 3)
be the Gaussian isoperimetric function.
For any measurable f on R?, we write E,, f for the integral of f w.r.t. p; function f
may be vector-valued, then the integral is understood in the component-wise sense. For
a function f taking values in R, its pu-entropy is defined by

Ent, f = E,(flog f) — (E, f)log(E, f),
with the convention 0log0 = 0.

In what follows, we assume that the measure p has the logarithmic gradient v,; that
is, a function v, : R? — R, integrable w.r.t. 4 and such that for every smooth f: R? — R
with a compact support

E,Vf=-E.(v.[) (4)
This assumption is equivalent to the following, see Proposition 3.4.3 in [6]: there exists
the density p,, of the measure ;1 w.r.t. the Lebesgue measure, which belongs to the Sobolev
class Wi 1(R4); in this case

= 2uPe

Py
Theorem 1. I. The following three statements are equivalent.
A. 2% () € Z(ve).
B. For any smooth function f: R* — [0, 1] with a compact support, one has
[E. VI <cl(BEyf). ()
C. For any h € R, A € B(R?)
O (071 (u(4)) — cl|hl) < p(A+h) < ® (27 (u(A)) +cl|A]) (6)

1. Under the conditions A—C above, the following inverse log-Sobolev inequality holds
true: for any smooth function f: R4 — [0,00) with a compact support,

|E,Vf|? <2cEnt, fE, f. (7)

Remark 1. By the definition (see Definition 5.1 in [10]), two measures p; and po are
related by the lift zonoid order (notation: uy <rz pe), if

Z(w) C Z(pa)-
Recall that Z% (u) equals the lift zonoid of v, = powvy,'; that is, of the distribution

noo
of the logarithmic gradient of the measure . Hence statement A can be equivalently
formulated as follows: the distribution v, of the logarithmic gradient of the measure p is

dominated in the sense of the lift zonoid order by the canonical Gaussian measure in R,

Theorem 1 is not a genuinely new one. The equivalence of the relations B and C is
used by S. Bobkov in [3] as a key ingredient in the proof of the shift inequality (6) (in [3],
the measure p is supposed to be a product-measure, but the proof of the equivalence
of (5) and (6) in fact does not rely on this assumption). The outline of the proof of (7)
under (5) and (6) is given in [2]. What we would like to emphasize is that condition B,
usually called the functional version of the shift inequality, is equivalent to the relation A,
which according to Remark 1 can be written as the lift zonoid order relation

Vy SLZ Ye- (8)

It is instructive to compare (8) with the following necessary and sufficient condition for
the functional version of the shift inequality to hold, given in [3] in the case where the



78 ALEXEI M. KULIK AND TARAS D. TYMOSHKEVYCH

measure p is a product-measure with equal marginals p;. This condition states that
there exists ¢ > 0 such that (5) holds true, if and only if there exists € > 0 such that

[ e v o) <2 9)
R

in addition, the optimal constant ¢ in (5) and € in (9) are connected by the relation

1 4
o <e< . 10
V6e Ve (10)
For the product measure p(dz) = H?Zl w1 (dz;), respective distribution of the logarithmic
gradient is again a product measure

d
vu(dz) = [ [ v (dzs),
i=1

and in this case, due to Corollary 5.3 in [10], (8) is equivalent to

Vi <Lz 7c17 (11)

where 7! is the N(0, ¢?)-Gaussian measure on R. Both (9) and (11) are conditions on
the tails of the distribution of the logarithmic gradient of 1, but (11) is more precise
because it involves the same ¢ with (5).

The main result of this section, Theorem 2 below, is a generalization of Theorem 1
and is motivated by an observation that in Theorem 1 the equivalence of the relations A
and B follows in a very straightforward way from the integration-by-parts formula (4);
see the proof of Theorem 2 below. With this observation in mind, we introduce a wide
class of weights which admit an analogue of the integration-by-parts formula (4). To do
that, we recall that the u-divergence of a function g: R? — RY, if exists, is defined as
the function §,(g) € L1(R?, 1) such that for every smooth f: R? — R with a compact
support

Eu(Vf g)re =E, f6.(9).
The p-divergence is well defined, for instance, for any g € C! bounded together with its
partial derivatives; in this case,
d d
oulg) = — Z[Uu]igi - Z 0z, gi-
i=1 i=1
This follows directly from (4); see [6], Chapter 6 for more information on this subject.
Let function v: R¢ — R be such that, for some function K taking values in d x d-matrices,

’Ui:(su(Ki), izl,...,d, (12)

where K; denotes the i-th row of the matrix K. Then for every smooth f with a compact
support
E.(KVf) =E, fuv; (13)
here and below we treat elements of R? as vectors-columns. Formula (13) is a straightfor-
ward extension of the integration-by-parts formula (4), where the gradient V is replaced
by the “weighted gradient” KV with the matrix-valued weight K, and the logarithmic
gradient v,, is replaced by the p-divergence of K. Furthermore, if K satisfies some extra
regularity condition, e.g.
K:RY = R¥™4 s Lipschitz, (14)
then for every h € R? there exists a flow of solutions {\I'f(’h(x),t € R,z € R?} of the

Cauchy problem
AV (z) = (K*h)(¢(x)) dt, Uo(x) = . (15)
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Theorem 2. I Let v = (v;)L, satisfy (12). Then the following two statements are
equivalent.

AL Z°(u) € Z(v).

B1. For any smooth function f: R — [0,1] with a compact support, one has

| E, KVf|| < cI(E, f). (16)

If, in addition, the matriz-valued function K satisfies (14), then A1 and B1 are
equivalent to the following.

C1. For any h € R? and A € B(RY)

@ (@) —cll) < ([5] 7 ()} < @ @) ). (7

II. Under the condition A1, equivalently B1, the following weighted inverse log-Sobolev
inequality holds true: for any smooth function f: R? — [0, 00) with a compact support,

|E,KVf|*><2Ent, fE, f. (18)

Note that condition A1 is just the lift zonoid order relation for the image measure of
 under v:
pov t L1z Ye. (19)
Before giving the proof of Theorem 2, let us summarize: a lift zonoid order condi-
tion (8) is a criterion for the shift inequality, written either in its explicit form (6), or in
its functional form (5). This equivalence is rather flexible in the following sense: if the
logarithmic gradient v,, in (8) is replaced by another weight v of the form

v=20,(K) (20)

(see (12)), then respective lift zonoid order condition (19) is still equivalent to the
weighted version (16) of the functional form of a (generalized) shift inequality. The
explicit form of the (generalised) shift inequality in that case is available as well, and
concerns, instead of linear shifts, the transformations of the initial measure p by the
flows of solutions to (15).

Proof of Theorem 2: statement I. The lift zonoid A () of a standard Gaussian measure y
in R? can be identified in the following way: for a given o € (0, 1), the section of Z(~) by
the hyper-plane {a} x R? has the projection on the last d coordinates equal to the ball
centered at 0 and having the radius I(«); see [9], Section 6.3 or [11], Proposition 3.4. It
is easy to see from the definition of the lift zonoid that

2(ye) = eZ(y).
Hence condition A1 can be equivalently written as follows: for every Borel measurable
g: RY —[0,1] such that E, g = a,

[Eu(gv)|| < cl(a) = cI(E, g).

By the standard approximation argument, the above condition is equivalent to a similar
one with Borel measurable ¢’s replaced by smooth and compactly supported f’s. Because
for such f by (13)

[EL(fo)ll = [EL(KVAI,

conditions A1 and B1 are equivalent.

The proof of the equivalence of B1 and C1 follows the same lines with the S.Bobkov’s
proof from [3] for the case of product measures and linear shifts; to make the exposition
self-sufficient here we expose the key steps of this proof.

Denote R,.(p) = ®(®*(p) +7), r >0, p € (0,1). Then the following properties hold
true:
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e for every r > 0 the function R, is concave;
e the family {R,,r > 0} is a semigroup w.r.t. the composition of the functions, i.e.

er ° RTz = RT1+T2;

e the function Ry is an identity, and the “generator” of the semigroup {R,,r > 0}
equals the Gaussian isoperimetric function I in the sense that
r
Similarly, the family of functions S,(p) = ®(®~*(p) —r), » > 0, p € (0,1) has the
following properties:

— I(p), r—04.

e for every r > 0 the function S, is convex;
e the family {S,,r > 0} is a semigroup w.r.t. the composition of the functions;
e the function Sy is an identity, and the “generator” of the semigroup {S,,r > 0}
equals (—1I).
Observe that C1 is equivalent to the following.
C2. For any h € R? and Borel measurable f: R — [0, 1]

Sein|(Ep f) < By (f o ‘I’f<h> < Rejp(Ey f). (21)

Indeed, taking f = 14 we get C1 from C2. Inversely, under C1 by the concavity of
R, and Jensen’s inequality we have

E, (fo\l/{(,h> :/Owu({x; f(q;{f»h(m)) 21&}) dté/ooo Repny (n{z = f(z) > t})) dt
< Ry < ST t})dt) — Reyny (B, ).

The proof of the left hand side inequality in (21) is similar and omitted. Hence C1
and C2 are equivalent.

To get B1 from C2, take th instead of h and differentiate the right hand side inequality
in (21) w.r.t. t at the point ¢ = 0. In more details, denote f;(z) = f(\I/{(’th(x)), then

fuw) = £ (¥ (@),
and therefore there exits a continuous derifative
oufilw) = (V) (W @) L () (w1 (@)))

Because f is smooth and compactly supported and K satisfies (14), this derivative is
bounded as a function of (t,x) € [0, 7] x R? for every fixed T. Therefore by the dominated
convergence theorem

1 *
;(Euft—Euf) —E,(Vf,K"h)ga = (E, KV f,h)ga,  t—0+.

Rd

Because )
7 Betn) (B f) = By f) = c|| Al (Ey ),

we get from (21)

(B, KNV f,h)ga < c||h|I(E, f), h e R%.
Taking sup over all h with ||| = 1, we get (16).

To get C2 from B1, consider first the case where f is smooth and compactly supported

and such that 0 < E,, f < 1. By (16), for a given h € R? we have that

d

E Eu ft = (EH KVf, h)]Rd S CHhHI(EH f)
t=0
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Recall that

d
| Renie(By f) = cllh[I(E, £).
t=0
Therefore for every o > 1 there exists 6 = §(f) > 0 such that for every ¢ € (0, 9):

E, fi < Roen)e(By f). (22)
Note that if t; € (0,6(f)) and t2 € (0,0(ft,)), then

E, ft, 41, = Eu (fn o \I/fih) < Roepnfity (B fr1) < Roefn(t14t2) (B £); (23)

here we have used the flow property of {\I/tK ’h,t € R}, the semigroup property of
{R,,r > 0}, and monotonicity of R,. Because the derivative d; f; is uniformly continuous
w.r.t. (¢,z) € [0,T] x R? for every fixed T, it can be shown that
or = tel[%,fT] 5(ft) > 0.

Then, applying (23) at most T'/dr times, we get that (22) holds true for every ¢ € [0,T].
Consequently, (22) holds true for every ¢ € R™ and ¢ therein can be replaced by 1.
This gives the right hand side inequality in (21) for smooth and compactly supported
f such that 0 < E, f < 1. By an approximation argument, this can be extended to
any measurable f: R? — [0,1]. The proof of the left hand side inequality in (21) is
completely analogous and omitted. O

Proof of Theorem 2: statement II. The following lemma is a straightforward extension
of a part of Proposition 2 in [2] (the one which states the equivalence of P;(c) and Ps(c)
in the notation of [2]).

Lemma 1. Statement B1 is equivalent to the following.

B2.: For any smooth function f: R? — [0,1] with a compact support, one has

R e ) (24)

The proof is completely analogous to the one from [2], therefore we just sketch it.
The implication B2 = B1 is trivial. To get the inverse implication, recall first that the
standard Gaussian measure v¢ on R? satisfies B2 with ¢ = 1 and identity matrix K;
see [2], Section 2. Consider a smooth function f: R? — [0,1] with a compact support,
and let F(r) = p({z: f(z) < r}) be its distribution function w.r.t. u. Assume that F
is absolutely continuous w.r.t. Lebesque measure on R, and take r € R, ¢ > 0. Define
Ye(z) = Tjopy(z) + (1 = =) rqey (). Applying B1 to the function g = ¢.(f) and
tending € — 0, we get

F'(M0(r)|| < cI(F(r)) for pof '-aa reR, (25)

where 0(r) = E,(KVf|f = r). Denote k = F~! o ®, then k transforms the standard
Gaussian measure v* on R to p o f~1. Taking the derivative in the identity F(k) = ®,
we get k'F'(k) = ¢. Then from (25) with r = k(x) we get inequality

“6(k(a))] < K (x) (26)

valid y!-a.s. We have already mentioned that a standard Gaussian measure satisfies B2
with ¢ = 1 and identity K; for the case d = 1 this can be written as

(o)« (Lo <1 (o)
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Applying this inequality to g = k and using (26) we get

’¢(AlﬂﬂdF@0 *-(AlawvﬂwF@0 f;z<£ﬂdpvo; -

here we have took into account that the image of ¥! under k is po f=%, and po f~=1is
supported in [0, 1]. Using the inequality

([wmmmw#MQMMw>

we complete the proof of the required statement. The additional assumption of po f~!
to be absolutely continuous can be removed by an approximation argument. O

According to Lemma 1, to prove statement II of Theorem 2 it is enough to show that
B2 implies (18) for any non-negative smooth compactly supported f. Take e small, then
ef takes values in [0, 1] and one can apply B2. After trivial transformations, we get

2 — 2
LB, xvs) < ZEBD = B IED?

2 2

= [ E. KVF,

Hence the required statement would follow from the relation

iy B — (B, I(e))
e—0+ £

=2Ent, fE, f. (28)
This relation can be proved straightforwardly using the following asymptotic expansion:
/ 1 clog(2logi
I(e) =ey/2log — — 8 g€)+ c + enle) , (29)
€ 2\/210g§ \/210g§ \/210g§

where k(e) — 0, € — 0+; the detailed exposition is straightforward but cumbersome and
therefore is omitted. The asymptotic expansion (29) follows from the standard expansion

1 1
B(t) = —3olt) + () + O (t%0(0) = —o0,
which holds true e.g. by the integration-by-parts formula. O

Remark 2. The above proof of statement II follows, in main lines, the one sketched in [2]
(the proof of the implication P3(c) = Ps(cy/2) in Proposition 2), where the authors
referred to Beckner’s lectures at the Institut Henri Poincaré. However, instead of using

the equivalence
/ 1
I(e) ~ e QIOgE, e —0,

which apparently is not sufficient to provide (28), we use stronger asymptotic expan-
sion (29).

Let us mention that a more explicit condition, sufficient for the lift zonoid relation (19)
tohold true, can be given in a way similar to (9).

Proposition 1. There exists ¢ > 0 such that (19) holds true, if and only if, there exists
€ > 0 such that
2
B, e M <2, b <1, (30)

The optimal constant c in (19) and e in (30) are connected by the relation (10).
Because the lift zonoid order relation is equivalent to the same relation for all one-

dimensional projections (see Section 5 in [10]), statement of Proposition 1 follow imme-
diately from the one-dimensional statement given below.
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Lemma 2. For a measure v on R there exists ¢ > 0 such that

VXLZ Ve
with v. ~ N(0,c¢) if, and only if, there exists € > 0 such that

/ 6”2 dx < 2;
R

in that case, the optimal constants c, € are connected by the relation (10).

The proof of Lemma 2 is contained, in fact, in the proof of Lemma 4.1 in [3], hence
we omit it here.

At the end of this section, let us indicate one further research possibility related to
the above results. In [4], an approach is proposed, making it possible to give explicit
bounds for ergodic rates of solutions to Lévy driven SDE’s, which has a wide range of
further applications e.g. to limit theorems for functionals of such processes, see [14]-[16].
The key ingredient of this approach is a stochastic control based on perturbations of
time coordinates of jumps of the Lévy noise. A natural question is whether such an
approach remains practical when perturbations of jump amplitudes are used instead,
which is typical in the stochastic calculus of variations for processes with jumps. In this
context, it would be helpful to bound from below the size of the absolutely continuous
part of the image of the Lévy measure of the noise under a non-linear mapping which
corresponds to the perturbation of the noise. The above results seemingly can be useful
here, because shift inequalities yield upper bounds for the size of singular component of
the image of a measure: respective result was obtained in [3] in the context of linear shift
inequalities (6), and can be extended easily to non-linear shift inequalities (17).

3. WEIGHTED LOG-SOBOLEV INEQUALITIES IN R

Theorem 2 above gives a sufficient condition for a weighted inverse log-Sobolev in-
equality, based on a pair of functions v and K related by (20). The main result of this
section, Theorem 3 below, shows that the use of the same pair may lead to sufficient
conditions for the (direct) log-Sobolev inequality, either in a weighted or in a classical
form. What is surprising is that, even in the simplest one-dimensional case, Theorem 3
leads to new sufficient conditions for the log-Sobolev inequality, when compared with
those available in a literature; see below Proposition 2, Proposition 3, and two examples
in Section 4. We believe that the reason for that is a proper choice of the pair of the
weight functions v and K, involved in (31) and connected by (20).

Theorem 3. Let d = 1 and functions v and K be related by (20). Assume that for some
a>0

Kv' > a. (31)
Assume in addition that the functions K and
a:=2KK'+ K?v, (32)

belong to C*°, have at most linear growth at oo, and all their derivatives have at most
polynomial growth at co.
Then for every smooth f with a compact support

Ent, f? < %EH(K 2. (33)

As a corollary, if K is bounded then p satisfies the (classical) log-Sobolev inequality:
for every absolutely continuous f such that both [ and [’ are square integrable w.r.t. p,

Ent, [ < 2 (st;pKQ(x)) E,.(f)?. (34)
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Remark 3. The proof of Theorem 3 is based on the classic Bakry—Emery criterion; see
below. We strongly believe that similar technique is applicable in the multidimensional
case as well, but because of possible non-commutativity of matrix-valued weights which
appear therein, now we can not give a multidimensional version of Theorem 3; this is a
subject for a further research.

Remark 4. The additional assumptions on the functions K and a to be smooth and to
satisfy certain growth bounds, in particular cases, can be removed by an approximation
procedure; see e.g. Propositions 2 and 3 below.

Proof of Theorem 8. Consider a Markov process X defined as the strong solution to
the SDE

dX; = a(X;) dt + V2K (X;) dWy;

see (32) for the formula for the coefficient a. Then on the Schwartz space S(R) of C*>
functions s.t. all their derivatives decay at oo faster than any polynomial, the generator L
of the process X has the form

Lf=af +bf" =v,f + (bf"), b= K2.

By the construction, the measure p is a symmetric measure for the semigroup {7:}
generated by the process X:

E, fTig=E.9T.f, t > 0;
in particular,
E/,Lth:EHf7 tZOa

i.e. p is an invariant measure for X. The class G = S(R) is an algebra, invariant w.r.t.
superpositions with C*°-functions and dense in every L,(p), p > 1. In addition, thanks
to the smoothness conditions and growth bounds imposed on coefficients ¢ and K, the
class G is invariant w.r.t. the semigroup 7; and the generator L. Define for f,g € G

D(f9) = 3 (L(fg) ~ fLg— gLf),  Ta(f.q) = 5(LL(f.) ~ T(Lf,g) ~ (/. Lg)).

We will prove that
P2(faf)2ar(faf)v fegv (35)

then the required statement would follow from the Bakry—Emery criterion [1].
Straightforward calculations give

L(f,g) =0bf'g,
2 (f, f) = (ab + W = 2a'b)(f')? = 200" "+ 20%(f")?

_ / // ’ (b/)2 / b,f/ " ?
- <ab +bb —2ab—T> (f)2+<ﬁ—bf \/§>

/ /1 / (b/)2 N2
Hence to prove (35) it is enough to show that
2ab’ + 200" — 4a'b — (V')? > 4ab. (36)
Recall that
v="0,(K)=—-Kv, — K,
hence we can express the coefficients a and b through the functions K and v:

a=KK' — Kwv, b= K2
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Substituting these expressions into (36), after some transformations, which are straight-
forward but cumbersome and therefore omitted, we re-write (36) to the following form:
K3 > aK?.

The last inequality clearly holds true under (31). Hence, applying the Bakry—Emery

criterion, we get (33) for every f € S(R).

If K is bounded, then for every f € S(R) (34) holds true as a corollary of (33).
It is a standard procedure to approximate a given absolutely continuous f such that
fyf' € La(p) by a sequence of smooth compactly supported f,, in such a way that
fn— fand f), — f' in La(u); see e.g. the proof of Corollary 2.6.10 in [6]. Passing to
the limit in (34) for f,, n > 1, we complete the proof. a

There is a wide choice for the pair of functions v and K related by (20). Below we
give two versions of Theorem 3 which correspond to particular choices of this pair. The
first one arise when one just takes v(z) = = — (u),

(1) = /Ryu(dy)-

Proposition 2. Let measure p on R have the first absolute moment and have a positive
continuous distribution density p,,. Denote

K (r) = ]ﬁ /Oo(y — (1))pu(y) dy, z eR.

The following statements hold true.
L Ifinf, K, (x) = a > 0, then for every smooth f with a compact support

Bat, 2 < 2 B, (K,.f')’.

IT. If, in addition, sup, K,(x) = 8 < oo, then for every absolutely continuous f
such that both [ and f’ are square integrable w.r.t. p,

Ent, 7 < 2¢, Eu(f/)Q

with
B

Cc
" (%

In the second version of Theorem 3, we choose K in a more intrinsic way, namely, we
take K such that ¢, (K) = v with

v= (b_l(Flt)a Fu(l‘) = pi((—o0, z]), (37)

then gov™t =+, v~ N(0,1). Such a choice of the weight v is motivated by our intent
to have

Z°(p) = Z(v);
that is, to make the order condition (19) with ¢ = 1 as precise as it is possible, i.e. to

replace an inequality by an identity. Because ZV (u) = Z(uov~1) identifies the law of
1

wov~ ! uniquely, such an intent naturally leads to the formula (37).
Proposition 3. Let measure p on R have a positive continuous distribution density p,,.
Denote
. I(F
KM(CL') _ ( ll(x)) .
pu(x)

The following statements hold true.
1. For every smooth [ with a compact support,

Ent, f2 <2E,(K,f)%. (38)
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II. If, in addition, Ku s bounded, then for every absolutely continuous f such that
both f and [’ are square integrable w.r.t. p,

Ent, > <2¢,E,(f)?
with R
¢y = sup(K,(z))?.

Remark 5. Define the isoperimetric function of the measure u by
Iu(p) = Pu (Fu_l(p)) s pE (Oa 1)7 I,U«(O) = Iu(l) =1

Then, clearly, the function I defined by (3) equals I, v ~ N(0,1). The function Ku(x)
above can be expressed as the ratio

I (p)
Iu (p) p=F, ()

and under the conditions of Proposition 3 the function F), gives a one-to-one correspon-
dence between (—oo,00) and (0,1). Hence the constant ¢, above can be alternatively

expressed as
2
R I (p)
¢, = | sup .
g <p€(071) Iﬂ(p)

Proofs of Proposition 2 and Proposition 3. If v(z) = z — (), we have K,v' = K,,, and
therefore the assumption inf K,, = o > 0 made in Proposition 2 implies the principal
condition (31). For the function v defined by (37) and the function K, this condition
takes even a more simple form because straightforward calculation shows that

Ko =1.
Hence one can expect that statements of Proposition 2 and Proposition 3 would follow
from the version of the Bakry—Emery criterion given in Theorem 3. However, we can not
apply this theorem here directly, because of extra smoothness and growth conditions on
functions K and a, imposed therein. The strategy of the proof will be the following: first,
we consider a family of measures, which approximate u properly and satisfy both (31)
for the respective pair of K and v, and extra smoothness and growth conditions on
respective functions K and a. Then, by passing to a limit, we get respective weighted
log-Sobolev inequality, i.e. prove statements I in Propositions 2, 3. Finally, using the
same approximation procedure as in the proof of Theorem 3 above, we extend the class
of f in the case where the weight K is bounded.

To shorten the exposition, we explain in details the way this strategy is implemented
for the proof of Proposition 3, only. The detailed proof of Proposition 2 is similar
and omitted. We also does not repeat the approximation arguments from the proof of
Theorem 3 above, and concentrate on the proof of (38) for smooth compactly supported f.

Consider first the following auxiliary case: p, € C*°, and for some R > 0

pu(r) = ¢(z),  |z[ = R. (39)
Then v, (which, let us recall, equals p/, /p,) and Ku belong to C*° and
Uu(x) = -7, K/J«(x) =1, lz| = R.

Then the functions K = K . and a defined by (32) satisfy the assumptions of Theorem 3.
Hence, applying Theorem 3, we get (38).

Next, consider the general case. Fix some function x € C* taking values in [0, 1],
such that x(0) =0, x(z) = 1, z > 1, and define

pro(@) = @) (0 + (1 =d)x ([ +7)),  zeR;
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then every ¢, s, 7 > 0, 6 > 0 belongs to C*°. Denote

M(r) = / orolz) dr,

then M is a strictly decreasing function on [0,00) and M (0) < 1. For a given @ > 0,
consider the restriction pl? of p, to the segment [—Q, Q], and assume that Q is large
enough for

/ pu(z) dz < M(0).
lz|>Q

Then for every ¢ small enough there exists unique r = r(Q, ) > 0 such that

/ (plcl)(x) + ¢rs(®)) dz = 1.
R

Take some non-negative ¢ € C°°, supported in [—1, 1] and such that fR Y(x)dr =1, and
consider the probability measure p1g . with the density

1 _
Pug,s (T) = 5 /[5 : P (y) (%) dy + or.5(x).

By the construction, every uq s has positive C* density and satisfy (39) for some large R.
Therefore, (38) holds true with ug s instead of . It can be seen easily that

Pug,s = Pus KHQ,a — K, d—0, Q— oo,
uniformly on every finite segment. Passing to the limit, we obtain (38) for the initial

measure p and arbitrary smooth and compactly supported f. |

4. EXAMPLES

Ezample 1. Let p on R have a positive C''-density p,,, such that for some a, R > 0
vu(T)r > —az?, |z| > R (40)

Let us show that then condition inf K, > 0 from Proposition 2 holds true. Changing the
variables x — x — (1), we can restrict ourselves to the case of (i) = 0. Then we have for
>R

Ku(z) = / h yexp(logpu(y) —logp,(x)) dy

00 Yy 0 Yy
:/ 1y exXp (/ vu(z)dz) dyZ/ Y exp (—a/ zdz> dy
$2 ~ x . x x
=" /2/ ye~ W /2 dy =1/a.
x

Similar relation holds true for x < —R; to see this, one should note that

_ 1 r
K, = —/ ypu(y) dy

le« ((E) —00
because p is centered. Finally, because p,, € C' is positive, K, has positive infimum over
[ R, R], which completes the proof.
Similarly, if in addition for some b > 0

v, (7)< —ba?, |z| > R, (41)

then sup K 1 < 00. Hence, by statement IT of Proposition 2, for a measure p satisfying (40)
and (41) the log-Sobolev inequality holds true.

Note that (41) is just the well known drift condition, sufficient for the Poincaré in-

equality, e.g. Theorem 3.1 and Remark 3.2 in [8]. However, various sufficient conditions
for the log-Sobolev inequality, available in the literature, typically require additional
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assumptions on the curvature, which in the current context equals —’UL. Namely, the
famous Bakry-Emery condition ([1])) requires —vj, > ¢ > 0; conditions by Wang ([17])
and Cattiaux—Guillin ([8], Theorem 5.1) are more flexible, but still contain a requirement
that the curvature is bounded from below, i.e. in our case

—v), >0 (42)

with some 6 € R. The above condition (40) can be understood as an “integral” version
of (42), and it is easy to give an example of measure p satisfying (40) and (41) such
that (42) fails.

Example 2. Let v3 be a standard Gaussian measure on R3, and By be a ball of radius
R, touching the origing and with the center located at the first basis vector e; that is,
Bgr = B(Rey, R). Denote by v*% the measure 73 conditioned outside the ball Bg:

_ 7%(4\Bp)

73(R3\ Bg)
Consider a measure jr on R which is a projection of 4% on the first coordinate. We will
show that there exists some constant ¢ such that uniformly by R > 0 the constants ¢,
for the measures p = ppg from Proposition 3 are dominated by ¢. This would yield that
for the family pgr, R > 0 the log-Sobolev inequality holds true with uniformly bounded
constants.

For a given x € [0,2R)], the section of the ball Bg by the hyperplane

{y = (yla y27y3): Y1 = .13}7

projected on the last two coordinates, is the ball in R?, centered at the origin and having
the radius
rr(z) = V2Rx — 2.
Define r(z) = 0 for z ¢ [0,2R]. Then we have for 4 = pgr
pu(@) = Cro(z)Y2(rr(2)),

v (A)

where .
Cr=(v*(R*\ Br)) ,

1 1 27 (e’
Wa(r) = / e W2 gy, dy, = —/ / e 2pdpdo = e /2.
lyl|>r 27 2 Jo  Jr

Consequently,
(z) = Cr |e B*,  x€][0,2R],
Pult) = V2
To bound K u(x) consider separately three cases.
I. < 0. Recall that I’(p) = —®~!(p). Then for any ¢ > 1 we have

[L(c@(@)) = =2~ (c®(2))ep(x) < (—)ep(w) = cp' (x)
because ®~! is an increasing function. Clearly, both I(c®(z)) and ¢(z) vanish as
r — —00, hence

2 .
e~ * /2 otherwise.

T

reo@) = [ ey se [ Gwdy=cow, s @)

Note that for z < 0

Fu(r) = Cr®(x),  pu(z)= Crep(v),
and Cr > 1. In addition, the half-space {y = (y1,¥y2,¥3): y1 < o} is contained in R3\ Bg,
hence

1 1
O(x) =7"{y= (1,2 03) :n<a}) < — <o |,
Cr Cr
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and we can apply (44) to get
o ICa) _

K, (x)= <1, z < 0.
#(@) Cre(x)

II. z > 2R. In this case 1 — F,,(z) = Cr(1 — ®(x)). Recall that I(p) = I(1 — p) and
®~1(1— ®(z)) = —x, hence we can use the same argument as in the case I to show that

K, (x) <1, because for any ¢ > 1

oo

Hel =) =~ [ &7 (-2 dy<c [y )y = colo)

IIL. = € [0,2R)]. Recall that there exists a constant ¢, such that
I(p) < cupy/lo 1 €|0 L
P) > ¢&p gp’ p 5 )
One has

Crv*({y = (W1, 92,93): 11 > R}) <1 = Fu(z) < Cry*({y = (y1,y2,53): 11 > 0}) <

hence we can write, using the identity I(p) = I(1 — p),

Y

N~

o I0-E@) _ 1-R@ [ 1
B ==y S '

Because C'r > 1, we have

1 1 1
< =log —— <
1—F,(x) = ®1-F,2R) °Cr(1-®2R) ~ ®

with some ¢* > 2. By (43), we have

2R
1= @) Fu(z) =eft® / e ' dy + / emY’/2 dy |,
pu(x) T 2R

and the right hand side term can be estimated either by

R OOR 1
x —Ry g, = =
o f e

o2’ /e_y2/2 dy = 4 /zeQR2
O 2

(when R is small). Then for any R > 0 for u = ug

¢, = sup Ku < ¢:= ¢,c* sup min (ﬂ, \/E(l + Q)eQQQ) ;
T Q>0 Q 2
for R = 0 the measure p just equals v and therefore ¢, = 1.

This example is motivated by the manuscript [5], where the problem of estimating of
the Poincaré constant for a Gaussian measure conditioned outside a ball is considered.
One approach proposed therein is based on the decomposition of variance, and requires
an estimate for the Poincaré constant of one-dimensional projection of the “punctured”
Gaussian measure on the line which contains the center of the ball. Such an estimate
depend on the position and the size of the ball, see Lemma 4.7 in [5], and the case of
a large ball touching the origin relates the case (4) of that lemma. Our estimate for
the log-Sobolev constant implies that the Poincaré constant for u is uniformly bounded
by ¢, which drastically improves the bound ce®” from Lemma 4.7 [5], statement (4).
Heuristically, the reason for this is the following. The measure p contain “cavities”,
which appear due to the “puncturing” procedure, and if the ball is “large” and is located

log log < c*(1+ R)?

1
1— ®(2R)

(when R is large), or by



90

ALEXEI M. KULIK AND TARAS D. TYMOSHKEVYCH

not so “far from the origin”, then these “cavities” make the bounds for the Poincaré
inequality obtained via classic sufficient conditions to be very inaccurate. On the other

hand,
which

the form of the weight K » in Proposition 3 is highly adjusted to these “cavities”,
makes respective bounds more precise. We believe that similar calculations can

be made in a general setting, i.e. for arbitrary d > 2 and arbitrary position and size of
the ball; this is a subject of a further research.
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ASYMPTOTIC BEHAVIOR OF THE INTEGRAL FUNCTIONALS
FOR UNSTABLE SOLUTIONS OF ONE-DIMENSIONAL ITO
STOCHASTIC DIFFERENTIAL EQUATIONS
UDC 519.21

G. L. KULINICH, S. V. KUSHNIRENKO, AND Y. S. MISHURA

ABSTRACT. We consider the stochastic one-dimensional differential equations with homogeneous drift
and unit diffusion. The drift satisfies conditions supplying the unstable property of the unique strong
solution. The explicit form of normalizing factor for certain integral functionals of unstable solution is
established to provide the weak convergence to the limiting process. As a result we get the new class
of limiting processes that are the functionals of Bessel diffusion processes.

AHOTALISA. PO3rismaeTbest OMHOBUMIpHE CTOXaCTUYHE JuepeHIiiaibie PpIBHSIHHS 3 OJHOPIJHUM KOe-
dinierTom nepenocy ta oguHuuIHO gudysicio. Koedimient nepenocy 3a70BOIbHIE YMOBH, IPU SKAX
€TUHUI CUJIbHUI PO3B’SI30K JAHOTO DIBHAHHS € HECTifiKuM. 3Haii1eHO SBHUM BUIJIS] HOPMYBAHHS JIJIS
neBHUX (PYHKIIIOHAJIIB IHTErPAJILHOIO TUILY Bij HECTIHKOro po3B’si3Ky, mio 3abe3neqdye ciabky 30iKHICTH
0 TPAHUYIHOTO mporecy. OTpuMaHO HOBHI KJIaC 'PAHUYHUX MIPOIECIB, SKi € NeBHUMHU (DYHKITIOHATIAMA
Big GeccemiBcbkux qudysiiinux mporecis.

AnHOTANUA. PaccMmarpuBaercs ogHOMEpHOe CTOXacTHIecKoe quddepeHIiHaIbHoe ypaBHEeHHe ¢ OJHO-
posHBIM KO3(DMUIHEHTOM CHOCA U exuHuIHOR quddysueit. Kosddunuent cuoca ygoBaeTBoOpsieT yCio-
BUSM, IIPA KOTOPBHIX €IMHCTBEHHOE CHJIBHOE DeIleHHe JAHHOTO yDABHEHWS SIBJISETCS HEYCTOWIHBBLIM.
Haiiien siBHBIN BU HOPMHPOBKH JJIsI OLMPEIEICHHBIX (DYHKINOHAJIOB HHTEIPAIBLHOIO TUIIA OT HEYCTOU-
YHBOrO pelleHust, 4To obecnednBaer cnabyr0 CXOAUMOCTH K IpeaeabHOMY mpoueccy. Ilomyden HOBBIR
KJIACC IIPEIEIbHBIX IIPOIECCOB, KOTOPHIE SIBJISIOTCS OMPE/JeIeHHBIME (DYHKIIHOHAIAME OT OECCETIeBCKUX
nud Y3UOHHBIX IPOIECCOB.

1. INTRODUCTION

Let (2,3, P) be the complete probability space and W = {W(t),t > 0} be one-
dimensional Wiener process on this space. Let the function a = a(z): R — R be measur-
able and bounded. It is well-known (see, e.g. [15] and [14], Theorem 4) that the stochastic
differential equation with the homogeneous drift and the unit diffusion

dg(t) = a(§(t))dt +dW(t),  t=0, (1)
has the unique strong solution £ = {{(¢),t > 0} for any initial condition £(0) = x¢ € R.

Definition 1.1. Solution & = {£(¢),t > 0} of equation (1) is called unstable if for any
constant N > 0
1t
lim — [ P{]{(s)| < N}ds=0.
t—oo t Jo

Definition 1.2. Solution £ = {{(t),t > 0} of equation (1) has ergodic distribution G(z)
if for all z € R

t1i>Holo P{{(t) < z} = G(x).

2000 Mathematics Subject Classification. Primary 60H10.
Key words and phrases. 1t6 stochastic differential equation, unstable solution, asymptotic behavior
of integral functionals.
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Definition 1.3. The family {(r(t),t > 0} of stochastic processes is said to converge
weakly as T — oo to the process {((t),¢t > 0} if for any L > 0 measures pr[0, L] that
correspond to the processes (r(-) on the interval [0, L] converge weakly to the measure
1[0, L] that corresponds to the process ((+).

Throughout the paper we suppose that the drift coefficient a satisfies assumption
(A1) there exists such C' > 0 that for any z € R
|za(x)| < C.

In this case we can say that the class of equations (1) is located on the border between
the equations whose solutions have ergodic distribution, and the equations with unstable
solutions. To illustrate this observation, consider the drift coefficient of the form a(z) =

2% and introduce the function

T+a2
F(@) = exp {—Z/OIG(U) dv}. 2)

Note that in our case f(x) = (1 + 2%)~%. In the paper [11] two cases were considered,
namely, a < 1

—%, a > —5. It was proved that in the case a < —% the solution & of
equation (1) has ergodic distribution, is transient and moreover

do 17N [ [* do i
lim P{&(t <x—[/—} [/ —}—[/1+v2“dv] U 1+v2“dv].
AV ) B VAN [0 R WA L
(3)
At the same time in the case a > —% the solution & of equation (1) is unstable and

= M(t—\/?l with normalizing factor —= weakly

VT
converges as T — oo to the Bessel process r(t) that is the solution of the Itd’s equation

dr?(t) = (2a + 1) dt + 2r(t) dW (¢) (4)

recurrent and furthermore the process rr(t)

with some Wiener process {W\ = ﬁ/\(t),t > 0}. Here the weak convergence is considered
in the uniform topology on the space of continuous functions. The case a = —% is
critical in the sense that for a = —1 the process is recurrent, P{lim;_. &(t) = 400} =
P{lim, . £(t) = —oo} = 1, however, we do not know the normalizing factor that supplies
the weak convergence.

The assertion that value a = —1 is critical can be illustrated by the following examples:

2
1) If a(z) = —3 7 — 2 @ inse then the solution £ of equation (1) has the

ergodic distribution and moreover, we have in equality (3) f(z) = V1 + 2 [In(1 + 2?)] 2,
2) If a(z) = —3 77 + Ty then the solution & of equation (1) is unstable,
£T)

and stochastic process =7 converges to degenerate process r(t) =0 as T — 0.

The present paper is devoted to the asymptotic behavior of the integral functionals
Bt) = fgg(g(s)) ds as t — co. We suppose that g = g(z): R — R is locally integrable
function, £ is the solution of equation (1). Also, introduce some additional notations.
Denote ¥ the class of functions ¢ = #(r) > 0, » > 0, that are non-decreasing and

regularly varying (at infinity) with index a > 0, i.e., limp_, %{TT)) =7 for all r > 0.

Now, take function f that is defined via the relation (2), some constant b € R and
denote
f(z)

JEM u— bz b(x) = bsiegnz
G Fagan e, e = bsiens ©)

Suppose additionally that the drift coefficient a and function ¢ satisfy assumption
(A2) (7) with one of the additional restrictions (i¢), (iii) or (iv) and also one of the
assumptions (Asz) and (A4):

q(x) =
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(As2) (i) There exist the constants ¢;, ¢ = 1,2 such that
1 xT
lim [—/ va(v) dv — c(x)} =0, (6)
|z| =00 [T Jo
where
>0
E(QC) = {Cl’ z !
co, <0,
and moreover, one of the following restrictions on the coefficients hold:
(ZZ) c1 =Cy=1c¢Cy > —%;
(iii) c1 > %, ca < 3
(iv) a1 < 3,c2> 3.
(Ag) (i) there exists a constant C' > 0 such that f(z) < C for any z € R and
(%) there exist such b € R and function ¢ € ¥ that

1 T 2
lim —/ a(u) du = 0; (7)
|| =00 T Jq f(u)
(A4) (i) there exists a constant § > 0 such that 0 < 0 < f(x) for any € R and
(73) there exist such b € R and function ¢ € ¥ that

irnM x2u U =
! /0q<>d 0. ®)

|z|—00 X

In the present paper in order to proof that under the conditions (4;), (A2) and one of

eps . B(t) . .. 1
the conditions (As) and (A4) random variable NN with normalizing factor NRG)

has the limit distribution as ¢ — oo, we study the limit behavior as T" — oo of the process
1 1T
Br(t) = == / 9(&(s)) ds,
VTH(VT) Jo
with parameter T > 0. Theorems 2.1 and 2.2 describe the limit behavior mentioned

above.

Remark 1.1. It is very easy to see that any of conditions (As) and (A4) supply the
convergence

i 1 xQu u =
lim —/O q°(u)d 0. 9)

|z| =00 T

If condition (As) holds then

xT xr 2
l/ QQ(U)dUSCl/ G du — 0 as |z] — oco.
0 z Jo f(

x u)

If condition (A4) holds then

1 [* 1 *
E/o ¢*(u) du < 5 % ; ¢*(u)du — 0 as |z| — oo.

Moreover, if 0 < § < f(z) < C then (9) is equivalent both to (As), (4¢) and (A4), (47).
However, neither (As), (i4) and (A4), (37) nor (9) do not supply convergence g(x) — 0
as |z| — oo. In other words, under any of these conditions function ¢ can admit “explo-
sions”.

Remark 1.2. The function ¢(x) (see Example 2.1) satisfies the condition (9). Obviously,
q(z) » 0 as |z| — oo.
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As to previous results in this direction, it was proved in [11] that under the condi-
tion (As) solution ¢ of equation (1) is unstable. Moreover, in the case when (As), (i7)
holds then &\/?‘ weakly converges as T — oo to process r that is the solution of equa-

tion (4) with @ = ¢g. In the case when (Asz), (ii) holds then &\/? weakly converges to

process r with @ = ¢1, and in the case when (As), (iv) holds then % weakly converges

to process r with a = ¢3. Asymptotic behavior of the process fr(t) in the case when
conditions (As), (7) and (i) hold and additionally g(x) — 0 as |z| — oo were considered
in the papers [5] and [12]. The results of the paper [5] are generalized in the present
paper to the case of the functions ¢ = ¢(x) with possible “explosions” (conditions (As)
and (Ay)) and are extended to the cases when (A4s), (i) and (iii) or (As), (i) and (iv)
hold. Moreover, the proofs from [5] are essentially simplified in the present paper due to
the representation (12). The paper [12] contains similar result for the functional Sp(¢)
of the solution £ of equation (1) on the half-axis (0, +o00) with the instant reflection of
the solution at zero point, and in this case it was supposed that ¢(|z|) = |z|*, a > 0,
q(z) — 0 as x — oo.

The most complete results concerning the asymptotic behavior of the functionals 57 (¢)
are proved for the equations (1) with more restrictive assumption on the drift coefficient,
namely, | [, a(u) du‘ < C (see [8] — [10]). The paper [8] contains the weak convergence of
distributions of G (¢) in the case when ¢(z) — 0 as |z| — oo. In the paper [9] the weak
convergence of distributions of Gr(f) was obtained under assumption (9) on function
g = g(x). In the paper [10] the necessary and sufficient conditions of weak convergence
were obtained that are connected, in some sense, to (9).

The asymptotic behavior of the integral functionals of the form fot gr(&r(s)) dur(s),
where &7 (t) are the solutions of stochastic differential equations and pp(¢) is the family of
martingales that converge in probability, was considered in the paper [3, §5, Chapter IX]
under the assumption of locally uniform convergence of the coefficients of the equation.

The paper is organized as follows: principal results are proved in Section 2 while an
auxiliary lemma is relegated to Section 3. Section 4 concludes.

2. THE MAIN RESULTS

In what follows we denote C' or C with some subscripts constants whose values are
not so important and can change from line to line.

Theorem 2.1. Let & be the solution of equation (1) with the drift coefficient a satisfying
assumptions (A1), (A2), (i) and one of the assumptions (As), (i), (iii) or (iv).
Then the stochastic process
1 tT
o) = 7= [ gles) s
VTY(VT) Jo

converges as T — oo weakly in the unform topology of the space of continuous functions

to the process
Bt) = 20 [W“) - t r“(s)d%)] |

a+1
where r(t) > 0 is the solution of stochastic differential equation
dr?(t) = (2a + 1) dt + 2r(t) dW (¢).

Here a = ¢g in the case when assumption (Asz), (i1) is satisfied, a = ¢y in the case when
assumption (Ag), (iit) is satisfied and a = co in the case when assumption (Az), (iv) is
satisfied.
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Proof. Introduce parameter 7' > 0 and set

mm—%ﬁw vwm—%%? iﬂwzlﬁwwﬂMW@7
1

tT
=P { s > N ], art) = 1 [ (e - el ds

0<t<L T

where L and N are arbitrary positive constants. Evidently, for any fixed T" > 0 process
Wy = {Wr(t),t > 0} is a Wiener process. Furthermore, it follows, e.g., from [2, Chap-
ter 6, §3, Lemma 5] that

/0 P{&(s) = 0} ds = 0

for any ¢ > 0. Therefore /WT = {WT(t),t > 0} for any T > 0 is continuous with
probability 1 square integrable martingale with the quadratic characteristics <WT> (t) =t.
It immediately follows from the Doob’s theorem that /WT is a Wiener process for any
T > 0. Applying It&’s formula to the process r%, we get

() =2 /0 26(£(sT)) + 1] ds + 2 /0 ro(s) dWi(s) + 20r(t).

Consider the function

F(x):2/0xf(u) (/j%m) du.

Obviously, function F has a continuous derivative F’ and a.e. w.r.t. to the Lebesgue
measure on R has a second derivative F” that is locally integrable. Therefore we can
apply an Itd’s formula from [6, Chapter 2, §10] to F'(£(¢)) and get the equality

FEw) - Flan) = [ |Peale) + 3P| as+ [ Feenawts) o)

0

with probability 1 for any ¢ > 0. It is easy to see that a.e. w.r.t. to the Lebesgue measure
on R the following equality holds

F'(w)al@) + 5F"(z) = g(z). ()
Applying (11) to (10) we get that

HWD=MM=Ag@w%+/F%@MW@

0

with probability 1 for any ¢ > 0. After some evident transformations we get from the
last equality that
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Let us consider the first term
tT) 9(v
b (/ o) o
(T) e
S e A G A K ) R

E(tT) E(tT)
IQ( ﬂ (/ B (Jul) du + / q(uwuuwdu)

u \/_ ¢
_ / ol 'T m?( — /5( " o () du
\E(tT)\ " \/_
/ |u|adu+2b/ (% - |u|a) du

£(tT)
m / a(w)o (Ju]) du,

and transform the last term

m /OtTF%s(s))d / i (/ (—";))du) aw(s)

’ WD s [ q(f(sT))—w;'j(jg') Wi (s)

)
P o) 2 [ oty T e
0

Therefore

I 7 o [ *) (4
Br(t) = \/Tw(\/T)Hbo u®du 2b/0 s) dWr (s +225 ), (12)

where

TT(t)
1) YVT) ol g,
St () _b/o (VT ] d

E(tT)
$P(t) = mf( N / g(u)p(ful) du,

t
S¥ () = b/

w(ff(( <s>] dWr(s),




ASYMPTOTIC BEHAVIOR OF THE INTEGRAL FUNCTIONALS 97

It is known from [11] that under condition (A;) the process {rr(t),t > 0} converges
weakly as T' — oo to the process {r(t),t > 0} that is the solution of equation (4) with
a = ¢g in the case (Aq),(i1), with a = ¢; in the case (Az), (i4i) and with a = ¢ in the
case (Agz), (iv). Furthermore, for any L > 0 and £ > 0 we have that

i, i, Py =0,

lim m sup P{lTT(tQ) — TT(t1)| > 6} =0. (13)
h—=0T—00 |4 _t,|<h;t;<L

Now we are in position to establish that S(Tk), k=1,...,4, uniformly converge to zero
in probability. In particular, it means that they satisfy equalities (13) as well. To start
with, note that it follows from Lemma 3.1, evident inequalities

h(ln))
h(e)

with A = x and h = 22 and the properties of Ito’s integrals that for any € > 0, L > 0 and
T > Ty, where Ty are introduced in Lemma 3.1, the following inequalities hold true:

E
Pin+cl>ek<P{lm>Z}+P{l>Z},  Phl>el<

P{ sup |S(T (t)] >5} <PN+E E Sup |S( OIXfrr <Ny

0<t<L 0<t<
) (19)
SPN"‘_lb'/ * y
€ 0
) < (|ulVT)
P S ) >eb <P / VT gy >
{50 > o} <o, [ somy b -
£eT)
2 VT w(|u|\/T)
<py+ZE s | v 2D
N E s q(u W(ﬁ) U| X {rr(t)<N}
2 N . :
SPN+ECN/7N|(U\/_)|dU<PN+ CN2N2<\/_/ ) ,
(15)

1/)(7’T(5)\/T) —TO((S)
v

X{rr(s)<N} ds,
(16)

2 L
2
P{ sup |9 ()] > e} < Py+4 <—) b2 E/
0<t<L € 0

o o 158001 > <} < pvea (2) e [ e

0<t<L

W(rr(sVT) ]
»(VT)

9 2 L
< Py +4 <g> Cx E/ 0> (E(8T)) X {rr (s) <} ds-
0

X{rr(s)<N} ds

(17)
Taking into account the convergence % — ||* = 0 as T — o0, boundedness on

the interval |z| < N and relation (9), we let in inequalities (14) and (15) T — oo and
after that N — oo and get

sup ‘S(Tk)(t)‘ 2o (18)
0<t<L

as T — oo and for k =1,2.
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Now we shall establish similar convergence for k = 3,4. It is known from [4] that for
any 0 < § < N < oo the following convergence holds:

NEN ]
(VT)

as T — oo. Therefore, taking into account monotonicity of function ¥ (r), r > 0, we get
the following convergence for any 0 < § < N:

L rr(s)VT 2
E/o % —rT(s)l X{rr(s)<N} ds
<L sup

L
U2 V) .
5<|z|<N 0

v(VT)
if to tend at first T'— oo and after that § — 0. [
So, taking into account inequality (16) we get that convergence (18) holds for S;S )(t)

sup —0

0<6<|z|<N

vV’
o(VT)

+6%2 ) ds— 0,

as well. At last, in order to prove convergence (18) for S(T4) (t), we apply It formula and
get

L
E / PEGT) X je(ary < vy B = E[@r(E(LT)) — Br(xo)]

Or(z) = %/O’”f(u) </0u %(;]))X{’U|<N\/T} dv) du.

Now we consider separately conditions (Az) and (A4). It is easy to see that under
condition (Asz) we have the following relations
T u 2
( / () dv) du
o f(v)

1
— 0 as|z| — oo.

where

5| ( A q;((;’)) dv) du‘ <&
C

)
| [ (% A q;g)) d”) d“

2

In turn, under condition (A4) we have the following relations

g ([T ) af < L5 [ s ([ orm)

0 x
Therefore, any of conditions (A4s3) and ( A4) supply the following convergence

) o ([ o) auo

as |r| — oo. Therefore for any ¢ > 0 there exists such L. that for |z| > L. we have

in li
equality . q2(v)
(u) < / o dv) du

Furthermore, since function % [ f( ( Iy qf((:) ) du is bounded at zero, there exists
such C; > 0 that

s (), i) o

T2

< e. (19)

< C-.. (20)

sup —
|z|<L. x?
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Besides this,

E

@ <C+Cyt. (21)

Relations (19) and (20) together with (21) provide that

téﬂmvf”)(éuiggd?>d“

whence E|®7({(LT))| — 0 as T — oo. Evidently, |®7(z0)| < %. Therefore,

gemP? 1
T ELT))?

E|0r(E(LT))| <E

< % +¢e(C + C1t),

L
E/O QQ(f(ST))X“g(sT)\gNﬁ} ds — 0

as T — oo. Together with (17) it means that the convergence (18) holds for S(T4)(t) as
well. Evidently, relation (13) holds for processes Wr(t).

It means that we can apply Skorokhod representation theorem [13] and~f03" any se-
quence T, — oo to choose the subsequence T, — oo, probability space (2,,P) and
processes (77 (t), VVT,,'L (t), S’(Tz,) (t),i =1,...,4) on this space so that the couple of processes

will be stochastically equivalent to the process (rr (1), W\T;L (t), S%,) (t),i=1,...,4) and
moreover,

o () BE), W) 2w, S0m 250w, =14,

as T, — oo. In our case, according to (18), S0(t) =0,i=1,...,4, and the processes 7(t),
W (t) satisfy equations (4) with a = ¢o in the case (As), (i1), a = ¢; in the case (Ay), (iii)
and a = ¢y in the case (A42), (iv), see [11].

According to equality (12) we have that the functional (7, (t) is stochastically equiv-
alent to the functional BT;)/ (t) for which we have similar equality

- F(J?o) /7:7"7/7/(75) /t ~ ~ 4 = (i)
(1) = ——————+2b Y du—2b % (8) dWri (s) +2 S/ (). (22
BT,,L( ) mw(@) + ) u-au 0 rTn(S) T (S) ; n( ) ( )

It is possible to get the limit as 7, — oo [13] in this equality and get that BT;)/ (t) KR

B(t), where

_ 7(t) t B
B(t) = 2b [ /0 W — /0 7 () ATV (s) | (23)

It follows from the strong uniqueness of the solution of equation (4) (see, e.g., [7]) that
the distributions of the limit process 3(t) are unique as well. Therefore, it follows from
arbitrary choice of T,, — oo that the finite-dimensional distributions of the processes
Br(t) tend as T — oo to the corresponding distributions of the process @(t) that is
defined by equality (23). In order to establish the weak convergence of the processes
Br(t) to the process B(t), it is sufficient to prove tightness, i.e., to prove that for any
L>0

lim lim P{ sup |ﬁT(t2) — 6T(t1)| > E} =0. (24)

h—0T—o0 [t1—t2|<h;t;<L

Tightness of the processes rr(t) was established in [11] and it was mentioned that
tightness of S(Tz) (t)=0,i=1,...,4, follows from (18). Furthermore, taking into account
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the properties of stochastic It6 integrals, we get the following bounds for any € > 0,

L>0and N > 0:
’I"T(tz) T’T(tl)
P sup / uadu—/ udu| > €
[t1—t2|<h;t; <L |JO 0

(25)
< Py+P {Na sup  |rr(ts) — rr(t)] > %}
[t1—t2|<h;t; <L
and
to o
P sup / r7(s) dWr(s)| > ¢
[t1—t2|<h;t; <L | Jt;
t —~ €
< Py+P {4 sup sup / 7 (8)X {rr(s)<ny AW (s)| > 3
kh<L kh<t<(k+1)h |Jkh
t —~ €
<Py+ > P sup / 7 (8)X {ro ()<} AW (8)| > 3
i kr<e<ernn | kn
g\ 4 t . 4
<Pv+ Y (—> E  sup [/ TT(8)X{rr(s)<N} dWT(S)] (26)
WhelL € kh<t<(k+1)h LJkh
8\* /4\4 (k+1)h - 4
< Py + Z (g) (g) E [/kh T7(8)X {rp(s)<N} dWT(S)]
kh<L
8\ /4\*
4o 2
<PN+<E) (§> -36N* > h
kh<L
ChN*
< Py + VR
€

In the last inequality the following upper bound for the fourth moment of the Itd’s
integral w.r.t. the Wiener process from [1] or [13] was used:

b 4 b
E</ f(t)dW(t)) §36(b—a)/ E|£(6)]* dt.

a

It follows from (25) and (26) that the right-hand side of (12) is tight, i.e., satisfies (24).
So, we have tightness (24) and consequently Or(t) weakly converges as T — oo to the
process ((t) whence the proof follows. |

Example 2.1. Consider equation (1) with the drift coefficient of the form a(x) =

1fz2 .
In this case f(x) = (14 2%)~! and the function ¢(z) from (5) can be rewritten as

1 ’ 2 — bsignzx
Q(x)_m/o g(u) (1+u?) du — bsigna.

Let 9(|z|) = |z| is slowly varying (at infinity) function (o = 1), then
x
/ g(u) (1 +u?) du = bz (1 +22) + q(z)|z| (1 + 2%) =z (1 + 2?) [b+ g(z) signa],
0

whence

g(z) [z (1+ x2) (b + q(z) sign x)}/

T 1t a2
a.e. w.r.t. to the Lebesgue measure on R.
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Consider the continuous function with “explosions”

) a(x), zel,,
q(z) = {0, N

where ¢1(z) > 0, maxzea, q1(z) = 1, A, = (n;n+ %), n € N. Continuing ¢(z) in
a symmetric way to (—oo, 0), we obtain that the function ¢(z), € R, satisfies the
condition (7) with the function f(z) = (1 + 22?)~! < C.

If we put g(x) in the last allocated equality we get g(x) such that the stochastic process

1 tT 1 tT
510) = oo [ atends =5 [ gtetan s

converges as T — oo weakly to the process

2 t e
B(t) = 2b {TT@ - / r(s) dW(s)]
0
where 7(t) > 0 is the solution of stochastic differential equation
dr?(t) = 3dt + 2r(t) AW (t).
In this case 3(t) = 3bt.

Remark 2.1. Analyzing the proof of Theorem 2.1 it is easy to see that it is true even
in the case when we establish just the weak convergence of the processes rp(t) to the

process 7(t) and the representation (12) in which supOStSL‘S(Tk) (t)] £0,k=1,...,4as
T — oo for any L > 0.

In this connection, we can deduce the following statement as a corollary of Theo-
rem 2.1.

Theorem 2.2. Let & be a solution of equation (1) and let convergence relation (6) holds.
Also, let locally integrable real-valued function g is such that there exists non-decreasing
function ¥ (r), r > 0 that is regularly varying at infinity of order oo > 0 and q(x) — 0 as
|z| — co. Here q is defined in (5). Then Theorem 2.1 holds.

Proof. Indeed, apply the representation (12). Similarly to proof of Theorem 2.1 we get

that SuPogtgL‘S(Tk) (t)‘ L oasT — o0, k =1,2,3. Convergence supOStSL‘S(;) (t)‘ o

as T' — oo follows directly from inequality (17) and convergence ¢(x) — 0 as |z| — oco. In
order to finish the proof of the present theorem, it is sufficient to apply Remark 2.1. O

Example 2.2. Consider the class of equations (1) with the drift coefficient of the form

xé(x)

ale) = 750

where

c1, x>0,
E(x)—{l c1 = ¢ca = cp, 2co+ 1> 0.
c2, x <0,

1) Let co = 1. In this case f(z) = (1 +22?)~! and in order to satisfy the assumptions
of Theorem 2.2 the function ¢(z) can be rewritten as

1 T
] / go(1 + u?) du — bsign .
0

q(z) = W
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Ifb =2, g(x) = go, ¥(|z|) = || is slowly varying (at infinity) function (oo = 1), then
q(z) — 0 as |z| — oo and the stochastic process fr(t) = m fOtT gods = 740 OtT ds

converges as T’ — oo weakly to the process

8t) = 2 [f:(f) - () A (s)| = 20 [7"22(“ - tr(s)d’m@]

where 7(t) > 0 is the solution of stochastic differential equation
dr?(t) = 3dt + 2r(t) AW (t).

In this case B(t) = got.
2) Let ¢g = %, so f(x)=(1 +m2)_Tl. If g(x) = go, ¥(|z|) = |z|, b= % and

1 xT
Q(x)zmgo/ \/1+u2du—%signx—>0 as |x| — oo,
0

then the stochastic process fr(t) converges as T — oo weakly to the process 3(t) = got.
3)If g = 1, g(z) = sin® z, ¢(|z|) = ||, b = %, then

1 * 1
:m/o (1+u2)sin2udu—gsignm—>0 as |z| — oo.

q(x)

The stochastic process fr(t) = WIJT sin®(£(s)) ds = & JT sin?(£(s)) ds con-

verges as T' — oo weakly to the process

8(t) = [7"2(“ - tr(s)d’m@] -1

3 2

3. AUXILIARY RESULT

Now we prove an auxiliary result concerning regularly varying functions ¢ (r), r > 0,
that was applied in the proof of Theorem 2.1.

Lemma 3.1. Let the function 1(r), r > 0 be positive, non-decreasing and regularly
varying (at infinity) with index o > 0. Then for an arbitrary N > 0 there exist constants
Cy <00, 0 < TN < o0 such that uniformly on T > Tx

Y(rVT)

< Cqn.
ogSEgN 1/)(\/7) N

Proof. 1t is clear that
p LOVT) _(NVT)
0o B(VT) T e(WT)

Since for regularly varying function ¢ (r) we have convergence

CONWVT)

_—

»(VT) ’

as T — oo, then for € = 1 there exists a constant Ty < oo such that for all T > Ty the
following inequality holds true

<

SOWVT) ey

Y(VT)

Hence the statement of Lemma 3.1 is proved for Cy = N® + 1. O
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POISSON APPROXIMATION OF PROCESSES WITH LOCALLY

INDEPENDENT INCREMENTS WITH MARKOV SWITCHING
UDC 519.21

N. LIMNIOS AND I. V. SAMOILENKO

ABSTRACT. In this paper, the weak convergence of additive functionals of processes with locally inde-
pendent increments and with Markov switching in the scheme of Poisson approximation is investigated.
Singular perturbation problem for the generator of Markov process is used to prove the relative com-
pactness.

AHoTAauss. B poboti mociimkeno ciabky 36iKHICTD aJuTUBHAX (DYHKI[IOHAJIIB Bl IPOIECIB 3 JIOKAIb-
HO HE3AJIEXKHUMH [IPHPOCTAMH T MAPKOBCHKHM IIEPEMHUKAHHSIM B CXeMi IIyaCCOHOBOI AmpOKCHMAIiI.
Jlnsa noBeJieHHS BiTHOCHOI KOMIIAKTHOCTI IPOIECY BHUKOPUCTAHO 3374y CHHIYJISAPHOrO 30ypeHHs s
reHepaTopa MapKOBCHKOTO IPOIECY.

AuHoTAnus. B pabore ucciemoBana ciaabas CXOZUMOCTH AAAUTUBHBIX (PYHKIHOHAIOB OT IPOLECCOB
C JIOKQJIBHO HE€3aBUCHMBIMHA HpI/Ipa.H_[eHI/IHMI/I n MapKOBCKI/IM nepeKnqueHHeM B CXeMme Hya.CCOHOBCKOfI
anmpokcuManuu. [Ipu 10Ka3aTesbCTBE OTHOCUTEIHHOW KOMIIAKTHOCTH IIPOIECCA MCIOIL3YeTCs 33149
CHHTYJISSPHOTO BO3MYIIIEHUS JJIsi TeHEPATOPa MapKOBCKOI'O MPOIECCA.

1. INTRODUCTION

Let us consider the following stochastic additive functional

£(t) = £(0) + / n(ds;a(s)), >0,

where z(t), t > 0, is a jump Markov process with the state space (F,&) and n(t, )
is a family of processes with independent increments, x € E, ¢ > 0 with state space
(R?, B(RY)). This is an important process since we have as particular cases the following
well-known stochastic systems:

e The integral functional

at) = /0 a(x(s)) ds, t>0

where a is a deterministic measurable function defined on (E, £).
e The dynamical system

a(t) = C(u(t),z(t)), t>0,
where C' is a deterministic R%function defined on R? x E.
e The compound Poisson process
v(t)
()= ala),
k=1
where z, is the embedded Markov chain of the jump Markov process x(t).

2000 Mathematics Subject Classification. Primary 60J55, 60B10, 60F17, 60K10; Secondary 60G46,
60G60.
Key words and phrases. Poisson approximation, semimartingale, Markov process, independent incre-
ments process, piecewise deterministic Markov process, weak convergence, singular perturbation.
104
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In this paper we establish weak convergence results in a semimartingale framework.
In fact, we prove that for time scaled switching Markov process x(t/¢), the additive
semimartingale £%(t), t > 0, € > 0, weakly converges to a Poisson process with drift.
The main difference from the results obtained in [8] is infinity of the measure of jumps
corresponding to the processes with locally independent increments (see definition (2)
below). The large deviations problem for the processes of this type was studied in [12].

The proof is given in two steps. In the first one we obtain relative compactness of
the semimartingales representation of the family &%, ¢ > 0, by proving the following two
facts [4]:

lim sup P {sup €5 ()] > c} =0,
T

C=00 c<gy t<

known as the compact containment condition (CCC), and
El&5(t) — & (s)[* < k|t — s,

for some positive constant k£ > 0. But due to infinity of the measure of jumps of the
process we should check additional conditions (see Theorem A in Appendix).

In the second step we prove convergence of predictable characteristics of the semi-
martingales, which are integral functionals of the form:

[ o€ )2,

by using singular perturbation technique as presented in [7].

Finally, we apply Theorem IX.3.27 from Jacod and Shiryayev [6] in order to prove the
weak convergence of semimartingale.

The original part of this work is the use of relative compactness proof scheme given for
averaging approximation (Bogolubov) to obtain a Poisson approximation result. More-
over, this kind of additive functionals are very useful in practice since they include the
well-known stochastic systems.

The paper is organized as follows. In Section 2 we present the process with locally
independent increments and the switching Markov process. In the same section we
present the main results of Poisson approximation. In Section 3 we present the proof of
the theorem. Two theorems we refer to are presented in the Appendix.

2. MAIN RESULTS

Let us consider the set of real numbers R, and (E,£), a standard state space, (i.e.,
E is a Polish space and & its Borel o-algebra). Let C3(R) be a measure-determining
class of real-valued bounded functions, such that g(u)/u? — 0, as |u| — 0 for g € C3(R)
and C3(R) be a measure-determining class of all continuous bounded functions which
are 0 around 0 (see [6, 7]). We note that C2(R) C C5(R).

The additive functional £%(t), t > 0, £ > 0, on R in the series scheme with small series
parameter € — 0, ¢ > 0, is defined by the stochastic additive functional ([7, Section 3.3.1])

5@=$+Anmmmwm. (1)

The family of processes with locally independent increments n®(t;x), t > 0, z € E,
on R, is defined by the generators (see [1, Section 1.2], [7, Section 1.2.4])

I (x)p(u) = be(u; 2)¢ (u) + /R [o(u—+v) — o(u) — v’ (W) Ly <1)] T (u, dv; ),  (2)

where p(u) is real-valued twice differentiable function on R vanishing at infinity, with
the sup-norm ||| = sup,eg [o(u)|, ©(u) € CF(R), be(u;x) = [, vT%(u,dv;x), and
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I (u, dv; ) is the intensity kernel that satisfies the condition
I (u, {0}; ) = 0.

Let B be the Banach space, that is a complete linear normed space, of all bounded real-
valued measurable functions on E, with the sup-norm ||| = sup,cx [¢(z)|, ¢(z) € B.
The switching Markov process z(t), t > 0, on the standard phase space (E, ), is defined
by the generator

Qu() = 4(z) /E Pz, dy)p(y) — o()), (3)

where ¢(z), € E, is the intensity of jumps function of z(t), ¢ > 0, and P(z,dy) is the
transition kernel of the embedded Markov chain x,,, n > 0, defined by z,, = z(7,), n > 0,
with0=7 <7 <--+- <7, <... the jump times of z(t), t > 0.

It is worth noticing that the coupled process £°(t), z(t/¢e), t > 0, is a Markov additive
process (see, e.g., [7, Section 2.5]).

Let II be a projector onto null-subspace of reducible-invertible operator @ (see in
details [7, Section 1.2]), defined in (3):

Tola) = [ w(d)ola)

The following relation is true

QII =T1IQ = 0.

The Poisson approximation of Markov additive process (2) is considered under the
following conditions.

C1: The Markov process z(t), t > 0, is uniformly ergodic with n(B), B € &, its
stationary distribution.

C2: Poisson approzimation. The family of processes with locally independent in-
crements n°(t;x), t > 0, x € F, satisfies the Poisson approximation conditions [7, Sec-
tion 7.2.3]:

PA1: Approximation of the mean values:

be(u; ) = / v (u, dv; ) = e[b(u; x) + 05 (u; )],
and -
ce(u;x) = / VT (u, dv; ) = ele(w; ) + 05 (u; 2)).
PA2: Poisson approximatio]i condition for intensity kernel
i) = [ o) (undvia) = e[y i) + 0 (u: )
for all g € C5(R), and the function I'g(u;x) is bounded for each g € C5(R), that is,

ITy(u;x)] < Cy (a constant depending on g).
The kernel I'(u, dv; x) is defined on the class C5(R) by the relation

Lyfuiz) = [ go)Tuduia), g€ CulR).
R
The above negligible terms 67, 07, 07 satisfy the condition

sup |0 (u; )| — 0, e —0.
zEE

In addition the following conditions are used:

C3: Uniform square-integrability:

lim sup/ v?T'(u, dv; ) = 0.
lv|>ec

Cc— 00 JJEE
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C4: Growth condition: there exists a positive constant L such that
blus2)| < L(L+ [ul) and Je(usa)] < L1+ [uf?),

C5: Linear growth of kernel: we assume that I'(u, B; z) is absolutely continuous with
respect to Lebesgue measure dv in R, that is,

T(u, dv; x) = A(u, v; z) dv,

thus A(u,v; z) is the Radon—Nikodym derivative of I'(u, B; ) and the following inequality
holds:

|A(u, v;2)| < Lf(v)(1 + [u])
for any real-valued non-negative function f(v), v € R, such that

/ (1+ f(v)v*dv < .
R\{0}

The main result of our work is the following.

Theorem 1. Under conditions C1-C5 the weak convergence

&) =€), =0
takes place.
The limit process £°(t), t > 0, is defined by the generator

Tp(u) = b(u)¢' (u) +/]R [p(u+v) — p(u) — v (W)L (jpj<1)] T(u, dv), (4)
where the average deterministic drift is defined by
Blu) = Th(u; ) = / (dz)b(u; ),
and the average intensity kernel is defined by i

[(u,dv) = I D(u, dv;z) = /Eﬂ(dx)I‘(u,dv;x).

REMARK 1. The limit generator in the Euclidean space RY, d > 1, is represented in
the following view:

d
= b+ [

o (u) := 0p(u) /Oug, 1<k<d.

o(u+v) — kaapk ]l(‘v|<1) f(u,dv),

3. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the semimartingale representation of the additive
functional process (1). The method used here to prove the weak convergence is quite
different from the method proposed by other authors ([4]-[6], [9]-[18]): the main point is
to prove convergence of predictable characteristics of semimartingales which are integral
functionals of some switching Markov processes.

According to Theorems 6.27 and 7.16 [2] the predictable characteristics of the semi-
martingale (2) have the following representations:

eBe(t)=¢"! fo ;%) ds = fo (&°(s); 2%) ds + t9; — the first predictable char-
acterlstlc

oCe(t) =1 fo c(€5(s);25) ds = fo x¢) ds + t05 — the second modified char-
acterlstlc

olc(t) =1 fo Jg h(v) T2 (&5 (), dv; 25) ds = fo Jg M(v) T(&5(s), dv; 25) ds + 165, where

xf = a:(t/s) t>0, and super 0% — O 5 — 0, h(v) is the truncated function.
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The jump martingale part of the semimartingale (2) is represented as follows

W (8) —/ /| “(s), ds, dv; 25) — T° (6% (s), dv; a%) dis]

Here pf(u,ds,dv;x), x € E, is the family of counting measures of jumps of the process,
namely
E u®(u,ds, dv; x) = T (u, dv; x) ds.

We can see now that predictable characteristics depend on the process £%(s). Thus,
to prove convergence of £°(s) we should prove convergence of predictable characteristics
dependent on &£°(s). To avoid this difficulty, we combine two methods. The one based
on semimartingales theory, is combined with a solution of singular perturbation problem
instead of ergodic theorem.

We split the proof of Theorem 1 in the following two steps.

3.1. Relative compactness. At this step we establish the relative compactness of the
family of processes £°(t), t > 0, £ > 0, by using the approach developed in [10]. Let us
remind that the space of all probability measures defined on the standard space (E, )
is also a Polish space; so the relative compactness and tightness are equivalent.

Proposition 1. Under assumption C4,C5,PA1, the following compact containment
condition (CCC) holds:

hmh%P{wpK(ﬂ>c}=0 (5)

t<T

Proof. The proof of this corollary follows from Kolmogorov’s inequality by using the
estimation of Lemma 1. |

Lemma 1. Under assumption C4, C5, PA1 there exists a constant kr > 0, independent
of € and dependent on T, such that

Esup [€°(1)]? < kr.
t<T

Proof. (Following [10]). For a process y(t), t > 0, let us define the process
yi = sup ly(s)].
s<t

It follows from PA1 and C4 that for any fixed ¢ > 0
¢ ¢
/ / V2 Te (€5 (s), dv; 25) ds = 6/ c(&5(s); 2%)ds + et (u; o)
o Jr 0
N2
<et [L (1 + ((Ef) ) ) +9§(u;x)] <oo P-as.

The increasing process fot f]R\{O} v2I¢(€5(s), dv; %)ds is continuous in t so that by The-
orem 28 from [3, Ch.5] (see also Theorem 1.6.3 [11]) it is the compensator of

/ / V2 (€5(s),d(s/e), dv; x5) .
0 JR\{0}

Therefore, (1) is the special semimartingale with the decomposition
() =u+ A7 + M;, (6)
where u = £%(0); Af is the predictable drift (see [4]):

ﬁ:l (€ (s @+//¥1 (€5(s), dv; 25) ds + 65, (1),



POISSON APPROXIMATION OF PLLI 109

and M; is the locally square integrable martingale

t
M = / / O[u(€° (), ds, dv %) — T(E(s), dvs %)ds] + 054 (¢),
0 JR\{0}

and for every finite 7' > 0

sup |6°(¢t)| — 0, e — 0.
0<t<T

From (6) we have
2 2 2
(€)= s s (1an) "+ (o))’ ™
Conditions C4—C5 imply that

(Af)T < L/Ot (1 + (fi)T) ds + L/Ot /|v>1 [v|f(v) (1 + (£§)T) dv ds

<pem | "1+ (€)) ds,

where r; = f]R\{O} v2f(v) dv.
Now, by Doob’s inequality (see, e.g., [11, Theorem 1.9.2]),

e ((047)")" < 4B

where by condition C5 we obtain

/ t / |y T i) ds) < L, / t (@) o

Inequalities (7)—(9) and Cauchy—Bunyakovsky—Schwarz inequality,

[/Otws)ds} <t/0tw2<s>ds

e ((€)7) <h+ha [ E(€)7) as

where k1 and ko are positive constants independent of e.
By Gronwall inequality (see, e.g., [4, p. 498]), we obtain

E ((Ef)T)2 < ky exp(kat).

Hence the lemma, is proved. |

(M=) =

—~~
e
=

2

imply
t

Lemma 2. Under assumption C4, C5, PA1 there exists a constant k > 0, independent
of € such that

E[€°(t) — €°(s)|* < k[t — s].
Proof. In the same manner with (7), we may write
[€5(8) — €°(s)[* < 2|A7 — AZ* +2|MF — M|
By using Doob’s inequality, we obtain

EIE°(1) — &5 (s)” < 2E{]A] — AS* + 8 |(M7), — (M=) [}
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Now (8), (9), and assumption C5 imply
2 )2
145 AP + 81007} - () < b [1+ (169)7) ] 1=

where k3 is a positive constant independent of e.
From the last inequality and Lemma 1 the desired conclusion is obtained. O

Finally, we have to use the Theorem 8.2.1 from [11] that states the relative compactness
of semimartingales (see Appendix).

Lemma 3. Under conditions C1-C5 the family of processes £5(t) is relatively compact.

Proof. To verify the relative compactness we should check the conditions LP1-LP5 of
Theorem A (see Appendix).

We easily see that LP1 follows from the conditions C4-CS5.

Show, that under (5) LP2 and second part of LP5 hold. Really, by the condition C5
and the definition of T'(u,v;z) on the set {sup,.r [£°(¢) < ¢|} we have for the function

g9(v) = {0’ =t

1, |v|>1

/OT/|U>ZFE(£5(S),dv;x ds—/ / V)T (£5(s), dv; 2°) d
—5/ / s), dv; x5)ds + 10,

<eTL(1+¢) / f(v)dv + T8

[v]>1

TL(1
< 5# / v? f(v)dv + eTo; — 0,
R

l — oo, e — 0.

Using of condition PA2 here is stipulated by the fact that g(v) € Co(R?) C C3(R?).
By the same way we get

/ /|v<5 T (¢5(s), dv) ds—/ /|v<5/ ), dv; ) m(dz) ds

gTL(l—I—c)/ V2 f(v)dv — 0, 0—0,
v|<d

and by the conditions I'*(u, {0};z) = 0, PA1 and C5

’ T
/O /v|<6 VI E ) i) o< /o /RUQFE (€5(s), dv; 2%) ds

T
= 6/ (&5 (s);al)ds + eTO5 (uyz) < eTL (1 + ) + €T (us ) — 0,
0
e —0, 6 — 0.

It is clear, that LP3, LP4 and the first part of LP5 follows from the weak convergence
of predictable characteristics. Thus, the final step in proof of this Lemma will be made
in the next subsection by the verifying of Lemma 4. O
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3.2. Convergence of predictable characteristics. The next step of proof concerns
the convergence of the predictable characteristics. To do that, we apply the results of
Sections 3.2-3.3 in [7] and Theorem 6.3 from [7] (see Appendix).

Lemma 4. Let’s point A%(t) any of three predictable characteristics of the process &°(t).
The following weak convergence takes place

A% (t) = A°(t),
where .
A0(t) = /0 a(&(s) ds,
here

a(u) ::/Ew(dx)a(u;x).

Proof. We consider the three component Markov process A¢(t), £%(¢), x5, t > 0, which
can be characterized by the martingale

4= A0 650)07) — [ Tpla%(6). €50, .
The generator L® of the martingale has the following representation [7]
Lf=c'Q+T°+A°, (10)
with I given by (3), Q given by (4), and A®(u;2)p(v) = Ap(v) + 65, where Ap(v) =

a(u; )¢’ (v), and 52 —0,e—0.
In order to prove the convergence of predictable characteristics, it is sufficient to study
the action of the generator L€ on test functions of two variables (v, x).

Thus, it has the representation
Lép(v,2) = [e7'Q + Alp(v,2) + O0(v, 2). (11)

The solution of the singular perturbation problem at the test functions ¢°(v,z) = ¢(v)+
ep1(v,z) in the form Lf¢® = Ly + 6°p can be found in the following manner. We have:

Lo (v,2) = [e7'Q + Al[p(v) + 1 (v, 7))
= 'Qup(v) + [Qu1 (v, ) + Ap(v)] + eAps (u, ) + O30 (v, o).

We may write down the following equalities:
Qp(v) =0,
Qo1(v,z) + Ap(v) = L.
From the first equality we see that the function ¢(v) belongs to the null-space of opera-

tor @ and thus does not depend on z. So, using the solvability condition, we have from
the second equality

i(p(v) = ITATIp(v) + Qw1 (v, z) = ITAIIp(v).
That is
L=A, (12)

where Kgp(v) = [pm(dz)a(u; z)¢’ (v).

Now Theorem B may be applied (see Appendix).

We see from (11) and (12) that the solution of singular perturbation problem for
L= ® (u, v; z) satisfies the conditions CD1, CD2. Condition CD3 of this theorem implies
that the quadratic characteristics of the martingale, corresponding to a coupled Markov
process, is relatively compact. The same result follows from the CCC (see Corollary 1 and
Lemma 2) by [6]. Thus, the condition CD3 follows from the Corollary 1 and Lemma 2.
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As soon as A°(0) = A°(0), £€5(0) = £°(0) we see that the condition CD4 is also satisfied.
Thus, all the conditions of above Theorem 2 are satisfied, so the weak convergence
A%(t) = A°(t) takes place.

Lemma is proved. O

Thus, by the weak convergence of predictable characteristics, we obtain LP3, LP4
and the first part of LP5. As a result, by the Theorem 8.2.1 from [11] the process £°(t)
is relatively compact and Lemma 3 is proved.

The final step of the proof of Theorem 1 is achieved now by using Theorem IX.3.27
in [6]. Indeed all the conditions of this theorem are fulfilled.

As we have mentioned, the square integrability condition 3.24 follows from CCC
(see [6]). The strong dominating hypothesis is true with the majoration functions are
presented in the Conditions C4-C5. Condition C5 implies the condition of big jumps for
the last predictable measure of Theorem IX.3.27 in [6]. Conditions iv and v of Theorem
IX.3.27 [6] are obviously fulfilled.

The weak convergence of predictable characteristics is proved by solving the singularly
perturbation problem for the generator (10).

The last condition (3.29) of Theorem IX.3.27 is also fulfilled due to CCC proved in
Proposition 1 and Lemma 2. Thus, the weak convergence is true.

We can see now that the limit Markov process is characterized by the following pre-
dictable characteristics

O—tAoss O:tﬁoss OZtAOS S.
B<t>f/0b(s<>)d, (1) / () ds,  TOt) /Org@())d

Here C°(t) is the second modified characteristic of the limit process. So, according to [2]
the limit Markov process £(t) can be expressed by the generator (4).
Theorem 1 is proved.

4. APPENDIX

Theorem A ([11, Theorem 8.2.1]). Let Q¢ be the distribution of probabilities for Pe-
semimartingale £&¢ = (£5(t), F7) with the triplet of predictable characteristics T¢ =
(B%,C%,T°) and Q is the distribution of semimartingale €0 = (£0(t), D®) with triplet
7° = (B°,C°19).

If for the triplet T the following condition is true:

LP1:

< L(1+£(t)),

/E b(E(t), 2) m(da)
<L(1+(Ew®)’).

JRCORETS
and for any nonnegative measurable function f(v) < v? Al
[ [ s@reo, o) <1+ ¢o).
EJR

And for the triplets T¢ for any fixzed T > 0:
LP2:

T
lim lim sup/ / I (&°(s),dv;25) ds = 0,
l—o0 e—0 0 |v\>l

T
lim lim sup/ / v?T(€5(s), dv) ds = 0.
6—0e—0 0 lv| <8
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LP3: For every bounded measurable function f(v)

timysup| t [ 10 [ €0 ) - F (e .an] as| =0
LPy:
lm sup / [ €009~ Bes )] as| =0,
LP5:
tisup | [ (€°(6).25) — 2 ()] s = .

hm lim sup/ / 02T (65(s), dv; 25) ds
—> EHO | ‘<5

then under compact containment condition

lim hm P{|€°(0)] > c} =0

c—o0e—0

the family Q°, € > 0, is relatively compact.

Theorem B ([7, Theorem 6.3]). Put C3(R x E) be the space of real-valued twice contin-
uwously differentiable by the first argument functions, defined on R x E and vanishing at
infinity, and C(R x E) is the space of real-valued continuous bounded functions defined
on R x E.
Let the following conditions hold for a family of coupled Markov processes £ (t), x=(t),
t>0,e>0:
CD1: There exists a family of test functions ¢°(u,z) in C2(R x E), such that
lim o (u, z) = ¢(u),
e—0

uniformly on u, x.
CD2: The following convergence holds

liH(l) Lf¢® (u, z) = Lo(u),
uniformly on u,x. The family of functions Le¢®, € > 0, is uniformly bounded, and Lo(u)
and LE® belong to C(R x E).

CD3: The quadratic characteristics of the martingales that characterize a coupled
Markov process £°(t), x°(t), t > 0, € > 0, have the representation

9= (e (s) ds

where the random functions (¢, € > 0, satisfy the condition

sup E|C°(s)| < e < +o0.
0<s<T
CD/: The convergence of the initial values holds and
sup E [¢*(0)] < C < +o0.
e>0

Then the weak convergence

&) =£t), =0,

takes place.
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MINIMAX-ROBUST FILTERING PROBLEM FOR STOCHASTIC
SEQUENCE WITH STATIONARY INCREMENTS
UDC 519.21

M. M. LUZ AND M. P. MOKLYACHUK

ABSTRACT. The problem of optimal estimation of the linear functional A = > 72 a(k)&(—k) which
depends on unknown values of a stochastic sequence £(k) with stationary nth increments from ob-
servations of the sequence £(k) + n(k) at points of time k = 0,—1,—2,... is considered. Formulas
for calculation the mean-square error and spectral characteristic of the optimal linear estimate of the
functional are derived under the condition of spectral certainty, where spectral densities of the se-
quences £(k) and n(k) are exactly known. The minimax (robust) method of estimation is applied
in the case where spectral densities are not known exactly, but sets of admissible spectral densities
are given. Formulas that determine the least favorable spectral densities and the minimax spectral
characteristics are proposed for some special sets of admissible spectral densities.

Anoranisa. JlocaipKyeTses 3a4a49a ONTHMAJBHOTO oninoBanHs dyuakiionana AE = Y 2 a(k)(—k)
BiJ{ HEBIIOMUX 3HAYEHDb CTOXACTUIHOI HocaimoBHOCTI £(k) 31 CTAIlOHADHUME N-MH IPAPOCTAMH 3a CIO-
crepexxenasiMu nocaigosrocti (k) + n(k) y momenTn wacy k = 0,—1, —2,... . Snaiigeni dopmynn mis
O0GYHCIeHHS CepeJHBOKBAJIPATHIHO! MOXUOKH Ta CIEKTPAIbHOI XapaKTEePHCTHKH ONTHMAJIBHOI OIiHKH
dyHKIiOHAIA 32 YMOBH CIEKTPAJILHOI BU3HAYEHOCTI, TOOTO KOJIM CHEKTPAJIBbHI MIIIBHOCTI HOCIif0BHO-
creit £(m) Ta n(m) Bigomi. Y TOMy BHIAJKY, KOJIHM CHEKTDAJIbHI IiIHHOCTI HeBiZOMi, a 3aJaHi Jumie
MHOXXHHH JOIyCTHMHUX CIEKTPAJBHUX IIIJIHHOCTEH, 3ACTOCOBAHO MiHIMAKCHHI MeTOs OmiHOBaHHs. [{s
33JaHUX MHOXKHH JOIIYCTHMUX CIEKTPAJIbHUX INiJIbHOCTe! BU3HAUeHI HafiMEeHIII CIIPUSITINBI CIIEKTPaIb-
Hi migsHOCTI Ta MiHIMaKCHI CIeKTpasbHI XapaKTEePUCTHKHE ONTHMAJILHOL JiHIHHOT OiHKK (DYHKIIOHAITIA.
Annoranus. Hccrenyercs 3amada onTEManbHOrO onenusanus gymknuonana AL = Y 2 o a(k)E(—k)
OT HEW3BECTHBIX 3HAYEHHUH CTOXACTUIECKON mocienoBaTenbHOCTH (k) CO CTAIMOHAPHBIME N-MU IPUpPa-
merusMu 10 Habmoaerusm nocieposarensrocTH & (k) + (k) B MomenTer Bpemern k = 0, —1,—2,... .
Haiinensr dbopMynsl sl BHIMHCIEHHS CpPeJIHEKBAIPATHIECKON OMMUOKH U CIEKTPAIbHON XapaKTepu-
CTUKH ONTUMA-JIbHOR OleHKH (DYHKIMOHAJA B TOM CJIy9ae KOr/Ja CIEeKTPAJIbHBIE IIJIOTHOCTH MOCJIE10Ba~
reapHOCTEH € (M) 1 (M) TOUHO M3BeCTHLI. B TOM ciiy4uae, KOrJa CIeKTpaIbHbIe IJIOTHOCTH HEU3BECTHBI,
a 3a/JaHbl JIAIIb MHOXXECTBa JOIIYCTUMBIX CIEKTPAJbHBIX HHOTHOCTeﬁ, HUCHOJIB3yeTCA MHUHAMAKCHBIN
MeTo[ omeHuBaHUs. JIJI 3aMaHHBIX MHOXKECTB JOIYCTUMBIX CIEKTPAJbHBIX IIJIOTHOCTEH OIIpe/esIeHb
HauMeHee 6J'Ia.FOHpI/IHTHBIe CIIeKTPaJIbHbIE IIJIOTHOCTU U MUHUMAKCHBIC CIIEKTPAJIbHBIE XaPaKTEPUCTUKHN
ONTHMAJBHON JIMHEHHOU OIeHKN (DYHKITMOHAIA.

1. INTRODUCTION

Traditional methods of solution of extrapolation, interpolation and filtering prob-
lems for stationary stochastic processes and sequences were developed by A. N. Kol-
mogorov [11], N. Wiener [26], A. M. Yaglom [28] under the condition of spectral certainty
where spectral densities of the considered stochastic processes are exactly known. In the
case where spectral densities are not exactly known, but a set of admissible spectral den-
sities is given, we can apply the minimax method for solving extrapolation, interpolation
and filtering problems, which allows us to determine estimates that minimize the value
of the mean-square error for all densities from a given class.

2010 Mathematics Subject Classification. Primary 60G10, 60G25, 60G35; Secondary 62M20, 93E10,
93E11.

Key words and phrases. Sequences with stationary increments, robust estimate, mean-square error,
least favorable spectral density, minimax spectral characteristic.
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A survey of results in minimax (robust) methods of data processing is proposed by
S. A. Kassam and H. V. Poor [10]. The paper by Ulf Grenander [7] should be marked
as the first one where the minimax approach to extrapolation problem for stationary
processes was developed. J. Franke [8], J. Franke and H. V. Poor [9] investigated the mini-
max extrapolation and filtering problems for stationary sequences with the help of convex
optimization methods. In the works by M. P. Moklyachuk [14]-[17] problems of extrap-
olation, interpolation and filtering for stationary processes and sequences were studied.
Methods of solution the minimax-robust estimation problems for vector-valued stationary
sequences and processes were developed by M. P. Moklyachuk and O. Yu. Masyutka [19]—
[23]. Methods of solution the minimax-robust estimation problems (extrapolation, inter-
polation and filtering) for linear functionals which depend on unknown values of periodi-
cally correlated stochastic processes were proposed by L. I. Dubovets’ka and M. P. Mokly-
achuk [2]-[6]. M. M. Luz and M. P. Moklyachuk [12]-[13] investigated the minimax in-
terpolation problem for stochastic sequences &(m) with stationary n-th increments from
observations of the sequence with an additive noise and from observations without noise.

In this paper we investigate the problem of optimal linear filtering of a functional
AE =302, a(k)&(—k) which depends on unobserved values of a stochastic sequence &(m)
with nth stationary increments based on observations of the sequence £(k)+n(k) at points
k=0,—-1,-2,..., where n(k) is a stochastic sequence with stationary nth increments
which is uncorrelated with the sequence (k). This filtering problem is solved in the case
of spectral certainty where spectral densities of sequences £(m) and n(m) are exactly
known as well as in the case of spectral uncertainty where spectral densities of sequences
are not exactly known, but a set of admissible spectral densities is given. Formulas that
determine the least favorable spectral densities and minimax (robust) spectral character-
istics of the optimal linear estimate of the functional are proposed in the case of spectral
uncertainty for concrete classes of admissible spectral densities.

2. STOCHASTIC STATIONARY INCREMENT SEQUENCE. SPECTRAL REPRESENTATION

Stochastic processes with stationary n-th increments were introduced and investigated
by A. M. Yaglom [27], M. S. Pinsker [25], A. M. Yaglom and M. S. Pinsker [24].

Definition 2.1. For a given stochastic sequence {{(m), m € Z} a sequence

n

€M (m,p) = (1= Bu)"€(m) = Y _(=1)'C&(m — lu), (1)

1=0
where B, is a backward shift operator with step p € Z, such that B,&(m) = {(m — p),
is called stochastic nth increment sequence with step p € Z.

For the stochastic nth increment sequence &™) (m, p) the following relations hold true:
€ (m, —p) = (=1)"€"™ (m + nps, p), (2)

" (k—1)n "
W mkp) =3 T AE (m =), kEN, (3)

where coefficients {A;,1 =0,1,2,...,(k — 1)n} are determined by the representation
(k—1)n
A+z4 - +2FH)n = Z At
1=0

Definition 2.2. The stochastic nth increment sequence £(™ (m, 1) generated by stochas-
tic sequence {{(m), m € Z} is wide sense stationary if the mathematical expectations

EE™ (mo, 1) = ™ (),
E€™) (mg + m, p1)E™ (mo, p2) = D™ (m, pa, p2)
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exist for all mg, p, m, p1, 2 and do not depend on mg. The function ¢(™ (p) is called the
mean value of the nth increment sequence and the function D(”)(m, 11, o) is called the
structural function of the stationary nth increment sequence (or the structural function
of nth order of the stochastic sequence {&(m), m € Z}).

The stochastic sequence {{(m), m € Z} which determines the stationary nth increment
sequence £(™ (m, p) by formula (1) is called sequence with stationary nth increments.

Theorem 2.1. The mean value ¢\™ (1) and the structural function D™ (m, p1, ps) of
the stochastic stationary nth increment sequence &™) (m, ) can be represented in the
following forms:

(1) = ey, (4)

D(n) (m, ’U/17M2) — / ei/\m (1 _ e—iulk)n (1 _ ei/LQ)\)n

—T

W dF(/\)v (5)
where ¢ is a constant, F(\) is a left-continuous nondecreasing bounded function with
F(—=m) = 0. The constant ¢ and the function F(\) are determined uniquely by the
increment sequence €™ (m, ).

From the other hand, a function ™ (u) which has the form (4) with a constant ¢ and a
function D™ (m, p1, o) which has the form (5) with a function F(\) which satisfies the
indicated conditions are the mean value and the structural function of some stationary
nth increment sequence €™ (m, ).

Using representation (5) of the structural function of a stationary nth increment se-
quence £ (m, i) and the Karhunen theorem [1], we obtain the following spectral repre-
sentation of the stationary nth increment sequence £ (m, u):

M (m, p) = [ 7; emA (1 — A" (Ml)n dZ(\), (6)

where Z(\) is an orthogonal stochastic measure on [—7, 7) connected with the spectral
function F'(A) by the relation

EZ(Al)Z(AQ) = F(A1 N Ag) < 0. (7)
Example 2.1. Consider an ARIMA(0,1,1) sequence defined by the equation
Em =&m—1+Em +acm_1,

where €, is a sequence of uncorrelated identically distributed random variables with
mean value 0 and variance o2. If we take 1, = &, — &n_1 We obtain a moving average
sequence 7, = €, +aem,m—1. Thus, &, is a stochastic sequence with stationary increments
of the 1st order. The spectral function F(\) of the sequence &,, can be calculated as
follows

F(\) = 0—2 " L (14 2acosu+a?) du
4 [ .1 —cosu '

Here are some values of the structural function;
DW(0,1,1) = 02 (1 +a?), DW(0,1,2) =0? (1 +a+ad?),
DW(0,2,2) = 20%(1 4 a + a?),

o?(1+a?), m=0,
DW(m,1,1) = { o2a, m=—1,1,

0, otherwise,
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o?(1+a+a®), m=-1,0,
DM (m,1,2) = { 0242, m=-2,1,
0, otherwise,
20%(1+a+a?), m=0,
o?(1+2a+a?), m=-1,1,
202, m=-2,2,

o
0, otherwise.

DM (m,2,2) =

3. FILTERING PROBLEM FOR THE FUNCTIONAL A¢

Let a stochastic sequence {£(m), m € Z} define a stationary nth increment €™ (m, p)
with an absolutely continuous spectral function F(A) which has spectral density f(\).
Let {n(m), m € Z} be a stochastic sequence, uncorrelated with the sequence £(m), which
determines a stationary nth increment 7™ (m, ;1) with an absolutely continuous spectral
function G(\) whith has spectral density g(\). Without loss of generality we will assume
that the mean values of the increment sequences €™ (m, 1) and n(™ (m, 1) equal to 0. Let
us suppose that we know values of the sequence £(m)-+n(m) at points m =0, -1, -2, ... .
Consider the problem of mean-square optimal linear estimation of the functional

Ag = a(k)é(~
k=0

of unknown values of the sequence £(m) from observation of the sequence £(m) + n(m)
at points m = 0,—1,—2,.... We will consider the case where the step p > 0.
From (1) we can obtain the formal equation

€4 = gy (o) = > i~ B i) ®)

where {d,(i): i > 0} are coefficients from decomposition > ;= d,(i)z" = (32, x“l)n.
From equation (8) one can find the following relations:

i

S (k) = 36 (—iv) S alk)d i — b,
k=0 i=0 k=0
[e’e} min{n,[ﬁ]}
Zb REM (ko) =) &) Y (~1)'CRbuli— lu).
i=0 1=0
From the last two relations we obtain the following representation of the functional A¢:

AE = a(k)E(— Zb (k)™ (—k, p) = BE,
k=0

k
bu(k) = 3 alm)d,(k —m) = (Dra),, k>0, )
m=0

where D is a linear operator with elements Dy ; = d,,(k—j) if 0 < j <k and D ; = 0 if
j>k;a=(a(0),a(l),a(2),...). Let A¢ denote the mean-square optimal linear estimate
of the functional A¢ from observations of stochastic sequence £(m) +n(m) at points m =
0,—1,—2,... and let Ef denote the mean-square optimal linear estimate of the functional
B¢ from observations of the stochastic nth increment sequence & (m, u) + n(™ (m, )
at points m=0,—-1,—2,....
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Let A(f,g,gf) = E|A¢ — X§|2 be the mean-square error of the estimate Xﬁ of the
functional A¢ and let A(f, g, B) = E| B¢ — B£J? be the mean-square error of the estimate
B¢ of the functional BE. Since A = BE, the following equality holds true:

At = B¢. (10)
Therefore, the following relations hold true
A(f. 9. A¢) = E|AE — A = E|BE - B = A(f.9, BY).

To find the mean-square optimal estimate of the functional B¢ we use the Hilbert space
orthogonal projection method proposed by A. M. Kolmogorov [11]. Suppose that condi-
tions

D buk) < oo, D (k+1)[bu(k)]* < oo, (11)
k=0 k=0
> (Dra)y| < oo, > (k+1)[(D"a)]* < oo (12)
k=0 k=0

are satisfied.
Let H (f,an) +n,§”>) be the closed linear subspace of the Hilbert space H = Lo(Q2, §, P)

of the second order random variables generated by values {§(") (kyp)+n (kyp): k< O},
p > 0. Consider also a closed linear subspace LY(f + g) of the Hilbert space La(f + g)
generated by functions

. yoan 1
Nk —IA .
{e (1—6 “) —(z)\)" /<:<0}.
From the formula

n n T 7 —1 n ]-
€0 (k) + '™ (k, ) = /46 ML= e 8 dZ ) 1) (A)
one can verify the existence of one to one correspondence between element
ei/\k(l _ efi/\p,)n/(iA)n

from the space LY(f+g¢) and element £ (k, 1) 41 (k, 1) from the space H° (fl(f) +77;(Ln)).
Every linear estimate Eg of the functional B¢ admits representation

Be= [ hu(N) dZeo 1y (M), (13)
where h,()) is the spectral characteristic of the estimate B¢. The optimal estimate B¢
is a projection of the element B¢ on the subspace HO( ,S") + n,S”’). This estimate §§ is
determined by the following conditions:

1) B¢ e 1O(E + 1)
2) (B~ BE) L H(& + ).
It follows from condition 2) that for all £ < 0 the function h,(A) satisfies the relation

E(BE — BE(EM (k, p) + 1) (k, 1))
o [ (B 0™ = ) ) e (M) )

%/ e (1 )" (—il)\)ng(/\) aA
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From the previous relation we derive the following relations

T _ eiku n )
(B = 0y o) S e =
k<0,
which yields
e ()G ()

1) = B () (L= ) o TR 900 T ) T 900

o0 (o)
Bu(ei)\) = Z bu(k>€7i)\k7 C/L(ei)\) = Zcu(k)eim-
k=0 k=1
It follows from condition 1) we conclude that the spectral characteristic h,(\) admits
the representation

hu(X) = h(A) (1 — e )" ﬁ h(A) = Y s(k)e”,

where

/ RO |1 — e 7”);"9(” dA < oo,

(1A)" hu(A)
(1 —e—irnm)"

/7r <Bu(eu)f()\f(/\) _ A2 Cy (e) ) e~ g\ =0,

€LY,

- )+ (L—em)" (1 —e)" (f(A) +9(N)
1>1.
(14)
Let the following conditions holds true:

TN v A2n N
s L g < ™

I (VoS S A Y
Bri = 57 / T ey ™

Set

™ >\2n
PIQ‘L] = —/ z)‘(]fk) - o d}\
T2 [1— e [T (f(A) +9(N)

I LT e oY)
%*%/ S O ERO))

Then (14) is equivalent to the following linear system:

dA.

oo

3" Rimbu(m) =" Plicu(k),  1>1.
m=0

k=1
These system can be rewritten as
Rb, =P,c,, (16)
where ¢, = (c,(1),¢u(2),¢u(3),...), by, = (b,(0),b,(1),0.(2),...), P,, R are linear
operators in the space {2 defined by (P,);, = Pl’fk, Lk>1, R)im=Rim,!>1,m>0.
A solution c,, of the last equation defines the linear estimate §§ which is a projection
of the element B¢ from the Hilbert space H on the subspace HO( ,Sn) + 77,(]1)). Since the

space H 0( EL") + n&n)) is closed and convex, the projection B¢ is uniquely determined for
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arbitrary sequence b,,(0),b,(1),b,(2),... satisfying conditions (11). Thus equation (16)

has a unique solution for an arbitrary b, # 0 and the linear operator P,: ¢l — X,

X = {x, € {2: x, = Rb,,, whereb,, satisfies (11)}, has the inverse (P,)~'.
Consequently, the unknown coefficients can be calculated by the formula

cu(k) = (P,'Rby), ,

where (P;leu)k is the kth element of the vector P;le,, Thus, spectral characteris-
tics hy () of the optimal estimate §§ of the functional B¢ is calculated by the formula

1 f(A) (=iN)" Z:i1 (P;IRbM)k oiNk

hu(\) = B, (™) (1 — e )" — - h=L . (17
W(N) = By (¢?) ( ) T +e) e rgon
The mean-square error of the estimate is calculated by the formula
A(f.g; BE) = E|BE - BeP?

. . 2n 00 — A 2
1 B () = e gy e (P.'Rb,), e| s
), N2 (1 — e (F(A) + g(A))?
. ; 2n n 00 - i ?
1 /W By (€™) [1— ™™ f(A) = X230 (P 'Rby,), e A’“‘ () dr
2m J_ A1 — ei/\u|2” (f(N) +g(N)? I
= (Rb,,P,'Rb,) + (Q,b,,b,),
(18)

where Q,, is a linear operator in the space {2 defined by elements (Q,.);x = Q. [,k > 0.
Let us summarize our reasoning and present the results in the form of theorem.

Theorem 3.1. Let stochastic sequences {{(m), m € Z} and {n(m),m € Z} determine
stationary nth increment sequences €™ (m, p) and ™ (m, ) with absolutely continuous
spectral functions F(X) and G(X) which have spectral densities f(X) and g(\) satisfying
conditions (15). Let coefficients {b,(k): k > 0} satisfy conditions (11). The optimal
linear estimate Ef of the functional BE of known elements €™ (m,p), m < 0, p > 0
from observations of the sequence €M™ (m,u) +n™ (m,p) at points m = 0,—1, -2, ...
is calculated by formula (13). The spectral characteristic h,(X) of the optimal estimate
§§ is calculated by formula (17). The value of the mean-square error A(f,g;ég) is
calculated by formula (18).

As a corollary from theorem 3.1 we can obtain the optimal estimate of the unknown
value of the increment £ (m, i), m < 0, from observations of the sequence &(k)+n(k) at
points k = 0,—1,—2,.... Let us take a vector b, with element 1 at the (—m)th position
and elements 0 at the remaining positions in (17). Then the spectral characteristic
©m (A, p) of the estimate

€m0 = [ mur) 2oy (V) (19)

—T

is calculated by the formula

e‘“\u)" 1 N (=N 30y (Pljlrm)k ek 20)

_ ei/\m _
Pm (A p) = (1 @)™ fFA) +9(0) (L —eP)" (f(A) +g(N)
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where ry, = (R1,—m, R2,—m, ... ). The mean-square error of the estimate is calculated by
the formula

A(fg:€7 mop)

axm|1__éAuf”g(A)+_Amz§:ZLl(qurm)keukr

1 us
R L= e (F() +g(V)? Ry
b e 1 PP ) NS (P ) e (A) dA
o L= e P (£ + gV ’

Thus, we have the following statement.

Corollary 3.1. The optimal linear estimate EW (m, ) of the unknown value of the sto-
chastic increment sequence &™) (m,p), m <0, u>0, from observations of the sequence
E(k) + n(k) at points k = 0,—1,-2,... can be calculated by formula (19). The spectral
characteristic o, (A, 1) of the optimal estimate é\(”)(m,u) is calculated by formula (20).
The value of mean-square error A(f,g;g(") (m, p)) is calculated formula (21).

Consider now the smoothing problem for the stationary nth increment sequence
€ (m, ) which consists of finding the mean-square optimal linear estimate £ (0, i) of
the unknown value of the increment £() (0, ), p > 0, from observations of the stochastic
sequence (k) + n(k) at points k =0,—-1,—-2,....

Let r(k) = Rk, 0, k € Z. Then {r(k): k € Z} are the Fourier coefficients of the function

S
FN)+g9(N)
element to 7(k). Let {V{';: k,j > 1} be the coefficients which determine a linear operator

which have the property (k) = 7(—k), k € Z, where 7(k) denotes a conjugate

V, = (P,)~!. Then we have relations
S VP =0k, k=1, (22)
1>1
where dy, ; is the Kronecker symbol. Using formulas (20) and (22) we obtain the spectral
characteristic of the optimal estimate Z(”)(O, w) of the unknown value of the increment

§(0, p):

1 _ —Mu n

o\ p) = Z? e Ak,

=0
The optimal estimate of the increment f (”)(O, ) is calculated by the formula
. . min{n [4]}
&0, 1) = S FRED (<kop) = SE=) +n(=) > (~LICLFG — ). (23)

k=0 §=0 1=0

The mean-square error of the estimate EA(”)(O ) is calculated by the formula

A (80, = ZZV“ P()r(k) + > r0gu(-1). (24)
1 k=1

leZ

where {g,(k): k € Z} are the Fourier coefficients of the function |1 — e [2mg(A\)A~2".

Corollary 3.2. The optimal estimate é\(”)(O,u) of the unknown value €™ (0, 1) of the
stationary nth increment sequence €™ (m, ), p > 0, from observations of the sequence
&(k) +n(k) at points k = 0,—1,—2,... is calculated by formula (23). The value of

the mean-square error A(f,g;g(") (0,1)) of the estimate EA(”)(O,,U) is calculated by for-
mula (24).
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Theorem 3.1 and corollaries 3.1, 3.2 determine solutions of the filtering problems for
the nth increment sequence £ (m, 1) and the linear functional B¢ which are based on
the Fourier coefficients of functions

A% f) 1 —e™ P f(N)g(N)
[1— e 2n(f(A)+9(N)" f(A)+9(N) AP (f(A) +9(N)
However, the problem of finding the inverse operator (P,)~! to the operator P,
)\271

determined by the Fourier coefficients of the function is a complicated

-1

[1—ePXu]2n (f(X)+9(N))
problem in most cases. Therefore, we propose a method of finding the operator (P,,)
under the condition that the functions

|1 — e Pr(f(N) +9(\) A" (25)
w TP T 900)
admit the canonical factorizations
2
1— IAp|2n f' ) + g\ o0 i

| e | )\(Qn( ) g( )) — kZ:O So,u,(k)e Ak , (26)

>\2n 0 2

_ —iXk

1= e u2n(f(N) + g(\) = kz:;)l/m(k)e . (27)

Using the coefficients ¢, (k), ¥, (k), k > 0, from factorizations (26), (27), we define
linear operators ®, and ¥, in the space fo. Let (®,)r; = wu(k —j) and (¥,)p,; =
Yk —j)ifl <j <k, (.); = 0and (¥,)r; = 0if j > k and k,j > 1. The
defined operators admit the following relation: ¥,®, = ®,¥, = I, where I is the
identity operator. Moreover, the operator P, allows the factorization P, = @;\IIM.

Thus, (P,)"! = ‘IJHEL and the coefficients of the operator V,, = (P,)~! are calculated
by the formula

min(k,j)

p=1
These observations can be summarized in the form of the following theorem.
Theorem 3.2. Let functions (25) admit the canonical factorizations (26) and (27) re-
spectively. Then the inverse operator P;l to the operator P, is calculated by the formula
P;l = @,,6;, where the linear operator ®,, in ly space is determined by the coefficients

(@ )k =wulk—7) if1 <j<kand (®u)r; =0ifj <k k,j>1

Using theorem 3.1 we can find the optimal estimate

Ae = | BON) dZe o0 (V) (28)

—T

of the functional A¢. The spectral characteristic of the estimate Eg is calculated by the
formula

1 OV (—iN)" 232, (P,'RD*a), e

B0 = A () (=) S T e T @ e ) 50 -
29
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where A, (e™) = 37 (D#a)ye~**. The mean-square error can be calculated by for-
mula

A (f,g;gé)
_ 1 / m A () [1 = e[ g(0) + 42" 332 | (P 'RD¥a), e
or | . 11— e * (F(A) + g(\))?

‘ 2

F(A) dA

. . 2n 00 _ . 2

L1 /W A (™) 1= e[ (1) = A2 (P IRDFa), |
2 ) 1= e (F(A) + g(N))?

= (RD"a,P,'RD"a) + (Q,D"a, D"a).

g(N) dX

(30)

Theorem 3.3. Let uncorrelated stochastic sequences {£(m), m € Z} and {n(m),m € Z}
define stationary nth increment sequences €™ (m, i) and 7™ (m, p) with absolutely con-
tinuous spectral functions F(X) and G(X) which have spectral densities f(A) and g(\)
satisfying conditions (15). Let conditions (12) be satisfied. The optimal linear estimate
A\f of the functional AE of unknown elements £(m), m < 0, from observations of the
sequence £(m) + n(m) at points m = 0,—1,—2... is calculated by formula (28). The
spectral characteristic hl(f)(/\) of the optimal estimate A€ is calculated by formula (29).
The value of the mean-square error A(f, g; 121\§) is calculated by formula (30). If the func-
tion |1 — e |2 A\=2n(£(X) + g(N\)) admits the canonical factorization (26), the operator
P! from formulas (29) and (30) can be represented as P! = <I>,L6L.

Example 3.1. Consider an ARIMA(0,1,2) sequence {&{(m),m € Z}. The first order
increments of the sequence £(m) are stationary and the increments with step p = 1 form
a one-sided moving average sequence of order 2. Let the sequence £(m) have the spectral
density

\ >\2|1—¢€7M‘2|1—¢6*i’\‘2

(A) = 1= e |2 :

Consider an other stochastic sequence {n(m),m € Z} with stationary increments of or-
der 1 uncorrelated with £(m) such that increments of the sequence {£(m)+n(m),m € Z}
with step 1 form a moving average sequence of order 1 and the spectral density has the
form

N1 e
A AN)=———
FO)+ 90 = =
Consider a real number sequence {a(k): k > 0} which is defined as follows: a(0) =1,
a(k) = —27% for k > 1. This sequence satisfies conditions (12). The problem is to

find the optimal mean-square linear estimate A¢ of the functional A¢ = Yoo alk)E(—k)
of unknown values £(k), & < 0, of the sequence &(m) from observations (k) + n(k),
k=0,—-1,—2,.... To calculate the spectral characteristic of the optimal estimate Kg
of the functional A{ we use formula (29). The operator P, = P is determined by
coefficients (P); 1, = %, |k —1] = p, I,k > 1. The inverse operator V = P! is defined
by coefficients (V)11 =1, (V)i =1+ ¢?if 1 >2, (V)ip=—0if |l -kl =1, 1,k >1,
and (V);x = 0 otherwise. The operator R is defined by coefficients (R)10 = 1 and
Ryr=0ifl>1,k>0, (I,k) # (1,0). The operator D* = D is defined by coefficients
du(k) = 1, k > 0. The spectral characteristic h1(\) of the estimate Xg is calculated
by the formula hi(X) = Y22, s(k)e*“k%, where s(0) = 1 — %1/) + 9% + d)d)?:ﬁ,

s(k) = 27812 — 5ep + 290%) + pFTLep, kb > 1.
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Denote A(j) = min{n,[j/u]}, j > 0. Then the estimate A¢ of the functional A¢ is
calculated by the formula

A()

Ag =37 s(k) (€ (k) + 0" <k, 1)) = STEC) + (=) 3 (<1 Chs( — 1),
k=0 =0

J =0

4. MINIMAX-ROBUST METHOD OF FILTERING

The value of the mean-square error A(h,(f) (f,9): f,9) =A(f,9; Eg) and the spectral

characteristic h,(f) (f,g) of the optimal linear estimate A¢ of the functional A¢ of unknown
values £(m) based on observations of the stochastic sequence £(k) + n(k) are determined
by formulas (29) and (30) under the condition that spectral densities f(A) and g(A) of
stochastic sequences £(m) and n(m) are known. In the case where spectral densities are
not exactly known, but a set D = Dy x D, of admissible spectral densities is given, the
minimax (robust) approach to estimation of functionals of the unknown values of stochas-
tic sequence with stationary increments is reasonable. In other words we are interesting
in finding an estimate that minimizes the maximum of the mean-square error for all
spectral densities from a given class D of admissible spectral densities simultaneously.

Definition 4.1. For a given class of spectral densities D = Dy x D, spectral densities
fo(X) € Dy, go(A) € Dy are called least favorable in the class D for the optimal linear
filtering of the functional A if

A(fo,90) = A(h(fo, 90); fo, 90) = A(R(f,9); f,9)

max
(f,9)EDs XDy
Definition 4.2. For a given class of spectral densities D = Dy x D a spectral character-
istic h°(e**) of the optimal linear estimate of the functional A¢ is called minimax-robust
if there are satisfied conditions

K (e") € Hp = ﬂ L3(f +9),
(f,9)€Ds XDy
min ma. A(h; f,g) = ma; A (RY; £, 9).
heHp (fvg)ED;(XDS’ ( ! g) (f,g)ech(XDg ( f g)

Using the derived formulas and the introduced definitions we can conclude that the
following statement holds true.

Lemma 4.1. Spectral densities [, € Dy(\), g5 € Dy(N) which satisfy conditions (15) are
least favorable in the class D = Dy x Dy for the optimal linear filtering of the functional
A& if operators Pg, RO, Qg constructed with the help of the Fourier coefficients of the
functions

: 2n
A2 2(N) 1= e[ NN

o
L= (fR(N) +gn(N)" fRN) + g0 (N’ A2 (fR(A) + gp(A)
determine a solution of the conditional extremum problem

max ((RD*a,P,,'RD"a) + (Q,D"a,D"a))

(31)
~ (R'D*a, (P}) ' R'D"a) + (Q}D"a, D"a).

The minimaz spectral characteristic is determined as h® = h,,( 3, gg) if hu( 3, gg) € Hp.

The function h® and the pair ( 3, gg) form a saddle point of the function A(h; f, g)
on the set Hp x D. The saddle point inequalities

A(hsflg0) = A(R% f),g0) = A (R f.g) Vf €Dy, Vg € Dy, Vh € Hp



126 M. M. LUZ AND M. P. MOKLYACHUK

hold true if h° = h,(f), g%) and h,(f),g0) € Hp, where (f7,g7) is a solution of the
following conditional extremum problem

A(f,9) = =Ahu(f2,90); f,9) — inf,  (f,g) €D,
A (hy (£2,95) 5 f-9)

2
B L T R e i 0 i
Ton ) A2 (1 — P (F9(N) + gO(N)
2
1 AN = e ) = R e, ()T RODra) e

- g(\) dA.
or ) A2 (1 — e (£9(N) + g0(N))”

This conditional extremum problem is equivalent to the unconditional extremum problem
Ap(f,9) = A(f,9) +0(f,9 [ Dy x Dg) — inf,

5(f,9|Dy x Dy) is the indicator function of the set Dy x Dy. Solution (fJ,¢%) to this

unconditional extremum problem is characterized by the condition 0 € dAp(f2, g7) [18].

5. LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS Dy X Dy

Consider the problem of optimal linear filtering of the functional A¢ for the set of
spectral densities D = Dy x D, where

DY = {f(A) ‘ % trf(A)d)\ < Pl}, D) = {g()\) i/ig()\)d)\ < PQ}.

27
Let us assume that densities f0 € Dy, gg € D, and functions

‘A 1)\) |1 1/\11,}271 0 )\2n Zk 1 (( ) lRon’a)kei)\k‘
P,y (f;ugu) - (A |1 — 61A“| ( o\ + guo‘)) -
‘Au (e»\) |1 i eiAu‘Q"f (\) — A\2n Zk . (( ) ! ROD“a) e“k‘
0 0\ _ .
hyg (fwgu) - Al |1 — e”‘“| ( ( )+ gu( )) )

are bounded. In this case the functional A(h,(fJ, g)

in £q x L1 space. It comes from the condition 0 € dAp( 3, gg) that the least favorable
densities f{(X) € Dy, g5(\) € Dy satisfy the equations

); £, g) is continuous and bounded

A, (ei)‘) |1 — e ‘Qn 92()\) + 2" Z ((Pﬂ) - ROD”a> i eIk (34)
k=1

= ar| A" |1 — e [" (FO(N) + g0 (V)

A (@) 1= ) =AY ((PL) T RODAa) e
=1 k (35)
= o A" [1— 2" (F2(N) + g0 (N)
where a3 > 0 and ay > 0 are constants such that ay # 0 if % f:r fﬁ(/\) d\ = P; and
ag # 0 if 5= f:r gg()\) d\ = P;. Thus, the following statements hold true.

Theorem 5.1. Let spectral densities f)(X) € Dy and g)(X) € Dy satisfy conditions (15)
and let functions hy, ;(f, 9%), hu.g(f), g5) determined by equations (32), (33) be bounded.
The spectral densities f(\) and g (N) determined by relations (34), (35) are least favor-
able in the class D = Dy x Dy for the optimal linear filtering problem for the functional
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A€ if they determine a solution of the extremum problem (31). The function hu(fﬁ,gg)
determined by (29) is the minimax spectral characteristic of the optimal estimate of the
functional AE.

Theorem 5.2. Let the spectral density f(\) be known, the spectral density g(\) € D,
and let conditions (15) be satisfied. Let the function hy 4(f,gp) be bounded. The spectral
density gg(/\) is least favorable in the class Dy for the optimal linear filtering of the
functional AE if it is of the form

A1 = e £() = 22 553, ((PD) 7 RODra) |

gg()\) = max [ 0,

: —f(x
ag|A[?]1 — et o
and the pair (f, gg) determines a solution of the extremum problem (31). The func-

tion h,(f, gg) determined by (29) is the minimax spectral characteristic of the optimal
estimate of the functional AE.

6. LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = D}, x D,

Consider the problem of the optimal linear filtering of the functional A¢ for the set of
spectral densities D = D}, x D,, where
1

o) < SO < U, o=

’ FN)dx < Pl},

™

D, = {g(/\)

Here spectral densities u()), v(A), g1(A\) are known and fixed, and spectral densities u()),
v(\) are bounded.

Let f)(X\) € Dy, go(A) € D, be spectral densities such that functions h, r(f7, g7),
g (f3, %) determined by (32), (33) are bounded. From the condition 0 € dAp(f), g9)
we find the following equations that determine the least favorable densities

9 = (1= (V) + w (), - |

—T

g(\)dx < PQ} .

i iap|2n n - -1 L i
A (™) 1= ™™ g0 (A) + A2 ;((Pﬂ) R’D"a) ¢ "
= arA* 1= ™" (£20) + g0 (V) (V) +72(\) +art),
A (M) |1 — e 2n .0 \) — \2n — PO ' ROD® iXk
() 1= e 1) = Y () RIDYa) e o

= aa A" 1= ™" (2N + g0 (V) (p(N) +a5),
where y1 < 0 and v1 = 0if f2(A) > v(A); 72(A) > 0 and 72 = 0if fI(A) < u(A); @(X) <0
and @(A) = 0 when g9 (X) > (1 —€)gi(A). The following statements hold true.

Theorem 6.1. Let spectral densities fo(\) € Dy, go(N) € De satisfy conditions (15).
Let functions hy, ¢ (f1,9%) and by, o(f3), 9%) determined by (32), (33) be bounded. Spectral
densities fJ)(\) and gp(X) determined by equations (36), (37) are least favorable in the
class D =Dy, x D, for the optimal linear filtering of the functional A€ if they determine
a solution of extremum problem (31). The minimaz spectral characteristic hy, (fg,gg) of
the optimal estimate of the functional A€ is determined by (29).

Theorem 6.2. Let the spectral density f(\) be known, the spectral density gg()\) €D,
and let conditions (15) be satisfied. Let the function hy 4(f, %) determined by (29) be
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bounded. The spectral density gﬁ(/\) is least favorable in the class D. for the optimal
linear filtering of the functional AL if it is of the form

gp(A) = max {(1 - e)g1(A), 1(N)}
A (€2 [1 =™ f() = A2 ((PY) T RODra
fl(A) = |)\|n|1 _ ei)\p,k|n ( ) - f(A)v

and the pair (f, gﬂ) determines a solution of the extremum problem (31). The function

hu(f, gg) determined by (29) is minimax spectral characteristic of the optimal estimate
of the functional AE.

s eiAk‘
k

7. CONCLUSIONS

In this article we found a solution of the filtering problem for linear functionals
A& =31 g a(k)E(—k) which depend on unobserved values of a stochastic sequence &(m)
with stationary nth increments at points m = 0,—1,—2,.... Estimate is based on ob-
servations of a sequence &(m) + n(m) at points m = 0,—1,—2,..., where n(m) is an
uncorrelated with £(m) sequence with stationary nth increments. We derived formulas
for computing the value of the mean-square error and the spectral characteristic of the
optimal linear estimate of the functional in the case where spectral densities of sequences
are exactly known. In the case of spectral uncertainty, where spectral densities are not
exactly known, but a set of admissible spectral densities is specified, the minimax-robust
method is applied. Formulas that determine the least favorable spectral densities and
minimax (robust) spectral characteristics are derived for some special sets of admissible
spectral densities.
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PROPERTIES OF INTEGRALS WITH RESPECT TO FRACTIONAL

POISSON PROCESS WITH THE COMPACT KERNEL
UDC 519.21

Y. MISHURA AND V. ZUBCHENKO

ABSTRACT. We study the properties of the fractional Poisson process with the Molchan—Golosov kernel.
The kernel can be characterized as a compact since it is non-zero on compact interval. The integral of
nonrandom function with respect to the centered and non-centered fractional Poisson processes with
the Molchan—Golosov kernel is defined. The second moments of these integrals in terms of the norm of
the integrand in Li, g ([0, T]) space are obtained. Moment estimates for the higher moments of these
integrals are established via the Bichteler—Jacod inequality.

AHoTALIsI. BuBueno BiacTmBOCTI IpOGOBO-IIYyACCOHIBCHKUX MpOIeciB 3 gaapom Mosaana—Tomocosa,
AKe MOXKHa OXapPpaKTepu3yBaTHU AK KOMIIAKTHE, TOMY IIIO BOHO HEHYJ/ILOBE JINIIE Ha KOMIIAKTHOMY iHTep—
BaJti. Bu3Haueno inTerpasu BiJ HeBUIAIKOBUX (DYHKIIIN 32 IEHTPOBAHUM Ta HEIEHTPOBAHUM JPOOOBO-
MyacCOHIBCHKUMU mporecamMu 3 siapom Mosrgana—TosocoBa. OuiHeHO Apyri MOMEHTH IUX IHTErpaJiB B
TepMinax HopMu miginTerpaabrol dynkmii B mpoctopi Ly /g ([0,7]) Ta onep:xamo MOMEHTHI OIIHKH 3a
nornomororw HepiBaocTi Bixrenepa—2Kakoma.

AnHOTANUs. M3ydens! cBoiicTBa JPOOHO-IIyaCCOHOBCKUX IPOIECCOB ¢ sapoMm Momxgana—Iomocosa, Ko-
TOpPOE MOXKHO OXapaKTEepU30BATH KAK KOMIIAKTHOE, IIOCKOJILKY OHO HEHYJIEBO€ HA KOMIIAKTHOM HHTEp-
BaJsie. OmpesiesieHbI HHTErPAJIbl OT HEC/Iy 9aifHo# (DyHKIUA 10 HEHTPHPOBAHHOMY K HEIEHTPHPOBAHHOMY
IPOOHO-IIYaCCOHOBCKUM IporeccaM ¢ sapoM Mosgana—lomocoBa. O1eHeHbI BTOPbIe MOMEHTHI STHX HH-
TerpajioB B T€PMHUHAX HOPMBI [IOJUHTErPAJIHHON (PYHKIUH B IPOCTPAHCTBE Ll/H([O7 T]) u nosygeHst
OIIEHKH JIJTs MOMEHTOB BBICIIIETO MOPSKa C MOMOINLI0 HepaBeHCTBA Buxremepa—2Kakoga.

1. INTRODUCTION

Models based on a fractional Brownian motion are an important tool for the study of
many theoretical and applied problems. Due to the structure of its covariance function,
the fractional Brownian motion that is the process parametrized by its Hurst index,
allows to model the dependence on the past history of the process. It is known that
for Hurst parameter H > 1/2 the fractional Brownian motion has so-called long-range
dependence property, for H € (0,1/2) it is a process with short memory, and for H = 1/2
we have the standard Brownian motion.

At the same time, many natural, technical and economic phenomena are characterized
by the instantaneous change in the dynamics of the studied characteristics that cannot be
described with the help of the fractional Brownian motion. In particular, such dynamics
is typically seen in “jumps” of interest rates, exchange rates, financial indices. Models
with jumps can be described with the help of stochastic differential equations that include
Poisson measure (see, e.g., [17] and references therein). However, current dynamics of
these processes depends essentially on their past history. So construction of models
which are able to reflect effectively such features of the process is relevant. Particularly,
it is significant for estimation and forecasting of future dynamics of complex financial
instruments based on interest rates and financial indices. That’s why we are interested in

2000 Mathematics Subject Classification. Primary 60G22; Secondary 60G51.

Key words and phrases. Fractional Poisson process; integral representation of the fractional Poisson
process; Mandelbrot — van Ness kernel; Molchan—Golosov kernel; integral with respect to the fractional
Poisson process; Bichteler—Jacod inequality.
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study of the processes that can combine dependence on the past with an instant change
or “jumping” change of the dynamics.

Combining randomness with independence on the past history of the process, the
property of long memory and “jumping” change of the dynamics of characteristics under
investigation can be expressed mathematically correspondingly by the standard Brownian
motion, the fractional Brownian motion and by the Lévy processes.

Mathematical model combining dependence on the past and possibility of instanta-
neous change of characteristics can be expressed, in particular, by the fractional Poisson
process.

There are different approaches to the definition of the fractional Poisson process. In
the paper [1] several methods of the fractional Poisson process construction are proposed.
One of them is the following: it is assumed that for the fractional Poisson process N, (t),
t > 0, its distribution py, = P{N,(t) = k}, k > 0, solves the following equation

d’pi
dtv
where p_1(t) = 0 and p;(0) = L{x—oy and for m € N

= —A\pr + Apr—1,k >0,

d’u(t) F(mlﬂ,) fg (tfs)llw,m jsu(s) ds, form—1<v<m,
dt” 4Zu(t), se[0,T], for v = m,

is the fractional derivative in the sense of Dzherbashyan—Caputo.

Another method is to replace the factorial functions in the distribution of the Poisson
process by the Gamma functions. In works [4, 5, 14] the so-called “renewal” approach is
used. In contrast to classical characterization of the usual Poisson process as a renewal
process, which is constructed as the sum of non-negative independent random variables
with exponential distribution, it is assumed that these random variables have Mittag-
Leffler distribution. One more approach to the fractional Poisson process construction is
the use of so-called “inverse subordinator” method [8].

In order to introduce our approach, we perform certain analogy with a fractional
Brownian motion, see, e.g. [10]. Besides the definition of the latter as a Gaussian process
with some covariance structure, the fractional Brownian motion can be represented as the
integral of a nonrandom kernel with respect to the standard Brownian motion. Examples
of kernels used for such representation are the Mandelbrot — van Ness with infinite support
and the compactly supported Molchan—Golosov kernel.

Using such representation, it is natural to define the fractional Poisson process as
the integral of one of such kernels with respect to the Poisson process (Lévy process).
The fractional Lévy processes was first defined using Mandelbrot — van Ness kernel in
the work [2], the theory was developed in the paper [7]. The general definition of the
fractional Lévy process by using the Molchan—Golosov kernel is given in the work [16].

In this paper we conduct further research of the fractional Poisson processes with
the Molchan—Golosov kernel. The integral of a nonrandom function with respect to the
centered and non-centered fractional Poisson processes with the Molchan—Golosov kernel
is defined. We estimate second moments of such integrals in terms of the norm of the
integrand in L;,g([0,T]) space. Moment estimates for the higher moments of these
integrals via the Bichteler—Jacod inequality are established.

2. MAIN DEFINITIONS

The fractional Brownian motion B¥ = {BH t+ € R} with Hurst index H € (0,1) is a
Gaussian process with zero mean and the covariance

1
EBIBH = 3 ([t + |s?H — |t — s]?H).
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In what follows we consider H € (1/2,1). In order to represent a fractional Brownian
motion via a Brownian motion we can use both the Mandelbrot — van Ness and the
Molchan—Golosov kernel.

The Mandelbrot — van Ness kernel fg(t,s) is given by

fu(t,s) =cy t— )12 g1/ , s,t € R,
+ +
where
> 2 1\ Y?  (2HsinwHT(2H))'/?
_ 1 H-1/2 _ H-1/2\" 4o 1 _ .
" (/0 (( +9) 8 ) Y T(H +1/2)

The Molchan—Golosov kernel zg(t, s) is given by

t
Cn )sl/Q_H/ w12 (4 — s)H=3/2 g, 0<s<t.

G vy v

In the work [16] it is proved that actually cg = Cp.

The dynamics of zy (¢, ) is equivalent to the dynamics o in the neighborhood
of zero and to the dynamics (t — -)¥~/2 in the neighborhood of t, see, e.g. [3]. In
particular, zg(t,-) is locally square integrable on (0,t) for every ¢t € (0,00). Also, for
H > 1/2 the kernel zg(t,-) is continuous when s # 0 and has a continuous derivative
on (0,t).

The fractional Brownian motion can be represented by integration of the nonrandom
kernel with respect to a Brownian motion, in particular:

f.1/2—H

— by integration over an infinite interval of the Mandelbrot — van Ness kernel:

8),ca= ([ _tute.oya.)

— or by integration over a compact interval of the Molchan—Golosov kernel:

(Bf) 120 = (/Ot zH(t,s)dWs)m. (1)

The right-sided Riemann—Liouville fractional integral operator I$_ f of order a on
[0, 7] is defined as

1 (T u u_sa—l m s or a
£)(s) = {F(a) Js flu)( )~ tdu, s€l0,T], for a >0,

teR

(Ip_ £(5), s €10,7T], for a =0,

Ip2f =Dy f,  ac(0,1),

where DF._ f is the right-sided Riemann—Liouville fractional derivative operator of order
a on [0,T], which is defined as

—#(I12°N)(s), s €(0,7), for a € (0,1),
(DE_f)(s) := ¢ —2Lf(s), s€(0,T), fora =1,
f(s), s €(0,T), for a=0.

The right-sided Riemann—Liouville fractional integral operator of order o on R is de-
fined as

ﬁ f:o fu)(u—s)*"tdu, seR, fora>0,
f(s), séeR, fora=0.

(I2)(s) :={

I"*f.=D%f, ac(0,1),
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where D f is the right-sided Riemann—Liouville fractional derivative operator of order o
on R:

—£(If) (s) = —ﬁ% S Fu)(u— )~ du,
s e R, for a €(0,1),

(DENs) = _% (s), s €R, for a=1,
f(s), s € R, for a =0.

The centered fractional Poisson process with the Mandelbrot — van Ness
kernel. Investigation of a fractional Poisson process with the Mandelbrot — van Ness
kernel and the integral with respect to this process is carried out in the work [7]. Below
we give an overview of the main results.

Definition 2.1. Two-sided centered Poisson process (;\t)teR is defined as follows: 5\,5 =
5\?), ift >0and \ = —5\22_)15)_ = —lim. o4 5\22_)15_5), if t < 0, where A and A® are
independent and identically distributed centered Poisson processes.

Definition 2.2. Let (S\t)te]g be a two-sided Poisson process on R, fg(t,s) is the Man-
delbrot — van Ness kernel. For H € (1/2,1) a stochastic process

t
&:/ fa(t,s) i,

is called a fractional Poisson process with the Mandelbrot — van Ness kernel. This integral
exists in L2-sense (as the limit in L? of integrals of a sequence of approximating fx (¢, s)
step functions; the limit does not depend on the choice of the sequence of approximating
functions).

The fractional Poisson process X; can be represented as follows:

Xt:/ (IH 1/2]1((”)) (s) dAs,
R

where I_ is the right-sided Riemann-Liouville fractional integral operator on R.
Define the space H as the completion of L!(R) N L%(R) with respect to the norm

lgll# == (A/R (If{_l/Qf)Q(s) ds>1/2.

It is known from [7] that for the functions f € L*(R) N L?(R)

A(If_l/Qf) (s)ds < 0.

Let ¢: R — R be a simple function:

n—1
= Z ai1[5i75i+1) (S)
=1

where a¢; € R, i =1,...,nand —o0 < s1 < $2 < ... < 8, < oco. Notice that simple
functions belong to the space H.

The integral with respect to the fractional Poisson process with the Mandelbrot — van
Ness kernel is defined for simple functions at first. Let ¢ be a simple function. Then

/ é(5) dX, = / If"l%) dhs.

Also from [7] we have the following L2-isometry:

(/¢ dX)—f(/(Hlﬂwd&)=A4(ﬂlmwa®w=wm%
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We can extend the definition of the integral with respect to the fractional Poisson process
for the class of functions f € H. Namely,

/]R f(s)dX, = /R (127272 1) (s) an,

with equality in L?-sense.
The noncentered fractional Poisson process Y; with the Molchan—Golosov kernel is
defined as follows:

t
Yt:/ zr (t, 8) ds,
0

where )\, is the simple Poisson process with intensity A, zg (¢, s) is the Molchan—Golosov
kernel, and the integral exists in the pathwise sense due to step structure of the Poisson
process and smooth properties of zy (¢, s), mentioned above.

The centered fractional Poisson process Y; with the Molchan—Golosov kernel is defined
as follows:

t
f/t:/ zr (t, 8) ds,
0

where A\; = As — \s is the centered Poisson process. Y, is defined as the integral with
respect to the square integrable martingale. So the centered fractional Poisson process
exists as the integral in L? sense.

Later on we shall consider both integrals with respect to the non-centered and centered
fractional Poisson process.

3. DISTRIBUTION CHARACTERISTICS OF THE FRACTIONAL POISSON PROCESS WITH
THE MOLCHAN—GOLOSOV KERNEL

Using well-known formulas for the integrals with respect to the Poisson process, we
obtain the following first and second noncentral moments for the noncentered fractional
Poisson process with the Molchan—Golosov kernel:

t t u
my = )\/ zr(t,s)ds = )\CH/ qul/Q/ sV2H (y — s)H=3/2 ds du,
0 0

0
t Ho1o 77 HHA+1/2 (2)
“ = A B H) H+ 12

Cr (7(3/2— H)) /0

my = \2 (/Ot zH(t,s)ds)

1 2
— )2 il (2HAL |y 2H
(CH sin(r(3/2 — H)) H + 1 /2) *

2 t
+ )\/ 22(t, 5) ds
0

Here we have used the equality

t
/ 22 (t,s)ds = t*1
0

that follows from the representation (1) of the fractional Brownian motion and the form
of its covariance function.

We know that the fractional Brownian motion has stationary increments. Now we
investigate whether the property of stationarity of increments holds for the fractional
Poisson process with the Molchan—Golosov kernel.

Lemma 3.1. Both for centered and noncentered fractional Poisson process with the

Molchan—Golosov kernel the property of stationarity of increments in general does mot
hold.
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Proof. Consider the noncentered process, for the centered one the proof is similar. We
investigate whether the characteristic function of the fractional Poisson process
E exp{iuY:}, ueR, 0<t< oo,
and that of its increment
Eexp{iu(Yitt, — Ys,)}, ueR, 0<tt; < oo,

are equal.

We use propositions 2.4, 2.6 [13] and results by [7]. Thus if some process Z allows
the representation Z; = fR f(t,s)dLs, where L is Lévy process with characteristic triplet
(0,0, v) without Gaussian component, such that E L; = 0, EL? < oo, then

E(exp(iuZy)) = exp ( /]R /]R (e 1~ i (1, spu) vi(d) ds) .

Therefore for fractional Poisson process Y; with the Molchan—Golosov kernel we obtain
the following characteristic function:

EexpliuYy] = exp {/ A (exp{ivza (t, s)Ljp,4(s)} — 1) ds} . (3)
R
Further,
t+t1 t
Yive, — Yy z/ ZH(t—i—tl,s)d)\s—/ zp (t1, 8) dXs
0 0

t4t
:/ (zu(t+t1,s) — zu(t1,s)) dXs,
0

where in the last equality we use that according to definition we have zg(¢,s) = 0 if
condition 0 < s < t does not hold. So

E eXp{iu(Y}_,_tl - Y;fl )}

= exp {/R Aexp{iu(za(t +t1,8) — 2 (t1,5)) Ljo,t46,(5)} — 1) ds} .

We compare (3) and (4). It is sufficient to compare

(4)

t
zu(t,s) - Lpo,(s) = cHsl/%H/ w12y — s)H=3/2 gy - Tj0,4(s), (5)

and
(za(t +t1,8) — zu(t1,s)) - Ljo,e4eq)(5)

o em t+ts Ho1/2y 0 H32 gy 1 (6)
= cys u (u — s) w- Lio,p44,)(8)-
t1

As (5) and (6) are not equal, for the noncentered fractional Poisson process with the
Molchan—Golosov kernel the property of stationarity of increments in general does not
hold. a

4. INTEGRAL WITH RESPECT TO THE FRACTIONAL POISSON PROCESS WITH THE
MOLCHAN—GOLOSOV KERNEL AND ESTIMATE OF ITS SECOND MOMENT IN TERMS
OF THE NORM OF THE INTEGRAND IN Lq,4([0,T]) SPACE

Consider the noncentered fractional Poisson process Y; with the Molchan—Golosov
kernel. Let a function f be defined on [0,T], H € (3,1). Define the following operator:

(K£ 1) (5) = Cus' > (V22 ) (), s € (0,7),

where I;{:I/ % is the right-sided Riemann-Liouville fractional operator defined in Sec-
tion 2.
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Introduce the spaces
L pois ([0, T]) = {f: [0,T] = R | Kf' f € L*([0,T))}

with the norm

1£1lzs

H,Pois

(0,1 = ||K71!f||L2([O,T]) ,
and

f’%—[,Pois([Ov T])

{7 € B 10,11 and ()7 121) € L,(0.7]) for some p > =7 |

with the same norm.
Define for f € L% p,;,([0,T]) the integral with respect to the fractional Poisson
processes in the following way:
T T
/0 f(s) Y, = /0 (K2 1) () d, (7)
and

/ f(s) dY, = / (K2 £) (s) dA. (8)
0 0

Thus, we have the analogy with the construction of the integral with respect to the
fractional Brownian motion. Note that from (2)

t t

f/tz/zH(t,s)d)\szYt—)\/ zp(t,s)ds =Y, — EYy,

0 0
and
T ~ T T
/ f(s)dYs := / f(s)dYs — / f(s)d(EYs),
0 0 0

where both integrals exist in L?-sense.

Lemma 4.1. 1. For f € L%LPM-S([O,T]) both integrals (7) and (8) exist in L? sense.
2. For f e E%{,Pois([o, TY)) integral (7) exists in the pathwise sense.

Proof. 1. Consider the noncentered case, the centered one is considered similarly. It
holds [11] that (K7 1o4))(s) = zm(t, s). Using properties of integrals with respect to the
Poisson process for step functions we have:

' a 2_ 2 ' el s)as 2 ! H )2 s)as
E(/ <KTf)<s>dAs> = (/ <KTf><)d> o [ ()

<OTENIE: oy ©)

H,Pois

T 5 2 T
e ([ o) = [ Gt erm = st o

where X is the intensity of the Poisson process. Note that according to [12] step func-
tions are dense in L3 p,;([0,T]). Therefore, we can approximate the function f €
L3 pois([0,T]) by step functions f, in L3 p,;,([0,T]) and to define the integral of the
function f with respect to the fractional Poisson process using as follows:

T T
/ f(s)dYs = lim fn(s)dYs — convergence in L?(P).
0 0

n—00

2. Consider the integrand of the right side of equality (7):
(K f) (s) = Cpyst/2—H (1;1:1/2 H—1/2 f) (s).
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Functions belonging to the space ifq Pois([0,T]) satisfies the conditions of the Theo-
rem 3.6 [15]. According to it the function (I;I__l/2 H=1/2 £) (s) is Holder of order H—%—%
on (0,T).

In the right side of equality (7) the integration is with respect to the Poisson process,
which is a process of bounded variation on [0,7']. Also, according to the properties of the
Poisson process a.s. there exists such e(w) > 0, that \; = 0 for all s € [0,e(w)]. Thus, on
(e(w), T) a.s. we have the continuous function, that can be integrated with respect to the
process of bounded variation. Therefore, integral (7) exists in the pathwise sense. O

Remark 4.1. To estimate the second moment of the integral with respect to the fractional

Poisson process with the Molchan—Golosov kernel we need to estimate fOT(K%{ )%(s) ds.

It can be done similarly to the fractional Brownian motion case [9] with the help of (9).
Denote a = H — % Then

T 2 T 2 T )
E</0 f(s)dY5> —E(/O (KHf) (s)d)\s> g(A2T+/\)/O (KFf)" (s)ds

_ c/OTs—% </8Tf(u)ua(u gyt du>2 ds

< CB(l—2a,a)/T/Tf(u)f(v)|u—v|2aldudv
o Jo

< CIfI1Z, o

5. ESTIMATE OF HIGHER MOMENTS OF INTEGRAL WITH RESPECT TO THE
FRACTIONAL POISSON PROCESS WITH THE MOLCHAN—GOLOSOV KERNEL

Let f € Lﬂpois([O,T]). Recall that
T T T ~ T
| @avi= [ o= [ i@ ds [ ER) o (o)
and the first integral in the right—pand side of (10) exists as the integral with respect to
the square-integrable martingale Ay = A\; — As.
Now we are in the position to establish moment inequalities for integral with respect

to the noncentered fractional Poisson process with the Molchan—Golosov kernel. For the
centered process the similar bounds hold with obvious modification.

Theorem 5.1. Let f € E%{’Pm‘S([O,T]), H € (3,1). Then for any k such that 0 < k <
qu there exists the constant C, = C'(H, k), such that for any T > 0

/0 " f)av,

Proof. We consider moments of the order 2k:

T 2k T 5 T
/0 £(s)av, —E( / (KL f) () dAs + / (KH £) (s)Ads

<22kE<

=1 + Is.

2k T 2k
E gck||K¥ink ]+Ck>\2k (/ uH1/2|f(u)|du> .
0

ﬁf,T
>2k
2k T
) 1 o2 (/ [0 ><s>|Ads>

E

2k

JRCHICE
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To bound the first integral, we use the Bichteler—Jacod inequality (see, e.g., [6]):

T k T
2%k 2 2%k
n< c/ ((K;ff) A ((K55)" (9)2) ) ds < Ck/ (KH 1) (s)ds
0 0
AL
Establish whether the last integral exists:

7 g H )2k 2k T (1/2—H)2k (H=1/2 H-1/2 2"
I = (K7 f)" (s)ds =Cq s (IT_ . f) (s)ds.
0 0

Remind that according to the definition of the space Ig{ Pois([0,T]) there exists some
p > H+1/2  ()F71/2f(+) € Ly([0,T]. So the same way as in the proof of the Lemma 4.1

we can establish that the function (I;I:l/Q H-1/2 f) (s) is Holder of order H — % —1on

- P
(0, 7). Thus I; is finite if and only if
T
/ s(1/2=H)2k gg 0,
0
and due to the condition k < ﬁ the integral I, is finite.
For estimation of Is we use the equality
T T T
/ (K%{f) (s)ds = CH/ 51/27H/ w2 () (u — $)T3/2 duds
0 0 s
T u .
= CH/ qul/Qf(u)/ sV2H (y — 5)H=3/2 ds du,
0 0
=Cgp————— —1/2 du.
Hin(x(3/2 — H)) /0 T () du
Therefore
T T
[ Ity @ ds < e [ e an,
0 0
and
T 2k
Iy < CpA%k / uH 2 f(u)|du | . O
0
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QUASI-STATIONARY DISTRIBUTIONS FOR PERTURBED

DISCRETE TIME REGENERATIVE PROCESSES
UDC 519.21

MIKAEL PETERSSON

ABSTRACT. Non-linearly perturbed discrete time regenerative processes with regenerative stopping
times are considered. We define the quasi-stationary distributions for such processes and present con-
ditions for their convergence. Under some additional assumptions, the quasi-stationary distributions
can be expanded in asymptotic power series with respect to the perturbation parameter. We give an
explicit recurrence algorithm for calculating the coefficients in these asymptotic expansions. Applica-
tions to perturbed alternating regenerative processes with absorption and perturbed risk processes are
presented.

AHOTALISA. Y cTATTi PO3IJISiIAIOTHCS IPOLECH BiJIHOBJIEHHSI 3 JUCKPETHBIM 9aCcoM i3 HesliHifiHuMEU 30y-
peHHAMU. Bu3HateHO KBa3i-CTaIliOHAPHI PO3MOIIN I TAKHX IPOIECIB Ta MPEeJCTABIEHO YMOBH IS
1x 36i>kHOCTi. IIpH AesKuX JOIATKOBUX yMOBAX /ISl KBa3i-CTAI[ilOHAPHUX PO3MOIiIiB MOXKHA, BHIIUCATH
ACHMIITOTHYHI PO3KJIa U y CTeleHeBi psSau BiTHOCHO mapaMerpy 30ypenHd. IIpencraBieHo TouHuUil pe-
KyPPEeHTHHH aJIrOpuTM [Jist 004ncieHHs: KOedinieHTiB ux acHMITOTHIHAX PO3KIaLiB. IIpeascrasieno
3aCTOCYBAaHHSI Pe3yJIbTaTiB JJIs IPOIECiB BiTHOBJIEHHS i3 30ypeHHSMHU 3 MOIVIMHAHHSM Ta JIJISL MIPOIECiB
pu3uKy i3 30ypeHHsAMH.

AHHOTAIMA. B crarbe paccMaTpUBAIOTCs MPOIECCHI BOCCTAHOBJIEHUSI C JUCKPETHBIM BPEMEHEM C He-
JIMHEHHBIMHU BO3MYyIleHusAMHU. OnpeeseHbl KBA3U-CTAIlMOHAPHBIE PACIPEIEJIEHNS JIJIS TAKUX IIPOIECCOB
¥ IPEJCTABJIEHBI YCJIOBUSI HX CXOZUMOCTH. [IpM HEKOTOPBIX [JOMOJHUTEIBHBIX YCJIOBHSIX, JJIs KBa3H-
CTAIMOHAPHBIX pACIpeseeHuil MOTYT OBITh BBIMUCAHBI ACHMITOTHYECKHE DA3JIOXKEHHSI B CTEleHHbIe
pPsAABl OTHOCHUTEJBHO IapaMerpa BoO3MyIeHust. [IpeacTaBiieH TOYHBIR PEKYPPEHTHBIN AJITOPUTM I
BBIYUCTEHAS KOIMDPUITMEHTOB 3TUX ACUMITOTHYIECKUX Da3yIoKeHHil. [IpescTaBiieHbl MPUIOXKEHUS pe-
3yJIBTATOB JIJIS IIPOIECCOB BOCCTAHOBJIEHUS C BO3MYIIEHHSMHU C IIOIVIOIIEHUEM M JJjIs IPOIIECCOB PUCKA
C BO3MYIIEHUSIMH.

1. INTRODUCTION

Many stochastic systems has a random lifetime, the process is terminated due to
some rare event. This means that the stationary distribution of such process will be
degenerated. However, before the lifetime of the system goes to an end, one can often
observe something that resembles a stationary distribution. It is often of interest to
describe such behaviour, so-called quasi-stationary phenomena.

In this paper we study such phenomena for discrete time regenerative processes with
regenerative stopping time. Roughly speaking, such a process £(n), n = 0,1,..., regen-
erates at random times 71,72, ..., and has random lifetime p which regenerates jointly
with the process.

In particular, such processes includes discrete time semi-Markov processes with ab-
sorption. For example, £(n) can be a Markov chain, 71, 79, . .., the return times to some
fixed state and p, the first hitting time of some fixed state.

As a special case, when p = oo almost surely, this class of processes includes regener-
ative processes without stopping time.

2000 Mathematics Subject Classification. Primary 60K05, 34E10; Secondary 60K25.
Key words and phrases. Regenerative process, Renewal equation, Non-linear perturbation, Quasi-
stationary distribution, Asymptotic expansion, Risk process.
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Under some conditions, it can be shown that for such processes there exists a proba-
bility distribution 7(A) such that

P{{(n) € A/u>n} —nm(A) asn — oo

We call this distribution the quasi-stationary distribution and use it to describe the
quasi-stationary phenomena of the process. In the case y = co almost surely, m(A) is the
usual stationary distribution.

Quasi-stationary distributions have been studied intensively since the 1960’s. Some of
the important early works are Vere-Jones (1962), Kingman (1963), Darroch and Seneta
(1965, 1967) and Seneta and Vere-Jones (1966).

In this paper, we consider the case when £(n) is perturbed and that the perturbation
is described by a small parameter . Furthermore, it is assumed that some continuity
conditions hold at e = 0 for certain characteristics of the process &) (n), regarded as a
function of . This allows us to interpret £(5)(n) as a perturbed version of the process
£O)(n).

We want the quasi-stationary distribution 7()(A) of the process £()(n) to be an
approximation of the quasi-stationary distribution 7(°)(A) of the process £(9)(n), that is
7 (A) — 70 (A) as e — 0.

We give conditions such that the quasi-stationary distribution can be expanded as

O (A) = 7 O(A) + fi(A)z + -+ fr(A)eF +o(),

where the coefficients f1(A4),..., fx(4) can be calculated from an explicit recurrence
algorithm.

Theoretical results are illustrated by example to the model of an alternating regenera-
tive process with absorption. Under perturbation conditions on distributions of sojourn
times and absorption probabilities, we give explicit the asymptotic expansion for the
quasi-stationary distribution for such a process.

It is also shown how the results can be used in order to obtain approximations of
the ruin probability for a discrete time risk process. We describe how an asymptotic
expansion of the ruin probability can be obtained under perturbation conditions on claim
probabilities and claim distributions.

The results in the present paper continue the line of research studies of the perturbed
renewal equation in discrete time in Gyllenberg and Silvestrov (1994), Englund and
Silvestrov (1997), Silvestrov (2000) and Petersson and Silvestrov (2012, 2013).

Corresponding results for perturbed regenerative processes in continuous time can be
found in the book Gyllenberg and Silvestrov (2008) where one can also find an extended
bibliography of works in the area.

Some works related to asymptotic expansions for perturbed Markov chains are Kar-
tashov (1988, 1996), Latouche (1988), Hassin and Haviv (1992), Khasminskii, Yin and
Zhang (1996), Yin and Zhang (2003), Altman, Avrachenkov and Nufes-Queija (2004),
Koroliuk and Limnios (2005) and Yin and Nguyen (2009).

2. QUASI-STATIONARY DISTRIBUTIONS FOR REGENERATIVE PROCESSES

For every e > 0, let £(2) (n) be a regenerative process in discrete time with a measurable
phase space (X,I") and regeneration times 0 = Tée) < 7'1(6) < ..., and let u(® be a
random variable defined on the same probability space (€2, F, P) and taking values in the
set {0,1,...,00}.

We call (%) a regenerative stopping time for the regenerative process ¢ (n) if for
any A € T', the probabilities P(*)(n, A) = P{f(s)(n) e A pue > n} satisfies the renewal
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equation,
PEn,A)=q®(n,A)+ Y POn—kAfO k), n=01,..., (1)
k=0
where
¢ (n,A) =P {§<€> (n) € A, u® > n,Tl(E) > n}
and

7Om) =P {r? =nu >}

Note that the defect f() of the distribution f(¢)(n) is given by the stopping probability
in one regeneration period for the process 5(5)(71), that is,

f(e) —1_ i f(e)(n) —Pp {M(E) < 7.1(6)} .
n=0

We consider the case where the stopping probability in one regeneration period for
the limiting process may be positive, i.e., f(0) € [0,1).
Assume that the distributions f()(n) satisfy the following conditions:
A: (a) fOn) — fO(n)ase —0,n=0,1,..., where the limiting distribution is
non-periodic and not concentrated in zero.
(b) £ — fO €[0,1) as e — 0.
B: There exists § > 0 such that
() limo<eo Xy e f(n) < oc.
(b) Xolo e fO(n) > 1.

Let us consider the characteristic equation
(o]
S e fO(n) = 1. (2)
n=0

The following result from Petersson and Silvestrov (2012, 2013) gives some basic prop-
erties of p(¢) that will be used in what follows.

Lemma 2.1. Assume that A and B hold. Then there exists a unique non-negative
solution p'®) of the characteristic equation (2) for e small enough and p&) = p0 < § as
e —0.

For the rest of the paper, assume that A and B hold so that p() is well defined for ¢
small enough. Also, to avoid repetition, we assume that ¢ always is small enough to
satisfy the statements of Lemma 2.1. If both sides in (1) are multiplied by ep(E)", we see

that the transformed probabilities P(n, A) = ep(s)"P(n, A) satisfy

n
PO, A) =9 (n,A)+ > PO (n—k A)f(E), AeT, (3)
k=0
where
@A) =" A), FOm) = O ).

It follows from the definition of p(*), that (3) is a proper renewal equation. In order
to apply the classical discrete time renewal theorem, the following condition is imposed
on the tail probabilities of 7'1(6) A u®,

C: There exists v > 0 such that
Tim S e(p(°>+v)nq(s)(n’X) < .

e—0
n=0
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For any ¢ > 0, we define the quasi-stationary distribution of £)(n) by
©) = Znzo® "0 A) "
T v B , .
Dm0 €”mq ¥ (n, X)
Under conditions A, B and C the quasi-stationary distribution is well defined for

sufficiently small e.
Let us denote

Iy = {A el: q(E)(n,A) — q(o)(n,A) ase — 0,n= 0,1,...}

We assume the following:
D: X eTy.

Note that I'g is an algebra but does not necessarily coincide with I'.

The first part of the following result motivates why it is natural to call 7(2) (A) quasi-
stationary distributions. The second part gives conditions for convergence of 7(*)(A) for
sets A € I'g.

Theorem 2.2. Assume that A, B and C hold.
(i) Then there exists €9 > 0 such that for every e < g,

P {5(5)(71) e A/u® > n} —7&(4) asn—oo, AcT.
(ii) If, in addition, condition D holds, then
7 (4) - 7O4) ase—0, AeT,.

Proof. First note that if the limiting distribution f(®)(n) is non-periodic, then there exists
a finite positive integer N such that

gcd{l <n<N:fOm)> 0} =1

It follows from condition A that the distributions f(*)(n) are non-periodic for e suffi-
ciently small, say € < e7. Let mf) denote the expectation of f ©)(n). Since p(» < § we
can choose dg > 0 such that p(0) < § — §y. Let C = sup,,>q ne —%n  Since p&) — p©)
and condition B holds it follows that

o0
o pn £(e) < lim (6—d0)m £(e)
hmm hm Zne ¥ (n )7glg%)nz_%ne f¥(n)

e—0
< i on £(e)
<C Ehlr(l)ng_oe f¥(n) < oo

It follows that m (6) is finite for all € small enough, say ¢ < g5. Condition C implies
that for any A e T’

[e.¢] o
Tim Z §® (n, A) = E% Zep<a>n P {5(5)(71) €A > TL,TI(E) S n}
0 n=0

e—0

< 1irr(1) e+ n p {7'1(6) ApE > n} < 00,
E—
n=0

so there exists e3 > 0 such that 00 ;G (n, A) < oo for all € < ¢3.
Define g = min{eq, ea,e3}. It follows from the classical discrete time renewal theorem
that for any € < €,

PE)(n, A) —>—Z(j(6nA asn — oo, AeTl. (5)
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Part (i) follows from relation (5) and the following equality,
P {g<6> (n) € A/u® > n} = P©)(n, A) ] PO (n, X).
Lemma 2.1, condition C and the definition of 'y implies that

p In (5) p In (0)
glg(l) n_oe (n, A) Z (n, A) < oo, A eT. (6)
Part (ii) now follows from relations (4) and (6), and condition D. O

3. ASYMPTOTIC EXPANSIONS OF QUASI-STATIONARY DISTRIBUTIONS

A problem with 7(%)(A) is that the expression defining it is rather complicated. Both
numerator and denominator are represented as infinite sums and involves p(¢), which is
only given as the solution to the nonlinear equation (2). However, under some pertur-
bation conditions, 7(¢) (A) can be expanded in an asymptotic power series with respect
to e.

In order to do this, we first need to expand p(*). This can be done under some pertur-
bation conditions on the following mixed power-exponential moments of the distributions

f(f)(n),
¢ (p,7) = Zn eP™ £ (n), p>0,r=0,1,...

To expand the qua51—stat10nary distribution, some perturbation conditions on the
following mixed power-exponential moment type functionals of ¢(*) (n, A) are also needed,

6)p,rA Znep" 6)nA) p>0,r=01,..., AeTl.

The perturbation Condltlons are the following:
P(lk): ) (pO 1) = ¢ (PO 1) +ay e+ +ag_r, ¥ +o(eFT), for r =0,... K,
where |ap | <oo,n=1,....,k—r,r=0,...,k.
P(zk): wE (PO 7 A) = WO (PO r  A) + by (A)e + - + by (A)eFT + 0(eF7T), for
r=0,...,k, where A € Ty and |b, (A)] <oo,n=1,...;k—r,r=0,...,k.
For convenience, we define ag,, = ¢(*)(p(®,7) and by . = w@ (p© r A) forr =0,...,k
and A € T'y.
Now we are ready to give the expansion of 7(¥)(A). The details are presented in the
following theorem.
Theorem 3.1. Suppose that A, B and P(lk) hold.

(i) Then the root p'®) of the characteristic equation (2) has the asymptotic expansion

p(s) _ p(O) +eEe+ o+ ckgk + 0(€k).

The coefficients c1,...,c, are given by the recurrence formulas
c1 = —ai1,0/ao,1,
n—1
1
Cn:_a an0+ § Gn—q,1Cq
1
0 g=1 (7)
n n qg—1 cnp
p —
+ E E On—q,m * E Hn' , n=2,...,k,
m=2q=m N1yeeiyTiqo1€Dm g p=1 7’

where Dy, 4 is the set of all nonnegative integer solutions to the system

ni+-ctng1=m, n+-+(¢—1ng-1 =g
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(ii) If, in addition, C, D and P(zk) hold, then for any A € Ty the following asymptotic
expansion holds,

7 (A) = 7O (A) + f1(A)e + - + fr(A)e" + o(eb).
The coefficients f1(A),..., fn(A) are given by

fuld) = ﬁ (dnm) - g dn—q(X)fq(A)> , (8)

where

do(4) = w(p'?,0, 4)
and fo(A) = 7(© (A). The coefficients di(A),...,dr(A) are given by
dq (A) =b o(A) —+ bo 1(14)01,

dn(A) = b, 0(A +an ol

(9)
qg—1 n,
XY b)Y I3 n=2k
m=2q=m N1yeesg—1E€Dm g P=1

Proof. For the proof of part (i), see Petersson and Silvestrov (2012, 2013). Here we give
the proof of part (ii).

Let A(®) = p(&) — p(0) Using the Taylor expansion of the exponential function, we
obtain for any n =0,1,...,

k
ep(i)n _ ep(o)n Z nr(A(e))r N nk-‘,—l(A(E))k-}-l elA(E>\n9(5) (n)
r=0 r! (k T 1)' o ,

where 0 < 9,(5_21( ) < 1. Since p(&) — p(O there exists 8 < p(®) 4+~ and 1 = &1(3) such
that
PO +A® | < 3, e <ey.

Let C, = sup,, > nre?”+1=An_ From condition C it follows that there exists a2 >0
and a constant C}. such that

w® (8,7, A) = Z n"ePmq® (n, A)

n=0
= (5
SC,«Ze(p J“’)"P{Tl(e)/\u(s) >n} < Cy, e < eq.
Define €9 = €¢(f) := min{e1(8),e2}. Substituting the Taylor expansion of e#”™ into

the definition of w(®)(p(*), 0, A) yields
W(E) (p(s)’ 07 A) = w(s) (p(O)v Oa A) + W(E) (p(O)v ]-a A)A(E) +

(10)
+w® (p®, k, A)(AO)E R+ 7)) (AL,
where
1 (ONTYNGINS c
NS Gy Z 1A (n)g D (n, A).

If € < g9, the right hand side of (10) is finite and

@)
Tk S (k+1)!

C
wE (B, k+1,4) < (k_’fll),.
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It follows that there exists a finite constant M4, and numbers 0 < Hk 41 < 1such

that

7'](:421 = Mk-l—le](izl; € < &g. (11)

Since A, B and P(k) hold, it follows from part (i) that
A =cie+ -+ b + o(eh). (12)

Substituting (11), (12) and condition P(Zk) into the right hand side of (10) when & = 0
we see that w® (p(),0, 4) — w®(p(® 0, A) as ¢ — 0, which means that we have the
representation

W9 (p),0,4) = (.0, 4) + v (4), (13)
where wée)(A) —0ase— 0.
Now assume that k = 1. If we substitute (11), (12), (13) and condition P(Zk) into the
right hand side of (10), divide by € and let ¢ — 0, it is found that
()4
WOT() — b170(A) + b()@(A)Cl as ¢ — 0. (14)
Using (13) and (14) we obtain the asymptotic representation
W(s)(p(E)7 0,A4) = w©® (p(O)7 0,A) + dy(A)e + W§E)(A),

where dq(A) = b1,9(A) + bo,1(A)cr and wf) (A) is of order o(g).

If £ > 2, we can continue in this way and build an asymptotic expansion of order k
for w®) (p),0, A). Once the existence of the expansion is proved, the coefficients can be
found by collecting the coefficients of equal powers of € in the expansion of the following
expression,

(bo,o(A) + -+ bk O(A)ek + o(e"))
+ (o, ( b1 (A +o(eF )
X (016 4+t e o) + -
+ (bo,k(A) + 0(1)) (c1e + -+ + cre® + o(ak))k Jk!+ o(").
This yields the expansion
w® (p19,0,4) =w D (p@,0,A) + di(A)e + - - + di(A)e* + o(e"), (15)
where the coefficients di (A), ..., di(A) are given according to (9).

The quasi-stationary distribution can be written as
w(e)(p(e),()’A)
w© (p)0, X)’

For sets A € Ty, the numerator can be expanded as in equation (15). By condition D,
we always have X € I'g so the denominator can also be expanded. Thus, for any A € T'y,

wO®(p© 0, A) +dy(A)e + - + di(A)e* + o(e¥)

m9(4) = =5 (0.0, X) + di(X)e + - + dg(X)eF + o(eF)” "

& (A) = Ael.

Using (16), we can build the expansion of 7(*)(A) similarly to how we built the ex-
pansion of w(®)(p(*) 0, A). To do this, first note that with k& = 0 in (16) it immediately
follows that 7(*)(A) — 7(®)(A), which means that we have the representation

7 (4) = 7O (4) + 7 (4), (17)

where 7T(()€) (A) - 0ase — 0.
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Now put k& = 1 in (16). Since w(®(p(®),0, X) > 0, it follows that the denominator
of (16) is positive for € small enough. Substituting (17) into the left hand side of (16), re-
arranging and using the identity 7(%) (A)do(X) = do(A) gives the following for sufficiently
small €,

76 (A)do(X) + di (X) fo(A) + o(e) = da(A)e + ofe).
Dividing both sides by € and letting ¢ — 0, we conclude that
(A 1
9 do (X)

Using this and (17), the following asymptotic representation is obtained,
7 (4) = 7 O(A) + fi(A)e +m7 (),

where f1(A) = (d1(A) — d1(X) fo(A))/do(X) and 7' (A) is of order o(e).

This proves part (ii) when k = 1.

If £ > 2 we can continuing in this way and prove that the asymptotic expansion of
7(#)(A) exists. When we know that the expansion exists, the coefficients can be found
in the following way. Consider the equation

(fo(A) + fi(A)e + -+ fu(A)e* + o(e"))
X (do(X) + di(X)e + -+ + dip(X)e* + o("))
:(do(A)+d1(A)5+---+dk( )e* +o(e")) .

(d1(A) —di(X)fo(A)) ase—0.

The coefficients fi(A) are obtained by equating the coefficients of £* in both sides of
this equation. This yields

7 (A) = 7O (A) + f1(A)e + - + fr(A)e" + o(eh),

where f1(A),..., fx(A) are given according to the recurrent relation in equation (8). O

4. PERTURBED ALTERNATING REGENERATIVE PROCESSES

In this section, we consider a perturbed alternating regenerative process with absorp-
tion. We assume that the process n(¢) (n) starts in state 1 and stays there for a time with
distribution g(s)( ) before it jumps down to state 0. Then the process remains in state 0
for a time with distribution gée)(n). Now, with some small probability p() the process
is absorbed in state —1 or with probability 1 — p(®) the process starts over in state 1.

Such a process can be interpreted as the state of a machine which is successively
repaired after break-downs. The states 0 and 1 then represents that the machine is
broken or working while —1 is the absorption state of fatal non-repairable failure.

Respectively, g§€) (n) is the distribution of the time between repair and failure and

g((f)(n) is the distribution of the time to locate the error after a break-down. The ab-
sorption probability p(¢) corresponds to a fatal error such that the machine can not be
repaired. The first hitting time to the state —1 is the lifetime of the system.

We assume the following condition, preventing instant jumps:

9(()6) (0) = g§€) (0)=0for all e > 0.
Mathematicaﬂy, this is described by a discrete time semi-Markov process.

Let (771(:)7’% ) be a Markov renewal chain with phase space X x {1,2,...}, where
X ={-1,0,1}, and with transition probabilities

af ) =P{ndy =jrly =nm? =i}, ijex n=12...,
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given by
9% (n) i=1,j=0,
(1—p@)g$d ) i=0j=1,
a5 (n) = { p& gl () i=0,j=—1,
0 otherwise.

Let v (n) = max{k: v (k) < n}, where v()(0) = 0 and 1) (k) = /-ef) + Iil(:)
for k > 1.
The discrete time semi-Markov process 1() (n) can be defined by the following relation,

n(E)(n) :771(,6(2)(")7 n:0,1,... .

Let
V§€) = min{k‘ >1: n](f) :j}.

Then the absorption time is given by p(2) = () (1/(761)) and the first regeneration time is

; by 78 — ~(©) (&)
given by 7% =~ (117,
The process described above is illustrated in Figure 1.

7' (n)
A
le O *—
1)
0 ———O —0 - n
(1) 7
-1 ——————

FIGURE 1. Realization of the process (%) (n).

In the definition of a regenerative process with regenerating stopping time it is assumed
that the regeneration times are proper random variables. In the process defined above
this is not the case. However, the transition probabilities from the absorbing state can be
modified in such a way that the return times to state 1 are proper random variables, and
that the probabilities P{n(e) (n) =1, e > n} are the same for the modified process. We
can then apply the results from Sections 2 and 3 to the modified process and interpret
the results for the original process.

The weak continuity conditions at € = 0 are formulated in terms of the local charac-
teristics of the alternating regenerative process as follows.

F: (a) gie)(n) — g§0)(n) ase —>0,n=0,1,...,i=0,1.
(b) p©® —p® €10,1) ase — 0.
We also need the following non-periodicity condition.
G: At least one of the distributions g(()o) (n) and g§0) (n) is non-periodic.

We introduce the following mixed power-exponential moment generating functions for
distributions of sojourn times,

oo
wgg)(p,r)zz:nrep"gl(e)(n), p>0,r=0,1,...,i=0,1. (18)
n=0
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Also, consider the following mixed power-exponential moment generating functions,
(oo}
o (p,r) = z:nrep”f(e)(n)7 p>0,r=0,1,..., (19)
n=0

where
f(s)(n):P{Tl(E):n,u(€)>7'1(6)}, n=0,1,...

For the exponential moment generating functions, the following relation is obtained,

e}

69 (0,0) = (1= p9) D e P{sl? + 5§ = n}
n=0 (20)

= (1-99) v (0,007 (0,0),  p=0.
From this it follows that existence of (18) and (19) for & small enough is guaranteed

by the following Cramér type condition:
H: There exists § > 0 such that
(a) limo<c—o wl@ (0,0) < 00, i=0,1.
(b) (1=p®)oy” (8,0)41”(5,0) > 1.
We will also use the following mixed power-exponential moment generating functions,

wf) (p,7) = Z nrep"qfe) (n), p>0,r=0,1,...,i=0,1, (21)
n=0
where
@) =P{nOm) =i, A >0l n=01 =01,

If condition E-H hold, then condition A — D hold, so the results in Section 2 can be
applied. Lemma 2.1 implies that for e small enough there exists a unique root p(®) of the
characteristic equation

69 (p,0) = 1. (22)
It is worth noticing that the solution to equation (22) satisfies p(*) = 0 if and only if
p¥) =0, and p®) > 0 if and only if p{®) > 0.
It follows from Theorem 2.2 that that for e sufficiently small,
tim P {n©(n) = j/u® >n} == (), j=0.1,
n—oo

where

(&) (2)

w: ,0

) (p<e>): —— (p <5>> . =01, (23)
wy (p,0) +w;” (p),0)

If conditions P(lk) and P;k) hold for the generating functions (19) and (21), it follows
from Theorem 3.1 that we can build an asymptotic expansion for the quasi-stationary
distribution (23). However, it is more convenient to use perturbation conditions for local
characteristics of the process n(¢) (n). Therefore, we formulate perturbation conditions
on the generating functions of the distributions of sojourn times and the absorption
probabilities, and then show how these conditions are related to P(lk) and P(zk).

We assume the following:

P:(}k): &) =pO 4 pl1]e + -+ + plk]e® + o(e*), where |p[n]| < oo, n=1,..., k.

P 0 (00, r) = i (0O, 1) + (1, 7]e + o + il — 1, 7R+ o(eh ), for =
0,...,k, i=0,1, where [¢);[n,r]| <oco,n=1,....k—r,r=0,...,k,i=0,1.
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Observe that for n =0,1,...,
P{{ <nsi? + 55 >n} i=0
P (E)n :i,T(E)/\ (€)>n — 1 = "%y 3
{n*"(n) 1 H } P{n§€)>n} i1

Using this relation, we obtain for p > 0,

w® 0 (0,005 (p,0) i =0,
(p,0) = {wgs) (0.0) i1, (24)
where, for ¢ =0, 1,
© W (p,0) = 1)/(e# =1) p>0,
@ (p,0) = { 59 0.1) " (25)

Under condition H, the derivative of any order of the function <p( )(p, 0) exists for
0< p < 0 < § and sufﬁc1ently small . Denote the derivative of order r of this function

by ga ( r). It follows directly from (25) that

47,0 =7 (p.0) (e~ +1,  p=0. (26)
By differentiating equation (26) r times and rearranging, it follows that the derivative
(e)

of order r =1,2,..., of the function ¢;

w@@r*:$@”@,wﬂwz o (e /e =1 p>0,
P @7 (0,7+1) Z;MﬁH‘WOﬁVW+U p=0.

In the following, suppose that condition ng) holds, together with condition Pflk) if

p© > 0, or together with condition PEI““)

expansion holds,
o (10r) =@ (0Or) + @illrle 4o il — 17l £ o(eF ). (27)

Denote ¢;[0,r] = %(0) (p(o),r).
In the case p(® > 0, the coefficients for i = 0,1, are given by

wi[n,r| (ep(o) - 1)

| %i[n, 0] = 6(n,0) n=20,....,k, r=0, (28)
B wi[n,r]—ep(o)zr 1()301[71]] n=0,....k—r, r=1,... k.

In the case p(®) = 0, the coefficients for i = 0, 1, are given by

(p,0) is given by the recursive relation

if p(© = 0. Then the following asymptotic

@i[n,r](r +1)
i, 1] n=0,....k r=0, (29)
B wi[n,r—i—l]—zg;é(rﬂ)%[nj] n=0,....k—r, r=1,... k.

Differentiating equation (20) and (24) r times with respect to p and evaluating at
p = p9 yields for any r =0,1,...,

o9 (0r) = (1-99) i <j)¢(€) (0.5) v (00 - 5), (30)
3=0
o) (p(o)”) _ i (;) © <p(o),j) WO (p(o),r _j) 7 (31)

j=0

Wl (p(o),r> =l (pm)’r) . (32)
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It follows from equations (27)—(32) that conditions P(lk) and P(zk) are implied by
conditions ng) and Pflk) in the case p(® > 0, and by conditions ng) and Pflk+1) in
the case p(®) = 0. We can find the relations between the coefficients by using arithmetic
rules of asymptotic expansions.

The coefficients in condition P(lk) are forany n =0,...,k—7r and r =0,...,k given
by
n
ag,r = (1 - p(0)> hO,r; Qp,r = (1 _p(o)) hn,r - Zp[i]hn—i,r;
=t (33)
e =33 () aliclent —icr 5.
=0 j=0
The coefficients in condition P(2 ) are for anyn=0,....,k—rand r=0,...,k given
by
n
bor(01) =33 (1 alisslonln — v~
=0 j=0 (34)

bn,r({1}) = w1[n, 7], b (X) = bnr ({0}) + by ({1}).

It follows from Theorem 3.1 that an asymptotic expansion of order k exists for the
quasi-stationary distribution (23). We can build the expansion using equations (7), (8),
(9), (28), (29), (33) and (34).

5. PERTURBED RISK PROCESSES

This section shows how the results of the present paper can be used to obtain approx-
imations for the ruin probability in a perturbed discrete time risk process.

For each ¢ > 0, let Xl(s),XQ(E), ... be a sequence of non-negative, independent and
identically distributed random variables and set

Zl(f)(n):u—kn—ZX,gE), n=0,1,...,

where u is a non-negative integer.

We can interpret Zq(f)(n) as the capital of an insurance company (in units equivalent
to expected premium per time unit) and Xr(f) as the claims at moment n.

Let us denote p(&) = P{Xl(s) >0} and p(®) = 37°° Jug(®) (u) where

9O (u) = P{ —u/X(€>O} w=0,1,...
An object of interest is the infinite time horizon ruin probability which is defined as

n>0

T (y) = P{mianf)(n) <0}, u=0,1,...

Define a(®) := EXI(E) = p@® ). Tt can be shown that if a(®) > 1, then ¥ (u) = 1
for all u > 0. In the case a(®) < 1, the ruin probability (%) (u) satisfies the following
discrete time renewal equation,

T (u) = ¢ (u Zw) u—k)fE%k), wu=0,1,..., (35)

where, for u =0,1,..

9

€ € € € 1_G(E) u € = €
GO(u ng 7 f()(u):a()T()’ Ow= 3 FO®).

k=u+1
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A derivation of this equation can be found, for example, in Petersson and Silvestrov
(2012, 2013). Tt is similar with the well-known technique for deriving the corresponding
renewal equation for a continuous time risk process, given, for example, in Feller (1966)
and Grandell (1991).

We now introduce the following mixed power-exponential moment generating func-
tions,

go(E (p,7 Zu ep“<1—G(€)(u)), p>0,r=0,1,...

Let us assume the followmg conditions:
I (a) g9 ) — ¢Owu)ase —0,u=0,1,...
(b) p&) — p® ase — 0.
J: There exists § > 0 such that
(a) hmogea() 90(5) ((5, 0) < 0
(b) (@?/u@)p9(5,0) > 1.
Under conditions T and J there exists a unique non-negative root p(®) for sufficiently
small € to the characteristic equation

Z eP &) () = 1. (36)
u=0

Using this, we can transform the renewal equation (35) into the following form,
U (1) = ¢ (u +Zx116> WOk,  u=0,1,..., (37)

where
J, (e Juqy, (e ~(e (e r(e Gy p(e
V() = e 0O (), GO () = e TqO (), FO(u) = O ().

There is a close connection between renewal equations and regenerative processes. In
fact, the solution z(n) of a discrete time renewal equation where the distribution f(n)
and the forcing function g(n) satisfies 0 < g(n) < 1 —>"_, f(k) for all n > 0, can be
related to the one-dimensional distributions of some discrete time regenerative process.

In our case, there exists a discrete time regenerative process ¢(¢) (n), n = 0,1,...,
with regeneration times 0 = T(gs) < 7'1(6)
u=20,1,..., we have

.., and phase space {0, 1} such that for

P {§<€> (u) = 1} =T (u) (38)
and
P{cOw) =177 >u} =39w),  P{r? =u} =) (39)
We next show how this process can be constructed. It is similar with the construction
in the corresponding continuous time model, given in Ekheden and Silvestrov (2011).
Let ﬁf), ﬁ&), ..., be a sequence of independent random variables, each with distri-

bution f(s)( ), and let Up (&) , UL (E), ..., be a sequence of independent random variables
uniformly distributed on the interval [0,1]. Furthermore, we assume that the two se-
quences are independent.

For k=0,1,..., let

©) () — §O(k)/(1 = FE(k)) if 1 - FE(k) >0,
v (k) = 0 if1—FE(k)=0

)

where F©) (k) = Zi:o fEu), k=0,1,....
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Let us now, for every n = 1,2, ..., define a random process by
' (k) = x (Uéf) < v(”(k)) . k=0,1,....

Using this, we can define a regenerative process £(¥)(n) with regeneration times T]ge) =

/@ge)—l—---—l—/ﬁ,(:),k:l,Z,...,by

€9 =0 (€M), =01,

) < n} is the number of regenerations up to and including

where () (n) = max{k: T]ge
time n, and ¢(¢) (n)=n-— Tlffa))(n) is the time since the last regeneration.

By definition, £(5)(n) is a regenerative process with phase space {0, 1} and regeneration
times 0 = T(gs) < 7'1(6) < .... It can be checked that for this process, relations (38)
and (39) hold.

If conditions I—J hold, then conditions A-D hold for the functions () (u) and G (u).

It follows from Theorem 2.2 that
p {g@ (u) = 1} Sa®, w0, (40)

where

o € — (e)
qo - o’ 19w =1r> u} (41)

Yoo P {Tl(e) > u}
Rewriting in terms of the claim distributions, relations (40) and (41) yield
o) (E)n oo £
Zn:O e’ Zk:n—i—l (1 - G( )(k))
Yozoner (1= GO (n))
Relation (42) can be seen as a discrete time analogue of the classical Cramér-Lundberg

approximation.
Let us introduce the following mixed power-exponential moment generating functions,

e upe) (u) — as u — 0o. (42)

VO (pr) =S wegO ), p>0,r=0,1,...,
u=0

o0 o0
WO,y =Y wem Y (1-GO®K), p>0,r=01,....
u=0 k=u+1

In order to build an asymptotic expansion for the stationary distribution 7(¢), we
impose the following perturbation conditions:

P(sk): &) =pO 4 pl1]e + -+ + plk]e® + o(e*), where |p[n]| < oo, n=1,..., k.
Pék): w(e) (p(O),,r) = w(o)(/)(o)ﬂ”) + w[la r]g +oo w[kj - T]Ek_r + 0(€k—r), for r =
0,...,k, where [¢[n,r]| <oco,n=1,...,k—r,r=0,...,k.
The moment generating functions ¢)(p, 0), (=) (p, 0) and w®)(p, 0) are linked by the
relations

(e) NG eP —
H9(p,0) = { (05,0 =6 20,0 1) >0 .
and
e _ (w(e) (p7 O) - 1)/(6p - 1) p> Oa
#9060 = {w@(o, 1) =0, *9

Using relations (43) and (44) we can build asymptotic expansions for () (p(®) 7) and
w® (p© 1) using the same techniques as in Section 4. From this one can continue and
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obtain asymptotic expansions for the stationary distribution 7(¢) and the root p(¢) of the
characteristic equation (36) as follows,

m(e) =710 4 e+ -+ me + o(eh),

(45)
P =pO L are+- +ae" +o(e").
Using (42) and (45) we obtain approximations of the ruin probability of the form
\’I\'ffl) (u) = e_pgs)“wl(e). (46)

By different choices of the parameters r and [ one can control the highest order of
moments of claim distributions involved in the approximation.

For any non-negative integer-valued function u(®) — oo in such a way that " u(®) —
Ar € [0,00), as € — oo, this approximation has asymptotic relative error zero, meaning
that

@@MU@»

T —1 ase— 0.
\Ilr,l (u(f))

In the case p(®) > 0, the approximation in equation (46) generalises the Cramér—
Lundberg approximation for discrete time risk processes while the case p(®) = 0 corre-
sponds to a generalisation of the diffusion approximation.
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ASYMPTOTIC PROPERTIES OF CORRECTED SCORE ESTIMATOR

IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERRORS
UDC 519.21

D. S. PUPASHENKO, S. V. SHKLYAR, AND A. G. KUKUSH

ABSTRACT. The autoregressive model with errors in variables with normally distributed control se-
quence is considered. For the main sequence, two cases are dealt with: (a) main sequence has station-
ary distribution, and (b) initial distribution is arbitrary, independent of the control sequence and has
finite fourth moment. Here the elements of the main sequence are not observed directly, but surrogate
data that include a normally distributed additive error are observed. Errors and main sequence are
assumed to be mutually independent.

We estimate unknown parameter using the Corrected Score method and in both cases prove strict
consistency and asymptotic normality of the estimator. To prove asymptotic normality we apply the
theory of strong mixing sequences. Finally, we compare the efficiency of the Least Squares (naive)
estimator and the Corrected Score estimator in the forecasting problem and conclude that the naive
estimator gives better forecast.

AnoTALIsA. Po3riisigaerbest MOeb aroperpeccii 3 noxubkaMu y 3MiHHUX | HOPMAJIbHO PO3IIOIiJIEHOI0
KEpYIOU0I0 IOCIiZOBHICTIO. JIJIsl FOJIOBHOI MOCILZOBHOCTI MOJEJi PO3IVISHYTO JBa BUIIAJKH: &) TOJIOB-
Ha IOCJIIJOBHOCTb MA€ CTaniOHapHUH po3moxin; 6) moYaTKOBUE PO3NOALI € AOBIIBHAM, HE 3AJIEKUTH
BiZ Kepyoodoi mOCHiZOBHOCTI i Mae dyeTBepTuil MOMEHT. EjleMeHTH rosI0BHOI IOCTIiTOBHOCTI He CIOCTe-
pirarorbcst 6e3mocepeHbO, HATOMICTh CIIOCTEPIral0ThCsi CYypOraTHi [aHi, 10 BKJIIOYAITh HOPMAJbHO
pO3NOJIieHy aauTUBHY HOXUOKY. [ToxubKu i roJ0BHA MOCITOBHICTE € HE3aJeKHUMHU B CYKYIIHOCTI.

KoediienT aBroperpecii OIiHIOETHCS METOAOM BHUIIPaB/IeHOI OiHOYHOT (hyHKIiT. B 000X BHmamkax
JOBEeJeHO CTPOTY KOH3UCTEHTHICTh | aCHMITOTHYHY HOPMAJIbHICTD OIiHKU. JlOBegeHHs aCHMITOTHYIHOT
HOPMAaJIbHOCTI CIIMPAETHCST HA BJIACTUBOCTI KOoedilieHTa CHuIbHOrO rnepeMintyBanHs. B 3a7a4i nporaosy
HOPIBHIOETHCS eeKTUBHICTD (HATBHOT) OIiHKYM HARMEHIINX KBAPATiB i BUIPABJIEHO! OI[iHKH i pOOUTLCS
BHCHOBOK, III0 HAIBHA OI[iHKa 3abe3medye Kpalluii IpOrHo3.

AHHOTAIMA. PaccmarpuBaercsi MOZE/b aTOPErpeccuu ¢ OMmuOKaMu B IEPEMEHHBIX W HOPMAJIbHO Pac-
[IpeIeJIeHHON YIPABIISIIONIEH MOCIeI0BATEIBHOCTRIO. JIJIs IIIaBHON MOCIeI0BATEIBHOCTH PACCMOTPEHB
JIBa CIydasi: a) [JIaBHAs MOCJEJOBATEJbHOCTH HMEeT CTAMOHAPHOE pacupejeseHue; 0) HA9AJIbHOE Da-
CIpejieJIeHne sIBJISIETCSI TIPOU3BOJILHBIM, HE 3ABHCHT OT YIIPABJISIOMIEH [TOCIIEIOBATEILHOCTH U HMEET
9eTBEPTHIH MOMEHT. DJIEMEHTHI IJIABHON I0OCJIEJ0BATE]BHOCTH HE HAOJIIOJAIOTCS HEIOCPEICTBEHHO, a
BMECTO HHX HADJIIOMAIOTCS CYyppOTATHBIE SAHHBIE, BKIIOYAIOIINE HOPMAJILHO DPACIPEIETICHHYIO AJIIh-
TUBHY IO OIJ_II/I6Ky OH_II/I6KI/I U rJIaBHaAA IOCJIEA0BATEIBHOCTH HE3aBUCUMBI B COBOKYITHOCTH.

Koadbdunuent aBroperpeccuu oeHHBAETCS METOAOM HUCIPABJIEHHOU OneHOYHON dbyHKInu. B o6oux
ClIy49adaX JOKa3aHbI CTPOrasa COCTOATEJIbHOCTh U aCUMIITOTUYIECKAA HOPMAJIbHOCTH OIEHKHA. ,Z[OKaBaTe.TII)—
CTBO ACHMIITOTHYECKOW HOPMAJIHLHOCTH OIMHPAETCSI HA CBONCTBA KOdMDMUIMEHTA CHIBLHOTO IepeMellu-
BaHUsA. B 3aja4de nporHo3a cpaBHUBAETCS 3bGMEKTUBHOCTH (HAMBHOM) OIEHKHM HAMMEHBIINX KBA[PATOB
nu HCHpaBHeHHOﬁ OIIEHKHU U [eJIa€TCA BbIBOI, YTO HaWBHAA OIEHKA 06ecneqHBaeT J'Iy“II_LII/Iﬁ IIPOrHO3.

1. INTRODUCTION
Introduce an autoregressive (AR) sequence
Xn_M:a(Xn—l _H)+b5n7 n=>1, Xo NN(MaO'Q) ) (1)

where

2000 Mathematics Subject Classification. Primary 62F12; Secondary 62F10.
Key words and phrases. Autoregressive model, measurement errors, stationary process, strong mixing
sequences, least squares estimation, corrected score estimation, efficiency comparison.
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o coefficients a, b and mean p are unknown parameters, such that |a] < 1 and
b>0,
o {Xo,en,n > 1} are independent random variables, €, ~ N(0,1), n > 1.

Properties and applications of such models were studied, e.g., in McQuarrie and
Tsai [10].

We are interested in estimators of the parameters a and u. In case where there is
no errors in variables, estimators of these parameters can be constructed by the Least
Squares (LS) method with elementary criterion function

qrs(Xe, Xp-150, 1) = (Xp — p) — a(Xg—1 — p))*.

Here we consider a situation where elements of the main sequence are not observed
directly, but surrogate data that include additive errors are observed. Control sequence
of the model is normally distributed and main sequence is stationary distributed, or as
a different case, initial distribution is arbitrary, independent of the control sequence and
has finite fourth moment.

Estimation of the parameters in autoregressive model with measurement error was
considered in Dedecker et al. [7]. They proposed an estimation procedure based on
modified least square criterion involving a suitably chosen weight function.

Other consistent estimators exist in this model. Letting ¢ — oo as the sample size is
increasing, Chanda [6] applies Yule-Walker ARMA(p, ¢) estimator for errors-in-variables
AR(p) model. The estimator does not use the error variance. Moreover, the errors are
allowed to be slightly autocorrelated. Under some conditions, Chanda’s estimator is
consistent and asymptotically normal, but it is not y/n-consistent.

In present paper we apply Corrected Score (CS) method (see Carroll et al. [4, Ch. 4]).
We observe Wy = Xy + Vi, k > 0, where V, ~ N(0,0%) and {Xo, Vi,ex, k > 0} are
mutually independent. Consider the elementary score function of LS estimator

10
Yo,05( Xk, Xp—1;a, 1) = §%QLS(Xkanfl§aaN)~
We construct a new score gos(Wi, Wi_1;a,p) as a solution to the deconvolution
equation

Eam//«o (wO,CS(ka kal; a, /L) | ka kal) = 1Z)O,LS(AXIW kal; a, /L) a.s.,

for all a,n € R. Then the CS estimator (ay, fi,)? is defined as a solution to equation

Zwo,cs(Wk, Wi_1;a,p) =0, a,pn €R.
k=1

The true parameter a satisfies |a| < 1, and it will be shown below that |a,| < 1, for all
n > no(w) a.s.

In this paper we construct the CS estimator explicitly and study its asymptotic prop-
erties as n — oo.

The paper is organized as follows. The CS is given explicitly in Section 2. The strict
consistency and asymptotic normality of the estimator are presented in Section 3, and
Section 4 concludes. Proofs of the main results are given in Appendix.

We use the following notations. z” is transposed vector z, E stands for expectation of

. P1 d e .
a random variable, = and — denote the convergence a.s. and in distribution respectively,

P1 P1
an =~ b, means that a,, — b, — 0, as n — oo.

2. CONSTRUCTION OF CORRECTED SCORE ESTIMATOR

Rewrite model (1) in a more convenient way.
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Lemma 2.1. For the model (1) it holds

Xn—u:bZa"*iai—f—a"(Xo—u), n>1. (2)
i=1
Proof. This statement is straightforward and can be proved by induction. |
From now on we suppose that {Wy,k =0,...,n} are observed instead of

{Xk,kao,...,n},

where the additive error Vj; ~ N(0,0%) and {Vj, X, k > 0} are mutually independent.
First, for the unknown AR coefficient ¢ and mean u we construct the LS estimators
(LSEs). To do that we introduce the objective function:

n

1
QLS(WO7 ceey WTM a, /J’) = H Z((Wk - /’1/) - a(Wk—l - :U’))27
k=1
and minimize it with respect to a and p. Necessary and sufficient conditions for mini-
mizing are:
0us — 2570 (a(Wikor — p) = (Wi — ) (Wi—1 — p) =0,
)
0us — 2570 (a(Wiko1 — ) — (Wi — p))(1 —a) = 0.
Solving this system of equations, we get the LSE of the mean p
i = Dot WeWho1 205y Wit — 205, Wiy > Wi
" ”(22:1 WiWi—1 — 22:1 Wl?ﬂ) + (22:1 Wi-1)? — 22:1 Wi 22:1 Wi’
provided the denominator is nonzero, and the LSE of the parameter a is
ot = 2zt (Wi = fin) (Wi—1 — fin) 3)
" D et Wit — fin)?
k
Because the LSE i is too complicated to be investigated, we use the sample mean
that provides a strict consistent estimator of the mean p,

1

n

n—1

P1
E Wi — p, asn— oo.
k=0

fin =

We prove that the [, is asymptotically normal using the Central Limit Theorem
(CLT) (see Billingsley [1, Th 27.4]) and results of Bosq and Blanke [3, p. 47-48] in order
to ensure that we deal with a geometrically strong mixing sequence.

Next we construct an estimator of the regression coefficient a by the CS method. We
introduce a function ¥1s(Xo, ..., Xn;a, ) as

n

Ves(Xo . Kz = 2298 S - LS s - )
k=1

2 Oa
k=1
We search for a function ¥cg(Wo, ..., W,;a, 1) that satisfies the deconvolution equa-
tion
E(ves(Wo, ..., Whsa,p) | Xo, ..., Xn) =0¥rs(Xo, ..., Xn;a, 1) a.s. (4)

To do that we obtain polinomial functions h(Wy; p) and g(Wy_1, Wy; p) that solve
equations
E(h(Wis ) | Xi) = (Xe — ) as., (5)
E(gWh—1, Wis 1) | Xie—1, Xip) = (Xpp = p)(Xp—1 — 1) as. (6)
of the following form
h(Wi; 1) = (Wi, — p)? = o,
I Wi—1, Wi 1) = (Wi—1 — ) (Wi — ).
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Hence we get a polynomial solution to (4)

3I'—‘

a n n
Yos(Wo, ..., Whia, ) = E; (W1 — p)? —o¥) Z::Wk 1— 1) (W — p).

Plugging-in the sample mean fi,, and equating ¥vcs(Wo, ..., Why;a, fin) to zero we get
the CS estimator of a,
G, — ZZ:l(Wk - ﬂn)(Wk—l - /ln)
e (Wher = fin)? = no;

Remark 2.1. The denominator of (7) is nonzero starting from certain random number,
i.e., for all n > no(w) a.s.

(7)

Proof of Remark 2.1 is a part of proof of Theorem 3.2, see Appendix.

3. MAIN RESULTS

Asymptotic properties of CS estimator. We state the consistency and asymptotic
normality of the CS estimator (7) as n — .

Theorem 3.1. In model (1), let {Xi,k > 1} be a stationary process. Assume that
variables {Xo, ek, Vik—1,k > 1} are mutually independent, then the CS estimator (7) is
strictly consistent.

For Theorems 3.2 and 3.4, do not assume that X, has a stationary distribution of
underlying AR sequence. In particular, assume (1) without requirement that Xo ~

N(p,?).

Theorem 3.2. Assume that {Xy, k> 1} in AR (1) has an arbitrary initial distribution
with finite fourth moment and variables {Xo, ek, Vi—1,k > 1} are mutually independent.
Then CS estimator (7) is strictly consistent.

Theorem 3.3. In AR (1) let {Xy,k > 1} be a stationary process. Assume that vari-
ables {Xo, ek, Vik—1,k > 1} are mutually independent. Then the CS estimator (7) is
asymptotically mormal with positive asymptotic variance

2 2 2\ OF 2 %
2=1-a +2(1—a);+(2a +1)?. (8)

Theorem 3.4. Assume that {Xy,k > 1} in AR (1) has arbitrary initial distribution
with finite fourth moment and variables {Xo, ek, Vi—1,k > 1} are mutually independent.
Then the CS the estimator (7) is asymptotically normal with positive asymptotic variance

4
2 20

o2 =1-a*+2(1—a?) b2+(2a2+1)(1—a2) e (9)

Remark 3.1. In case of known parameter u, the CS estimator of a is defined by (7)

setting fi, = p. Then the estimator remains strictly consistent and asymptotically normal
with unchanged asymptotic variance (8).

Proofs of Theorems 3.1 to 3.4 can be found in Appendix.

Comparison of the LS and CS estimators. We compare the efficiency of the LS
estimator (3) and CS estimator (7) in the forecasting problem.
As two forecasts of the forthcoming observation W, 1 we take the values

Wiy = fin +a> (W — fin), W = fin + a5 (Wi — fin).
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To find an optimal forecast E(W,11|W,,) first we calculate the correlation coefficient
between W,, and W, 1,

a02

o2+ 0%’
Then we use a theorem from Kartashov [8] which states that for jointly Gaussian random
variables (&1,&2) ~ N(p1, pi2, 01,049, p), the conditional expectation can be calculated as

p:

E|&=y)=pm+ p?(y — p2).
2

Thus, the optimal forecast is

a02

EWhir [ Wh) =+ p(Wn — ) = p+ m(

Wy — ).
But the parameters of the model are unknown, and instead one can use two forecasts

CS

. . . . . .cs P1
constructed above. Because the CS estimator is strictly consistent, i.e. a,;°> — a, as

n — oo, and
2
dLSP—%an as n — 00,
" o2 + o
we have:
W, — = (a+o(1) (W — 1) as.
and for the LS forecast,
2
WES, = a5, ) = W) (=) as.
where o(1) is a sequence of random variables that converges to 0 a.s.
Hence like in the example from Cheng and Van Ness [5, p. 70], we conclude that the
naive LS estimator yields better forecast.

a————Fx +o0
2 2
o+ oy,

4. CONCLUSION

In this paper we considered the autoregressive model with measurement error. We
proved the strict consistency and asymptotic normality of the CS estimator. Also we
compared the efficiency of the LS (naive) estimator and CS estimator in the forecasting
problem and showed that the naive estimator gives better forecast, though the naive
estimator is inconsistent as n — oo.

APPENDIX

Proof of Theorem 3.1. We suppose that the main sequence of AR (1) has stationary

distribution. Initial distribution is Xo ~ N(u,0?), therefore using stationarity of the

2 _ _b?
process we get that 0 = 17—

To show the strict consistency rewrite the estimator (7):
i = ke ViVt + 5 3 (X — fin) (X1 = fin)
et (Xhoa = in)? 4 5 300 Vil + 2 200 (X — fin) Vi1 — o,
+ == %ZZ:} (Xk _1ﬂn)g/k—1 :‘ %Zleyk(Xk—l - ﬂAn) .
7 2ot (Xmt = fin)? 4 5 300 Vi + 2 2hmt (X1 — i) Vi1 — o
We find the limits as n — oo for all terms in (10) separately.
First consider the sequence

(10)

1 ¢ . N2
EZ(XICA = fin)”.
k=1
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Rewriting it as

n n

—Z Xt = i) = = S (K = o (= fin) > S (Xt — ) + (= i)’

k=1 k=1

and using strict consistency of sample mean fi,, we get that the last two terms are
vanishing as n — oo, hence

1 ~ 9 P1
§ (Xk 1_,Ufn ~
n
k=1

3|H

n
ZXk 1— i
k=1

To get the limit of the sequence

1 n
H Z(Xk—l - lu’)27
k=1

we use the ergodic theorem for stationary processes (see Korolyuk et al. [9]). Conditions
of the ergodic theorem can be verified, and we get a limit of the first term in denominator

of (10),

1 1
—Z Xp—1— fin) ian(Xk 1— [ )2§E(Xo—u)2202 as n — 00. (11)
k=1 k=1

3

To get a limit for the second term we use the strong law of large numbers (SLLN):

1 n
—ZVﬁ_lﬂEVg:a‘Q/ as n — oo. (12)
n
=1
By similar technique we get limits of all terms in (10) as n — oo:
1 — X P
= Xkt = i) Vi1 0, (13)
"=
1 n
—ZVka_l it 0, (14)
"=
- P1
Z X = jin) (X1 = fin) = a0®, (15)
k:
. P
- Z(Xk — fin)Vi1 = 0, (16)
1< . P1
= (X1 — fin) Vi = 0. (17)
"=
Plugging limits (11)—(17) in expression (10), we get that a, Plaasn — . O

Proofs of Remark 2.1 and Theorem 3.2. We denote stationary distributed random vari-
ables satisfying (1) as { X3, k > 1}, with initial distribution X§* ~ N(u,0?). We assume
that {Xo, X5 ek, Vi—1, k > 1} are mutually independent.

Equality (2) implies that

Xy —p= (X3 —p)+a" (Xo — X§'), (18)

hence X, — X3¢ 25 0 as n — oo.
Now we have to find a limit of (10) as n — oo.
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First consider
n
p1l
(Xp1 — f1n)* = — ).
Z k=1 — fn) nZ(Xkl )
"= k=1
We plug expression (18) in the latter sequence, hence
n

l Z(Xk—l _ M)Q Z k—l(XO - XSt))Q
k=1

n

k:l
Z (X, — )+ 2 (Xo — X)) (G ) (19)
" k=1 k=1
oL (xS
k=1

In the proof of Theorem 3.1, we have shown convergence of the first term in expres-
sion (19):

—Z (X3, - *Plo? asn— .
Since |a| < 1, we get that

(XO—XS‘C Z 2= PLo a5 n - 0.
k=1

For the second term of (19) we proceed as follows. Denote corresponding random

sequence as
n

2
Y, =— Zak_l (X3t —n)

n
k=1

e First using Chebyshev’s inequality

ZP|Y|>C gi
n=1 n=1

we show that for each C' > 0, it holds >7 | P([Y,]| > C) < oo.
e Then Borel-Cantelli lemma implies that VC’ >03ng ¥Yn > ng: |V, < C as.

EIY ®

Therefore, to prove that Y, Ploasn — 00, it is enough to show > 7 | E|Y,|? < cc.
After quite cumbersome calculations, we can show that

(23 don )
n=1 k=1

converges.

Hence
n

% (X0 — X3 a" Tt (X — ) Pl asn— .
k=1

Therefore, plugging all limits found above in (19), we obtain

1 n
- Z(Xk,l — fin)? Blo? asn— oo (20)
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Similarly we get limits of all terms in (10) as n — oo:

ZXk 1= fin) Vi— 1—>0 (21)
1 < P1
- Z(Xk—l - ﬂn)(Xk - ﬂn) - a027 (22)
ni=

1 < P1

= (Xk = fin)Vie1 = 0, (23)

et

1 < N P1

~ D (X1 = fin)Vie = 0. (24)

k=1

We plug (12), (14), (20)—(24) in expression (10) and get that a, it a, as n — o0, hence
the estimator (7) is strictly consistent. A limit of the denominator in (10) is nonzero,
therefore, the statement of Remark 2.1 holds true. O

Now, we state lemmas for mixing coefficients and mixing sequences.
First note that for two o-algebras G and H on a probability space (2, F, P), the strong
mixing coefficient is defined as follows:

a(G,H) = sup |P(ANB)—P(A)P(B)|.
AeG,BEH

For a random sequence { Xy, k > 0}, denote

X (m) = ilip a(o(Xoy -y Xi), 0(Xktmy Xktmtts---))-
>0

The sequence { X}, k > 0} is called a strong mizing process if lim, o, aX(m) = 0. It is
called a geometrically strong mizing (GSM) process if
aX(m) S b?”m; m 2 07

for some 0 <7 < 1 and b > 0.
Now, we state a helpful lemma which is a direct consequence of the definition of strong
mixing sequences (see Billingsley [2]).

Lemma 4.1. Let {X,,,n > 0} be a random sequence and Z, = (Xpn_1,..., Xn)T, n>1.
Then for a-mixing coefficients associated to sequences {X,,n > 0} and {Z,,n > 1}, the
following relation holds true:

X(m) =a?(m+1), m >0

Corollary 4.1. Let {X,,,n > 0} be a random sequence and Z, = (X,_i,...,Xn)7T,
n > 1. For a Borel measurable vector function f, consider a sequence

F(Z) ={f(Zn),n = 1}.

o

Then

aX(m) > af@(m +1), m > 0.
If {X,,n > 0} is a strong mizing sequence then {f(Z,),n > l} is a strong mizing
sequence as well. If {X,,n >0} is a GSM sequence then so is {f(Z,),n > 1}.

Lemma 4.2. Let (21, F1,P1) and (Qa, Fa,P2) be two probability spaces. Let Gy and Hy
be two sub-o-algebras of F1 and let Go and Ha be two independent sub-c-algebras of F.
Then

a(o(G1 x G2),0(H1 x H2)) = a1(G1, H1),
Here for the calculating mizing coefficient oy we use measure P1; and for a product
measure P = Py x Py 1s used.
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Proof. Denote G = 0(G1 x Ga2), H = o0(H1 x Hz). Expectation in (Qg, Fa, P2) is denoted
as Ey. For A € o(F1 x Fa), denote the section A, = {w1 € Q1 | (w1,w2) € A} € F1.

Let A € G and B € H. Then Py(A,,) and Py(B,,,) are independent random variables.
Hence

P(A) P (B) = E2(P1(Au,)) E2(P1(Aw,)) = E2(P1(Bu,) P1(Bu,))-
We have
|P1(Aw, N By,) — P1(Aw,) P1(Aw,)| < a1(G1,H1) Pa-as.,
|P(ANB) = P(A)P(B)| = [E2(P1((AN B)w,)) — E2(P1(Au,) P1(Bw,))|
= |E2(P1(Aw, N Bu,) — P1(Aw,) P1(Bw,))| < a1(G1, Ha).
Varying A and B, we get
a(G,H) < a1(G1, Hy). (25)
From the other hand

a(G,H)= sup |P(ANB)—P(A)P(B)|
A€g,BeEH
> sup [P((A1 x Q2) N (B1 X Q2)) — P(A1 x Q2) P(B1 x Q2)] (26)
A1€6G1, BieHa
= sup |P1(A1 ﬂBl)— Pl(Al) Pl(Bl)| :Oél(gl,Hl).
A1€6G1, BieHa

Inequalities (25) and (26) imply the statement of Lemma. O

Under conditions of Lemma 4.2, a similar relation holds true for ¢-mixing coefficients:

#(0(G1 x G2),0(H1 X H2)) = ¢1(G1, H1),
where
$(G,H) = sup |P(A] B) —P(4)].

A€gG, BEH,P(B)#0

Proof of Theorem 3.3. Now, the process { X,k > 0} is stationary, Xo ~ N(u,0?) and
2

0? =

1—a?"
From expression (7) for estimator &, we get

V(i — a) = % Srea (Wit = fin) (Wi = i, — a(Wi—1 — 1)) + /nacy, A
’ w1 ey (Wit — )2 — 0 B,
From the proof of Theorem 3.1 we get a limit of the denominator:
B, 2 o2, )

Now, rewrite the numerator. Because Y ;_;(Wi_1 — fi,) = 0, we have

R~ .
A, = — Z(Wk71 — ,LLn)(Wk — akal) + \/ﬁa(f%/

VS
= % Z(kal — W) (Wi = pp = a(Wi—1 = p)) + v/naoy,

ZWk_ —aWk 1— MU ))

By the classical CLT,

n

1 1
7 W == oWis =) = 23 (e = aVies + b21)

n
k=1
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converges in distribution. Remember that fi, is a consistent estimator of . Then by
Slutsky lemma,

fin = 1~

P
Tn kZI(Wk —p—a(Wi_1 —p)) =0 asn— oo.

Denote
Zk = (Wit — p) (Wi, — pp — a(Wi—1 — p)) + aoyy
= (Wk71 — ,LL)(Vk —aVi_1 + b&k) + aa%/.
With this notation, A, Li= ﬁ Sori Z.
The AR process { X —pu, k > 0} is a GSM sequence, see Bosq, Blanke [3, Ex. 1.5, p. 47].
By Lemma 4.2 {(Xx — p, Vi)T,k > 0} is a GSM sequence too. Then by Corollary 4.1

{Zi,k > 1} is a GSM sequence. Also {Zi,k > 1} is a strictly stationary process with
EZ, =0 and E Z}? < co. Applying CLT, we get

1 — d 9
ﬁ;Zk — N(O,UA)
with 0% = EZ? + 2> 32, EZ1Z),. After some calculations we have
EZ: = (1 - a2) ot +20%0% + (2a2 + 1) o,
EZ1Zy = —ad*0%0%,

EZiZ,=0, k>3

Therefore
o4 = (1 — a2) ot 42 (1 — a2) o?od + (2a2 + 1) o
Finally,
A, L N(0,07), (28)
A
Vn(a —a) = B—” < N(0,02)
with
2 o3 2 2\ O 2 oy
awzﬁzl—a +2(1-a )?—F(Za +1)?'
Obviously 02, > 0. Thus, d, is an asymptotically normal estimator of a. O

Proof of Theorem 3.4. Proof of this theorem differs from the proof of Theorem 3.3 only
when we deal with numerator A,,. For the case of stationary initial distribution we denote
it as ASt. Then using relation (18) we rewrite A, for an arbitrary distribution as follows:
~ 1 n 1 n 1 n
Ay = 7 Z ViVi—1 + N Z(Xk — ) (Xp—1 —p) + NG Z(Xk — ) Vi1
k=1 k=1 k=1
n

1 « a 5 a & 5
t D Vi X1 — ) - 7 kZ(Xk_l )= D Vi
2a
n

=1 k=1

- =) (Xk1 — Vi1 + ay/noy,

(Xo— X" ) a" (Vi — aVioy + bey).
k=1

1
n
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Because gff converges in distribution, it remains to prove only that the last term

1 n
—(Xo = X5") Y aF N (Vi — aVioy + bey)
\/ﬁ k=1

converges to 0 in probability. We have

3

ED 1a" M (IVil + laVio1| + [bek])

k=1

\/_Zak 1 (Ve — aVi—1 + beg)| <

§\H

g—z F=1(E |Vi| + E|aVi_1| + E |bex]).
Vi i

Because the sum (E |Vi| 4+ E |aVi_1|+ E |bei|) can be bounded by some constant ¢ and
la] < 1, we have:

n

1— n
Z (Vi — aViy + beg)| < —=—11 o —0 asn — oo.

Vi 2 Vi 1 a]

Hence we obtain that A, 2 At and from (27), (28) with Slutsky lemma for all |a| < 1

we get:
Ay,
\/ﬁ(dn—a):B—ing(O,ago) as n — oo. O
n
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MIXED STOCHASTIC DELAY DIFFERENTIAL EQUATIONS
UDC 519.21

G. SHEVCHENKO

ABSTRACT. We consider a stochastic delay differential equation driven by a Holder continuous process Z
and a Wiener process. Under fairly general assumptions on coefficients of the equation, we prove that
it has a unique solution. We also give a sufficient condition for finiteness of moments of the solution
and prove that the solution depends on the driver Z continuously.

AnoTAalIsA. Po3risigaerbesi croxacTuydHe audepeHiiiajibHe PIBHSIHHS i3 3aTPUMKOI, KEPOBaHE IIPOIie-
coM Z, mo 3370BOJIbHAE yMOBY ['enbaepa, Ta BiHepiBCBKHM IpOIECcOM. 3a JOCTATHHO 3arajbHUX IIPH-
MyneHb Ha KoeillieHTH JOBEJEHO, 10 PIBHSHHS MAa€ €QUHUN PO3B’si30K. TakoK HABEHEHO JOCTATHIO
YMOBY JIJIsI CKIHU€HHOCTI MOMEHTIB PO3B’S3KYy Ta ITOKA3aHO, IO PO3B’SI30K HENEePepBHO 3aJIeKUTh Bif
nporiecy Z.

AnHOTAIMA. PaccmarpuBaercsi croxacTudeckoe auddepeHnuaibHoe ypaBHEHNE, ABUXKIUMOE IIPOIeC-
COM Z, YIOBJIETBOPSIONIUM YCJIOBUIO l'esbiepa, ¥ BUHEPOBCKHM mporeccoM. [Ipu moctaTodno obmmx
[IPE/IOJIOXKEHUSIX HA KOIMDMUIUEHTHI JOKA3AHO, UTO YpABHEHHE HMEeT eIUHCTBEHHOe pemieHue. Takxke
[IPUBEIEHO JOCTATOYHOE YCJOBHE KOHEYHOCTH MOMEHTOB PEIeHUs] W [MOKA3aHO, 9TO PEIIeHHe Herpe-
PBIBHO 3aBUCHUT OT IIPOIecca Z.

1. INTRODUCTION

This paper is devoted to a stochastic differential equation of the form

X(t):X(O)—F/O a(s,X)ds+/O b(s,X)dW(s)+/0 o(s, X) dZ(s),

where W is a Wiener process, Z is a Holder continuous process with Holder exponent
greater than 1/2; the coefficients a, b, ¢ depend on the past of the process X. The integral
with respect to W is understood in the usual It6 sense, while the one with respect to Z is
understood in the pathwise sense. (A precise definition of all objects is given in Section 2.)
We will call this equation a mized stochastic delay differential equation; the word mized
refers to the mixed nature of noise, while the word delay is due to dependence of the
coefficients on the past.

In the pure Wiener case, where ¢ = 0, this equation was considered by many au-
thors, often by the name “stochastic functional differential equation”. For overview of
their results we refer a reader to [9, 12], where also the importance of such equations is
explained, and several particular results arising in applications are given.

In the pure “fractional” case, where b = 0, there are only few results devoted to such
equations, considering usually the case where Z = B¥ is a fractional Brownian motion
(for us, it is also the most important example of the driver Z). In [4, 5], the existence
of a solution is shown for the coefficients of the form a(t,X) = a(X(t)), b(t,X) =
b(X(t—r)), and H > 1/2. Tt is also proved that the solution has a smooth density,
and the convergence of solutions is established for a vanishing delay. A similar equation

2010 Mathematics Subject Classification. 60H10, 34K50, 60G22.
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equation; mixed stochastic differential equation.
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168 G. SHEVCHENKO

constrained to stay non-negative is considered in [1]. Existence and uniqueness of solution
for an equation with general coefficients, also in the case H > 1/2, are established in [2, 8].
For such equation, it is proved in [8] that the solution possesses infinitely differentiable
density, and in [3], that the solution generates a continuous random dynamical system.
In [13], the unique solvability is established for an equation with H > 1/3 and coefficients
of the form f(X(¢), X (t —r1), X(t —r2),...).

Concerning mixed stochastic delay differential equations, there are no results known
to author. There are some literature devoted to mixed equations without delay. The
existence and uniqueness were proved, under different conditions, in [6, 7, 10, 11, 16].
Integrability and convergence results for mixed equations were established in [11, 15, 16,
17], and Malliavin regularity was proved in [17].

In this paper we show that a mixed stochastic delay differential equation has a unique
solution under rather general assumptions about coefficients. We also provide a condition
for the solution to have finite moments of all orders, and a result on the continuity of
the solution with respect to the driver Z. The latter result allows, in particular, to
approximate the solution to a mixed stochastic delay differential equation by solutions
to usual stochastic delay differential equations having a random drift.

2. PRELIMINARIES

Let (Q, F,F ={F,t >0}, P) be a complete filtered probability space satisfying the
usual assumptions.

First we fix some notation: throughout the article, |-| will denote the absolute value
of a real number, the Euclidean norm of a vector, or the operator norm of a matrix.
The symbol C' will denote a generic constant, whose value may change from one line
to another. To emphasize its dependence on some parameters, we will put them into
subscripts.

We need some notation in order to introduce the main object. For a fixed r > 0,
let C = C([-r,0];R?) be the Banach space of continuous R%-valued functions defined
on the interval [—r, 0] endowed with the supremum norm ||-||,. For a stochastic process
& = {&@),te[-rT]} and t € [0,7] define a segment & € C by &(s) = &(t + s),
s €[-r,0]. Let a: [0,T]xC — R, b;: [0,T]xC —R¥ i=1,...,m,¢;: [0,T] xC — R,
j =1,...,1, be measurable functions, Z = {Z(t),t € [0, T]} be an F-adapted process in
R! such that its trajectories are almost surely Holder continuous of order v > 1/2. Let
also n: [—r,0] — R? be a §-Holder continuous function with 6 > 1 — .

Our main object is the following stochastic delay differential equation in R¢:

X(t):X(O)-l-/O a(s,XS)ds+Z/O bi(s, Xs) dWi(s)
Lot o (2.1)

with the “initial condition” X (s) = n(s), s € [-r,0]. In the rest of the paper a shorter
notation will be used for equation (2.1) and its ingredients:

X(t):X(O)—l—/O a(s,Xs)ds—i—/O b(s,XS)dW(s)—i—/O c(s, Xs)dZ(s). (2.2)

We remark that it is possible to consider an equation with coefficients depending on the
whole past of the process X. This can be achieved by just taking r =T

The integral with respect to W in (2.2) will be understood in the Ité sense. The integral
with respect to Z is a generalized Lebesgue—Stieltjes integral, defined as follows [18]. For
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€ (0,1), define the fractional derivatives
(P20)@) =y (e o [ A ).
(Dy=g) () = e;( ;; ((b _gf))la +(1-a) /x b 79(5“’1;)92@ du).

Assuming that Dg, f € Li[a,b], D;:O‘gb, € Loola,b], where gp—(z) = g(x) — g(b), the
generalized (fractional) Lebesgue—Stieltjes integral f; f(z)dg(z) is defined as

b . b
/ f(z)dg(z) = e””’/ (ij+ )(m) (D;:O‘gb_)(m) dx.

Moreover, we have the estimate

b b s s s) — f(u
[ 1@ = Clalagen [ (204 [P ) a2

TP — <M+/vwdz>.

a<u<v<b (U - u)l—o( (Z - U’)Q_a
In what follows we fix some a € (1 —,0 A 1/2) and put h(t,s) = (t — s)717%. Define
t

X looe = sUPser—rg X ()], 1XN11 = Jo 1X.es = Kol o ult, 8) ds, [ X, = 1 X[, +
[ X1l ;- It is clear that both || X]| , and || X||, , are non-decreasing in .

By a solution to equation (2.2), we will understand a pathwise continuous F-adapted
process X such that || X||; < oo a.s., and (2.2) holds almost surely for all ¢ € [0,7].

The following assumptions on the coefficients of (2.2) will be assumed throughout the
article:

H1. Linear growth: for all ¢ € C, ¢t € [0,T7,
la(t, V)] + [b(t, ¥)] + |e(t, )] < CA+ [[¢]l¢)-
H2. For all t € [0,T], ¢ € C, ¢ has a Fréchet derivative dyc(t,¢) € L(C,R?), bounded
uniformly in ¢t € [0, T], ¥ € C:
10ye(t, V)l e pay < C-

H3. The functions a, b and Oyc are locally Lipschitz continuous in v¢: for any R > 1,
t € [0, 7], and all 1, gy € C with || ]l < R, e < R,

la(t, 1) — alt,P2)] + [b(t, 1) = b(t, )| + [[Ope(t, 1) — Dyc(t, v2)ll 1 pa
< Cr |l — 2llc -

H4. The functions ¢ and 9y ¢ are Holder continuous in ¢: for some 5 € (1 —~,1) and for
all s,t €0, T],v €C

le(s,9) = e(t,9)] < Cls =t (L + [9lle),  10pe(s,v) = ue(t, )l e pay < Cls — /7.

The condition H4 allows, for instance, to consider an important particular case, namely,
a linear equation.

where

3. AUXILIARY RESULTS
First we establish some a priori estimates for the solution of (2.2).

Lemma 3.1. Let X be a solution of (2.2), and p > 1, N > 1. Let also Ay, =
{|\Z||a;[07t] < N} fort e [0,T]. Then

E [”X”ZY)“ ]]'AN,T] < CN,P'
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Proof. Assume without loss of generality that p > 4/(1 — 2a).

For R > 0 define Bp = {||X||Oo’1t + ||X||th < R} and 1; = 1Ay ,nBg,-
Let w € An . Write for ¢ € [0,T]

X (O < 1XO)] + [1°(0)] + |1°(2) \+ TMOIE

where I%(t fo ) ds, I°(t) fo s) AW (s fo dZ(s). Esti-
mate, usmg (2.3),

1) < / (s, X,)| ds < c/t (1411, ¢)ds < © (1 ¥ / X1, ds) ;
[1¢(t)| < CN/ ( c(s, Xq)|s™¢ / le(s, Xs) Xu)|h(s,u)du> ds
<on [ (<1+||Xs||c>sa
[ (= al? @ 1) + 1. = Xole) Aoy du) s

t
<on (1t [ (I + 11 ds).
0

Therefore, we have

< on (1 [ (X057 +1X1L) ds) + 1)

whence

t
Xl <ON (14 [ (1K™ +1X0,) d5) 4 1 Plgeye ()
Further, let 0 < s < ¢. Then for u < s —t,
(X (utt—s5) = X(u)| = [n(u+t—s) —n(u)] < Hy(t—s)’,

where H; = sup_,<,,<o % is the #-Holder seminorm of 7. Similarly, for v €
(s —t,0],
[(X(utt—s) = X(u)| <[X(utt—s) = X(0)]+[n(0) = n(u)]
<X (udt—s)— X(0)] + H,(t—s).

Consequently, we can write

x|y, < H, / $)0HeTds 4 JUt) + JO(t) + JO(t) < C + Jt) + JO(t) + J(¢),

where JO(t) = f SUDye(5—t,5] fs\x)tis b(v, Xy) dW(v)‘ h(t,s)ds,

t utt—s
J(t) = / sup / a(v, X,) dv
0 u€ls—t,s] [Juvo

t u+t—s
<c [ max / (14 X, ) duh(t, s)ds
o u€ls—t.s] Juvo

<C<1+//||X||Oozdzhts) )SC<1+/Ot||X||m7z(t—z)_adz>;

u+tt—s
JE(t) = / wp | [ e, X, dz(0)
0 u€ls—t,s] [Ju

VO

h(t,s)ds

h(t,s)ds < ON (JS(t) + JS(t))
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with
t u+t—s
Ji(t) = max / le(v, X)) (v —u Vv 0)"*dvh(t,s)ds
0 u€ls—t,s] Jyuvo
t u+t+t—s
<[ max / (141X le ) (v — u v 0) = dv h(t, s) ds
o u€l=msl Juvo
t ot
<C<1+/ / [ XNl (z—5)7 dzh(t,s)ds)
0 Js
t
<c <1+ JA (AR dz>;
utt—s
J5(t) = ér[lax / / —c(z,X.)| h(v,z) dz dv h(t, s) ds
0 u —TS wV

u+t—s
<c [ max / / o= 2l + 11X, = Xell¢) h(v. 2) dz dv h(t, ) ds
uV uVO0

0 u€[—r,s]

u+t+t—s
<C max / (|v —uvoP ||X||1’v> dvh(t,s)ds

0 wE[=7,5] Juvo

t t
< C/ ((t—s)’gh—l-/ X1 dvh(t,s)) ds
0 s
t
<C (1 —|—/ X0y, (¢t —v)™ dv) :
0

To estimate Jy, we have used the computation

z

/0 (z—s)"%(t—s)"'"%ds = ‘5 =z—(t— z)v‘ =(t—2z)"% /Otiz v +v) " dw

< (t—2)7% /0Oo v (1 40) " dv = B(1 — o, 2a) (t — 2) 72,

Summing the estimates for || X||, ,, we get

IX1,, < ON (1 + / (Xl (€= 572 41X (= 5)72) ds> +0(). (3.2)

Combining this with (3.1), we obtain

X1, <CN/ X1 g(t,5) ds + [[1°]] 0. + (1)

for w € An ¢, where g(t,s) = s~ + (t — s) 2.

Using the Holder inequality, we can estimate

t t p/q ,

112 < o [z ateoyas ([ attrds) 6 (1000 + (P0))

whence
¢
EX[P 1] < Cnyp (/O E(1X12 1] 9(t, ) ds + E [| 7|7 0. 1] +E[(240)” LD

(3.3)
We now proceed to the estimation of the last two expressions. It is obvious that for any
0<u<s<H,

)L <

/va ) dW (v

X)Ly dW (v)|.
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v
1

t
<c, / E[(1+ | Xu]le L)7] ds

Therefore, by the Burkholder inequality,

[HIbH 0] } =E l sup /OS b(v, Xy) dW (v)

s€[0,t]

<E| sup
s€[0,t]

t p/2
< C,E K/ b(s, X,)? 1, ds>
0

t t
<o, [[avenxizny as<c, (14 [ eI, 1] o).
0 0
Further, we have

E {(Jb(t))p ]14 < C,E [(/()t ue?;lg’s} h(t,s) ds) p] . (3.4)

It follows from the Garsia—Rodemich-Rumsey inequality that for any r, z € [0,¢]

/b e dW ()

1/p
Yb(v, X, )1, dW
U (v ()‘ dx dy .
o —y["/?
We can estimate

p_//yEUy | ]ldW()dedy

T |;0/2

/S b(v, X,)1, dW (v)
0

u+t—s
/ b(v, X)) 1, dW (v)

VO

< Cpt(t) |r — 2272/

where

P/2

C (AT )"
< dx d
=G 0/0 (y — x)p/? e

e (y =2 PE [N (L X, 1) do)
<c
~ /0 (y —x)r/?

t Yy v
<G, <1+/ E [HXH’;OU ]lv}/ (y—a2)! da:dvdy)
0 Jo 0
¢
=0, (1+/ E[HXHZOU }/ log dydv)
0 ’ v Y-
¢
<q, (1+/ E [IX]2., 1] dv).
) :

Therefore, taking into account that p > 4/(1 — 2a), i.e. 2/p+1/a—1/2 < 0, we get
from (3.4)

dzx dy

p

[0 < el ( | (1= sy 2o is)

t
<G, (1 + [ E[ixi, ] dv) -
0

Plugging the estimates of I® and J? into (3.3), we get

EIXIf 1] < Cnyp (1 +/O EQIXIE ﬂs]g(tS)dS) :
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Since g(t,s) < (T + 1)t2*s~2%(t — 5) 72 we can apply the generalized Gronwall lemma
[14, Lemma 7.6] and obtain E [|| X ||, ]1T] S Cn p- By letting R — oo and using the Fatou
lemma, we arrive at the required statement. O

The following lemma establishes estimates for the distance between solutions of mixed
stochastic delay differential equations with different drivers. To formulate it, assume
that Z is another v-Holder F-adapted process, and consider the equation

Y(t):X(O)—f—/O a(s,ys)ds—i—/o b(s, Xs) dW(S)+/0 c(s,Xs)dZ(s) (3.5)

with the same initial condition X (s) = n(s), s € [-7,0].

Lemma 3.2. Let X and X be the solutions of (2.2) and (3.5) respectively, p > 4/(1—2a),
N >1, R>1. Assume also that || Z|| ..o 7y < N and ||7H 0.1 S N. Then
E “|X _YHZO,T ]IBR,T} < On.rpE [HZ - ZHZ;[O,TJ ’

where Bry = {|| X, < R, HY”t < R} forte[0,T].

Proof. The proof will be similar to that of Lemma 3.1, so we will omit some details. Put
At) = || X = X|,, Aa(t) = d(s, Xs) —d(s, X ) for d € {a,b,c}, and Az(t) = Z(t) - Z(t).
By assumption H3, Ay(t) - YtHC < CrA(Y).

Let w € Bpr,. Write for t € [0,T]

X (1) = X@)| < @]+ [I°Of + 1] + [17(1)],

where 1°(t = [7A b(t) = [y Mul(s)dW(s), I°(t) = [) Au(s)dZ(s), I%(t) =
fo dAZ( ). We estlmate the terms one by one, starting with I%:

120] g/o 1Au(s)] dsgcR/O A(s) ds

Similarly to I¢(t) in the proof of Lemma 3.1,

t
[17(1)] < C A2 a0, / (I ey 5™+ X, ,) ds < CRIAZ o

Further,

e < CN/ <|A 5o / 1A(s) — Au(u)| h(s, u) du) ds
gcRN/O (A( ~a / AL(s) — Au(u)] (s, u)du) ds.

Similarly to [14, Lemma 7.1], it can be shown that assumptions H3 and H4 imply that
for any s,u € [0,T] and 1,...,¢¥4 € C with ||| < R,i=1,...,4,

|C(571P1) - C(U7¢2) - 0(57¢3) + C(U,, ¢4)|
< CR(H% — b2 — Y3+ Yallc (3.6)
e = wslle (Is = ul® + o1 = walle + s — vallc) ).
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Therefore, we can estimate |1°(t)] < CrN 22:1 I;(t), where
t
Ilc(t):/ A(s)s™ % ds;
0
t s t
50 = [ [ %% -+ X hswauds < [ |x =X, as
o Jo 0 h
¢
< / As)ds;
0
t s o ¢ o t
mﬂf//u&—XJA&mWW*magc/HX—kawgc/A@m;
o Jo 0 0
t s
Iéf(t):/o /0 ||XS_YSHC (HXS_X“”C_'_HYQ_YUHC) h(s,u) du

t t
é/ s = Xl . (||X||17s+ ||XHLS) §2R/ A(s) ds.
0 ’ 0

Therefore, we have

t
1% = Ky = O (182lgoq + [ A ds) + [ oy 6D

Further, let 0 < s < t. Then for u < s —t,
| X(u+t—s)—X(u+t—s)— X(u)+X(u)| =0;
for u € (s —t,0]
| X(u+t—s)—X(u+t—s)—Xu) +X(u)|=|X(u+t—s)—X(u+t—s)|.
Consequently, we can write
X =X|,, < U0 + @) + To(1) + T2(1),

where
t u+t—s
J(t) z/ sup / A, (v)dol,
0 u€ls—t,s] [JuVvO
t u+t—s
Jb(t):/ sup / Ap(v) dW (v)| ds,
0 u€[s—t,s] |Juv0o
t u+t—s
Jo(t) = / sup / Au(v)dZ(v)|,
0 u€ls—t,s] [JuVvo
t u+t—s .
JZ(t)z/ sup / (Xy,v)dAz(v)|.
0 u€ls—t,s] [JuvOo
Estimate

t utt—s t
J(t) < Cr max / A(v)dvh(t,s)ds < C/ A(z)(t — z)" % dz.
u 0

0 u€ls—t.s] Jyvo
Similarly to J¢(t) in the proof of Lemma 3.1,

t
T2t = Cl18zllagon (1 [ Ut =0) 2+ X, - s)‘“)ds)
< CrlAzlla0. -

Further, using (3.6), we can estimate, analogously to I¢(t) above,

4
Je(t) < Cnr Yy Ji (),

k=1
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where

t u+t—s
Jet) = [ max / A()] (0 — u Vv 0)=2 dv h(t, 5) ds

0 u€[s—t,s] Juvo

<Cp /t /t A(2)(= — 5)"“d= h(t, ) ds < c/ot A()(t— 2)2 4z

utt—s v
J5(t) = max / / ||X -X-X +7|| h(v,z)dzdv h(t,s)ds
o0 uw€l-7r] Juv 00,2
utt—s o
<C max / ||X —X||1 dv h(t,s) ds
0 w€l=ms] Juvo v
<C//HX x|, dvhtsds<C/ )(t— )" dy;
u+t—s
J5(t) = maX / / | X - X|| (v —2)P~* L dzdvh(t,s)ds
0 uw€[=7,5] Jyuv
u+t+t—s
<C max / | X - X|| dv h(t,s)ds
o w€l-7,s] Juvo
<C//HX XH dvhtsds<C/ )t — )" dv;
utt—s o o o
s = [ e [ [ R (0% - el + R - Ko
0 u€l=ms] Jyy uvo ’

x h(v,z)dzdvh(t,s)ds

t u+t—s o
<c [ max [ x-%, (]

0 u€l-rs]Jyvo

ot HY”lv) dv h(t,s)ds

t t .
< CR/ / X = X||,, dvh(t,s)ds < CR/ A()(t —v)~ do.
0 s ’ 0

Summing the estimates for ||X — YHl ,» we get

t
% =Kl = O (182hugon + [ Al =5 ds) + 770
’ 0

Combining this with the estimate(3.7), we obtain

t
HX—Yut<cN,R(||AZ||m[O,ﬂ+ a5 as >+Hfbu PPRPL0)

for w € Br, where g(t,s) = s~ + (t — 5)72%. The rest of the proof goes exactly as in
the Lemma 3.1. Namely, denoting 1; = 1g,,,, we obtain

t
EIXIF 1] < Cw,yp (E (18201 00) + [ ENXIZLIat0.) ds> ,
which implies the required statement with the help of the generalized Gronwall lemma.
O
4. EXISTENCE AND UNIQUENESS OF SOLUTION
Now we have everything to establish the unique solvability of (2.2).
Theorem 4.1. Equation (2.2) has a unique solution.

Proof. For convenience, the proof will be divided into several logical steps.
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Step 1. Approximations by usual stochastic delay differential equations. Fix some N > 1
and define 7y = inf{t > 0: 12| sf0, = N}, ZN(t) = Z(t A7n), t > 0. For each integer
n > 1 define a smooth approximation of ZV by

t

ZNN() = n /( ZN(s) ds

t—1/n)VvV0

and consider the equation
t t t

XNn(s) =X(0)—|—/ a(s,Xév’") dt+/ b(s,Xév’") dW(s)+/ c(s,Xév’") dzNm(s)
0 0 0

with the same initial condition X™"(s) = n(s), s € [~r,0]. Since Z¥:" is absolutely

continuous, this is a usual stochastic delay differential equation (or, in the terminology
of [12], stochastic functional differential equation)

t t
XNn(s) :X(0)+/ dVr (s, XN dt+/ b(s, XNm) dW (s) (4.1)

0 0
with a random drift dV-" (s, 1) = a(s, ) +c(s, ) £ ZV"(s). Clearly, | L ZN-"(s)| < nN.

Therefore, the coefficients of (4.1) satisfy the linear growth condition: for all s € [0, 7],
Y eC,

|7 (s,90)] + 1b(s, )| < O (14 (9l 5 (4.2)
and the local Lipschitz condition: for any R > 0 and all s € [0,T], ¢1,%2 € C with
[1lle < R, llY2lle < R,

| (s,41) — AN (s, 40) | 4 [b(s, 1) = b(s,92)| < O 191 — Y2l - (4.3)

In [12, Theorem I.2] and in [9, Chapter 5, Theorem 2.5], the unique solvability of (4.1) was
formulated for non-random coefficients satisfying conditions (4.2) and (4.3). However,
the arguments given there are easily seen to extend to adapted coefficients satisfying (4.2)
and (4.3) with a non-random constant, which is the case here. Thus, (4.1) has a unique
solution.

Step 2. Convergence of approzimations. First we show that, for a fixed N > 1, the
sequence {XN’”,n > 1} is fundamental in probability in the norm |-||. Indeed, it is
casy to show (see e.g. [11, Lemma 2.1]) that ||Z™" — ZNHa

Then, in view of the boundedness, E[HZN’" — ZNHZ

Lemma 3.2 and the Markov inequality imply that
P (| = XV > e X5 < R XY < R) =0, mm—oo, (4d)

01 0, n — o0, a.s.

(o] = 0 for any p > 1. Therefore,

for any € > 0, R > 1. Hence,
limsup P (HXN’" — XN’mHT > 6) <2supP (HXN’”HT > R)
n>1

n,m— 00

for any ¢ > 0, R > 1. The convergence E[HZN’" - ZNHZ_[O_T]}
SUpP;,>1 E[HZN”LHZ;[O’TJ < 00. Then, due to Lemma 3.1 and the Markov inequality,

— 0, n — oo implies that

supP(HXN’”||T>R)—>O, n — oo,

n>1
whence, letting R — oo in (4.4), we deduce P (||XN’" - XN””HT > 5) — 0, n,m — 00, as
required. Therefore, there exists some random process XV such that ||X N _ XN ||T —
0, n — o0, in probability. There is an almost surely convergent subsequence, and without
loss of generality we can assume that HXN”L — XNHT — 0, n — o0, a.s.
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Step 3. The limit provides a solution. In order to prove that X* solves equation (2.2)
with Z replaced by Z%, we need to show that the integrals in (4.1) converge to the
correspondent integrals for X~. Since the convergence HXN’” — XNHT — 0, n — oo,
implies the uniform convergence on [0, 7], we easily obtain

t t
/ a(s, XN ds — / a(s, XN)ds as., n — 0o,
0 0

Similarly to I¢(¢) and I4(¢) in the proof of Lemma 3.2, we have
¢ ¢

‘/ c(s, XN) dzV(s) —/ c(s, XNm) dzN(s)
0 0

t
< O (I, + ) (12 = 200 g+ [ Y =37, ) o

as n — 0o a.s. Finally, denoting 1; = 1 x~ |, <r |x~.n|,<r, We have

E [(/Otb(s,xjv) dW (s) — /Otb(s,Xév’") dW(s))2 114

IA

(b (s, X2) = b (s, X)) 1] ds

IN

XN = xNr|P1,] ds -0, 0o

t
f el
0
t
[el
0
So we have that

</Otb(S,X§V) dW(S)—/Otb(s,XSN’”) dW(s)> 1, — 0, " — o0

in probability. Thanks to the convergence HXN”L — XNHT — 0, n — oo, the event
{HXNHt < R} implies {HXN”LHt < R} for n large enough, therefore we have the con-
vergence of the integrals in probability on {HX N || , < R} and arbitrary R > 1, therefore
on . Thus, we have that XV is a solution to

NS: taS N ' S N S tCS N NS
XN = X0)+ [ (s XY) e+ [ b X2) W)+ [ e(sxY) az¥()

with XV (s) = n(s), s € [-r,0].
From Lemma 3.2, it is obvious that the processes X~ and X™ with M > N coincide
a.s. on the set Ay g = {HZHa;[o,T] < N}. Therefore, there exists a process X such that

for each N > 1, X¥ = X a.s. on Ay 7. Consequently, X solves (2.2) on each of the sets
An,1, N > 1, hence, almost surely.

Finally, the uniqueness follows from Lemma 3.2: each solution to (2.2) must coincide
with X on each of the sets Ay 7, hence, almost surely. O

5. INTEGRABILITY AND CONVERGENCE OF SOLUTIONS

Now we investigate the question when the moments of X are finite. Naturally, we
need to require certain integrability of the driver Z. It is quite involved to prove the
integrability under assumptions H1-H4 (for equations without delay, the corresponding
result is proved in [15]). So we prove the integrability under an additional assumption
that b is bounded.

Theorem 5.1. Assume, that, in addition to HI1-H4, |b(t,v)| < C for any t € [0,T],

¥ €C, and E[exp{c ||Z||(11/[(01;]0‘)H < oo for all ¢ > 0. Then the solution of (2.2) satisfies

E[IX|}] < oo for all p > 1, in particular, all moments of the solution are finite.
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Proof. The proof follows the scheme of [16, Lemma 4.1]. We will use the notation of
Lemma 3.1.
Define for A >0, ¢ € [0,T], a € {1,00} [|X]|,,, = sup,cpo, 17 € —As [ X1l s Denote also

¢ = HIbHOO'[O.T] + J*(T). Then from (3.2) we get for w € Ay,

S
X1 < ON (14 supe™ / (1K™ 4 1X0,,) ) ¢

\ /\

o (1+ sgg O (X X da) 4

< CN (1 + sup eMu—s) (ufa ||X||/\;Oo + ||X||)\;1) du> +C
s<T

< CON 1+Aa 1||X||AOO+A 1||X||/\1)+<7

where we have used the estimate

s As
sup/ M=)y~ duy, = sup A7} / e *(s—z/N)"%dz
s<T Jo s<T 0

As a
= sup \** / e F(\s —2) Ydz < A1 sup/ e la—2)"%dz = C\*L,
s<T 0 a>0.Jo

Similarly, from (3.1),
X[y, <N <1 + sgge**sfo <||X||oo,u (5 —u) "2 + || X[l (s - u)*a) du) +¢
< N(1 dsup [ N (-
0

s<T

MR (50 ) du)
+¢

<N (1 + sup / A0 (11X [y 0 (5 = )72+ [ XLy (5 )™) du) +¢

s<T

< ON (14 207 |X g0 + X7 X ) + €.
Therefore, we have arrived at the system of inequalities
1Xloo < KN (1427 Xy o + A7 X g )+
X0 < BN (1422270 X+ 21X ) + €
Setting A = 4K N/(1-9) it is easy to deduce from this system that
X | yso0 + 1 X 11 < ONVEZO (14 ¢),

whence
1X 0 < 7 (IX o0 + X130 ) < Cexp {ONYO=} (14 ¢)

for w € Any. Thus, in order to prove the required result, it remains to show that all
moments of ¢ are finite. The argument is similar to the estimation of I® and J° in
Lemma 3.1, so we omit some details.



MIXED STOCHASTIC DELAY DIFFERENTIAL EQUATIONS 179

Take arbitrary p > 4/(1 — 2a). By the Burkholder inequality,

T p/2
E 112 0] < GoE (/ [b(s, X)[* ds> < oo, (5.1)

Further, we have
P
h(T, s)ds) ] . (5.2)

T
E[JY(T)*] < C,E [(/ sup
0 wu€l[s—T,s]

By the Garsia—Rodemich—Rumsey inequality, for any r, z € [0, T

/Z b(v, X)) 1, dW (v)

1/p
;b dw (v)[”
(/ / |p/2 dzx dy .
From the estimate

/ /yE e Ix— Ip/2 W)l du dy

p/2
[fy|va)| dv) } .
<C / / —x)p/Q dxdygcp/o /O ldxdy < oo

we obtain, as in Lemma 3.1, E [Jb( )!] < oo. Taking into account (5.1), we get that
E [¢P] < oo, thus finishing the proof. a

u+T—s
/ b(v, X,,)dW (v)

uV0

< CR&(T) Ir— 227207,

where

Remark 5.2. The assumption on Z from Theorem 5.1 is fulfilled e.g. for a fractional
Brownian motion with Hurst parameter H > 1/2 (with any o > 1 — H), see e.g. [16,
Theorem 4].

Finally, we state a result on stability of solutions to (2.2) with respect to the driver Z.
Its proof virtually repeats Step 3 of the proof of Theorem 4.1 and therefore is omitted.
Let forn >1

"={Z"({t),n 21}

be an F-adapted y-Hélder continuous process, and X™ be a solution to

t t t
X"(s) = X(0) +/ a(s, X dt+/ b(s, X™) dW (s) +/ o(s, X")dZ"(s)  (5.3)
0 0 0
with the initial condition X" (s) = n(s), s € [-r,0].

Proposition 5.3. Let X and X" be solutions of (2.2) and (5.3) respectively, and
1Z = Z"o0ry — 0, m — oo, in probability. Then |X — X"[|; — 0, n — oo, in
probability.
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