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ON THE NUMERICAL SOLUTION OF A MIXED
BOUNDARY VALUE PROBLEM FOR THE ELLIPTIC
EQUATION WITH VARIABLE COEFFICIENTS
IN DOUBLY CONNECTED PLANAR DOMAINS

A.V.BESHLEY

PE3IOME. Mu po3risigacMo 9ucesbHE PO3B’A3yBaHHS MIIMIAHOI 3ajadl I
eJIIITUYHOTO PIBHSIHHSA APYTOrO MOPSAKY 31 3MiHHMME KoedilieHTaMu y 1BO-
3B’a3Hiil obstacti. Po3B’s30K 33/1ad9i 1OIAETHCS Y BUTTIAAlL CyMU TOTEHITIATIB
3 HeBimoMumu rycruaamvu i dynknieo Jlesi y axocti aapa. IlincraBasioun
TIOJaHHS PO3B’sI3Ky B OCHOBHE PIBHSHHS Ta JIBi KPalOBi yMOBH, MU OTPUMYEMO
CHCTEMY IPAHUIHO-IIPOCTOPOBUX IHTErPAJIbHUX PIBHAHD. 3aMiHa 3MIHHUX IIPU-
BOIUTH JI0 TIAPAMETPU30BAHOI CHUCTEMHU, KA TPAHC(HOPMYETHCSI y CHCTEMY
JIHITHUX aJreOpUIHUX PIBHSHB ITC/Is 3aCTOCYBAHHS KBAJIPATYp Ta KOJIOKa-
mii ampoKCUMAIIHUX PIBHAHD y BiAmoOBiaHWX By3/iax. Hampukinimi HaBemeHO
JesKi 9rcesbHI Pe3yIbTaTH.

ABSTRACT. We consider a numerical solution of a mixed boundary value
problem for the second-order elliptic equation with variable coefficients in a
doubly connected domain. A solution of the problem is represented as a sum
of potentials with unknown densities and Levi function as a kernel. Substi-
tuting the solution representation in the main equation and two boundary
conditions we obtain a system of boundary-domain integral equations. The
change of variables leads to the parameterised system which is being trans-
formed in a system of linear algebraic equations after quadratures application
and collocation of the approximating equations at appropriate points. Some
numerical results are provided at the end.

1. INTRODUCTION

The elliptic differential equations with variable coefficients are widely spread
in many problems of mathematical physics. The coefficients presented in a
differential operator mostly correspond to the specific material parameters (for
instance, thermal, electrical or hydraulic conductivity) of a considered physical
process.

There are well-known effective methods (the boundary element method, the
boundary integral equation method) for solving problems defined in bounded
or infinite domains. The main advantage of these approaches is decreasing of
the dimension of the problem — the solution in a domain can be represented
using specific expression only over the boundary. However, in this case, a fun-
damental solution for a general differential operator is required. Unfortunately,
a fundamental solution, in general, is unknown for differential equations with

Key words. Elliptic equation with variable coefficients, mixed boundary value problem,
parametrix, boundary-domain integral equations, quadrature formulas.
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variable coefficients or its finding can be quite complicated (in contrast to equa-
tions with constant coefficients). Therefore, efficient methods to solve such kind
of problems are welcomed.

One of the approaches that has been proposed for the numerical solution
of so-called the generalized Laplace equation [9] (a second-order linear elliptic
partial differential equation with variable coefficients) is described in [10]. The
main idea is to transform the starting equation with variable coefficients into a
constant-coefficient equation for which a fundamental solution is available and
then any of mentioned above effective methods can be applied. The first step
in the procedure is to avoid the first partial derivatives of the unknown func-
tion and next step is to approximate the transformed equation using constant
coefficients.

It is not mandatory to obtain the constant-coeflficient equation to solve the
problem. As an example, in [1] for solving a two-dimensional mixed problem
(where the Dirichlet condition prescribed on a part of the boundary and the
Neumann condition prescribed on the remaining part of the domain bound-
ary) with variable coefficients a special function (parametrix) has been used in
the Green formula to reduce the initial boundary value problem to a boundary-
domain integral equation or boundary-domain integro-differential-equation with
the following discretisation of the domain and application of the collocation
method. Another similar technique for solving this problem, but with using
the radial integration method [5], has been proposed in [2]. The radial in-
tegration method was employed to convert domain integrals into equivalent
boundary integrals.

In this paper, we consider the numerical solution of a mixed boundary value
problem in a doubly connected domain where the Neumann condition is defined
on the outer boundary, meanwhile as the Dirichlet condition prescribed on the
inner boundary.

Let Dy be a simple bounded domain in R? with boundary I'y € C?. Let
D_1 be a domain bounded by curve I'_y € C? and D_; C Dy. We define
that D = Do\ D_1. We consider the following mixed boundary value problem
in the doubly connected planar domain D for elliptic equation with variable
coefficients: need to find function v € H'(D) that satisfies the differential
equation

Lu(z) = div(o(z) gradu(z)) =0, x € D, (1)
the Dirichlet condition on I'_4

u=f1 on '3 (2)

and the Neumann condition on I'g

0
Ua—z = fo on T. (3)
Here, 0 € C®(D), 0 > 0, f1, f2 are known functions and v is the outward unit
normal to the boundary.
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This problem can be interpreted as a stationary heat transfer problem in an
isotropic medium for a two-dimensional bounded body with prescribed tem-
perature and heat flux on different boundaries. Since the main equation is
homogeneous we assume that a heat source is not available. The function o(z),
in this case, is a known thermal conductivity.

For the outline of the work, in Section 2, we reduce our differential problem
to a system of boundary-domain integral equations, obtain an equivalent sys-
tem in a parameterised form and split singularities from some kernels. A full
discretisation of the system with applied quadratures and approximation for-
mula of the solution in a domain are presented in Section 3. In Section 4, two
numerical examples for different domain configurations are considered. Some
conclusions are given in Section 5.

2. REDUCTION TO A SYSTEM OF BOUNDARY-DOMAIN INTEGRAL EQUATIONS

As it was mentioned above, there is no ability to reduce the problem to a
boundary integral equation as a fundamental solution is not available in the
explicit form, in general case, for elliptic equations with variable coefficients.
But, we can use a parametrix to work only with integrals instead of the differ-
ential equation and boundary conditions, however, it leads to domain integrals
appearing. A parametrix (or Levi function) P(z,y), =,y € R? should satisfy
the following expression [§]

Ly P(z,y) = 6(z —y) + R(z,y), (4)
where ¢ is the Dirac function and the remainder function R has a weak singu-
larity for x = y. In the two-dimensional case we can define the parametrix as
the fundamental solution with frozen coefficients a(x) = a(y) corresponding to
the operator L, i.e., in the form

_Injz —y

P == < R?
(z,y) 2m0) T,y eR* x#y

with the remainder function
Riz,y) = (r—vy)- grada(zx)
2mo(y)|z -y
It is not difficult to verify that functions P(z,y) and R(x,y) satisfy (4).
Should note that the parametrix function is not unique.
We seek the solution as a sum of potentials, but instead of the fundamental
solution of the differential operator we use the Levi function

u(z) = / by Pla,y) dy + / by (9) Pl y) ds(y)+
D | Y

, myeR® z#y.

(5)
4 / Go)P(z,y) ds(y), € D,
1)

where ¢ € C(D), ¢—1 € C(I'-1) and g € C(I'g) are unknown densities.
Substituting (5) in (1)-(3) we obtain the following system of a boundary-
domain integral equations
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/w(y)P(a?,y)der /w—l(y)P(rc,y)dS(yH

D J Y
+/1/}0(y)P(I‘,y) dS(y) = fl(‘r)? T c F—L (6)
o
~gona)+ [ vt 2 dy
D
# [ o ast)+
Ty
+ [unto@ 5 dst) = fo). aeto
To

If o(x) =1 then the density ¢(x) vanishes (together with domain integrals)
and the system is being simplified to a system of boundary integral equations
that correspond to the Laplace equation. The similar system for this case can
be found in [4].

Let D is symmetric relative to the origin and assume that the closed bound-
ary curves I'g, I'_; are homothetic with factor £_; and have the following
representations

= {x(t) = (21(t), z2(1)), t € [0,27)},

Iy = {21 (t) = (Era1 (1), Erma(®)), £ € [0,27)), ")

where £_1 is a fixed parameter and 0 < £_7 < 1. To obtain the system in the
parametrized form we use the change of variables in the integrals over domain
in (6)

y1 = p1(§,7) = a1 (1),

yo = p2(&,7) = aa(T),

where (§,7) € II = (£-1,1) x [0,27) and Jacobian J(§,7) = &(z1(7)2h(T) —
xo(7)z (7). The notation p = (p1,p2) is used for the function mapping into
II.
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This yields the following system

/

o0, 1)+ 5= / (€. T)R(n. :6.7) drdg+
/80151, 1(n, t;€-1,7) dT+
+2i po(r) Boin, ;) dr =0, (1,1) €L,
T
0
21/ P(é_y 1€, 7) drdé+
t 21
+217r/90—1(5—1,T)P—1(§—1,t;§—1,7’) dr+ 8)
1 027r
tor [ @R tir)dr = Fi€r.), t € 0,2m),
0
—se0®) + 5 [ wle P €, 7) drde+
" 2w
+217r/ (€1, T)Poy (b6, 7) drt
0
21
+21/g00(7')ﬁ0(t; T)dT = fé(t), t €10,2m),
T
0
with the functions ¢(n,t) = ¥ (p(n,1)), p-1(t) = Y-1(z(t)), @o(t) = Yo(x(1)),

fi(t) = fi(z_1(1), fot) = fo(x(t)) and kernels
R(n,t;€,7) = 2rR(p(n, t), p(&, 7)) J (£, 7),
Ro(n,t;7) = 20 R(p(n, t), (7)) |2’ (1)];
P61, t:€,7) = 20 P(Eqa(t), p(&, 7)) T (€, 7).
Pyt tir) = 27TP(§ 1:c< ), z(7))|a’ ()];
)

Plts€,7) = 2ro(a(t) 2 G Len (€, 7).
By(tir) = 2m<x<t>>Wrm'<T>|;

Roa(n,t;6-1,7) = 2 R(p(n, 1), §12(7))§ 1|2 (7)];
P_y(§-1,t:€-1,7) = 20P(§o1a(t), €12 (7))E-1]a! (7)];
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P(z(t), §-12(7))
O (x(t))

Exploring the kernels it is easy to see that the kernels R and P_; have different
singularities. The strong singularity in R can be handled by applying the ideas
from [7] (for more details see [3]). The logarithmic singularity in the kernel P_;
can be split [6] as follows

P_i(t;&-4,7) = 27?0(:1:(75))8 E 4|2/ ().

entiean) = PO L s ST PO L ng ) ()

with
5y 1y - L &l ()]
T = 5 ()
and
1 ’5—1-7661) 2§t 1}'( )| for t4T,
Py Sl | 2T
AT A I
iln(e|£,1x'(t)|2) for t=r.

3. FULL DISCRETISATION AND NUMERICAL SOLUTION OF THE SYSTEM

For solving the system (8) we use the interpolation quadrature rules for
continuous integrands and integrands with weight function that corresponds to
the specific singularity. For continuous integrands we use

N 2n—1

/ (€ r)drde ~ o= 37> anglmto), (10)
k=1 =0
1 gﬂ- 2n—1

o ), Z f(tx (11)

The following quadratures are used for 1ntegrals with strong and logarithmic
singularities

1 N 2n—1
5 | 9 eot T Larde ~ 30 Y anglme t)Ti(0), (12)
I k=1 i=0
1 4 2n—1
.2
o f( ) In <esm >dT~ > ftr) Fr(t (13)
k=0
In formulas (10), (13) oy € R? are quadrature weights, n, € (0,1), k =
1,..., N — some quadrature points. For 2m-periodic integrals we employ the

trapezoidal quadrature rule based on trigonometric interpolation with equidis-
tant points t; = iw/n, i =0,...2n—1, n € N. The weight functions 7;(¢) and



ON THE NUMERICAL SOLUTION OF A MIXED BOUNDARY ...

Fy(t) are defined as follows

1
T;(t) = _ﬁ sinm(t — t;) —smn(t—t)
1 = 1 1
Fi(t) = ~5- <1+22 mcosm(t—tk)+ncosn(t—tk)>.
m=1

The use of these quadratures in (8) and collocation of the approximating equa-
tions at quadrature points lead to the linear system

N 2n—1

k=1 j=0
2n—1

"‘7 Z w— 1] nmytza§ 1.t )+

2n1

7=0
2n—1 2n—1

> aror P, tis i, 1) t5, > wojPo(€r tinty)+
j=0 7=0

1 N
%Z
N (14)

j=

; <P1j[ Ve t)F (1) + - PO bt ﬂ:fu,
0

1. 1 N 2n—1

—5P0i T 5o Z ks P (tis iy )+
k=1 j=0
1 2n—1

o Z o171 (ti €1, 1)+
7=0
2n—1

+% z(:) wo;Po(ti, t;) = fo,
]:

with

1 ~
%R(nmvtﬂnkat]‘) for m #k,
for =k,
and the right-hand side fi; = fl( ;) and fai = f2( i)

Here, we use the following notation ¢mi ~ ©(Nm,ti), v—1; = ¢—_1(t;) and

woi = po(t;) form=1,...,Nand ¢ =0,...,2n — 1. The kernels RM and R®
are smooth functions and their representations are provided in [3].
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Solving the system (14) we obtain the approximate values of unknown densi-
ties. Having these values we can find the approximation of the solution (1)-(3)
in the domain D using the following formula

N 2n—1

U ti) = 3 D kP Py tis s )+
k=1 j=0
1 2n—1 »
o D o 1P tiéornty)+ (15)
=0
2n—1 _
+o. Z ©0; Po (1 tis t5),
7=0
with

1 ~
%P(nmatﬁnkytj) for m #k,

P, tis i, ) = =) 1 50
P (0 tis i, 1) F (t5) + %P (D tis Mk, L)
for m ==k,

where f’(l)(nm,ti;nk,tj), P (1, ti3mk, t;) smooth enough functions.

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical results for two different examples.

Together with the approximation of solution in the domain, we will provide

numerical results for approximations of the normal derivative on I'_; (taking

into account the jump relations of the single-layer potential normal derivative
[6]) and the trace of the solution on I'y

g,lj(x):—w /w d +/z/1 ))ds(y)+
+/¢o(y)wds(y), zel_y,

_ / (o) Plo,y) dy + / Y1 (y) Pla,y) ds(y)+
.1

/wo P(z,y)ds(y), =z ¢€Ty.

Example 1. Let the domain D (see Fig. 1) is bounded by the two circles:
Iy = {z(t) = (1.2 cos(t), 1.2sin(t)), t € [0,2m)},
'y ={z_1(t) = (0.6 cos(t),0.6sin(t)), t € [0,27)}.

Here we have £_1 = 0.5. The function o is given and equal

10
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Fi1G. 1. The solution domain D in Ex.1

o(z) =4 — 22 + 23,

reD.

Let us choose the boundary functions fi and fo of the elliptic problem as

fo =0.6z129(4 — 22 +23) on Ty.

fi = 2129

on F_l,

Easy to verify that ue, = x122 is the exact solution to (1)-(3).
In (10),(12) we use the midpoint quadrature as a quadrature rule with respect

to & € (€-1,1) with weights ay
@2k —1), k=1,...,N.

_ 1€
N

and quadrature nodes n; =

1 —

TABL. 1. Absolute error on inner curves fl—fg for Ex. 1

N n HuNn_uexHoo I |unn _uez’Hoo Iy |unn _uez’Hoo s
31 32 2.33E-05 6.64E-05 1.31E-04
64 8.86E-08 2.52E-07 5.47E-07
6| 64 1.16E-05 3.45E-05 7.51E-05
128 4.97E-08 1.47E-07 3.21E-07
12 | 128 5.80E-06 1.76 E-05 3.85E-05
256 2.63E-08 7.97E-08 1.74E-07

We will provide the numerical error of the proposed approach on three curves
within the domain that are homothetic to the outer boundary and have the
following parametric representations

16,

Ty &= (61 + (12k — 5))z(t), t€[0,27), k=1,2,3. (16)

40
Straightforward calculation gives that homothetic factors related to the curves
Ty, Te, T's are 0.5875, 0.7375 and 0.8875 respectively. They correspond to the
4th, 10th, 16th curve counting from the first inner curve after I'_; in case when

11
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discretisation parameter N = 20. The absolute errors for different discretisation
parameters N and n are presented in Table 1.

TABL. 2. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 1

N n Ha?ﬂ# - %Hooylﬂ—l |unn — ez loo,rg % -100%
31 32 3.09E-04 1.03E-04 1.455
64 1.17E-06 3.38E-07 0.271
6| 64 1.89E-04 5.67E-05 0.270
128 8.08E-07 2.53E-06 0.025
12 | 128 1.05E-04 3.37E-04 0.277
256 4.73E-07 7.98E-07 0.276

In Table 2 we present the absolute errors of the normal derivative on the
I'_; and the solution on the I'g together with relative errors with respect to the
Lo-norm in the domain D for the same parameters N and n as in Table 1. To
calculate the relative error in the domain we use the following approximation
with N = 20 and 7 = 32

5 1/2
Z (uNn _uex)Q(ﬁkvgj)J<ﬁkat~j)
lunn — uea?HLz(D) | k=1 4=0

[tea | Lo (D) N o . - -
Z ue:v(nkﬂtj)‘](nkvtj)

a). exact solution b). approximate solution

Fic. 2. Exact solution and numerical approximation in domain D for Ex. 1

The numerical approximation (for discretisation parameters N = 6, n = 64)
and the exact solution in the domain D are shown in Fig. 2. From the numerical
results, we see that parameters N and n are linked between each other — double
increase N requires to increase the parameter n at least by two times to decrease

12
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the error. But, in general, presented relative errors in the domain look pretty
good as well as absolute errors on inner curves.

Example 2. Let the domain D (see Fig. 3) bounded by the two ellipses:

To = {z(t) = (acos(t),bsin(t)), t € [0,27)},
I' 1 ={z_1(t) = (0.4acos(t),0.4bsin(t)), t € [0,2m)}.

r

Fi1G. 3. The solution domain D in Ex.2

TABL. 3. Absolute error on inner curves fl—fg for Ex.2

N n HuNn—uexHoo I |unn _ue:r”oo Iy |unn _Ue:r”oo s
3| 32 3.92E-04 9.38E-04 3.07E-03
64 3.28E-06 1.05E-05 3.76E-05
6| 64 2.16E-04 5.30E-04 1.05E-03
128 1.99E-06 6.24E-06 1.63E-05
12 | 128 1.18E-04 2.82E-04 5.46E-04
256 1.14E-06 3.47E-06 8.72E-06

TABL. 4. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 2

N n H% - 8351 ||oo,1"71 Hﬂ - uex”oo,l"g W . 100%
3] 32 9.60E-03 7.67E-02 1.695
64 3.10E-05 1.59E-04 0.377
6| 64 4.07E-03 2.99E-02 0.377
128 2.65E-05 1.02E-04 0.052
12 | 128 2.43E-03 5.54E-02 0.094
256 1.72E-05 8.45E-04 0.077

13
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Here we have parameters a = 2, b = 1 and £_; = 0.4. The function ¢ has
following representation

o(x) =8+ 2zx122, z€D.
The boundary functions f; and fo are known
fi=at—22 onT_ 1, fo= (8+2x1m9)(x? —423)(0.252% +423)7%5 on Iy.

For this example, the exact solution is ue; = 23 — 3.

,....
7R
22225
XA
SR

SoS

7

i
il
i

a). exact solution b). approximate solution

Fic. 4. Exact solution and numerical approximation in domain D for Ex. 2

The absolute errors on inner curves (16) are shown in Table 3. Similarly to
the Ex. 1., the relative error of the solution in domain D, the absolute errors
of its normal derivative on the inner boundary I'_; and the solution error on
the outer boundary I'g are displayed in Table 4. In Fig. 4 the exact solution in
the domain D and its approximation for discretisation parameters N = 6 and
n = 128 are shown. Observing the results we can see the same high accuracy
of the obtained approximation of the solution as in Ex. 1.

5. CONCLUSION

An indirect integral equation method (based on the solution representation
via potentials with densities and using the Levi function) for the numerical so-
lution of a mixed boundary value problem for the generalized Laplace equation
in doubly connected domains was applied. The differential problem is reduced
to a system of boundary-domain integral equations. As a doubly connected do-
main, a domain bounded by two homothetic curves is considered. The change
of variables in double integrals, quadrature rules application and the collocation
of the obtained approximating equations at quadrature nodes lead to a system
of the linear equations. Having calculated approximate values of the unknown
densities we can find the approximation of the solution in the domain. Appli-
cability of the proposed approach is confirmed by provided numerical results.

14
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A FEW WAYS TO FIND APPROXIMATE SOLUTION
TERMS OF THE METHOD OF GENERALIZED
SEPARATION OF VARIABLES

V.M. BILETSKYY

PE3IOME. Merox y3araJbHEHOTO PO3[iJIEHHS 3MIHHUX OYIy€ HAOIMKEHHS
PO3B’s3KY 3a/1a4i y BUTJISA/L CYMHU JIOMAHKIB 3 po3ieHuMu 3MiHanMu. loman-
KU 3HAXOIATh IIOC/IIOBHO AK PO3B’S3K{ MEBHUX MiHIMi3amfiiiHux 3ajad. Y
1111 poGOTI MM PO3TJITHEMO JESAKi CITOCOOY 3HAXOZKEHHS HACTYITHOTO JIOMAHKY
HaOJIMKEHOr0 PO3B’aA3Ky Ta HaBeaeMO (DOPMAJIBHUN ONINC AJITOPUTMIB METOY.

ABsTrRACT. The method of generalized separation of variables approximates a
problem solution with a series of terms from a set of elements with separated
variables. The terms should be found consecutively as solutions of certain
minimization problems. In this paper we consider a few possible ways to find
the next series term and give a formal description of the method algorithms.

1. INTRODUCTION

The method of generalized separation of variables (MGSV) is an iterative
approach to approximate a solution of a linear multidimensional equation. Ac-
cording to the method instead of solving a single multidimensional problem we
solve a series of one-dimensional problems and build a solution approximation.
The method allows to dramatically decrease a computational complexity of
problem solution algorithms. Besides a solution approximation is much more
compact than the solution itself, i.e. requires less space.

The method has been originally suggested to solve multidimensional integral
and matrix equations [1]. In [4,5] the method description is given for integral
Fredholm equations.

The main idea of the method is to represent a solution of a linear d-dimen-
sional equation Au = f as a series of terms with separated variables

oo d
u(xy,...,xq) = ZH¢§k) (x4),

k=1 j=1

which are found consecutively by minimizing the following functional

k—1
l n\?2 .
Te@r00) = If =D A (e @+ 2 6) || - min.
=1
Here A is a linear continuous operator in the corresponding space.

Key words. Method of generalized separation of variables, linear equation, multidimen-
sional problem, approximate solution.
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Paper [6] describes the MGSV modification which builds a solution approx-
imation in a slightly different way

ung*( §’“)®---®¢§’“)),

where A* is the adjoint of A and the terms of the series are found from
— I n\?2
T (P15 0a) = |ATf = ZA* (¢>§) ® -~®¢((j)> | — min.
=1

In [2,3] a convergence of the solution approximation series to the exact equa-
tion solution is proven for both MGSV and its modification, respectively.

2. MGSV
Consider d complex separable Hilbert spaces Hj, j = 1,...,d. Let’s denote
with (+,-); an inner product in H; which defines the corresponding norm ||[5]--
Let H is a tensor product of the given spaces

d
H= @Hj
j=1

with a norm ||| defined by its inner product (-, ).

W @ ¢

Note that H is also a complex separable Hilbert space and for any h;, ;

Hj,j=1,....d

(h§1> ®--ah) Mg hff)) =11 (hg.l), hf))

i=1 ’

Consider a linear operator equation in H
Au = f, (1)

where u, f € H and A € £(H) is a linear continuous operator in H such that
there exists its continuous inverse operator 3JA~! € £(H). Note that under
such conditions the adjoint operator also exists and is continuous in H as well
JA* € £(H). Moreover the equation (1) has a unique solution in H.

The MGSV approximates the solution of (1) with a series where each term
has a special form called separable with respect to spaces Hj;, j =1,...,d. In
other words each term is a tensor product of d elements from Hy, Ha,..., Hy
respectively. Let’s denote with G a set of separable elements of H with respect
toHj,j=1,...,d

d
G={Qhj: hjeHj, j=1,....d¢,
j=1

Also we define a set G4 as a mapping A applied to the set G
Ga=AG)={Ag: g€ G}. (2)
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Thus the MGSV solution approximation series consists of elements from G

> o g €G, (3)
k=1

where k-th term is found according to the minimum condition

k—1 k—1
||f—A(Zgﬁ%)l!zgigg!f—A<Zgz+g>\. (4)
=1 =1

The terms of (3) are constructed consecutively and produce a sequence of
approximate solutions. The sum of the first k terms of (3) is k-th solution
approximation of the equation (1)

k
U = Zgl, up = 0m,
I=1

where Op is a zero vector in H.
k-th term of the series (3) is called k-th approximate solution improvement
gk = Uk — Uk—1-

When we have k-th solution approximation wug by subtracting Auy from the
right-hand side of the equation (1) we get the very same initial equation (1) but
with different right-hard side f — Aug which is called k-th residual equation

Au = f — Aug.
Let fi is a right-hand side of k-th residual equation
k
fo=f—Au=f—A(> g;i|, fo=f
j=1

In [2] it is proven that at least one such element gy satisfying (4) exists in H.
Therefore there always exists a minimization problem solution of the following
functional

d
Te (hasosha) = lfeer = A [ Q) by | I, hjeHy j=1,....d.  (5)
=1

By considering the definition of G 4 (2) and the condition (4) it’s easy to see
that element Agr41 is the best approximation to the right-hand side of k-th
residual equation in the set G4

— A = inf —qll.
|fr — Agrt| ot |.fr — gl

Algorithm 1 describes a generic approach of MGSV.
The loop break (iteration stop) condition of algorithm 1

fell _ [If — Augl]
171 T
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Algorithm 1 MGSV
Require: fe H  Ac £(H),e>0
Ensure: ||f — Au| <€
k<0
up < On
repeat
k—k+1
gk < solution of the (4)
U < Ug—1 + Gk

T
: k
Entll Wil <e€
U — U
return u

can be replaced with alternatives, for example

lgrll _ [luk = we—all
[[uge—1]] [[tge—1]]
The possible ways to find g in algorithm 1 are considered below. In 2]
the convergence of approximate solution sequence of the MGSV to the exact
solution of the equation (1) is proven.
In practice implementations of MGSV consider a discrete case of the equation
(1). Assume Hj is a nj-dimensional space, j = 1,...,d. Since H is a tensor
product of Hi, Hs,..., Hy it is a n-dimensional space where

<€

d d
n=dmH = HdimHj = Hnj.
Jj=1 j=1
Now the equation (1) is equivalent to a system of n linear equations. In

general a space required to store a solution of the equation linearly depends on
the number of dimensions n, i.e. the required storage is

d
j=1

On the other hand since space H has a special structure a single term of the
MGSYV approximate solution consumes only

d
j=1

of the storage. If we increase number of dimensions in all spaces Hy, Ho, ..., Hy
simultaneously expression (6) will grow exponentially while expression (7) will
grow linearly. Thus as long as the number of terms in the solution approxi-
mation is relatively small MGSV produces a compact (in terms of the storage)
solution approximation of the equation (1).
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In a discrete case MGSYV is closely related to approximations of a multidimen-
sional tensor with a product of one-dimensional tensors (vectors) [7]. Indeed,
elements v and f can be viewed as d-dimensional tensors of ny X -+ - X ng size
and operator A as (2d)-dimensional tensor of ny X -+ X ng X ny X <+ X ng
size. Then in order to find k-th solution improvement we have to minimize a
function with d one-dimensional vector parameters

Ji (@1, 2q) = || frm1 — A(z1 @ - @ 2q) . (8)
Here z; = (xg-l), cee xg-nj)) is a one-dimensional vector of coordinates in Hj,
7 =1,...,d. The norm of d-dimensional tensor ¢ of n; X --+ X ng size can be,
for example,
2
t=| > ltkyord® t€H.
1<k;<n;
1<j<d

The function (8) is a polynomial of total degree 2d with m variables

3:(11), e ,xgm), . .,xél), e ,:cénd).

Here

3. ALTERNATING LEAST SQUARES
Let’s consider the minimization problem of functional (5). In general the
problem is nonlinear and can be solved using any nonlinear functional min-
imization methods. However note that if in (5) we fix all parameter values
except of one hj, 1 < j < d then we get a functional of a single parameter
h; € H; which minimization problem is linear.

o

, 1 < j < d then we get a quadratic polynomial of n; variables. The
minimization of such polynomial can be done by solving a system of n; linear
equations with n; variables. This leads us to the method of alternating least
squares which can be used to approximate the next term of MGSV series.

The idea of Alternating Least Squares method (ALS) is to choose an ini-
tial values of (5) variables, fix all of them and then cyclically iterate over the
variables, release one of them, solve a linear minimization problem and adjust
the current variable value. Algorithm 2 describes a generic approach of ALS
method.

Alternatively as a loop break condition in algorithm 2 a relatively small
current value of functional (5) can be used instead

Ji (n0, . nY)
Iy <h§°>, o hff))

Similarly if we fix values of all polynomial (8) variables except of x
2\)
j

< €.
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Algorithm 2 ALS

Require: fy_1 € H, Ae £(H), h\") € H;, j=1,....d, ¢ >0
l—0
repeat
l—1+1
for j =1toddo
fix all variable values of (5) except of h; and solve
T (hﬁ”,...,hg.’lphj,hﬁf),...,hfj‘”) . min
hg-l) — the linear minimization problem solution
end for

until 0 0D (i-1)
”hl ®"‘®hd _hl ®"‘®hd H e

I e oy

for j =1to ddo

~ l
end for .
return hy @ ho ®...Q hg

Consider a numerical sequence

{5 (th, . .,hg>)}l°:0. 9)

According to algorithm 2 the given sequence is monotonically non-increasing
=1 g (A ) < g (YY),
Since (9) is bounded by zero it converges to some non-negative number L
3L>0: lim (hﬁ”,...,hfﬁ) — L.

However in general sequence (9) does not converge to the infimum of functional
().

The method of alternating least squares is simple for understanding and
implementation, but does not guarantee a convergence to the solution of mini-
mization problem of (5). Besides the method outcome might strongly depend
on the initial values hgo), hgo), ce hilo).

Note that in some cases a convergence to the minimization problem solution
can be proven. For example if the following condition holds
Vi€ H V5,1l 1<j<i<d

Vhi € Hi Vhoe Hy ... VYhge Hy VﬁjEHj VEZEH;C
Jk(hl,...,hj,...,hl,...,hd) > Jk(hl,...,ﬁj,...,fil,...,hd) =

A~

Jk(hl,...,hj,...,hl,...,hd)>Jk(h1,...,hj,...,hl,...,hd) A\
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Je(hiy oo shgy o shyyeoo ha) > Ji(hay oo hys oo hyy oo hg) A
Jk(h1,...,ﬁj,...,hl,...,hd)>Jk(hl,...,f;j,...,le,...,hd) A

Jk(hl,...,hj,...,hl,...,hd) > Jk(hl,...,hj,...,hl,...,hd)
then the sequence produced by ALS converges to the (5) minimization problem
solution.

Papers [7-9] consider problems of multidimensional tensor decomposition
with tensor products of one-dimensional vectors where the numerical ALS
method [10, 11] is widely used. Some efficiency improvement techniques are
described in [12| while the initial ALS value selection problem is considered
in [13].

There are numerous of alternative methods which share the same bagic idea
with ALS. In [14] some of such methods are compared with ALS:

— DTLD (direct trilinear decomposition);

— ATLD (alternating trilinear decomposition);

— SWATLD (self-weighted alternating trilinear decomposition);
— PALS (pseudo alternating least squares);

— ACOVER (alternating coupled vectors resolution);

— ASD (alternating slice-wise diagonalization);

— ACOMAR (alternating coupled matrices resolution).

According to the paper conclusions none of the methods is superior to ALS in
terms of a convergence to the exact solution.

Table 1 contains numerical results of MGSV with ALS for the following
equation

1 1
Au = / / cos (77 + 2% — y*)u (,) d2dy — 4u (z,y) = sin (x2 + y2). (10)
0 Jo

For both algorithms € = 1075, The first column corresponds to MGSV iteration

index k, the second column shows the value % and each of the following

columns contains the value
| fr1— A (h(ll) ®...® hfl”) I
Il £1]

after the [-th iteration of ALS.

TABL. 1. Numerical results for equation (10)

before ALS| [=1 =2 =3 =4 [=5 =6
1.000000 |0.344960 | 0.158934 | 0.153180 | 0.153133 | 0.153133 | 0.153133
0.153133 | 0.147828 | 0.025094 | 0.007752 | 0.007494 | 0.007493 | 0.007493
0.007493 | 0.001684 | 0.000297 | 0.000293 | 0.000293
0.000293 | 0.000288 | 0.000035 | 0.000011 | 0.000010

=W N =

22
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4. NONLINEAR LEAST SQUARES
Better approximation accuracy can be obtained by using Nonlinear Least
Squares methods (NLS). These gradient methods minimize nonlinear func-
tion (8). In particular NLS representatives are Gauss-Newton method [15,16],
damped Gauss-Newton method [17,18] and PMF methods [19].
Algorithm 3 describes a generic approach of NLS methods for minimization
of nonlinear multivariable function (8).

Algorithm 3 NLS
Require: f,_ 1 € H A€ £(H),e>0

l—0
20« initial value {z(®) is a variable vector of function (8)}
repeat
l—1+1
e = z(0=D _ ¢ (x(l_l)) {¢ is a mapping which depends on Jj; and a

particular method}
la® —z =D

until 0D <€
T —zW
return ¥

NLS methods are mostly generalizations and modifications of Newton me-
thod. At each iteration based on a gradient we look for an optimal vector and
length of the next step.

NLS methods in general produce more accurate approximations than ALS
methods, they do not guarantee a convergence to the global minimum of func-
tion (8) though. However NLS methods are inferior to ALS in terms of com-
putational complexity. Numerical results provided in [12, 18] show that NLS
methods are slower and require more storage than ALS.

5. STETTER-MOLLER MATRIX METHOD MODIFICATION

Papers [20,21] consider modifications of Stetter-Maéller matriz method [22,
23] which allows to find a global minimum of a multivariable higher degree
polynomial. Suggested approaches lead a polynomial minimization problem
to a generalized eigenvalue problem. A set of points where the polynomial
global minimum is achieved has several connected components. For each such
connected component the method finds at least one point. There are no special
application requirements, i.e. the method finds a minimum for an arbitrary
polynomial. Thus the method can be used to find a global minimum of function
(8).

Let p is a m-variable polynomial of total degree 2d
p(x1y.. ) ER[xy, .. 2] (11)
Consider a polynomial

P (Z1y .oy Ty) :p(xl,...,xm)—|—/\(5L‘?(d+1)+...+xz,§d+1)), A> 0.
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According to [20] the global minimum data of (11) can be retreived from py
when A — 0.

A polynomial global minimum can be found from the first order conditions
by considering its values in critical points. For py if A > 0 is fixed this leads
to a system of polynomial equations in Grobner basis [24] which has a finite
number of solutions. Thus the Stetter-Méller matrix method can be used.

First, we build matrices (4, ..., As,,). Eigenvalues of these matrices which
correspond to a common eigenvector form a critical point of polynomial py.
Here matrix A;, (1 <k <m) represents an operator of multiplication by xj in

quotient space R [x1,...,zp] /I where I is an ideal formed by first order partial
derivatives of p).
For an arbitrary polynomial 7 (z1,...,%y) matrix A, = 7 (Az, ..., As,,)

contains values of polynomial r in critical points of polynomial py.
Algorithm 4 describes one of the possible approach implementations.

Algorithm 4 Stetter-Moller Matrix Method Modification

Require: p(z1,...,Zm) € R[z1,...,2m], A >0,¢>0
<0
Mg — A

(xgo),...,x,(g)) —(0,...,0)

Vg <— D (xgo),...,xq(g))

repeat

l—1+1
)\“_)\1271

compute matrices (Aﬂl) e Ag}n) for polynomial py,

compute matrix Ag) =p (A;(Ell), . ,Ag&)
)

vy < minimum value of A,(f
(xgl), .. ,mﬁ?) «— the corresponding vector, i.e. p (xgl), . ,a:,@) =

. V] —V]—
until vl oo
vl

(L. D) — (ﬁ”,...,ﬁ?)

return (z1,...,%m)

A drawback of the described method is the size of matrix A, which is equal
to (2d + 1) and grows exponentially with m. However modern ways to solve
generalized eigenvalue problems which are based on Jacobi-Davidson or Arnoldi
methods [25,26] do not require a construction of matrix A,. Thus one of the
suggested method modifications [20,21] can be used instead.

Stetter-Moller matrix method modification unlike ALS and NLS methods
always finds a global minimum of a function. However it requires a lot of
computational resources. Thus in practice quite often ALS or NLS methods
are preferred despite they are not perfectly accurate.
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ON THE FINITE ELEMENT APPROXIMATION OF
A SYSTEM OF ELLIPTIC QUASI-VARIATIONAL
INEQUALITIES RELATED TO HAMILTON-
JACOBI-BELLMAN EQUATIONS

M. BOULBRACHENE

PE3IOME. B po6oti po3BuHYTO HOBMIl miaxix, 3amporoHoBaHWii B [3], mis
BUBYEHHS CKiHYeHHO-eJIeMEeHTHOI allpOKCHMAIil CHCTeM eJINTUIHNX KBa3i-Ba-
pianiiinux HepiBHOCTEH, 110 110B’A3aHi 3 piBHAHHAMEU [amiibroHa- AK06i-Beb-
TpaHa. Meron moenHye B cobl MmiIXomW YACTKOBUX PO3B’SI3KiB, IUCKPETHOL
PeryaspHOCTI [J1s BapialiifiHux HepiBHOCTE Ta reoMeTpUtIHy 3012KHICTD iTepa-
mifiHol cxeMH, 10 HabJ/INKAE PO3B A30K.

ABSTRACT. In this paper, we exploit a new approach, introduced in [3], to
study the finite element approximation of a system of elliptic quasi-variational
inequalities (Q.V.I.) related to Hamilton-Jacobi-Bellman (HJB) equations.
The method combines the concepts of subsolutions, discrete regularity for vari-
ational inequalities, and the geometrical convergence of an iterative scheme
approximating the solution.

1. INTRODUCTION
We are concerned with the standard finite element approximation of the

system of elliptic quasi-variational inequalities (Q.V.1): Find U = (uy, ..., ups) €
(H&(Q))M such that

ai(ui, v —u;) > (fi,v—u;) Yo e Hé(Q),

w < k+uipr, v <k+uiq, (1)

Up+1 = UL,
where, Q is a bounded convex domain of RY with sufficiently smooth boundary

[, f > 0is a right hand in L>(Q), & > 0, (.,.) is the inner product in L?(12),
a(.,.) is the bilinear form defined by: Yu,v € Hl(Q)

N ou Ov
a;(u,v) = bz v+a wv | dz 2
wo= [ S <axaz+z b() )
such that
ai(v,v) = 0 ||UH12L11(Q) Vo € HY(Q),
where the coefficients a?k(x), bi(z), a(z), (j,k = 1,..,N), are sufficiently
smooth such that '
ag(x) > co >0, Ve € Q (3)
Key words. Quasi-variational inequalities, Iterative scheme, Finite element, Discrete regu-

larity, Subsolutions, Error estimate.
2000 Mathematics Subject Classification. 35J85, 66N30, 65N15.
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and
Y dp@)&G = alél iz € E€RY, a>0). (4)
1< j,k< N

Denoting by Vp,, the finite element space consisting of continuous piecewise
linear functions vanishing at the boundary, r; the usual interpolation operator,
we define the discrete counterpart of (1) by: find U, = (w14, ..., unm,pn) € (Vh)M
such that

ai(Uip,v —uip) > (f,v—uip) Vv €Vy,
wip < rp(k+wip1n), v < (k4 uivin) (5)
UM+1,n = UL -

This system appears in stochastic control problems related to Hamilton-
Jacobi-Bellman equations (HJB) (see [1], [2]). Its finite element approximation
was studied in (cf..e.g., [4], [5], [6], where different methods were employed.

In this paper, we exploit an idea developed in [3]| to derive optimal conver-
gence order for the system of Q.V.I (1).

This method consists, mainly, of combining, in both the continuous and
discrete contexts, the concept of subsolutions for variational inequalities and
a geometrical convergence of an iterative scheme approximating the solution.
For a computational purpose, this method provides an interesting information
as it permits to control the error between the continuous iterative scheme and
its finite element counterpart.

A brief description of this method is as follows: Let U" = (uf,...,u};)
be the nth iterate of the scheme approximating the solution U, and U;' =
(uly, ..., ulyyy,) its finite element counterpart, approximating Up,.We construct a
sequence of continuous subsolutions 5" = (87, ..., B};) such that

and
16" = UR|lo < Ch* [Inh|?
and a sequence of discrete subsolutions v = (V? By oo ’y}{/[,h) such that:
h < Uy
and
IU™ = Akl < CR? [Inhf>.

In this situation, using a concept of discrete regularity, we establish an opti-
mal error estimate for the iterative scheme:

|U" = Uil < CH? I hf? (6)

and then, combining estimate (6) with the geometrical convergence of the iter-
ative scheme (U") and (U}') to the solutions U and Uj, of systems (1) and (5),
respectively, we also derive error estimate for the system of Q.V.I. (1):

IU = Ul < CR? Il h)? (7)

where
IVlloo = max [oull oy V = (U1, s var)
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and, in all the above error estimates, C' is a constant independent of hoth h
and n.

It is worth pointing out that estimate (6) is new for the system (1).

The paper is organized as follows. In sections 2, we recall the construction
and convergence of the continuous iterative scheme for system (1). In section 3,
we also recall analog discrete results and detail discrete regularity for the dis-
crete iterative scheme. In section 4, we discuss the new approximation approach
and derive the main results of this paper. In section 5, we give a numerical
example and, finally, in section 6, a short conclusion.

2. Tug CONTINUOUS PROBLEM
2.1. A Continuous Iterative Scheme. Let U° = (u},...,u},) € (Hl(Q))M
be such that u? solves the equation
a(ud,v) = (fi,v) Yo € Hy(Q); Vi=1,..., M. (8)
Then, starting from U° solution of (8), we define the continuous sequence

(U™) such that U™ = (u}, ..., u};) and u solves the variational inequality (V.I)

a(uf,v —uf) > (fi,v —uf!) Vo e Hy(9),

20 [

n n—1 n—1

ui <k+ulg,v<k+ul, (9)
n—1 _ n—1

Upryp = Uy

Theorem 1. [5] The sequence (U™) defined in (9) converge decreasingly to the
solution U of of system (1). Moreover, there exists 0 < u < 1 such that

0"~ Ullyy < 1™ |0°). (10)

3. THE DISCRETE PROBLEM
For the sake of simplicity we suppose that €2 is polyhedral. We then consider
a regular and quasi-uniform triangulation 75, of €0, consisting of n-simplices K.
Denote by h = max ger, hi, the meshsize of 7, with hx being the diameter of
K. For each K € 7y, denote by Pj(K) the set of polynomials on K with degree
no more than 1. The P;- conforming finite element space is given by

Vi={v:ive HY(Q)nC(Q), vk € PI(K), VK em}.
Let M;, 1 < ¢ < Nj denote the the vertices of the triangulation 73, and let
vi, 1 <1 < m(h), denote the functions of V}, which satisfy
pi(Mj) = 6ij, 1 <i,5 < Np,

so that the functions ¢; form a basis of Vj,. For every v € HY(Q) N C(), the

function
Np

(@) = 3 v(My) i)
i=1
represents the interpolate of v over 7.
Now, in order to establish existence and uniqueness of a solution to V.I (5),
the stiffness matrix is required to be an M-Matrix.
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Definition 1. A real matrix d x d matrix C' = (¢;5) with ¢ < 0, VI # s,
1 <1l,s <d, is called an M-Matrix if C' is nonsingular and Ct>0 (i.e., all
entries of its inverse are nonnegative).

3.1. Discrete Maximum Principle. Denote by A’ the matrices with generic
coefficient

al, = ai(pn,0s), 1<1,s<Np; i=1,.., M. (11)
Because the bilinear form a;(.,.) is coercive, we have
A" is positive definite (12)
and
ay >0 Vi=1,..,m(h). (13)

Furthermore, if the matrix (a;x) involved in the bilinear form (2) is symmetric
(aji = ak;), then mesh conditions for which the off-diagonal entries of A’ satisfy

al, <0,Vi#j, 1<I,s<m(h) (14)

can be found in [8]. Therefore, combining (12), (13) and (14), we have the
following lemma.

Lemma 1. The matrices A*, i =1,..., M are M-Matrices.

Proof. See [8], [9]. O

3.2. A discrete Iterative Scheme. Let U = (uf},, ...,u};,) such that uf, €
V}, solves the equation

ai(ugh,v) = (fi,v) YveVy i=1,.. M. (15)

Now, starting from Uy = 0, we define the discrete sequence (U}?) such that
Ul = (uy,...uly;,) and uly € Vp solves the variational inequality (V.I)

G(U?h,ﬂ - u?h) Z (fiav - U?h) VU € Vh,
Ui,

<k+u b o <k4+uh) (16)

— i+1h’ i+1h’

n—1 _ . n—1
Uprpip = Urp -

Theorem 2. [5] Under conditions of lemma 1, the sequence (U}') and (Upp)
converges decreasingly to the unique solution solution Uy of Q.V.I (5).Moreover,
there ezists a constant 0 < p < 1 such that

U = Unlloe < w" |UR].. (17)
U = Unll, < 1™ ||U2.. - (18)
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3.3. Discrete regularity. Let w € H{ (Q) be the solution of the V.I

{ a(w,v —w) > (g,v —w)Vv € H} (Q), (19)
v < TRY, W S TRY
and wy, € Vp, its discrete counterpart, the solution of the V.1
{ a(wp,v —wp) > (g,v — wp) Vv € Vp, (20)
v < TRY, wh < TR,

This concept of "discrete regularity"”, introduced in [10], can be regarded as
the discrete counterpart of the Lewy-Stampaccia estimate || Aul|,, < C (A being
the operator associated with bilinear form a(.,.)), extended to the variational
form through the L' — L duality. The main role it plays, in the present paper,
is in the regularization of the obstacles appearing in the discrete problems (16)

Lemma 2. [10] We assume that there exists a constant C independent of h
such that

a(wh, @s)| < Cllesllpri) Vs=1,2,..., Np. (21)
Then, there ezists a family of right hand sides ¢ such that
|+ <<

and
a(wn,v) = (g™™,v) Yo € V.

Theorem 3. Let conditions of lemma 2 hold. Then, there exists a sequence
(g"’(h))n>1 and a constant C' > 0 independent of h and n such that

a(u?ha U) = (g(h)a U) Vv € Vh7
where uly is defined in (16).

g"’(h)Hoo <C,

Proof. The proof will be carried out by induction. For n = 1, let uilh be the
solution of the V.I

a(ub,v—up) > (fi,v —ul) Vv €V,

{ v<k+ul, ul <k+ud,
where

a(udy,v) = (fi,v) Yo €V,

So, clearly

|a(ufy, 05)| < Clleslpiy Vs =1,2,..., Ny (22)
and, using the discrete Levy-Stampachia inequality [4], we have

—(fisps) A alk +uly, 0s) < alugy, i) < (f, 0s).

But

a(k + ufy, ps) = aluy, @s) + (kap (@), ¢s)
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and, using (22), there exists a constant C' such that,
—(fir00) A (=C, ) < alujy, @s) < (f, ¢5)
which implies
|a(ujp, 05)| < Clleslipigy > Vs = 1,2, 0, Ni.
Hence, making use of lemma 2, there exists a family of right-hands side

{gl-l’(h)} € L*°(Q) such that

| <c

and

i)

i) a(u},,v) = (gil’(h),v) Vv € Vy,.

Now, assume that there exists a constant C independent of n such that
a(ult ps) < C sy, Vs=1,2,..,Np. (23)
So, using the discrete Levy-Stampachia inequality , we get

_(f, 905) A a(k + u?h_la 902') < a(u?h, 905) < (fv (ps)
or
—(fy0s) A (a(k + U?}:la ps) < a(“?hv ©s) < (f,@s)
and, as
a(k +up "t ps) = aluy ™, @s) + (kag(x), ¢s)
using (23) as above, we have

—(fi, 05) N (=C,ps) < a(“Za ws) < (f,ps)
which implies
|a(up, ¢s)] < Cllesllpiq) -

So, making use of lemma 2, there exists family of right-hands side {gf’(h)} €

L™ () such that
i)

N
and
it) a(uy,v) = (Q?V(h),v) Yv € Vp,
which completes the proof. ([

Note that, as
a(ugy,,v) = (g?’(h),v)‘v’v eV,

Um0 = (™Y,

one can define

the discrete analog of
U = (ufps o uiigp)

such that
n,(h)

U <C

HWQ,P(Q)
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and
a(u"™ v) = (g" " v) Yo e HY(Q) (24)
and, by standard maximum norm estimates
‘u?““-u% < Ch?|log h|. (25)

4. L*° — ERROR ANALYSIS
From now on, C' will denote an arbitrary constant independent of both h
and n.

4.1. Background. We begin with recalling some useful properties enjoyed by
elliptic variational inequalities. Indeed, let

Definition 2. w € H}(Q) is said to be a subsolution for the VI (19) if
a(w,v) < (g,v)Yv € Hy(Q),v >0,
w < 2.

Theorem 4. [7] The solution w of V.I (19) is the least upper bound of the set
of subsolutions.

Theorem 5. [7] Let w = A(¢)) and & = (). Then, we have
o =l < C =4 _- (27)

Remark 1. Under conditions of lemma 1, the above properties of the solution
of V.I (19) remain valid in the discrete case.

(26)

Indeed, let wp = Op(v) € V}, be the solution of the discrete variational
inequality

{ a(wp,v —wp) > (g,v —wp) Vv € Vp, (28)

wp < TR, v < TRY.

Next, we shall give the discrete analog of Theorems 3, 4. Their respective
proofs will be omitted as they are similar to their continuous counterparts.
Definition 3. wy, € V}, is said to be a subsolution for the V.I (28) if

a(wp, ps) < (g, ¥ VS:].,...,N}L,
(wh, 0s) < (9, ¢s) (20)
wp, < TR

Theorem 6. Under conditions of lemma 1, the solution wy, of V.I (28) is the
least upper bound of the set of discrete subsolutions.

Theorem 7. Let wp, = Op(¢) and ©n, = Op(v0). Then, under conditions of
lemma 1, we have

|wn — Onll o SC’Hw—@Hm- (30)

Lemma 3. [11] If ¢p € W?P(Q) and w € W?P(Q), 2 < p < oo, then the
following error estimate holds

lw —whll,, < Ch*|Inhl*. (31)
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4.2. L°°- Error estimate for the Iterative Scheme. In order to estimate
the error between the continuous iterative scheme and its finite element coun-
terpart, we introduce the following sequences of variational inequalities.

An auxiliary sequence of continuous variational inequalities: We
introduce the sequence U™ = (i, <oy Uy ),>p Such that @ =0 (k: + ﬂ:‘_;llh> €

H () solves the continuous V.I:

ap <k+ul "M o<kl W, (32)

where uzr_ll’(h) is defined in (24).

An auxiliary sequence of discrete variational inequalities We define
the sequence U{L‘ = (@ih,...,@?’h)nx such that ), = On, (/{:—Fu?_;ll) eV
solves the discrete V.1

ai(upy, v —up) > (fi,v—up) Vv €V,

ap <y (k+uly), o< (k+ul), (33)
Uiri = up ™,

where u® and u" are defined in (8) and (9), respectively.
Theorem 8. We have
U™ —T7|, < Ch? [Inh|?. (34)

Proof. As 4!}, is the discrete counterparts of v} and |[uj'||yy2,(q) < C' (indepen-
dent of n) (see [5]), making use of (31), we get the desired error estimates. [

Theorem 9.
IU™ = Ul < CR® k. (35)

Proof. We proceed by induction. Indeed, consider V.I (32) for n = 1:

ai(ﬂ},v —al) > (f,v—1ul) Yve Hol(Q),

0,(h) 0,(h)

uf <k+4ugy’, v<k+uly,

0,(h 0,(h
UM()1:U1()-

So
@ — iy < Ch* b, (36)

Indeed, let @} = d(k +ul\ ), dby, = Ok +ull) and ul, = Ok +ul,, ).
Then, as ﬂ}’h is the discrete analog of 4}, making use of (34), we have

la; — i}, < Ch*|Inhf. (37)
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Moreover, using (30) and standard maximum error estimate, we get

lubn = aball < [[ulsd — ulrs]|
< Ch*|Inh|.
Thus
a7 —winllo < Ml = @inll + l@in — winll
< Ch?Inhf*.
Now, as %} is solution to a V.1, it is also a subsolution, i.e.,
a(a),v) < (fi,v) Yo e H(Q),v >0,
u <k+ u?ﬁl).
But, as
u; <k+ ‘ U?;L(?) - U?+1 hH +ugyy <
< k+Ch*Inhf® +ud 4,
we have

a(a),v) < (f,v)Vv € Hi(Q),v >0,
u; < k+ Ch*|Inh|+ud,,
Hence, 4} is also a subsolution for the V.I With obstacle k-+Ch?|In h|? +u, .

Let @} = A(k + Ch? [Inh|* + u?, ;). Then, as u} = 8(k + u, ), making use of
(27) and standard maximum error estimate

[ufr — ufyr ]| < OB Inhl, (38)
we get
@} —ul|l, < CR? Ihf + [luly; —udyy L <
< Ch?|Inh*.
Hence, making use of Theorem 4, we have

al <ol <ul+Ch?|inh*.

Putting
B =al —Ch?|Inn|* Vi=1,.., M,
we get
Bl <w},Vi=1,.. M. (39)
Further more, using estimate (36), we get
18} = ulpll, < llai —ulpll, +Ch* Inhf* < (40)
< Ch?Inhf*.
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Now consider the discrete V.I (33) for n = 1:
ai(@jy,v — i) > (fi,v —ajp) Vo€ Vy,
{ upy, < (k+udy), v<ry(k+uf,),
’17,21 ,, being also a discrete subsolution, we have
a(t; i) < (fr0i) Vi,
’az{h <7 (k' + U?+1) )
and, from standard maximum error estimate
|u® = up||, < Ch*|Inh|.
So
Uiy <k |uley — ulyipll +rawdiap, <
< k+Ch? Inhf” + rpud .
then
ai(t; . i) < (fi, i) Vi,
afp, < k+Ch? Inh” +rpulyy
because 7, is Lipschitz. So, ﬂih is also a discrete subsolution for the V.I with

obstacle k + Ch? |In h\Q + rhu?+17h. Let J)l{h = Op(k + Ch?|In h\2 + “?+1,h)~ As
“%,h = Op(k + u?H’h), making use of (30) and (38), we get

|@in = uinllog < llufian = wlaanll <
< Ch?|Inh|?
and, applying Theorem 6, we get
aly < @by <ubp, + ChA k).

Now, taking
Yip =y, — CR2 A, Vi=1,..,M,
we have
1 1
Yih < Ui, Vi=1,..., M. (41)
Hence, as ul{h is the discrete analog of u}, making use (30) and (34), we get
i —wtll < llain —ul|l +Cr? Inhf* < (42)
< Ch?|Inh|*.

Thus, combining (39), (40) and (41), (42), we obtain
uzl < ’;/il,h + Ch? In h|2
< uz{h + Ch?|InhJ?
< B!+ Ch?|Inh)?
<wul +Ch?|Inhf?.

36



ON THE FINITE ELEMENT APPROXIMATION ...

That is
2
Hull - uihHoo < Ch*[Inh|°.
Let us now assume that

( url - uy,fH < Ch2|Inh)?. (43)
Since u;’ ih = = Op(k + uZHl (h)) is the discrete analog of @]’ = d(k + u;:ll’(h))’

making use of (34), we get
\|ag — iy < Ch? [Inh|?. (44)
Let us now prove that
@} — ufy|| . < Ch? [Inh|?. (45)
Indeed, using (44), (30), we get
1 = winll, < Ml = @Eall, + Nl — uinll

2 1,(h) -1
< on?nhf + Jur ™ -t |

< Ch?Inh]?,
On the other hand, the solution of V.I (32) is also a subsolution, that is
a;(u?,v) < (fi,v) Yo e HY(Q), v>0,
{ an < k+ "

i+1
So, using (43), we have

1 —1
ujl <k+’ up - Uit h +u’?+1,h
<k+Ch* Inhf® +up},

and thus,
a;(a?,v) < (fi,v) Yve HY(Q), v>0,
‘"<k+‘

u 1

H—l - 7,+1h

n—1

+ Uit1 o

< k+ Ch*[Inh|* —i—quh

i

So @? is a subsolution for the V.I with obstacle k + Ch? [In h? + uH_1 p- Let

@ = d(k + Ch? [Inh|* + u?+117h). Then, as u} = O(k + ug,; '), making use of
(27), and (43), we get

& = e < OB b + [ur

u 1
H—l h 7,+1

< Ch?|lnh|?.
Hence, applying Theorem 4, we have
a <o <ul' + Ch?[Inh)?.
Now, putting
Bl =al —Ch*|Inh)?, Vi=1,..,M.
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we obtain
g <wulVi=1,..,.M
and, using (45),

Hﬁ?—ugthoo —Ch2\lnh\2—u2

|
o0

< |lap — ||+ Ch? b
< Ch?|Inh|?.
Now, consider the discrete V.I (33)
{ a; (U, v —upy) = (fi,v—ujy,) Vv eV,

i,hﬁrh(k+“?+_1) U<Th(k+“z+1)

u;'), being also a subsolution, we have
ai(ufy, i) < (fi, i) Vi=1,..,m(h),
{ uy, <rp (k—&-uzﬂ)
So, making use of (43), we have
B, S k) — rhe, + e,
<k+ Hrhunﬁl - rhu?ﬁth + U,
<k +Ch* [Inhf” + rpul,

and hence

a(uip, pi) < (fi,pi)  Yei,

ay, < k+ Ch? Inh* + rpal .

So, u;', is a subsolution for the V.I with obstacle k + Ch? [Inh|* + rpu®
Let @}, = On(k + Ch2|Inh|* + TR ). Then, as uy, = Op(k + rpuf sy L),

making use of (30) and (43), we get

@i — uth < Ch?Inh* + ‘

u 1
H—l h H—l h

and, due to Theorem 6, we have
aly < @y < ul, + Ch k).
Now, taking
=, — Ch? [Inh|*, Vi=1,.., M.
we obtain
Yin < Ui
Moreover, 4} being the discrete counterpart of v, using (3

l@in —w?ll, < CR*mnf*, ¥i=1,..M

38

4), we have

H—l h*

(50)



ON THE FINITE ELEMENT APPROXIMATION ...

and therefore

it =l < i =il

< Ch?|Inh|?.
Finally, combining (46), (47) and (50), (51), we obtain
u <M, + Ch? Inhf?
< uip + Ch? |In h|?
< 67 4+ Ch?|Inh|?
<ul + Ch?Inh|*.

+ Ch? |Inh? (51)

That is
[uf = ufy || < Ch?nf Wi=1,.,M
O

4.3. L°°-Error estimate for the system of QVIs. Now combining estimates
(10), (17), and (35), we have:

Theorem 10.
|U = Upll, < CR?[Inh)?. (52)
Proof. Indeed,
IU = Uhlloo S NU = U"loo + IU" = Upll o + 1Ux = Unlls (53)
< p"||U°)| + CRE A + pm || UR)]. -
So, passing to the limit, as n — oo, the desired result follows. [l

Remark 2. For practical purposes, it is interesting to estimate the error be-
tween the exact solution and the actually computed approzimations U, that
18,

U = Upllo < p™ ||U°|, + Ch* [Inh)?. (54)
Proof. Indeed,
U= Uil < IU=U"o + IU" = Ul
<p"||U°| + Ch? Inhf.

5. NUMERICAL EXAMPLE
Let Q= (0,1) x (0,1), M =3, A" = —A, f; =sin’z, fo = cos®x, f3 = €”.
We divide ) into squares with edge h = 1—10, then by diagonals with same
direction divide every square into two triangles. Then the finite dimensional

quasi-variational inequalities system is
{ U € K;,

, . (55)
(AU; = F;,V—-U;) >0, VVEK;, i=1,.,M,
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where A? are the stiffness matrices defined in (11), and the right-hand side F; =
(fisor) 1l =1,...,Np,, K; = {V € RNr such that V < K + Ui1}, Unrg1 = Un,
K = (k,...,k))" The iterative scheme is,
UTL+1 c Kz}n-i—l
7 ?
(Alyntt — FL v — Uty >0, vV e KPP =1, M,

where K"t = {V € RNt such that V < K + U}, UMtin = yln,

We take k£ = 0.01 and solve (56) (Jacobi type) with projected Gauss-Seidel as
inner iteration. The stopping criteria for the inner iteration and outer iteration
both are € = 1076, the initial value is U = (UY,...,UY,), such that AU =
F', i=1,...M.

The computation of the solution for h, h/2 and h/4 leads to a convergence
order p = 2.062, which is in good agreement with the theory.

(56)

6. CONCLUSION

This paper addresses the finite element of the Dirichlet problem for an elliptic
quasi-variational inequalities system. The optimal error estimate is derived,
combining geometric convergence of an iterative scheme and its finite element
error estimate, obtained by means of the concept of subsolutions and discrete
regularity for variational inequalities. A numerical example is also given to
support the theory.

In light of the findings of this work, we wonder whether these can be exploited
to:
1. Extend the study to the noncoercive problem.
2. Derive a posteriori error estimate for this system of Q.V.I.
This will be the focus of our attention in future works.
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COUPLING OF LAGUERRE TRANSFORM AND FAST
BEM FOR SOLVING DIRICHLET INITIAL-BOUNDARY
VALUE PROBLEMS FOR THE WAVE EQUATION

A.R.HLOVA, 5. V. LITYNSKYY, YU. A. MUZYCHUK, A. O. MUZYCHUK

PEe3toME. Ilomano mormmbsiennit aHasi3 JBOX MAXOIB 10 PO3B’S3yBaHHS
II0YaTKOBO-KpaiioBol 3azadi /lipixse 119 OOJHOPLIHOTO XBH/IBOBOIO DIBHAHHA,
AKWil 0a3y€eThCs Ha MOEMHAHHI IepeTBOpeHHs Jlarepa 3a 4acoBOi0 3MIHHOIO i
Metony rpanunarux eneventis (MI'E) y meoGmexkemiii TpocTOpoBiii 06/1acTi.
B pesyabpraTi 00maBa TiIX0MM TPUBOMATD JI0 Ti€l K CaMOl HECKIHYEHHOI TPU-
KyTHOI CHCTEMU I'DAHUYHUX IHTErPaJIbHUX pPiBHAHbL. AHasi3 npoBeieHo y
BaroBux mpocropax CobosieBa, esleMeHTaMu AKUX € GYHKIHI 9acoBol 3MIHHOI,
skl HaOyBaIOTh 3HAaYEHb y BigmoBimumx npocropax Cobosesa.

i1t 3MenIeHHs 1oTpebu B O0YNCIIOBAIbBHIX PECyPCaxX Peasi30BaHO IIBU/I-

kit MI'E, BUKODHCTOBYIOUN aJAlITUBHY II€PEXPECHY AIPOKCUMAIIII0 OTPUMA-
HuX Marpuns. KpiMm Toro, Meros momupeHo Ha po3B’s3yBanHHd 3a1a¢di ipixie
B 00/1aCTi 3 BK/IIOUEHHAM. TaKOXK IIOJAHO YHCE/IbHI Pe3yIbTaTH I MOIEIb-
HPX 33729, fKi LIIOCTPYIOTh TOYHICTH i OUiKyBaHMIA TOPSIIO0K 301KHOCTI 3ar-
POITOHOBAHOT'O METOy.
ABsTrRACT. We present an improved analysis of two approaches to solving of
the Dirichlet initial-boundary value problem for a homogeneous wave equa-
tion, which are based on the combination of the Laguerre transform for the
time variable with the Galerkin-BEM in an unbounded spatial domain. Both
approaches lead to the same infinite triangular system of boundary integral
equations as a result. The analysis is done in weighted Sobolev spaces of
functions of the time variable taking values in suitable Sobolev spaces.

For reducing both storage and computational costs we implement the fast
BEM using adaptive cross approximation of obtained matrices. Furthermore,
we extend this method for solving the Dirichlet problem in the domain with
an inclusion. We also present numerical results for some model problems
which illustrate the accuracy and estimated convergence order of the proposed
method.

1. INTRODUCTION

In recent years, many studies have been dedicated to the development of
effective methods for the numerical solution of time domain boundary integral
equations (TDBIEs), which arise from initial-boundary value problems (IBVPs)
for the wave equation. Comprehensive lists of related works are presented
in [11,35]. A common feature of these studies is the usage of deep analytical
concepts to take into account the dependence of the solutions on the time
variable. However, as noted in [10], the computational complexity of proposed

Key words. Dirichlet initial-boundary value problem, wave equation, Laguerre transform,

Fast Galerkin-BEM, time domain boundary integral equations, boundary integral equation,
retarded single layer potential, half-space with inclusion, adaptive cross approximation.
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approaches is still high for problems in 3D domains and the development of
effective numerical methods remains actual.

In this paper we present new results of solving both IBVPs and TDBIEs
by approach, which is based on the Laguerre transform (LT) [18,25] in the
time variable. The advantage of this transform is that an inverse LT is easy
to calculate. Moreover, for solving both boundary value problems (BVPs) and
boundary integral equations (BIEs) in the Laguerre domain, efficient recur-
sive algorithms can be constructed using techniques well developed for elliptic
problems and their BIEs.

We distinguish two approaches with respect to the order in which the LT is
applied in solving IBVPs. In the first case, the transform is applied directly
to the IBVP, and as a result, a BVP for infinite triangular system of elliptic
equations is obtained. Such approach was used (without much theoretical justi-
fication) for solving different evolutional IBVPs in papers [4,5,13,28,29,33,37],
in which for the problems in the Laguerre domain a suitable representation of
the solution was also constructed and corresponding BIEs were derived. Varia-
tional formulations for such problems and associated BIEs were proposed and
justified for the first time in [30].

Theoretical aspects of another approach, when the LT is directly applied to
retarded potentials, were investigated in [24,25]. The results for Dirichlet and
Neumann IBVPs obtained therein have enabled to substantiate the equivalence
between each of these problems and infinite triangular systems of corresponding
BIEs in the Laguerre domain and also to define the scope of the problems that
can be solved with help of the LT.

Both aforementioned approaches lead to the same infinite triangular system
of BIEs. This fact creates a basis for the justification of the first approach, as
well as for the effective implementation of the BEM for numerical solution of
the system of BIEs. These two aspects determine the main research goal of this
article.

We begin in Section 1 with a brief description of the second approach, where
the LT is applied to the TDBIE, which arose from the Dirichlet IBVP by using
a retarded single layer potential. We introduce the needed functional spaces,
give a definition of the LT and obtain an infinite sequence of BIEs.

In Section 2 we transform the IBVP to the BVP for an infinite system of
elliptic equations and explain how this approach leads to a sequence of BlEs.
After that we derive the representation of the solution of the IBVP in the form of
the Fourier-Laguerre series, which coefficients represent the solution of the BVP
in the Laguerre domain. Then in Section 3 we consider the IBVP in the half-
space with some inclusion and obtain the representation of its solution using a
Green’s function for such domain. At the end in Section 4 we demonstrate the
implementation of the Galerkin-BEM and its fast modification, and present the
results of the numerical experiments.

2. REDUCTION OF THE IBVP TO THE INFINITE SYSTEM OF BIES .
Let Q™ be a bounded domain in R? with Lipschitz boundary I, Q := R3\Q—,
Ry :=(0,00), Q := QxR; and ¥ := ' xR;. We consider the initial-boundary
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value problem for the homogeneous wave equation

2U X
‘578({;1*) — Au(z,t) =0, (z,t) €Q, (1)

3
where A := 3" 9%/02? is the Laplace operator. We find a function u(z,t),
i=1
(z,t) € Q, which satisfies (in some sense) the equation(1), homogeneous initial
conditions

0 0
u(z,0) =0, M:o, x € Q, (2)
ot
and the Dirichlet boundary condition
u(z,t) = g(x,t), (x,t) €, (3)

where function g is given on 3. We also call (1)-(3) a Dirichlet problem.
To solve the IBVP (1)-(3) we use a retarded single layer potential

S0 = 1 [, ey e (@

where p: I' x R — R is an unknown density. It is known (see, e.g., [34]) that if
an arbitrary function p(y,7) is smooth enough and p(y,7) = 0 for y € I' and
7 < 0, then function

u(x’t) = (SH)(xvt)v (xvt) € @v (5)

satisfies (in the classical sense) the wave equation and initial conditions. The
function u satisfies also the boundary condition (3), if x is a solution of such
TDBIE

(Vi) () = ;/“(y’ Tx_JZI_ War, = g@t), @oes. 6

Let X be a Hilbert space with an inner product (-, -)x and an induced norm
[| - [lx. In order to construct a generalized solution of the IBVP (1)-(3) we
consider spaces of functions of the time variable which have values in some
Hilbert space X. For such functions the weighted Lebesgue space L2 (R, ; X) [9]
with weight py(t) = e 7! (t € Ry and parameter o > 0) is the simplest Hilbert
space. Elements v € L2(R,; X) are measurable functions v : Ry — X such

that [ ||v(t)|/% e %dt < oco. This space is equipped with the inner product
Ry

(v’w)Lg(R_._;X) = / (U(t)vw(t))x 6_gtdt7 v, w € L?r(R+;X)’ (7)
Ry

and the norm

10l r2 @, x) = /(0 0) 12 R, x), v € L2(Ry; X). (8)
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We also consider the weighted Sobolev spaces
HPR;X) = { ve L3Ry X)| o € L2(Ry; X),

v®(0) =0, k=0,m} ©)

where m € N (N is the set of natural numbers), with norm

" 1/2
— |
1ol i) = (kzzo HU ’ ‘L?,(R+;X)) ' (10)

Here derivatives v(*), k € N, are understood in terms of the space D'(Ry; X),
elements of which are distributions with values in the space X. We assume
that elements of the space HJ'(R4; X) are extended with zero for non-positive
arguments.

It is well known [18], that Laguerre polynomials { Lx ()} keny:=nufoy form an
orthogonal basis in the space L2(R;) := L2(R,;R), that is, for every function
f € LE(R) there exists its expansion in the Fourier-Laguerre series

F&) =" frLi(ot), t € Ry, (11)
k=0

where Fourier-Laguerre coefficients fo, f1, ..., fx, ... have the representation for-
mula

foimo / F(8) Li(ot) e=tdt, k€ Ny, (12)
Ry
We write a sequence of any elements of the set X as a vector-column v :=

(v, 1, ...)" and denote by X a set of all possible sequences of elements of the
set X. In particular, we consider a space of numerical sequences [? := {v €

[e.e] [e.e]
R>| 3 |vj|* < 400} with the inner product (v,w) = > vjw; and the
j=0 j=0

o 1/2
norm ||v||;2 := <Z UjP) for v,w € I2.
j=0
We recall [18] that the Laguerre transform (LT) is a mapping £ : L2(Ry) —

12, which maps an arbitrary function f to a sequence £ = (fo, f1, ..., fr,-..) |
according to the rule (12). We will also use the notation L f = (Lf)(k) =
fr Vk € Ny. Note that the Parseval equality holds
1 o0
2 _ 1 2
22 ®y) = UZ\fk! : (13)
k=0
The LT £ is a bijective mapping and its inverse £~! : [ — L2(R,) maps an
arbitrary sequence h = (hq, h1, ..., hg,...)" to a function
(o)
(L7'h)(t) = g Li(ot), t € Ry. (14)
k=0
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For the arbitrary function f € L2(R,) we have an equality
L7t =f. (15)

In [24] the LT was extended on functions of time variable with values in the
Hilbert space X. LT was considered as a mapping £ : L2 (R ; X) — X which
operates according to the rule (12).

Let
oo
P(X)={veX®| Y |vl}k < +oo}
§=0
be a Hilbert space with the inner product (v,w) = ) (vj,w;)x and the norm

5=0
00 1/2

il = (zo ||vj||?x) viw e B2(X).
]:

Proposition 1 ( [24], Theorem 2). The mapping £ : L2(Ry; X) — X that
maps an arbitrary function f to a sequence f:= (fo, fi,..., fr,...)" according
to the formula (12), is injective and its image is the space I>(X), and

1 o0
|’f”%§(]1{+;X) 5 Z ka”%( (16)
k=0

In addition, for the arbitrary function f € L2(Ry; X) we have an equality
LLf =, (17)

where the mapping £L71 : 12(X) — L2(R,; X) is the inverse to £ and maps the
arbitrary sequence h := (hg, h1, ..., hy,...) | to the function h according to the
formula (14).

Definition 4 ( [24]). Let ¢ > 0 and X be a Hilbert space. Mappings
L:L2Ry;X) —13(X) and L£7':1%(X) — LEZ(R.; X),

mentioned in theorem 1, are called, respectively, direct and inverse Laguerre
transforms, and the formula (16) is an analogue of the Parseval equality.

Definition 5 ( [23]). Let X, Y, Z be arbitrary sets and ¢ : X XY — Z be
some mapping. By a g-convolution of sequences u € X*° and v € Y™ we
understand the sequence w := (wo, w1, ..., w;, )T € Z°°, whose elements are
obtained by the rule
J J
wj = Zq (uj—i,v;) = Zq (ui,vj—i), j € No; (18)
i=0 i=0

the g-convolution of u and v is shortly written in form w =uowv.
q

If X = L(Y,Z) is a space of linear operators acting from the space Y into
the space Z and ¢(A,v) = Av, A € L(Y,Z), v € Y, then components of
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the g-convolution of arbitrary sequences A € (/L(Y, Z))Oo and v € Y are
represented by the formula

J
w; = ZAJ',{UZ', j € Np. (19)
=0

In this case we write w = A ov.
Note that for any function f € L2( Ry; X) the Fourier-Laguerre series of the

function f(t—a), a > 0, can be expressed in terms of the sequence f := Lf [24,
Lemma 1]:

f(._a):e—mz@jcj (o) L) i R X), (20

7=0
where

Co(s) =1, Ck(s):=Lg(s) — Lr_1(s), s€ R =[0,0), keN. (21)

Let H'(Q) and HY?(I') denote the usually defined (see, e.g., [17]) Sobolev
spaces and H—Y2(T') := (HY?(T")). Consider now the retarded single layer
potential (4) and TDBIE (6). Assuming the density u € L2(Ry; H-/2(T)) is
sufficiently smooth, we can write the expansion [24]:

(Sp)(x,t) Zu] , (z,t) € Q, (22)

where coefficients u; := £; Su, j € Ng, are components of the g-convolution
=(S o , €. 23
u(w):= (8 o W)@). z (23)

Here p := Lp and the sequence S consists of operators Sy : H-Y2(I') —
H(Q), k € Ny, acting on any function ¢ € L?(T") according to the rule

(Ské)(x /f ex(z —y)dl'y, e, (24)

where

—alz] —olz]

(& (&

(Lk(a|z|) — Lk_l(a\z|)), 2 €eR? \ {0}, keN.
(25)
One can extend the expression (24) to the H~'/2(T") x H'/?(T') duality product
(Sk€)(x) = (&(-), ex(x — -))p, « € €, for elements & € H-2(T) [24].
Similarly, applying the LT to the equation (6), we obtain an infinite trian-
gular system of BIEs

eo(z) :== , ex(z) ==

4r|z| 47 |z|

V o =g onl, 26
AN (26)

where g := Lg and V is a sequence of boundary operators Vj, : H-/2(I') —
Hl/Q(F), k € Ny, which may be expressed as a composition Vi := 79 o Si of
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operator Sy, with trace operator 7g. In case of & € L?(T") we have

(Vi) (z) = / £(y)en(z —y)dT,, zeT. (27)

T

Proposition 2 ( [24], Theorem 1). Let g € HI"4(Ry; HY?(T')) for some
oo > 0 and m € Nyg. Then there exists a unique generalized solution of the
problem (1)-(3), it belongs to the space HI'" (Ry; H'(Q)) and for any o > oy
such an inequality holds

[ulliro @i @) < Cllgllmpes @y my), (28)

where C' > 0 is a constant that is not dependent on g.
In addition, the generalized solution of the problem (1)-(3) can be represented
as a sum of series (22), that is convergent in the space L7 (Ry; H'(Q)), which

coefficients u are defined by formula (23), where the sequence p € 12(H~'/2(T))
is a solution of the system of the BIEs (26) with g := Lg.

Note that the assumption about the function g in the proposition 2 guaran-
tees the applicability of the LT at all stages of constructing of the numerical
solution to the problem (1)-(3) without any additional assumption about re-
lation between parameters m and og. On theoretical aspects of generalized
solutions to such problems in other functional spaces, see, for example, in |21].

3. SYSTEM OF THE CONVOLUTIONAL TYPE AND ITS SOLUTION
We can also obtain both the representation (22) of the generalized solution of
the problem (1)-(3) and the system of the BIEs (26) in another way. For this we
use such property of the LT for the derivatives of the function f € H2(Ry; X):

2 k
£k<88";§t)> :oQZZ(;(k—Hl)LZ(f(t)), k € Np. (29)

By applying the LT to the wave equation (1) directly and using (29), in 2 we
obtain the following infinite triangular system of elliptic equations

PUO == 0,
ciug + Puyp =0,
coug + ciui + Pug = 0, (30)

cpug + cp—qu1 + ... + Pup =0,

where up := Lru, k € Np, are the unknown functions and P := ¢ol — A, ¢ :=
(k +1)o?, I is the identity operator. Henceforth we denote u := (ug, ug,...)"
and G the infinite triangular matrix in the left hand side of (30). This allows
us to rewrite the system in form

Gu=0 in Q. (31)
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By the LT we obtain from the condition (3) a sequence of boundary conditions
regarding the unknown functions

yu=g:=LgonTl. (32)

Theorem 1. Let the given function g satisfies the condition of the proposition
2, that is, g € Hc’,’é+4(R+;H1/2(I‘)) for some oy > 0 and m € Ny. Then the
unique generalized solution v € HJ"W (Ry; H'(Q)) of the problem (1)-(3) can

be represented by the solution u := (ug,u1,...)" of the boundary value problem
(31), (32) as the sum of a series

u(z,t) =Y uj(x) Li(ot), (x,1)€ Q. (33)
j=0

Proof. Let us consider a top part GF¥uf=0 of the system (31) for any fixed
k € Np, which consists from the k£ + 1 equations. According to the [30, Lemma
2| its any solution u* := (ug, u1, ..., ux) | can be represented in Q by the formula

U](l‘) = Z </li(')v€j*i(x - ')>I" WS Qa j € N07 (34)

1=0

where 1, j € Np, are some elements of the space H_l/z(F) and functions

ej, j € Np, may be expressed through a fundamental solution E := (Ey, F, )T
of the operator G in form
ey := Fy, ej = Ej — Ej_l, 7 €N. (35)

In addition, if the sequence p* := (,uo,ul, ey Mk)T is obtained as a solution of
the system of BIEs

J
Z <Mi(-),€j,i($ — )>1" =g, T € I, €0k, (36)
=0

then the sequence u* will be the solution of suitable Dirichlet problem for the
system GFuf=0.

Notice that (35) may be reduced to form (25) [31, Theorem 1|. Therefore,
the formula (34) coincides with the representation of the Fourier-Laguerre coef-
ficients of the retarded potential (4) and BIEs in the system (36) are the same
as in the infinite system (26). So sequence p := (Mo,/ﬁl, )T coincides with
LT of the solution u of the TDBIE (6) and, as a consequence, the solution u
of the problem (31), (32) coincides with LT of the solution u of the problem
(1)-(3). As a conclusion from the Proposition 2 we have that pu € 12(H~Y/2(I"))
and u € ?(HY()).
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Using the notation (21), in the case p; € L2(I') we can rewrite the formula
(34)

=0
(37)
—Glr yl
By substituting the expression (37) into the partial sum
k
W, t) ==Y () Li(ot), (x,1) €Q, (38)
§=0

and taking the external sum into the integral over I' we obtain
. e—olz—yl
(1) = / g p— ZZM )j—i(ole =y Lj(et)dTy, (2.t) € Q. (39)
7=0 =0

Taking into account, that pu € I2(H~'/2(T)) and formula (20) holds for this
sequence, putting k — oo we finally get

wat) = [ oot =l —udr, @HEQ @0
r

where p = £ 'p. Since u is the solution of the TDBIE (6), the retarded
potential (40) coincides with potential (4). Therefore, (40) is the solution of
the problem (1)-(3). O

Taking into account that the system (26) is triangular we rewrite it as a
sequence of BIEs

(Voro)(z) = go(),
(Vo) () = g1 (x),
(41)
(Vour)(x) = gr(z), k€N, zel,
with recurrent expressions in right-hand sides
k—1
ge(x) = gr(2) = Y _(Ve—ipi)(z), keN. (42)

.

Since the boundary operator Vj is H~1/2(T')-elliptical [6,17], for arbitrary fixed
k € Ny the k—th equation in (41) with g, € H'/?(I') has a unique solution py, €
H~Y2(T"). We can choose (by some criteria) the value of parameter N and find
from (41) the first components for the sequence p := (,u,o, U1y -y N, 0,0, )T
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Using it for calculation a sequence uV = (uo,ul, e un, 0,0, )T by the for-
mula
N N
u'(r)=(S o x), x €, 43
@=(5,2. #)@ (43)
we obtain an approximate solution @'Y (z,t) of the problem (1)-(3) as a partial
sum (38) of the expansion (22) of the exact solution u(x,t).

4. PROBLEMS IN THE DOMAIN WITH AN INCLUSION
Reducing the IBVP (1)-(3) to the BVP (31), (32) allows us to solve it by
numerical approaches, which have been successfully used for solution of the
elliptic problems. In particular, it concerns the use of surface potentials, which
are based on Green’s function [8] for specific domain g instead of the funda-
mental solution (25) for operator G in R3. Suppose I'g is a Lipschitz boundary
of Q().

Definition 6 ( [31]). Let N(xz,y) := (No(z,y), N1(z,y),...) ", (z,9) € Qo x Qo
be a solution of the equation

Gu =4, in (D'(Q))”, (44)

where &, := (§(- —y), 0, 0, ..)". We say that N is Green’s function for the
Dirichlet problem for the system (31) in the domain € if all its components
vanish for (z,y) € T'o x Q.

Building the Green’s function for the domain with arbitrary geometry isn’t a
simple task in general. But for domains with a certain type of symmetry it can
be built analytically by the reflection method [31]. Without loss of generality
we present here the Green’s function for the Dirichlet problem in case of the
half-space Qg = R? x R :

Ni(z,y) = ex(x —y) —ex(x — y*), k € Ny, (45)

where y* is a point symmetric to the point ¥ in regards to the plane I'g and
functions ey, are defined by (25).

Let us denote the unit exterior normal vector to the surface I'g as v. Consider
a sequence D which consists of operators Dy : HY/?(I'g) — H'(Q)), k € Ny,
that act on an arbitrary function & € H'/2(I'g) according to the rule

(Dxé)(x) = / £(y) ,Ni(xy) dTy, = € Qo (46)
To

where 8, is the notation of the normal derivative. If X € I2(H'/?(Tg)) is an
arbitrary sequence then a sequence

u(z) .= —(D A)(z), z €, (47)

o
HY(Q)

satisfies the system (31) [31].
Let bounded domain €2~ with a Lipschitz boundary I' is an inclusion in
the domain Qp (I'o NI = @) and Q := Qp \ Q~. For an arbitrary function
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€ L2(Ro; H Y/2(1)) let us consider q-convolution
1% o\ D+ q

u(z) := (§ p)(z), =€, (48)

O
HY(Q)

of sequences p = Ly and S := (§0, Sy, ...)T, where operators Sy : H'2(T) —
H(Q)), k € Ny, act on an arbitrary ¢ € L*(T') according to the rule

(8k6) (s / E(y) Ne(a,y) Ty, @€ Q. (49)

For ¢ € H'/2(T") one can extend the expression (49) to the H~1/2(T") x H'/?(T")
duality product (Sp€)(z) = (€(-), Ni(z —))p with = € Q. It is easy to see that
for arbitrary functions p € L2(Ry; H-Y2(I") and A € L2(R,; HY/?(Iy)) a
combination of the sequences

u(z) := (S Hlisz) p)(z) — (D HlCZQ) A)(z), z €Q, (50)

satisfies the system (31) in  and the boundary condition you = X on I'y.

Suppose u satisfies the wave equation (1) and initial conditions (2) in 2 and
traces yp,0u = A and 7p,1u = g are given on the cylinders ¥g := I'g x Ry and
> = T' x Ry respectively. Then unknown sequence p for the representation
(50) can be obtained from the system of BIEs

\Y% = D o A r 1
A g +70,1( 10 ) onl, (51)

where g := Lg and the components of the sequence V are boundary operators
Vi == 70,1 © S, Vi : H~'Y2(T') — HY?(T'), k € Ny. Note that the resulting
system can be reduced to the sequence of BIEs similar to (41) and has only one
solution.

5. FasT BEM AND RESULTS OF NUMERICAL EXPERIMENTS

Both (26) and (51) systems are triangular so one can solve their equations
sequentially. For this we use Galerkin-BEM and it fast modification [16, 36].

Let TM = Ul]\il 7; be some approximation of the boundary I' by triangular

boundary elements {Tl}l]\il and {go?}?il be a set of linearly-independent on T'™
piece-wise constant functions

1, z e

0 o ) 1y

A ={ 5 15T 52)

Treating a value h := max (f ds) 1/2 as a parameter of the spatial approx-
I=1,M

imation, we will consider a finite-dimensional space S§(I') := span {cpl }l 1

and represent a numerical solution of the system (41) by a sequence pu™" :=
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T . . L .
(,ug, ,u?, . ,LL}]{,,O,O, ) which components are linear combinations of piece-
wise constant functions

M
ph = i) € SpT), ke N (53)
=1
M
Here { LLZ7Z} = NZ € RM is a vector of unknown coefficients which can be
found from the following system of linear algebraic equations
k—1
Viur =gr— > Viul, keN, (54)
§=0

where gp[i] = fﬂ_ gk (x)ds,, i = 1,M, and elements of the matrix V;’ have
following form

Vph[i,ﬂ = / / ep(x — y)dsydsy, i,l=1,M, p € Ny. (55)
Ti YTl

Notice, that for any k£ > 1 the components ug, t1, ..., ig—1, obtained from BIE
(41) on previous steps, are included into the expression in the right-hand side
of the current equation. The evaluation of the surfaces integrals (55) has been
discussed in [32].

We interpret sequences

l‘l/N’h = (thu]ll? "‘7”?\[707 07"‘)T
and
uVh = (ug,u?, ...,u%,0,0, )T

with some fixed value of the parameter N as numerical solutions of the sys-
tems of BIEs (26) and the BVP (31)-(32), respectively. As well, a partial sum
N

aNh(z,t) == S ul(z)L;(ot) we use as a numerical solution of the problem

i=o 7
(1)-3).

Let us assess the accuracy of the proposed method. Taking into account an
obvious inequality |lu — aN’hHHC}_(R_‘_;Hl(Q)) < lu — @™ grw, ) + @Y —
ﬂN’hHH;(R+;HI(Q))7 in this paper we restrict ourselves to examining the poste-
riori error of the numerical solution, which corresponds to the second term in
the right hand part of this inequality. An asymptotic error of the numerical
solution in this case has been investigated in [22].

In the following we demonstrate numerical solutions of some model problems
for the wave equation in the domain = R3\Q~, where Q= = (—1,1)x(—1,1)x
(—=1,1). For generating boundary values we use a spherical impulse represented
by the formula

w(x,t) := |z| " w(t — o] + 1)I(t — |z + 1), (z,t) € R®\ {0} x Ro,  (56)
with a cubic B-spline w* and the Heaviside step function 9(¢). Notice that the

function w satisfies (1) and (2).
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Example 1. We consider the problem (1)-(3) in  x Ry with the given trace
data g = w on X and analyze accuracy and convergence of numerical solutions
uZ and ™" on the sequence of discretization I'M with increasing M and with

N = 20.

TaBL. 1. Convergence analysis of ug, u}fO and ™" for Exam-
plel with 0 =4, N = 20 and increasing M

M ug () U}fo u™vh

3 ~ N,h
5h eocy € 5 eocrg €l SR eoc " Nk

108 1.92-10~¢ 3.24 2.92.1073 22.21 2.40-1072 4.66
300 7.01.107° 2.03 1.18 8.46:107* 2.43 6.43 8.11-1073% 2.13 1.57
768 3.22-107° 242 0.54 2.97-107* 2.23 2.26 3.09-1073 2.05 0.60
1452 1.83-10~® 2.24 0.31 1.49-10~* 2.16 1.14 1.62-10~% 2.03 0.31
1728 1.55-107° 2.16 0.26 1.24-10~* 2.14 0.94 1.36-102 2.02 0.26
2700 1.02-107® 2.14 0.17 7.72:107° 2.12 0.59 8.63-10~% 2.03 0.17
4800 5.93-1076 2.11 0.10 4.22:107° 2.10 0.32 4.83-10~* 2.02 0.09

At first we consider the impact of the parameter h on the approximation
error of numerical solutions uz, k € 0,N, and ™" with some fixed value
of the parameter N. For this we compute values 67 := |[u} — ug||r2(q, ,) and

u.,b)
= 5?/Huk|’L2(Qa7b)*100 %, and also values 6™/ := ’|aN’h_ﬂN’|L3(R+;L2(Qa’b))

and eNl = gN’h/\]HN|]L3(R+;L2(QM)) *100 %, where (a,b) =: Q44 is a spatial
interval from which observation points are taken. Notice that we provide es-
timates in the norm of such Lebesgue space with aim to simplify calculations
in the unbounded exterior domain 2. Using a sequence of finite-dimensional
spaces Sy (I') with decreasing h for both kinds of numerical solutions we eval-
uate estimated orders of convergence [36] eocy := ln(éZj_l/5Zj)/ln(hj_1/hj),
k €0,N, and eoc™" := In(6N-hi-1 JgNi) /in(hj_1/h;), where hj_ and h; are
consequent values of the parameter h.

Computed in Q3 with @ = (1.2,0,0) and b = (10,0,0), some results of
the series of numerical experiments are given in Table 1. They highlight that
eoc =~ 2 for both numerical solutions uZ and a™V".

Now we assume that the cube Q7 is included in the half space Qy = R? x
(—2,00) and Q = Qy \ Q. For generating boundary functions in this case we
use a function @w(z,t) := w(x,t) —w(z*,t), where z* is a point symmetric to the
point = with respect to the plane I'g = {(z1,x2,x3) | 3 = —2}. It is obvious
that function @ satisfies (1) and (2) and w(z,t) =0 on I'y.

Example 2. We consider the problem (1)-(3) in € x Ry with traces ypou =
A =0and vy, u = g = @ given on the cylinders ¥y :=T'o x Ry and ¥ =T' xR
respectively, and analyze accuracy and convergence of numerical solutions UZ

and @™V"" on the sequence of discretization I'™ with increasing M and with
N = 20.
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We solve this problem by modified BEM using the representation (50) based
on Green'’s functions for the Dirichlet problem for the system (31) in the domain
Qo. In this approach after discretization of BIEs we obtain matrices {/'Z similar
to the VP, k € Ny. Results of the numerical experiment are plotted in Figure
1.

As we can see from the Table 2 numerical solutions, obtained in this ap-
proach, have the same accuracy and the convergence order as in the previous
example. Notice that some complication of the method due to the use of Green’s
functions does not lead to significant increase of computational resources for
solving the problem in the domain with inclusion. The fact that we have avoided
solving BIEs on the unbounded surface I'g is an advantage of the modified BEM
in solving such problems.

TABL. 2. Convergence analysis of ull,ufy and @™" for Exam-
ple2 with 0 =4, N = 20 and increasing M

N %) o
Sh eocy €} st eocyp €, SNh coc’h gk
108 8.58-107° 3.24 1.36-1073 7.59 1.78-1072 3.35

300 3.14-107° 2.03 1.19 3.33-107* 2.76 1.85 4.96:107% 2.50 0.94
768 1.44-107° 2.42 0.55 9.97-107° 2.56 0.56 1.77-107% 2.20 0.33
1452 8.14-107% 2.23 0.31 4.64-107° 240 0.26 9.06-10~* 2.10 0.17
1728 6.93-107% 2.16 0.26 3.79-107°5 2.31 0.21 7.57-10~* 2.05 0.14
2700 4.56:107¢ 2.13 0.17 2.27-107° 2.29 0.13 4.79-10~* 2.06 0.09

We now wish to notice that matrices VZ and \N/'Z, k € 0,N, which arise
after discretization of boundary operators in equations (26) and (51), are fully
populated and can reach large sizes. So for their calculation we apply the Fast
BEM which based on adaptive cross approximation (ACA) of these matrices
[3,12]. Because this approach is universal in relation to the function in the
kernel of boundary operators, an efficient algorithm can be constructed for
calculating all the above matrices.

It can be checked that functions in the sequence e(z —y) = (eg(z —y), e1(z —

Y), ...ep(z—y), )T are asymptotically smooth [3, Definition 3.2.]. This ensures
that for each of the matrices VI ACA algorithm admits admissible partitions
into blocks that can be approximated by the product of matrices of smaller rank.
For example, if some block A € R"™*" in VZ is admissible it can be approxi-
mated with arbitrary small error ¢ in Frobenius norm by the matrix S, := QT ,
where Q € R™*" and T € R™" are matrices of rank r < min(m,n). To do
this we have to calculate and store in RAM only a subset of elements of the
block A [3, Chapter 3].

In order to demonstrate efficiency of the ACA we apply Fast BEM to the
problem which we have considered in the Example 1. As we can see from the
Figure 2, memory consumption for storing data of the approximated matrix
VSL depends on the parameter M almost linearly. By contrast, we need to store
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uhN(z,t)

FiG. 1. Numerical solution of the problem in Example 2 in two
sets of the observation points {(z1,0,0)} and {(0,0,z3)}
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Fia. 2. Memory consumption for storing data of the matrix V(})‘
for the Fast BEM (¢ = 1072 and € = 1072 ) and for the ordinary
BEM (¢ = 0)

M? elements of V} using ordinary BEM. The same dependency concerns the
time needed for calculating data of Vg by the fast and the ordinary BEM.
Note that according to the ACA algorithm admissible blocks are allocated
outside of the main diagonal of the matrix. So their approximation doesn’t
require high accuracy. On Figure 3 we demonstrate the error of the numerical
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1071 E

1073 :

10—t 109
h

Fia. 3. Error 019" of numerical solutions for Example 1, which
was obtained by the Fast BEM ( ¢ = 1072 and € = 1073) and
by the ordinary BEM (e = 0)

solutions for Example 1, which were obtained by the Fast BEM with approxi-
mation of admissible blocks in matrices VZ with some fixed values of the error
. As we can see, the numerical solution in case of ¢ = 103 has almost the
same error 6" as in case of the application the ordinary BEM, when all ele-
ments of matrices VZ were calculated (on the figure we denote this solution by
e=0).

6. CONCLUSIONS

We have described two approaches based on the Laguerre transform in the
time domain, that require the solution of a sequence of boundary integral equa-
tions to obtain an approximate solution of the Dirichlet problem for the wave
equation. After an additional justification for such transform, we have shown
the application of the boundary elements method for solving integral equa-
tions in the Laguerre domain and derived a representation of the approximate
solution of the wave equation.

In solving evolutional problems the coupling of the LT and the BEM makes
it possible to use other techniques, that have been developed for elliptical prob-
lems. In particular, we have modified this method for solving Dirichlet problem
in the domain with an inclusion, using Green’s functions for the representation
of the solution. Also we have implemented the Fast BEM using adaptive cross
approximation for reducing both the storage and computational costs.

Finally, we can point out that in this article we have confined ourselves to
considering a problem with a Dirichlet boundary condition in order to simplify
the presentation. For other boundary conditions the approaches considered
above will lead to other boundary integral equations that will need to be solved
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by another implementation of the BEM. We also remark that the Laguerre
transform can be combined with other suitable methods. For example, for
solving more general second-order hyperbolic equations, which coefficients are
variable in the space domain, the Laguerre transform can be similarly combined
with the finite elements method.
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LAGRANGE INTERPOLATION FORMULA
IN LINEAR SPACES

O.F.KASHPUR, V. V. KHLOBYSTOV

PE3IOME. B miHiilHOMY HeCKiHY€HHOBUMiIPHOMY IIPOCTOPI 31 CKaJIIPHUM II0-
OyTKOM i B CKIHU€HHOBHMIPHOMY €BKJILOBOMY IIPOCTOPI JOCiAKeHA TOTHICTD
dopmymn Jlarpamxka Ha MOIIHOMAX BiAMOBIIHOTO CTEIEHS.

ABSTRACT. In a linear infinite-dimensional space with scalar product and in
a finite-dimensional Euclidean space the accuracy of the Lagrange formula on
polynomials of the corresponding degree is investigated.

The problem of polynomial approximation of nonlinear operators is an ac-
tual in both the theoretical and in the applied senses. One of the methods of
its solution is interpolation. A partial case of this problem is the polynomial
interpolation of many-variable functions. It was shown in [1] that for the con-
struction of the unique interpolation polynomial in the Euclidean space Ej it
is necessary that the relation (between the n-th degree of the polynomial and
the number of nodes m) m = (n+k)!/nlk! be executed. Moreover constructing
an n-th degree interpolant in Ej induces some difficulties. In practice, there
are cases where the number of interpolation nodes is given less than what is
needed to construct of the unique interpolant of the corresponding degree. In
[2], it is shown that the number of nodes can be chosen less than dimension
of the space of polynomials used for seeking the solution, with the problem
will be invariantly solvable and will be have the unique solution with minimum
norm generated by a scalar product by the Gaussian measure |3, 7]. We call an
interpolation task invariantly solvable if it has a solution at arbitrary values of
the function in the nodes.

In [4] interpolation operator polynomials in Hilbert spaces are given. In
the article one of these interpolants is considered. It is shown that it is an
interpolation Lagrange formula with fundamental functional polynomials in a
linear space with a scalar product. This interpolation Lagrange formula (the
number of nodes m and the degree of polynomial n are not interconnected)
is studied both for the case of an infinite-dimensional linear space and for
the case of the finite-dimensional Euclidean space Ej, the conditions for the
accuracy of the Lagrange formula on polynomials of the corresponding degree
are determined.

Key words. Hilbert space, Euclidean space, operator, interpolation polynom, invariance of
solution.
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It was shown in [4] that the interpolation operator polynomial of n-th degree
for the operator f has the form

Po(x) = <f, Lh > (i, x)p|§”1> ; (1)
p=0

where z; is an interpolation node, P,(x;) = f(x;) = fi, i = Im, f =
(f1, f2, s fm), zi, * € H, H is the Hilbert space, f : H — Y, Y is a linear
space, f; € Y, I'} is the Moore-Penrose pseudo-inverse matrix to the matrix

n m
Fm = H Z(wlﬁw])p”v <y >= Zfiaia a; € Rl-
p=0

i=1

In [4], in the event of fulfillment of the necessary and sufficient condition for
solvability of operator interpolation task, such as

Aof =0, Ag=E-T}/T =E-TT}, (2)

Ap is an idempotent symmetric matrix. Based on (2), we get: if the matrix I'y,
is nonsingular (T, = T';,}), then the problem will be invariantly solvable, that
is, the solution will exist for any values of the operator in the nodes.

We denote I'F, = ||(x;,2;)¥||. In [4] it is shown that in the case of fulfillment-
ing of the condition

rg(Ty, +Tp) +n—1>m (3)
the operator interpolation problem is invariantly solvable.

Consequently, let us consider the case when the problem is invariantly solv-
able: T, = T',;1, and the formula (1) turn in to the form:

Po(x) = <f, Lot Y (i) |§”1> : (4)
p=0

In the following, the formula (4) will be rewritten in a different form and
we reduce it to the Lagrange formula in a linear space with a scalar prod-
uct. Let X,Y be linear spaces, X with a scalar product (-,-), f : X —
Y, P,(x) be an interpolation operator polynomial of n-th degree for f with
nodes 1,2, ..., Tm, Po(z;) = f(x;) = fi, x,z; € X, i = 1,m, and the nodes x;
are chosen in such a way that the matrix || Ppy;(x;)|| will be nonsingular, where

n
Pm<l‘) = ZLkzmk,mek = (mi,x)k, LOi = 1, Pm X — Rl, 7 = l,m.
k=0

The invertibility of the matrix for a finite-dimensional Euclidean space is
considered in [2| by the choice of independent vectors related with nodes. In
the following, we denote: Py, (x) = (Pn1(x), Pa(2), ..., Pum(2)), and by Pt (z;)
the elements of the matrix || P;(z;)|| 7. According to [4] we get

Po(x) = (f, || Pai(z;) | ' Pn(z)) =
= (F. 1P (@) Pu(2)) =
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= 5D Pt @) Paj(x) = Y fili), (5)
=1 j=1 i=1
where "
(@) = Y Pt () Poj (),
j=1

Z Poj(r) = b, (6)

Jir is the Kronecker symbol. Slnce (5), (6), we obtain

E

o) = fili(wr) = fo = flan) k=T,
=1

Thus, the formula (5) is the Lagrange formula for an interpolation polynomial
in a linear space with a scalar product

Zf” , li(xg) = Ok, 3,k = 1,m, (7)

where [;(z) are fundamental functional Lagrange polynomials of n-th degree,
li X — Rl.

Note that the interpolant (7) with the nodes z;,7 = 1,m is not a unique
polynomial in X. Indeed, if p, : X — Y is an arbitrary operator polynomial of
n-th degree [5], then formula

m
Po(x) = pu() + D (fi = pal@i)li(@) (8)
i=1
defines the set of interpolation operator polynomials of n-th degree for the
operator f,

m

Po(ak) = pulax) + Y (fi = pul@i))lizi) =

i=1

ajk +Z pn wz 'Lk:fk:f(xk)yk:lam-

In [4] it is proved that the mterpolant (7) belonging to the set (8) has a minimal
norm generated by a scalar product by the Gaussian measure [3, 7.

It is known that in infinite-dimensional spaces, the finite set of nodes does
not guarantee the uniqueness of the interpolant and its invariance with respect
to polynomials of the corresponding degree. It was shown in [6-8] that the
continuum information used to construct an interpolation polynomial does not
provide the uniqueness of the interpolation formula. The so-called "Kergin
insterpolation" for many-variable functions and in the Banach space was con-
siderated in the paper [8]. We note, firstly, that the interpolation formulas
(see [8])are convergence with the formulas from [6, 7] obtained in the 1960s
up to equivalent integral transformations, and secondly, the classical Newton
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interpolation formulas for many-variable functions can not be derived from this
formulas [9].
It has been known that the expression

— 3 pal@)li(a) (9)
i=1

does not turn into a zero element of the infinite-dimensional linear space Y 5],
that is, the Lagrange formula is not exact on the operator polynomial of the
corresponding degree, and when constructing polynomial (5) the numbers m
and n are not related.

Example 1. Let’s put in (9) n = 1, where p; : C[0,1] — C[0,1],p1(z) =
fol K(t,s)x(s)ds, K(t,s) is a continuous function on [0, 1] x [0, 1]. Taking into
account the form l;(x), we obtain that pi(z) — > /" p1(xi)li(x) # 0. Conse-
quently, in an infinite-dimensional linear space, the Lagrange formula is not
exact on polynomials of the corresponding degree.

Let us consider the partial case where X is a finite-dimensional Euclidean
space on an example of the space Fa, f : Fo — Rj,u € Fy,u = (z,y), u; =
(zi,yi),7 = 1, m, where u; is selected so that the matrix || Z;:O(xixj + vy )P
has to be nonsingular (see [2]|). From (5) we get

-1
n n

Pula,y) = [ .S @iy + v S+ ym)Ply | =
p=0 p=0 (10)

= Zfili($>y)-
i—1

Then

n

n
L, y)ly = || (@iwj + yiy;)? Z xx; +yyi)P i1,
p=0 p=0

li(xlmyk) = 5ik7 ia k= 17m'

Taking into account (10), we obtain

xkvyk Zfzz ka,yk f f(xknyk’)v kzlvm

and the formula (6) is the 1nterpolat10n Lagrange formula for f : Es — Ry,
where [;(z,y) are the fundamental Lagrange n-th degree polynomials of two
variables. Also on the basis of [4] P,(z,y) is the minimum norm interpolant [3,
7] on the set of n-th degree interpolants of two variables.

In the following, we assume that the number m is given (fixed), and the
n-th degree of the interpolation polynomial is chosen from the inequality m <
min p = p, where p is the dimension of the space of n-th degree polynomials in
Es,p=(n+1)(n+2)/2[10].

64



LAGRANGE INTERPOLATION FORMULA IN LINEAR SPACES

Example 2. Let m = 2, u; = (z4,v:), 7= 1,2, u1 = (0,1), uz = (1,0). Then
m=2<min(n+1)(n+2)/2=p=3, n=1.
Let us verify the condition (3) of the invariant solvability of the problem:
rgTd +TE)+n—1=2+1-1=2>m, m=2.

Thus, with such a choice of nodes, the problem is invariantly solvable, that is,
the matrix I'y has an invertible.
Let us construct the interpolation polynomial. We get

-1

p=0
1 T
LIl —2+2y
> () z (AEH
1
ll(m,y)Zg(l—w+2y)
1
lo(z.y) = 5(1+22—y),

ll(uj) = 51_7> Za] = 1’27

2
y) = fili(z,y).
i=1
Let f(x,y) =14 22+ 3y. Then f1 = f(0,1) =4, fo = f(1,0) =3,

Pi(x,y)=4- g(l—x+2y)+3 3(1+2x—y):

1
:§(7+2x+5y)751+2x+3y,

that is, in the case of m = 2,p = 3,n = 1, the interpolant Pj(x,y) is not exact
on the polynomial of the 1-st degree.
Example 3. Let m = 3, u; = (24,v;),i = 1,2,3,u1 = (0,1),us = (1,0),us =
(0, —1). Then
m=3<min(n+1)(n+2)/2=p=3, n=1.
Check the condition (3):
rg(T% +TL)+n—-1=3+1-1=3>m, m=3.

The condition is fulfilled, hence there exists I'y’ ! Let us construct the interpo-
lation polynomial. We obtain
-1

1 1 3 -2 1
Z ui, uj)P =1 -2 4 =2/,
=0 1 -2 3
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-1

1 1 1 l—-2z+y
Z('LLZ‘,U,]‘);D Z(uiﬂu)p‘g):l = 5 2z )
p=0 p=0 1—x— Yy

3
Py(u) =) fili(w),
i=1

h(z,y) =1/20 =z +y), b(z,y) ==z, I3(z,y) = 1/2(1 —z —y),
lz(u]) = (5Z‘j,7;,j = 1,2,3.
Let f(u) =1+ 2z + 3y, then

flzf(071):47 f2:f(170):37 f3:f(07_1):_2'
We get

1 1
Pl(x,y):4~5(1—$+y)+3x—2-§(1—x—y):1+23:+3y,

that is, in the case of m = 3,p = 3,n = 1, the Lagrange interpolant (10) is
exact on the first degree polynomial of two variables.

Thus, for the finite-dimensional Euclidean space Fs, the conclusion is as
follows: in the case of m < p we have the unique Lagrange interpolant with
minimum norm, herewith it is not exact on polynomials of the corresponding
degree (Example 2). In the paper |2] this interpolant is called underdetermined.
If m = p, then the Lagrange interpolation polynomial is unique and is exact on
the polynomial of the corresponding degree [1] (example 3).

Similar considerations and transformations can be made for the Euclidean
space Eg, u € Ey, u = (x1, 9, ...,x), where the number of nodes m is given
(fixed), and the n-th degree of the interpolant is determined from the condition

m<minp =p,p= (n+k)!/nlkl, k>2 (11)

where p is the dimension of the space of n-th degree polynomials in Ej [1].
We select the nodes wuy,uo, ..., U, in such a way that there exists the inverse
matrix in (5), and the degree of the interpolation polynomial is determined
from inequality (11).

Let us formulate the following conclusion for the space E. We get

Theorem 1. Let f: By — Ri, k > 2, m be given. Then, if m = p, then the
Lagrange interpolant P,(u), u € Fj will be exact on all polynomials of degree
not higher than n, and if m < p, then the minimum norm interpolant P, (u),
does not have such a property.

We fix the degree of the interpolation polynomial and the number of nodes,
for example, n = 2,m = 4. For this case, we construct interpolants in spaces
Ry, Ey, k = 2,3,.... Let pr be the dimension of polynomials of the second
degree in Ej.

In the space Fo, when n = 2, m = 4, we obtain that ps = 6. So, for un-
ambiguous definition of Py(z,y), there are not enough two interpolation nodes.
If we consider the construction of the interpolation polynomial of the second
degree in Fj3, in the case of m = 4, we obtain that ps = 10 and for the un-
ambiguous construction of the interpolant there are not enough 6 nodes. If we
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continue this process, then it is clear that as the dimension of the space Ej
grows, the dimension of the polynomial space of the two variables py increases,
and therefore, when constructing the interpolation polynomial of the 2-nd de-
gree for 4 nodes, we are in a situation of "underdeterminacy". As you can see,
the larger the dimension of the space Ej, the more indeterminacy (uncertainty)
and less accurate of the constructed interpolation polynomial. We arrive at the
following conclusion: in the case of decreasing of the Euclidean space dimen-
sion, the "underdeterminacy" of the Lagrange interpolant is decreases, and in
the case f: Ry — R; we have m = p = n + 1, that is, we obtain the classical
n-th degree Lagrange polynomial with n + 1 nodes for the function of one vari-
able. In the space R; for m = 4 we get that p = 3, that is, we can construct the
interpolation polynomial of the third degree, herewith the resulting interpolant
is unique.

As regards the linear space X with a scalar product, the following statement
holds. If the interpolation nodes are chosen so that the corresponding matrix is
nonsingular, then there is always the unique Lagrange interpolation polynomial
with minimum norm [3, 7], but this interpolant is not exact on the operator
polynomials of the corresponding degree (Example 1). We note that, the num-
bers m (number of nodes) and n (interpolation degree) are not related to each
other when the interpolation operator Lagrange polynomial is constructed|4].

Remark. We consider the polynomial (8) in the following form

m

Pn(x) = pn($7f) + Z(fz _pn(xivf))li(‘r)? r e X, (12)

=1

where p,(z, f) is a c-polynomial, that is p,(z,f) = f, if f = pu(x) is an
arbitrary polynomial operator of degree not higher than n [4]. Then the formula
(12) defines an exact interpolant on polynomials of the corresponding degree.
Several examples of constructing a c-polynomial are considered in [4].
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ALGEBRAIC AND TRIGONOMETRIC GENERALIZED
INTERPOLATION OF HERMITE-BIRKHOFF TYPE
FOR OPERATORS DEFINED ON FUNCTIONAL
SPACES AND FUNCTIONS OF MATRIX
VARIABLE, AND THEIR APPLICATIONS

A.P.KHUDYAKOV, YE. V. PANTELEYEVA, A. A. TROFIMUK

PE3IOME. VY pobori nobymosano asnrebpaiuny dopmyny tuny Epmita s
omepaTopiB, BHU3HAUEHUX y (YHKIOHATHHUX [IPOCTOPAX. I[HTEpIIOIAIiiHA
dopmysia moaibHOTO BHIY, SKa MICTUTHh 3HauUeHHs audepenmiamis [ato mo-
BIJIBHOT'O TIOPA/KY, 1100y 1I0BaHa Ha MHOXKUHI MaTpulb. OTPUMAHO MATPHUILO,
anasoriuay 10 dopmymu Jleibuima. CkoHcTpyiioBaHO HOPMYILY arrpoOKCHUMAIIT
mudepenmianis ['aTo TOBLIHHOTO TOPSIKY 3 MATPUIHUMA aprymenTtamu. Ha
ocHOBl MarTpuvHOi iHTeprosaniiinoi dopmynu tumy Epwmita mobymosamo wwm-
CeJIbHUIT MeTOT Jjis po3B’si3yBanud 3agaui Ko qyisa MarpuyaHo-audepeHtria-
JIbHOTO PiBHsHHs. [IPO/IEMOHCTPOBAHO TIPUKJIA] YHCETHHOTO PO3B’sI3yBaHHS
3amaqi Komi g MmarpuaHo-qudepeHniaIbHOro PiBHSIHHS IIEPIIOT0 HOPSIKY.
TTo6ymoBano i 10CIIiIKEHO MapaMeTPpUYHEe CIMEHCTBO TPUTOHOMETPHIHIX MaT-
pudHHUX iHTeproAmiitHuxX mosinomiB Tuny Epwmita-Bipkroda.

ABSTRACT. For operators defined in function spaces, the algebraic interpo-
lation formula of Hermite type is constructed. The interpolation formula of
similar type, containing the value of the Gateaux differential of an arbitrary
order, is constructed for operators on the set of matrices. Matrix analogues
of the Leibniz formula are obtained. The formula for approximate calcula-
tion of the Gateaux differential of an arbitrary order of the matrix argument
function is constructed. Based on the matrix interpolation formula of the Her-
mite type, the approximate method for solving the Cauchy problem for the
matrix-differential equation is obtained. The illustrative example of approxi-
mate solving the Cauchy problem for a first-order matrix-differential equation
is constructed. A parametric family of trigonometric matrix interpolation
polynomials of Hermite-Birkhoff type is constructed and investigated.

1. INTRODUCTION

The fundamentals of the theory of operator interpolation are given in [1,2].
Here, in particular, the problem of operator interpolation of Hermite-Birkhoff
type is investigated. The complexity of this problem lies in the fact that even
with different interpolation nodes it can either have a non-unique solution, or do
not have a solution at all. Some basics of matrix interpolation are also contained
in [1,2]. The theory of matrix interpolation is quite fully given in [3]. The
papers [4-6] are devoted to the construction and research of Hermite-Birkhoff
generalized matrix interpolation formulas for concrete Chebyshev systems.

Key words. Generalized interpolation of Hermite-Birkhoff type, Gateaux differential, Leib-
niz formula, matrix argument function, Cauchy problem for the matrix-differential equation.
2010 Mathematics Subject Classification. 65D05, 39B42, 65F60, 656Q10, 65L05.
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In the given work the interpolation formulas for functions of a scalar ar-
gument, constructed and investigated in [7, 8], are summarized to the case of
operators defined in functional spaces and on the set of matrices. When prov-
ing the theorems on the fulfillment of interpolation conditions for the respective
polynomials, matrix analogues of the Leibniz formula are used, which are also
obtained in this work. The parametric family of trigonometric matrix Hermite-
Birkhoff polynomials is constructed.

2. ALGEBRAIC INTERPOLATION

Let X be a certain given set of functions z = z(s), defined on the segment
[a,b], Y = {y(s,t),t eT C RN} — some function space where T is a given
numerical set of N-dimensional space RV, and let F(x) = F(t;2(s)) be an
operator mapping X into Y. Let’s assume that in the various elements xj =
zr(s) (k = 0,1,...,n) of the set X, such that zx(s) # z,(s) on [a,b], the
values F'(zy) of the operator F(z), v € X are known. We choose in the set
X functions hq(s), ha(s), ..., hpt1(s) such that hi(s)ha(s) - hnt1(s) # 0 on
[a,b]. Let the value D,,y1(F; x,+1) of the operator of the form

Dy 1F(z) = 6" Fla; hihg - - - By,

where 0"t F[x; hihg - - - hyy1] is the Gateaux differential of the order n + 1 of
the operator F'(x) at the point x in the directions hy, ha, ..., hyt1, be known
in the node z,41 = zp+1(s) € X.

We now consider further the operator polynomials P,41 : X — Y of the

form
n+1

Pn+1(x> = Z al/<t7 S).%'V(S), (1)
v=0

where a,(t, s) are some functions of the variables ¢ and s.
We introduce the polynomials [, ;(z) = (x — xo)(x — 1) -+ (x — Tp—1) ¥
X(x = Ty1) (@ — x), wp(z) = (2 — x0) (2 — 1) -+ (T — Tp).

Theorem 1. The interpolation polynomial

5 wn(2) Dyg1 F(@n41)
Ly, =Ln ’
+1(z) (z) + (n+ 1) hihy - hpta

where
"~ Ly () F(x
) =3 ), @)

satisfies the interpolation conditions

Ln+1(ack) = F(Zk) (k‘ = 0, 1, . ,n);

Dyiq (Ln+1;l’n+1) = Dp1(Fmp41)- (3)

The formula (2) is exact for the operator polynomials of the type (1) of the
degree not higher than n + 1.
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Proof. Since I k(x;) = Okilnk(vr), where 6, is the Kronecker symbol, and
wn(zg) =0, k,i=0,1,...,n, then the fulfillment of the first group of interpo-
lation conditions in (3) is obvious.

Since 6" P, [z; hihs - - - hpy1] = 0, where P, () is an arbitrary operator alge-
braic polynomial of a degree not higher than n, then ontir, [x;hihg - hpy1] =
= 0. It is also obvious that 0" lw,[x;hihg -+ hypi1] = (n+ 1) hihy - Byt
Taking into account the structure of the polynomial (2), we will obtain that
the last condition in (3) also holds.

We now prove the invariance of the formula (2) with respect to the polyno-
mials of the form (1) of the degree not higher than n + 1. If F(z) = P,(z),
where P, (x) is a polynomial of the form (1) of the degree not higher than
n, then as is known in (2, p. 361|, L,(Py; =) = P,(x). And since in this
case Dy 1Py(z) =0, then Ly 1(Py;z) = Py(x). Let further suppose F(z) =
]5n+1(:1:) = = 2"*1(s), then DnH]an(x) = (n+1)!h1hg - hpy1, and

Lypt1(Poy1;7) = Ly(Poy1; ) + wn (7).

By analogy with to the scalar case [7, p. 6], Lny1 <]5n+1; x) = Pi(x).

Thus, the formula (2) is exact for operator polynomials of the form (1) of the
degree not higher than n + 1. O

We now consider the problem of interpolating operators on the set of ma-
trices. Let X be the set of functional or stationary square matrices A = A(t),
t € T C CR. Let’s introduce differential operator of type

_ I'F(2) D=2 .cc aex (4)

D"F(A
(4) dz" | ._4’ dz

where F'(z) is the entire function.
The value of the operator (4) for the matrix function of the type B F(A)Ba,
where B and Bs are some fixed matrices from X, is calculated by the formula
D™ (B1F(A)By) = B1D"F(A)Bs. The operator D, which is included in (4), for
the function of the type F'(cA+ B), where ¢ € C, and B is a certain fixed matrix
of X, defined by the equality DF(cA+B) = cF'(2)|,_.4, p, and for the product
U(A)V(A) by the formula D (U(A)V(A)) = DU(A)V(A)+U(A)DV (A). In the
last expression, it is important in what order the multipliers in matrix products
are taken. For example, D (V(A)U(A)) = DV(A)U(A) +V(A)DU(A), and in
the general case, D (U(A)V(A)) # D(V(A)U(A)). Similarly, the values of
higher-order operators are calculated, as well as operators from the products of
functions with a number of multipliers more than two.
In mathematical analysis, the Leibniz formula for the derivative of n-th order
(n € N) of the product of two scalar functions is known [9]
(u(z) - v(z)™ = ZCﬁu("_k) (z)o®)(2), where C* =
k=0

n!

kl(n — k)’ (5)

which holds if the functions u(z) and v(z) are n times differentiable at the

point z € C. We generalize this formula to the case of functions of the matrix
argument and operator of the type (4).
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Theorem 2. If the functions U(z) and V(2), z € C, are differentiable n times,
then the formula

D" (U(A)V(A)) = ancsDkU(A)D"—kV(A), Ac X, (6)

1s valid.

Proof. We apply the method of mathematical induction. When n = 1 we will
have
D' (U(A)V(A)) = DU(A)V(A) + U(A)DV (A) =
= CYD'U(A)VV(A) + C{U(A)D'V (A).
Let’s assume that the formula (6) is exact for n = k. We prove that it also
holds for n = k + 1.

DFFL(U(A)V(A) =D Zn: CFDFU(A) D™ FV (A)

- i Cl [DM1U(A) D"V (A4) + DRU(A) D"V ()] =
k=0

= QDU (A)D™ IV (A) + Y (cﬁ—l + cﬁ) DFU(A)D"FH1V (A)+

+Cm D" U (A) DOV (A).
Since CE 1+ Ck=CF, . CO=0CY,, =1, Cn=Cl =1, then

n+1
Dk+1 ( Z +11)I€ DnJrlfkv(A).

O

We now introduce the differential operator of the form

Dy1F(A) = D1 F(A; Hpgi Hy - Hy) = 6" F[A; Hyy Hy - Hi], (7)
where 6"t F[A; H, 1 H, --- Hy] is Gateaux differential of order n + 1 at the
ppint A € X in the directions Hi, Ha,...,Hpy1 from X. We assume that
DyF(A) = F(A).
Theorem 3. If the functions U(A) and V(A) are Gateaur differentiable n
times at the point A € X, then the formula

n
:Z Z DkU A H sz 1 Hll)Dn_kV(A H]n kH]n k— lHjl)
k=0 i1,.. ,zk
Jlseeosdn—k

holds true.

Here, for each value of k (0 < k < n) the summation is over for all disjoint
sets (il,ig, ce ,ik) and (jl,jg, - ,jn,k) such that 1 < iy < ig < ... <1 < n;
1< <ga<... <Jni <n.
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Proof. We use, as in the proof of theorem 2, the method of mathematical in-
duction. If n =1 by the definition of the Gateaux differential we will have

) (U(A+)\H1)V(A+ AH])

Dy (U(AV(A); Hy) = 8 [U(A)V(A); Hy] = lim .

A—0
U(A)V(A)> _ <U(A+)\H1)V(A+)\H1) —U(A)V(A+ \H,)
—————= | = lim +
A A—0 A
UA)V(A+ \H,) —U(A)V(A)
A
= D1U(A; H))V(A) + U(A)D1V(A; Hy). (9)
Hereinafter the expression of the form § [U(A)V (A); Hi] should be understood
as the Gateaux differential dW[A; H;]|, respectively, of the function W(A) =
=U(A)V(A) at the point A in the direction Hj.
Let’s suppose that formula (8) is true when n = m. We show that it holds
for n =m+ 1. From (7) — (9) we have

+

) _ SUA; RV(A) + U(A)SV[A; Hy] —

Dot (U(A)V(A); Hoy -+ Hy) = 8 | Dy (U(A)V(A); Hy -+ HL) s Hyn | =

= Z (DIC—HU (A7 Hn-i-lHik T Hi1) Dn—kv (A7 Hjn—k e Hjl) =+

k=0 i1,...,0%
j17~--7jn—k
+DU (A; Hy, -+ Hy,) DV (A Hy Hj, -+ Hj1)) =
n+1 B N
= Z Z DU (A, sz T Hzl) Dn+1ka(A; Hjn+1—k e Hjl)‘
k=0 il,.‘..,ik

j17~~~7‘7n+17k:
Here the summation is carried out in the same way as in the formulation
of the theorem, while 1 < i1 < ig < ... < ip <n—+ 11 <1 <jo<...<
<jn+1—k §n+1 O

In the special case, for example, for n = 3 the formula (8) has the form
D3 (U(A)V (A); HyHyHy) = D3U (A; HsHoHy) V(A) + DoU (A; HyHy) x
x D1V (A; Hy) 4+ DoU (A; HsHy) D1V (A; Hy) + DoU (A; HyHyp) X
><D1V (A, Hg) + DlU (A, Hl) DQV (A, H3H2) + DlU (A, Hg) X
x DoV (A; H3Hy) + DU (A; Hy) DoV (A; HoHy) + U(A)D3V (A; H3sHayHy) .

We suppose that in the elements Ag(t) of the set X such that Ag(t) —
A, (t) are invertible matrices, t € T, k,v = 0,1,...,n, k # v, the values
of the operator F(A) are known, as well as at the node A,11(¢) the value
D F(Ani1) = D F(Apt1; HyHyy—1 - - - Hy) of the operator (7) from F(A),

where 1 <m <n, H, € X (k=1,2,...,m) is known. Let’s introduce the nota-
tions w(A) = (A—Ag)(A—A1)--- (A—A,), lx(A) = (A—Ag) -+ (A—A_1)(A—

—Agy1) - (A=A, By = Dipli(Ant1), Ax = BrAny1+B. 'Y Dino1li(Ana;
=1
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Hy, - -Hi1H;i - -'Hl)BklfIi (k=0,1,...,n). We will assume that the ma-
trices By, lk(Ag), BrAr — A (k=0,1,...,n) and D,,w(A,+1) are invertible.
Theorem 4. The matriz polynomial of the degree not higher than n + 1

. _ 1-1
Lyy1(F; A) Zlk )(BrA — Ay) [lk(Ak)(BkAk - Ak:)] F(Ap)+

+0(A) [Dneo(Ans1)|  DnF(Ani) (10)
satisfies the interpolation conditions
Lny1(Ag) = F(Ag) (k=0,1,...,n); Dplnii(Ani1) = DpF(Ani). (11)

Proof. Since l;(A;) = dkilk(Ax) (k,i = 0,1,...,n), where dx; is the Kronecker
symbol, and w(Ag) = 0 for the same values of k, then the first group of the
conditions in (11) is satisfied. By the formula (8)

Din (lk(A)(BkA A Hy - Hl) — Donlio(A; Hon - H) (BRA — Ay)+

+ Z Din—1ly(A; Hy -+ Hiy1Hi—q - - - Hy) Dy (BRA — Ay; Hy).

i1
Due to the fact that Dl(BkA — Ay H;) = ByH;, then for A = A, 11
Dp, (lk(A)(BkA Ap) H Hl)‘ = Bp(BrAns1 — Ap)+
A:An+1
‘I'ZDm k(A - Hiy1Hi_y--- Hy)BiH; = 0.

Taking into account the structure of the formula (10), we will obtain that
the last condition in equation (11) also holds. O

Using the interpolation polynomial (10), we can construct a formula for
approximate calculation of the Gateaux differential of the m-th (1 < m < n)
order from the function of the matrix argument F'(A) by its values at the nodes
Ag, A1, ..., An. Indeed, the relation

= Z lk(A)(BkA — Ak) [lk(Ak)(BkAk — Ak)] - F(Ak)+

£ 4) [ Do Anin)] DnF(Ani) + Ba(F3 4),

where R, (F;A) is the remainder term of the formula (10), holds true. Then,
expressing from the last equality D,, F(Ap+1), we will have

Dy F(Apy1) = Dypw(Apy1)w™H(A) (F(A) — ) le(A)(BrA — Ap)x

-1

X [lk(Ak:)(Bk:Ak - Ak)} F(Ag) — Ry (F; A)> : (12)
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Discarding in (12) the remainder term R, (F; A) of the formula (10), we will
obtain the required approximate formula for calculating the Gateaux differential

S F[A; Hy Hypoy -+ - Hy] 2 Dy (Apyr )w ™' (A) %

X (F(A) - i I(A)(BrA — Ay) [lk(Ak)(BkAk - Ak)} B F(Ak)> - (13)
k=0

Here, the matrix A must be such that the matrices entering into the formula
are invertible.

3. THE SOLVING MATRIX-DIFFERENTIAL EQUATIONS
Let X be the set of square stationary matrices of fixed size. We consider the
matrix equation containing the first-order Gateaux differential of the matrix
function

SU[A; H] = F(U, A), U(Ay) = Uy, A, H € X, (14)

where U(A) is a function of the matrix argument, F' is some generally non-
linear function of two arguments, dU[A; H] is the Gateaux differential at the
point A in the direction H satisfying the specified in (14) initial condition.

For the approximate solving the Cauchy problem (14), we use the formula
(13) for approximating the Gateaux differential of the matrix argument func-
tion. In our case it takes the form

SU[A; H] = dw[A; Hlw (A1) x (15)

n . Loq-1
X (U(An—i-l) — Zlk(An+1)(BkAn+1 — Ayg) [lk(Ak)(BkAk - Ak)} U(Ak)> ;
k=0
where By = By(A) = 0lx[A; H]|, Ay, = Ap(A) = Br(A)A + B (A)lk(A)x
X Bi(A)H. Here Ag, A1, ..., A, are the matrices from X such that the inverse
matrices in (15) exist.
Substituting (15) into (14), we obtain

dw[A; Hlw™ (Ant1) <Yn+1 = b(Aps1)(BrAni1 — Ag)x

k=0
|
X [lk(Ak)(BkAk - Ak)} Yk) = F (Y, A), Yo = U, (16)
where Y0, Y1,...,Yy41 is approximate solution of the problem (14) in the ma-
trix nodes Ag, A1, ..., Apt1. If now we substitute the matrix nodes Ay (k =

1,2,...,n+ 1) instead of A in (16), then we obtain the system (in the gen-
eral case, non-linear) matrix equations. Solving this system by some direct or
iterative method, we obtain the required approximate solution of the problem
(14).

Example. Let X be the set of square matrices of size 2. We consider the
Cauchy problem for the function of the matrix variable U(A), A € X

SU[A; H] = 3U(A) + 24, U(Ag) = Us, (17)
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where Ay = (0.312 0.467>’ Uy — <0.316 0.338>’ [’ (0.021 0.43)_

0.457 0.02 0.23 0.002 0.405 0.223

. . (011 0.032 ~(0.004 0.085
Let’s introduce the matrix nodes A1 = (0'223 0155), Ay = < 0.5 0‘305>,
Ao — (0234 0028, (0.051 0.291

370 02 0004) 747 \0.176 0.498)

For the approximate solving of the problem (14) we use the formula (16) for
n = 3. We construct a system of matrix equations. In this case, it is linear.
We have

3
0.316 0.338 _

x (Bu4)As — Ay(4)) [140) (BiA) 4k — Ar(a))] Yk> -

—3Y, +24;, i =1,2,3,4. (18)
Let’s present numerically the system of the matrix equations (18) to within
3 significant digits to determine the unknowns Yy, Y1,Ys, Y3, Y}

0.992  0.186 292 302 0.142 4.05
Yo=Uo, = <0.180 0.0380) Yo - <47.5 51.9> it (0.268 6.00> Y2t

2.49 —15.5 333 4.20 0.22  0.064
* (2.00 —12.3> Yat <0.815 0.606) Ya= <O.446 0.31 ) ’

248 141 1 2 246 2
( 8 )YO_(368 630>Yl_< 6 97>Y2+

—2.12 —12.1 ~1190 —2289 —235 285
—50.8  6.08 ~8.96 —14.4 0.008 0.17
* ( 52.1 —6.20) Yt ( 756 125 ) Ya= < 1.0 0.61) (19

820 —2.04 211 135 13.7 21.9
(1.83 —0.441) Yo~ <49.2 32.5) hit <2.06 3.15> Y2+
~10.2 347 712 120 0.468 0.056
+< 120 853 ) Y3 - (1.92 2.75) Ya= < 0.4 0.008> ’

14 662 2 4 2. 2
(0 9  0.66 >YO+(30 30)Y1+< 60 36)Y2+

~0.286 —0.975 ~363 —539 ~1.86 —2.36
~0.991  0.424 —14.4 —15.6 0.102 0.582
* ( 0.727 —0.138) Yat < 159 212 ) Ya= <0.352 0.996> '

The system of the matrix equations (19) can be written element-by-element,
having obtained a system of 20 linear algebraic equations with respect to 20
unknowns (elements of matrices Yy, Y1, Y2, Y3, Ys). Immediately excluding Yp
from the remaining matrix equations in (19), we will obtain the system of
16 linear algebraic equations that can be solved, for example, by the Gauss
method. According to this method, the solution of the system (19) has the
form

0.00221 0.00618 —0.0393 0.00504
Yo="Uo, 11= (—0.00177 —().00416) V2= < 0.0264 —0.0223> ’
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Y, — < 0.133 0.132 ) Y, — (-0.171 —0.546>'

—0.0130 —0.0395 0.148  0.455

The solution of the problem (17) obtained in the matrix nodes can be re-
stored using the matrix interpolation formula [2, p. 459] of the form L,o(A) =

z e(A) M (AR)F(Ag), where, as before, Ij(A) = (A — Ag) -+ (A — Ap_1)x

(A Agy1)---(A—A,) (k=0,1,...,n), satisfying the interpolation condi-
tions Lpo(Ag) = F(Ag) for K = 0,1,...,n. In our case, n = 4, F(A;) = Y}
(k=0,1,2,3,4) and U(A) = Y(A) = Lyo(A).

We introduce the matrices of the form A; = (4;_1+ A4;)/2 (i = 1,2,3,4) and
define the norms of the residual matrices between the left and right sides of
the matrix-differential equation of the problem (14). We calculate the Gateaux
differential 6Y[A; H] = 6Ly 0[A; H] by the known [10] formula 6Y [A;; H| =

= lim (A" [Y(4; + AH) - Y (4)] }.

We denote by R; = ||6Y [A;; H| — 3Y (4;) — 24,2, i = 1,2,3,4, where |||
is the spectral norm of the corresponding matrix [11]. In our case, these norms
are equal to R; = 0.699, Rs = 0.528, R3 = 0.959, R4 = 0.250. The numerical
experiment shows that the discrepancy between the left and right sides of the
equation (14) is small, however, the accuracy of the approximation is not high.
To obtain a higher accuracy of the solution it is necessary to involve more nodes
or to use other methods of approximating the matrix-differential operator.

Analogous methods for solving matrix-differential equations can be obtained
using the formulas of trigonometric, exponential, and other types of matrix
generalized Hermite-Birkhoff interpolation.

4. TRIGONOMETRIC INTERPOLATION
In [7] for 2m-periodic scalar functions the parametric family of trigonometric
interpolation polynomials of degree not higher than n 4 1 of the form

Q%P (2) Doy, (X
T2 (1) = Hy(a) + 222 2a+61(f 1), (20)
Don1(0,11525)

where anl( ) = (a51n§+ﬂcos—> Hsm a?+ 32 £0, Hy(z) is a

trigonometric interpolation polynomlal of degree not hlgher than n of Lagrange
type, and the differential operator Daoy,11f(x) is defined by the formula

d
dz’
is constructed. The polynomial (20) satisfies the interpolation conditions

T (@) = f(23) (1 =0,1,...,2n); Dop1(T55;2)) = Dansr (f;25).

We generalize the formula (20) in the case of functions of the matrix ar-
gument. Let X be the set of square matrices, F(z) be an entire 2m-periodic
function, z € C. In different matrix nodes A such that the matrices Ay — A,

Dopy1f(z) = (D* +n?) - (D* +1*)Df(z), D =
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(k,v = 0,1,...,2n) are invertible, the values F(Ag) of the function F(A),
A € X, are known. The value Doy, 11(F; Aj) of the matrix-differential operator
d

Don 1 F(A) = (D* +n?) -+ (D* + 12)DF(Z)‘Z:A7 D = 12 (21)

is also known in one of the nodes A;.
Let’s consider the differential operator of even order
Do F(A) = (D*+ (n—1)%)--- (D> +1*) D*F(2)| _, - (22)

The values of the operator for functions of the forms B F(A)Ba, F(cA + B)
and U(A)V(A) are calculated similarly, as are the values of the operator (4)
for functions of this type. We assume that DoF'(A) = F(A).

Let’s generalize the Leibniz formula (5) to the case of functions of the matrix
argument, and when the differential operators (21) and (22) are taken instead
of the derivatives. Is valid

Theorem 5. If the functions U(z) and V(z), z € C, are differentiable m times,
then the formula

Dy (U(A)V(A)) = Daps1 (U(A)V(A)) =D C Dy kU(A) DV (A),  (23)
k=0

Dy (U(A)V(A)) = Dapya (U(A)V(A)) = > Ch Dy kU (A) DV (A)—

k=0
m(m — 1) e
_? Z CﬁL—QDm—k‘—QU(A>DkV(A>7 A S Xa = 07 ]-a ey
k=1,3,...
1s valid.

The proof of the theorem 5 repeats the proof of the analogous theorem for
the scalar case [8, p. 18-21|. In this case, the order of the multipliers in the
matrix products must be strictly preserved: the values of the operators (21),
(22) from the function U(A) should be located to the left of the values of these
operators from the function V(A).

Lemma 1. For trigonometric polynomials of the form

P,(A) A, A B -'-Smﬂ,
2 2 2
where By, Ba, ..., By are some matrices from X, the following identities are
valid
D;P,(A)=0,j=2n+1,2n+2,... (24)

Proof. Let’s apply the method of mathematical induction. When n =1
A— B A— By

Pi(A) =sin 5 sin 5
and by the formula (23) for m = 3 we have
A-B A-B A-B A-B
D3Pi(A) = Dsin — L sin 5 2 4+ 3Dysin 5 L. Dy sin 5 24+
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3D sin AP pyan AP L AP p g AP
Since
DlsinA_Bk :DsinA;Bk = %COSA;Bk,
Dy sin 4= B :D2sinA_ZBk :—isinA_QBk,
Dgsinﬁ = (D*+ D) sinA_QBk = gcosA;Bk (k=1,2),

then D3P (A) = 0.

For the operator (21), (22) the properties Doy y2F(A) = DDapi1F(A),
Dopi3F(A) = (D? + (n + 1)) Dy F(A), n € N, where F(A) is some matrix
function for which the values of the operators (21) and (22) at the point A € X
exist, are hold. Then it is obvious that D;Pi(A) =0 when j =4,5, ...

Let’s suppose that the relations (24) hold when n = k. We will show that
they are true when n = k + 1. By the formula (23) for m = 2k + 3 we have

2%+3
Dogi3Pp11(A) = Dogy3 (Pk(A)Pl(A)) =) Ciy3Darss—iPu(A) - DiPi(A),
i=0

where

A—-B -

241 o A Bak+2

2 2
For i < 2, by assumption, the identities Dogy3-iPr(A) = 0 hold, and when
i > 2 the identities D; P1(A) = 0 are valid. Therefore Dogy3Pp11(A) =0. O

Pi(A) = sin

Let o and 8 be some fixed matrices from X that are not simultaneously zero.

Theorem 6. The trigonometric polynomial
Tn+1(A) = Tn—i—l(A; «, ﬁ) =

= Hu(A) + Qi1 (A) [D2nt1(Qni1; Ani1)] ™ Doni1(F; Angr),  (25)

where
2n
Hy(A) =) W (AU, (Ap)F(Ap), (26)
k=0
Uy (A) = sn A=A g AT A g AT A A A
2 2 2
2n
_ . A A . A— A
Qni1(A) = Q1(450,8) = <a sin = + B cos 2) kl:[()sm 5
satisfies the interpolation conditions
Tn+1(Ak) = F(Ak?) (k = Oa ]-a .. ,2’”)7
Daopi1(Thg1; Azng1) = Danga (F5 Aangr). (27)



A.P.KHUDYAKOV, YE. V.PANTELEYEVA, A. A. TROFIMUK

Proof. Since Vy(A;) = 0k Vi (Ag), where 0y; is the Kronecker symbol (k,i =
=0,1,...,2n), then the polynomial (26) coincides with the operator F'(A) at
the interpolation nodes Ag, Ay, ..., Aa,. It’s obvious that €,,11(A;) = 0 when
k = 0,2n. Therefore, the polynomial (25) coincides with F(A) at the above-
mentioned interpolation nodes.

We show that the last condition in (27) also holds. By the lemma
Dopi1Vi(A) =0for k=0,1,...,2n,s0 Dopr1Hp(A) = 0. Taking into account
the structure of the formula (25), we obtain that the condition stated above for
the polynomial T),+1(A) is satisfied. O

5. CONCLUSION

In this work we obtained the following new results: interpolation formulas
for functions of a scalar argument are generalized to the case of operators
defined in functional spaces and on the set of matrices. The algebraic operator
and matrix interpolation Hermite—Birkhoff polynomials are constructed, as well
as the parametric family of trigonometric matrix interpolation polynomials of
Hermite type. Theorems on the fulfillment of the interpolation conditions are
proved. For the operator interpolation formula, a class of polynomials for which
it is exact is found. Matrix analogues of the Leibniz formula for linear matrix-
differential operators of a special form are constructed. Based on the matrix
algebraic interpolation polynomial, the formula for the approximation of the
Gateaux differential of an arbitrary order of the matrix argument function is
obtained. This formula is used in the construction of the approximate method
for solving the Cauchy problem with a matrix-differential equation of the first
order. In the computer algebra system, the illustrative example of a numerical
solving the Cauchy problem of the indicated type is realized.
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CONVERGENCE OF A TWO-STEP METHOD FOR
THE NONLINEAR LEAST SQUARES PROBLEM
WITH DECOMPOSITION OF OPERATOR

S. M. SHAKHNO, R.P.TAkYMCHUK, H. P. YARMOLA

PE3IOME. Y po6o0Ti 3arrpomnoHOBaHO JBOKPOKOBUI METO st PO3B’sI3yBaHHS
HeJIHITHOT 33/1a9]l HAIMEHIINX KBA/IPATIB 3 JIEKOMIIO3HUINEIO OIIEPATOPA Ta T0C-
JIAKEHO Horo 301KHICTD 33 KJIACHIHUX yMOB JIinmuiis 718 HOXiJHIX [Iepuroro
i gpyroro mopsaKiB ardepeHIiioBHOT YaCTHHY T MOIIIeHUX PI3HUI IEePIIOro
nopsiaKy HenudepeHIiiioBHOI yacTuHu AexoMno3uiii. BeraHoBieHo mopsimok
i paziyc 3012KHOCTI MeTOZy, & TAKOXK 00JIACTH €IMHOCTI PO3B’A3KY HEJIIHINHOI
3a7ad4i Ipo HaliMenmi kBagpartu. [IpoBeneHo dncesbHI eKCIIepUMEHTH Ha PAIi
TECTOBUX 3aJadax.

ABSTRACT. In this article, we propose a two-step method for the nonlinear
least squares problem with the decomposition of the operator. We investigate
the convergence of this method under the classical Lipschitz condition for the
first- and second-order derivatives of the differentiable part and for the first-
order divided differences of the non-differentiable part of the decomposition.
The convergence order as well as the convergence radius of the method are
studied and the uniqueness ball of the solution of the nonlinear least squares
problem is examined. Finally, we carry out numerical experiments on a set of
test problems.

1. INTRODUCTION
Let us consider the nonlinear least squares problem:

min %F(x)TF(x), (1)

where F' is a Fréchet differentiable operator defined on IR"™ with its values on
IR™, m > n. The best known method for finding an approximate solution of
the problem (1) is the Gauss-Newton method, which is defined as

Tpi1 = xp — [F' () F (2)]  F (o) T F (), k=0,1,2, ... (2)

The convergence analysis of the method (2) under various conditions was con-
ducted in [6-8]. In paper [18], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

Key words. Nonlinear least squares problem, two-step method, Gauss-Newton method,
decomposition of operator, Lipschitz conditions, radius of convergence, uniqueness ball.
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In particular, Shakhno [18]| proposed the Secant-type method, which was
later also studied by Ren and Argyros in [12], as follows

Th1 = T — [F(@g, 2p-1) T F(zg, 2p-1)] " Fag, 1) F(xy),

3
k=0,1,2,... (3)

This study [18] also determines the convergence order of the method (3) in case
L +2‘/5 —1,618....

In [2,4,10,11], there was considered a two-step modification of the Gauss-
Newton method for solving the problem (1)

{ Tr1 = 2 — [F(ze) T F' ()] F (20) T F (), (4)
Ykt = Tho1 — [F'(z1) T F'(2)] 7 F () T F(2g41), B =0,1,2, ..,

of zero residual, which equals to

where 2z = (2 +yx)/2; xo and yo are given. In case when m = n, this method is
equivalent to the methods proposed by Bartish [3] and Werner [23]. On each it-
eration, the method (4) computes the inversion of the matrix [F’(z;,)T F'(z;,)] 7!
only once.

In [17], we proposed the difference variant of the method (4) that uses divided
differences instead of derivatives as follows

{ whpr = ok — [F(r, yp) T F 2k, ye) | F (g, yp) T F (),

Yk+1 = Tk+1 — [F(xlﬁyk)TF(xkvyk)]_lF(xkvyk‘)TF(wk+l)7 k= 07 1727 ( )
5

This method is built on top of the Secant-type method [12,18] (3) for solving the

nonlinear least squares problem. This method can also be applied to problems

with non-differentiable operators.

However, for some problems the nonlinear function in (1) is composed of the
differentiable and non-differentiable parts. In this case, the problem (1) can be
written as

min 2 (F(x) + G(@))" (F(x) + C(x)) (©
z€R" 2
where the residual function F' + G is defined on IR™ with its values on IR™
and it is nonlinear by x; F' is a continuously differentiable function; G is a
continuous function, differentiability of which, in general, is not required. To
solve the problem (6), we proposed in [14,19] a method that takes into account
the specific features of both F' and G as

Tr+1 = T — [AfAk}_lAg(F(xk) + G(xk))u k= 07 17 veey (7)

where Ay = F'(z1) + G(xk, vk—1); F'(x) is a Fréchet derivative of F(z);
G(xg,xk—1) is the divided difference of the first-order of the function G(x)
at points g, xx—1; To, T—1 are given starting points. This method has the

convergence order of for solving the problem (6) with zero residual. In

case when m = n, the method (7) reassembles the well-know Newton-Secant
method for nonlinear equations [1,5,15].
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In this article, we propose a two-step iterative method, for solving the prob-
lem (6), which considers the decomposition of the nonlinear operator, as follows

{ Th+1 = Tk — [AZAk]flAg(F(xk) + G(xk»a (8)
Yr1 = Thp1 — [AL AR AL (F(2pg) + Glaps)), k=0,1,..,
where Ay = F’(MTW)
the local convergence of the method (8) for the problem (6) with zero as well
as non-zero residuals. Additionally, we study both the order and the radius of
the convergence of the method (8) as well as the uniqueness ball of the solution
of the problem (6). To note, this method as well as the method (5) have the
same convergence order of 1 4 V2 in case of zero residual.

In case of m = n, the problem (6) reduces to solving a system of n nonlinear
equations with n unknown and the method (8) reduces to the method [16,20,21].

+ G(xk, yr). The main goal of this paper is to analyze

2. PRELIMINARIES
Let us denote B(x,,7) = {x € D CIR" : ||z — x«|| < r} as an open ball with
the radius r (r > 0) at z., D is an open convex subset of IR".
Let R™*™ m > n, denote a set of all m x n matrices. Then, for a full

rank matrix A € IR™*" its Moore-Penrose pseudo-inverse [8] is defined as
Al = (AT A)7LAT.

Lemma 1 ( [13,22]). Let A, E € R™*". Assume that C = A+ E, ||AT||||E| <
1, and rank(A) = rank(C). Then,

1AT|
Ic| < :
1— ATl £]]

If rank(A) = rank(C) = min(m,n), we can obtain

V2| AT B

lCf - Af| < .
- JATZ]

Lemma 2 ( [6]). Let A,E € R™*". Assume that C = A+ E, |EAT|| < 1,
and rank(A) = n, then rank(C) = n.

3. LocAaL CONVERGENCE ANALYSIS OF THE METHOD (8)
In this section, we investigate the convergence of the method (8) and deter-
mine its convergence radius.

Theorem 1. Let F + G : IR™ — IR™, m > n, be continuous operator, where
F is a twice Fréchet differentiable operator and G is a continuous operator on
a subset D C IR™. Assume that the problem (6) has a solution x. € D and an
operator Ay = F'(x4)+G(x+, ) has full rank. Suppose that Fréchet derivatives
F'(x) and F"(x) satisfy the Lipschitz conditions on D

[F () = F'(y)l < Llz -yl (9)
17" (z) = F"(y)ll < Nz =yl (10)
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and the function G has the first order divided difference G(x,y) and
1G(z,y) = G(u,v)[| < M([lx — ul| + [ly = v]]) (11)

forall x,y,u,v € D; L, N, and M are non-negative numbers.
Also, the radius r > 0 is a root of the equation

BNp? + 1208Tp + 48vV2a3*T — 24 = 0, (12)
where
2v/2a3%T < 1. (13)

Then, for all zo,yo € B(z,r) C D the sequences {xy} and {yi}, which are
generated by the method (8), are well defined, remain in B(z.,r) for all k > 0,
and converge to x4 such that

planes) S T ((N/20)p(a0)® + Tolon)oln) +V3abTR). (149)
plukst) < g (N/20plonsn)® + (15)
+T(p(zk+1) + p(x) + p(yr))p(Tht1) + V2a8T7),
repr = max{p(zpi1), p(ye1)} < qre < - < ¢ g, (16)
where
b = DA L TCo ) o)+ 2/200T) _, 1y
7 o

p(x) = lz—zull, e = (2R, Y1) = erx*lHHwa*ll,Q%: max{p(zo), p(y0)},
+
o= |[F.)+ Gz, B=I(ALA) AT, T = ——, BT < 1.

Proof. From (13) it follows that (12) has the unique positive root, which we
annotate as r.

Let choose arbitrary zo,yo € B(zs,r) and denote A = F’(w> +

2
G(zk,yr). For k =0, we have the following estimate

o +
o= Al = [P/ (52) + Gloo, o) = (F'(@) + Gl )| =
= ”F/<$0;y0>—F/(l‘*)+G(330,y0)—G(90*,$*) <
+
< ||F(B5E) - Fl@)|| + 160, 10) - Glaw, )]l <
L
< 5 (lao = @l + llvo = @) + M(lao = @]l + llyo - al) <
L+2M
< Fg (w0 =@l + llyo — ) = Tlao = @] + llyo — )
and

1(AY A) T AT Ao = Al < BT (|0 — ]| + Ilyo — @) = BT'm0 < 1.
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According to Lemma 1

p _ B
1= BT (w0 = 2l + llyo —z«ll) 1= BT70’

I(AG 40) " AT <

and to Lemma 2

V28T (|0 — @l + llyo — ) _ V28°T7o
1= BT (o — wull + llyo —2ll) 1 =BT

For z1,y; that are generated by (8), we have

1(AG A0) ™1 AG —(ATA) T AL <

X1 — T =To— Ty — [AE‘)FAOT1 AT (F(z0) + G(x0))
= [AT 4] A [Ao(wo — 2.) = (F(x0) + Glxo)) + (F(x.) + Glz.))] +
+[ATA) T AT(F(2.) + G(an) - [ATAo) " AT (F(2.) + Gla.)) =

= [Ang}_l Al [F' <x0—;—x*> (0 — z4) — F(x0) + F(x4)+

)
)

e

+ G(z0, 2+) (20 — 2+) — G(20) + G(24) +
+ <A0 —-F (W) - G(%w*)) (z0 — x*)} +

+ [AT AT AT(F(2.) + G(x)) — [AT Ag) ™ AT (F () + Gla.));

no = we=a -z — [ATA] T AT (F(21) + G(a1)
= [AT 4] AT [Ao(z1 — 20) — (F(21) + G(21)) + (F(x) + G(x))] +
+[AT AT AT(F () + Gaa) — [AT 4] AT (F(2.) + G(a)) =
— [ATA)] AT [F (9”1‘2“’"> (21— 22) — F(z1) + F(z.) +
+ G(z1,24) (21 — 24) — G(21) + G(24) +
- (0P (25 e (-0 +

+[ATA] AT (F(2) + G(x,)) — [ATAg) AT (F () + G(x).

According to Lemma 1 from [23] with the value w = 1/2 we can write

Fo) - F) - F (T52) -9 =

[ (S e be-w)-

—F" (9”"2”/ + %(y - w))] (& — y)*dt.

By setting x = z, and y = zg in the equation above, we receive
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) + Ty
' 5 (z+ — o) || =

fo-oe (2324 ) -

N
— (CCO—;‘$ + 5(330 _ x*)>] (:C* . xo)Zdt‘
1 ! 3 1 3
<3 /0 t(1 = )Ny — @ Pdt = 5 Np(o)™

‘F(x*) — F(zo) — F
1

4

<

Using to the Lipschitz conditions (9) and (11), we get the following estimates

= () - () +

< Tllyo — x|,

o~ P24 ) - tane

+G(20,Y0) — G (0, T4)

xl"i'x*

HAO_F,( 2

) ~Glewad| = |7 () - () +

2 2
+G($07y0) - G(I’l,fl)'*) S
T([[wo — x|l + [lyo — z«)) <
T(llzo — |l + [[o1 — @4l + llyo — z]).-

VANVA

Hence, from (12) it follows that

0<q = PQ/29p0) + T1<2p<;;> +plw)) +2v205T) _
i
B((N/24)r? + 3T + 2/2a8T)

1-206Tr

Thus, by Lemmas 1, 2, conditions (9), (10) and (11), we obtain

B(N/24)p(0)® + Tp(wo)p(yo) + V28T 10)

— X < .
|z1 — 2| T 3T <gro<r
Similarly,
B(N/24)p(a1)? + T(p(wo) + pla1) + plyo))p(a1))
Iy — ol < .
1— 06T
V2a3°TT
I AT SYOST

Therefore, z1,y1 € B(x4,r) and both (14) and (15) follow. Also, (16) is satisfied

r1 = max{||z1 — x|, [Jy1 — x|} < gqro.
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Using mathematical induction, assume that g, yx € B(z«,7) and (16) holds
for k > 0. Then, for £+ 1 from (8) we obtain that

B(N/24)pl1)" + Tola)pls) + V2aSTm)

1— 06T B
B((N/24)p(x0)? + Tp(xo) + 2v/2a6T) 1y
o 1-— ﬁTTO

[Zrt1 — o <

<qgrpy <r

and

B(N/24)p(zk41)® + T (p(zx) + p(zrs1) + p(Yr)) p(Trt1)) N

Hyk+1 —1'*H <

1—06T7
V2082 T _ B((N/24)p(x0)” + T (2p(w0) + p(y0))) N
1-p08Tn. — 1—-p38T7
Qﬂaﬁ2TTk
W =qrg <.

According to (17) and both inequalities (14) and (15), we receive

Prg1 = max{||zrr1 — ||, [Ups1 — 2|} < @rr < Prpoy < -0 < ¢l

Thus, Tg41, Yk+1 € B(xy,r) as well as (14), (15) and (16) hold. O

From (12) it follows that the convergence radius of the method (8) is

. 2(1 — 2¢/2a3°T)
50T +/(56T)2 + LAN(1 - 2v/20/8°T)

Remark 3. Note that the condition (11) can be replaced with the weaker one
1G(z,y) = G(u, v)|| < Mif|lz — ull + Mally — o] (18)

for all x,y,u,v € D, My and My are positive numbers. This enlarges applica-
bility of the method (8).

For zero residual (F(z.)+ G(z,) = 0), the Theorem 1 can be formulated as

Theorem 2. Let F+ G : IR" — IR™, m > n, be continuous operator, where
F is a twice Fréchet differentiable operator and G is a continuous operator
on a subset D C IR™. Assume that the problem (6) has a solution z, € D,
and the operator A, = F'(x.) + G(x«, x«) has full rank. Suppose that Fréchet
derivatives F'(x) and F"(x) on D satisfy the classic Lipschitz conditions as in
(9) and (10), respectively; the function G has the first order divided difference
G(x,y) that satisfies the Lipschitz conditions as in (11). Moreover, the radius
r > 0 is a unique positive root of the following equation

BNp? +1208Tp — 24 = 0.
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Then, the combined method (8) converges to x, for all xo, yo € B(xy,r) C D
such that

p(@p+1) < 1_gT7_k((N/24)p(a:k)3 + Tp(zk)p(yr)), (19)

lyes1) < B((N/24)p(xy11)° + T(Pl(ﬂik;;)T: p(zi) + p(yr))p(Thi1)) (20)
rher = max{p(zpi1), p(Yes1)} < qre < -0 < ¢ g,

where p(z) = ||z — x|, 7 = T(@r, ) = |76 — 2:l| + ||ye — 24|, 70 =

max{p(wo), p(yo)}, B =[(ALA)T ALY, BTmo < 1,

<q = LYot 4 TColen) o)

From Theorem 2, the convergence radius is
2 1

< .
58T +/(58T)2 + N 90T

r =

This radius is two times smaller than the convergence radius of the differential
method (4) from [11] (a two-step modification of the Gauss-Newton method)
and equals to the convergence radius of the difference method (5) from [17].

Corollary 1. Convergence order of the iterative method (8) in case of zero
residual is equal to 1+ V2.

BN/24 6T
_—— = - = b =

Ty ol Al wy ol p(xk), b = p(yk),
k =0,1,2,... Since the residual is zero, i.e. o = ||F(z,)+ G(x,)|| = 0, from the
inequalities (19) and (20) we have

Proof. Let us denote v =

aps1 < ar(vai +nby), (21)
b1 < aprr [YaRey +1/3(ak + appr + by)] < (22)
< apt1 [(’yak + 2n/3)ak + T]bk/?)] <
< agrrax [yr 40l = agrrakdr.

From (21) and (22) for large enough k, it follows
ap+1 < ag(yag +nby) < ap(vap + noragag—1) < afar—1(y +np1) = ajar_1¢s.
From this inequality, we obtain an equation

P’ —2p—1=0.

The positive root of the latter, which is p, = 1++/2, is the order of convergence
of the iterative method (8). O

Under the classic Lipschitz condition a theorem for the uniqueness of the
solution can be written as follow
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Theorem 3. Suppose x. satisfies (6) and F(x) has a continuous derivative
F'(x) and G(z) has a divided difference G(x,y) in D. Moreover, operator
F'(x4) + G(4, ) has full rank; F'(z) satisfies the Lipschitz condition as in
(9); the divided difference G(x,y) satisfies the Lipschitz condition as in (11).
Let r > 0 satisfies

B(Lr/2+ M)+ afy(L +2M) <1,
where Bo = ||(F'(z4) + G2, )T (F'(24) + G(24, 24))||. Then, x. is a unique

solution of the problem (6) in B(z«,r).

The proof of this theorem is analogous to the one in [6].
To note, in case when G(z) = 0, we obtain the same results as in Theorem
2 in [11].

4. NUMERICAL EXPERIMENTS
In this section, we give two examples to show the application of our results.
We consider method (8) and its partial cases, namely the two-step Gauss-
Newton method (G = 0) and the two-step Secant method (F' = 0). We use the

P
norm ||z|| =,/ > 22 for z € RP.
1=1

Example 1. Consider function F 4+ G : D = IR — IR? given by [12]:

F)+ 6 = (a0, ).

where A, u € IR are two parameters.

It is known, that x, = 0 is the unique solution of the considered problem.
Therefore, we can define constants « and (3 as follows:

Let G(z) = (0,0)”. Then

F(z) = ( 2)\951+1 ) F(x) = ( 20/\ )

7@ - Pl = | ( gy )| =20

17w - 7l = | ()| = ok =i

and

L 2|\
That is, we can set constants L =2|\|, N =0, M =0, T = 5= ‘2‘ =

Let F(x) = (0,0)T. Then

TrH-y—p
G y)=| y2go—p—NP—y+p | = < A(x+y)+1>
x—y
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and
6600 - Gluol = ( )| = it = o1+ =,

That is, we can set constants L =0, N =0, M = |\, T =M = |}|.
Then equation (12) for both methods has form
5V2|Alr + 4| Ap| — 2 =0.

It has unique positive solution

0
r—u—+y—v

V2 = 2v/2|Ayf
5[A|

if parameters A and p satisfy

1

Let g = 0.2, yo = 0.2001. For this problem Ay = e +1yk) 41 > in

both cases. Therefore, we get the same result by the two-step Gauss-Newton
method and the two-step Secant method.

TABL. 1. The results for A\=1, u =0

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.893e-002 3.946e-002 3.412e-003 7.821e-003

1] 3.229e-005 4.640e-005 3.600e-007 5.190e-007

2 | 5.812e-012 8.220e-012 9.487e-017 1.342e-016

3 0 3.899¢-028 0 0

TaBL. 2. The results for A= 0.5, p =0.2

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 2.624e-002 6.308e-002 1.881e-002 5.121e-002

1] 2.326e-003 4.755e-003 2.230e-003 4.617e-003

2 | 2.284e-004 4.578e-004 2.274e-004 4.564e-004

3 | 2.280e-005 4.560e-005 2.279e-005 4.559e-005

41 2.279e-006 4.558e-006 2.279e-006 4.558e-006

9 | 2.279e-007 4.558e-007 2.279e-007 4.558e-007

6 | 2.279e-008 4.558e-008 2.279e-008 4.558e-008

7| 2.279e-009 4.558e-009 2.279e-009 4.558e-009

8 12.279e-010 4.558e-010 2.279e-010 4.558e-010

If A =1 and pu = 0 we obtain 2v/2a8%T = 0 < 1, ST ~ 0.2829134232 < 1,
q ~ 0.5917483231 < 1, r =~ 0.2828427125 and B(z.,r) C D. If A = 0.5
and p = 0.2 we obtain 2v2a3?T = 0.2 < 1, Ty ~ 0.1414567116 < 1,
g ~ 0.4800775864 < 1, r ~ 0.4525483400 and B(z.,7) C D. From Tables 1,
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2, we can see that sequences {xp} and {yx} converges to the solution z, and
error estimates (14) and (15) are true for all k£ > 0.

Example 2. Consider function F + G : D C IR — IR? given by:

T+ U
Fl)+Gx)=| M3+x—p |,
Az? —1] =\
T+ 0
Fl)y=| M3+z—u |,G(@) = 0 ,
0 Az? —1] =\

where A, u € IR are two parameters.
The unique solution of this problem is xz, = 0. Therefore, we can set con-
stants « and ( as follows:

1
o = Valul, B = =
lul, =75
Let D = {x: |z| < 0.5}. Then
1 0
Flz)=| 3x2*+1 |, F'(z)=| 6\
0 0
and
0
IF"(2) = F'(y)ll = ||| 3= —v?) || =
0

= 3[Allz + yllz —y| < 3|Allz —yl,

0
[1F"(z) = F"(y)ll = ||| 6A(z—y) Hﬁkwy;
0
0
Cla.y) = ’
Y= A2 =1 = A=Ay — 1|+ A
T —y
0 0
0 = 0
_ 2 _ ) =
A1 =22 —1) = A1 —?) Az i)
T—y
and
0
1G(z,y) — G(u,v)|| = 0 <
ANz —u+y—0v)
< Al(Jz = u| + [y — o).
5[l

That is, we can set constants L = 3|A[, N =6|\|, M = |\, T = 5
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Then equation has form
V2IA[r? 4 50V2|A|r + 40| Ap| — 8 = 0.
It has unique positive solution
\/5000|A[2 — 4v/2|A|(40[Au] — 8) — 50V/Z[A
r =
2v/2| )|

if parameters A and p satisfy
1

Let 2o = 0.1, yo = 0.1001. If A = 1 and p = 0 we obtain 2v/2a6%*T =0 < 1,
BTTy ~ 0.3537301673 < 1, ¢ ~ 0.8236105147 < 1, r ~ 0.1128822370 and
B(xy,r) € D. If A = 0.5 and p = 0.2 we obtain 2/2a8%*T = 0.5 < 1,
BTTy ~ 0.1768650836 < 1, ¢ ~ 0.9307554564 < 1, r ~ 0.1128822370 and
B(zy,r) C D.

TaBL. 3. The results for A\=1, p =0

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.002e-003 2.765e-002 1.503e-005 5.509e-004

1] 1.216e-010 2.684e-008 1.063e-016 2.189e-013

3 0 2.285e-026 0 0

TaBL. 4. The results for A = 0.5, p = 0.2

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.980e-003 7.163e-002 1.494e-003 6.120e-002

1| 4.549e-007 8.738e-004 4.526e-007 8.712e-004

2 1 3.090e-014 2.269e-007 3.090e-014 2.269e-007

3 | 1.185e-017 1.545e-014 1.185e-017 1.545e-014

Therefore, all conditions in Theorem 1 are satisfied for the two-step method
(8). Hence, Theorem 1 applies.

5. CONCLUSIONS

We studied the local convergence of the method (8) for the nonlinear least
squares problem with the decomposition of the operator under the classic Lip-
schitz conditions for the first- and second-order derivatives and for the divided
differences of the first order. We determined the convergence order and the
radius of the method (8) as well as proved the uniqueness ball of the solution
of the nonlinear least squares problem (6). We gave examples that confirm the
theoretical results. Furthermore, the method (8) has promising characteristics
for parallelization, which we plan to utilize for constructing and developing new
parallel methods for solving the problem (6).
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METHOD OF TWO-SIDED APPROXIMATIONS FOR FINDING
POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS
FOR SEMILINEAR ELLIPTIC SYSTEMS: THE USE OF THE

GREEN-RVACHEV’S QUASI-FUNCTION

M. V.SIDoRrOV

PE3iOME. Posraamaersca ommopinna 3amaada /Jlipixie mojig cucteMu HaAMiB-
JIHITHUX eJinTUYHUX PiBHAHB. s mobymoBu mBOGIIHUX HAOIMKEHD /10 J0-
JATHOTO PO3B’A3KY i€l CHCTEMU BUKOPUCTOBYETHCH IIEPEXITT 10 eKBIBAJIEHTHOL
CUCTeMHU HeIHIHHNX IHTerpaIbHuX PIBHAHD (3a M0moMoroo kBasidgynkmii ['pi-
ma-PBagoBa) 3 nomasbmmm i1 aHaIi30M MeTOaMu TEOPii HANBYTOPSATKOBAHAX
upocropis. Pobora i edpexkruBHicTb PO3POOJIEHOrO METO/IA HIPOAEMOHCTPOBAHA,
00YHC/TIOBAIBHAM €KCITEPUMEHTOM JIJIsT TECTOBOI CUCTEMHU 3 €KCIIOHEHTT A IhHOIO
HeJIIHITHICTIO.

ABSTRACT. A homogeneous Dirichlet problem for a system of semilinear el-
liptic equations is investigated. To construct two-sided approximations to a
positive solution of this system, the transition to an equivalent system of non-
linear integral equations (with the help of the Green-Rvachev’s quasi-function)
with its subsequent analysis by methods of the theory of semiordered spaces is
used. The work and efficiency of the developed method are demonstrated by
a computational experiment for a test system with exponential nonlinearity.

1. INTRODUCTION
Let us consider the problem of finding a positive solution of a system of n
semilinear elliptic equations with a homogeneous Dirichlet condition:

—Au; = fi(x,ul, ...,un), X € Q, (1)
ui(x) >0, x€Q, (2)
Uilgn =0, i=1,...,n, (3)

or in a vector form
—Au=f(x,u), x€Q,
u>0, xec,
u‘@Q = 07
where (2 is a bounded Jordan-measurable domain from R™ with piecewise
smooth boundary 9 (Q = QUIN), x = (T1,...,; Ty), W= (U, ..., up), —Au =
(=Aug, ..., —Auy), £ = (f1,..., fn), @ = (0,...,0), A is the Laplace operator,
_ 02 92
Let us assume that the functions f;(x,u1, ..., u,) are continuous and positive
forx € Q, ug,.co,uy >0, foralli =1,2,...,n.

Key words. Positive solution; semilinear elliptic systems; heterotone operator; two-sided
approach; Green-Rvachev’s quasi-function.
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The problem (1) — (3) is a mathematical model of many stationary processes,
which are considered in chemical kinetics, biology, combustion theory, etc. [12],
and the condition of positivity (2) naturally arises from the physical meaning
of the functions wuy, ..., u, as the substance concentration, population size,
temperature, etc. Many studies are devoted to the investigation of problem
(1) - (3) [1,2,6,9,10,12,19, etc.], but the focus in these papers was mainly on
elucidating the conditions of the existence and uniqueness of a positive solu-
tion of the problem or on the conditions of the presence a solution with radial
symmetry for the case when 2 is the unit ball. In the paper [17] for numer-
ical analysis of the problem (1) — (3) a method of two-sided approximations,
which consists in the transition to an equivalent system of Hammerstein inte-
gral equations with its subsequent investigations by methods of the theory of
nonlinear operators in semiordered spaces, in particular, using the theory of
heterotone operators developed by V. [. Opoicev, was proposed. The method
showed effectiveness in solving the test problem, but it has some limitations in
practical application. They are related to the fact that an analytic expression
for the Green’s function must be known. This significantly limits the range of
regions €2, in which a numerical solution can be found, to the cases presented
in the reference literature [15].

The purpose of the paper is to develop iterative methods for solving the
boundary value problem (1) — (3), which have a two-sided nature of conver-
gence to the desired solution and would not be tied to the presence of a known
Green’s function. Two-sided approximate methods for solving nonlinear opera-
tor equations based on the theory of nonlinear operators in semiordered spaces
were developed in [4,5,7,8,13,14]. This paper continues the research begun
in [17,18], and extends them to areas of arbitrary geometry.

2. SOME INFORMATION FROM THE THEORY
OF NONLINEAR OPERATORS IN SPACES WITH CONES

Let us give from the theory of nonlinear operators in semiordered spaces
some concepts and facts, which will be used further [7,13,14].

Let € be a real Banach space, 0 is a zero element of space £. A closed convex
set IC C & is called a cone, if from the fact that u € £, u # 0, follows au € K
with « > 0 and —u ¢ K.

Any cone I C & allows to enter in space £ a semiordering by the rule: v < w,
if w—v € K. The elements v > 0 (i.e. u € K) are called positive. The set
of elements < v, w > of a semiordered space, which consists of those u € £ for
which v < u < w, is called a cone segment.

An important class of cones for the applications of the theory of semiordered
spaces in computational mathematics is normal cones. A cone K is called
normal if there exists a number N(K) > 0, that from 0 < z < y follows
lz]| < N(K)|ly||. In this case, it is said that the norm is semimonotonic.
If N(K) = 1, then the cone is called acute and it is said that the norm is
monotonous.

The operator T : £ — £ is called positive if it leaves invariant the cone K,
ie. T(u) € K for any u € K.
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The operator T : £ — & is called heterotone (or mixed monotone [3,11, etc.]),
if it allows a diagonal representation T'(u) = T'(u,u), where the companion
operator T:ExE = & monotonically increases with respect to the first
argument and decreases with respect to the second one, i.e.

a) if v; < vy, then T'(v1, w) < T'(vg,w) for all w € &;
b) if w; < we, then T'(v,w1) = T (v, wy) for all v € &.

A cone segment < v?,w® > is called strongly invariant for a heterotone

operator T, if
T, w’) >°, T(w’ ") <. (4)
For the equation u = T'(u) with the heterotone operator T, let us form two
iterative processes

D) = T(v(k), w(k)), wkt) = T(w(k),v(k)), k=0,1,2,..., (5)
starting from the point (v°,w") formed by the ends of the strongly invariant
cone segment < 0w >,

From the heterotony of the operator T' for which the operator Tisa compan-
ion one, it follows that the sequence {v(k)} does not increase, and the sequence
{w®} does not decrease with respect to the cone K. If the cone K is normal
and the operator T is completely continuous, then the limits v* and w™* of these
sequences exist. Thus, the chain of inequalities holds:

0 =0 <M < <o << <t <

N

<w® << w® <w® =0,

In this case, two cases are possible: v* < w* and v* = w*. In the second
case, u* := v* = w* is the unique on < v°,w" > fixed point of the operator T,
that is, it is the unique on < v, w® > solution of the equation u = T (u).

The elements v* and w* are a solution of the system

o* D) = T(p) p®)y kD = ) Ry e =0,1,2, ... (6)

The equality v* = w* will hold if the system (6) does not have on < v°, w® >
such solutions (v, w) that v # w.
Then the results of |7] imply the following fact.

Theorem 1. Let the cone segment < v°,w® > be strongly invariant for the

heterotone operator T for which the operator T isa companion one, the cone IC
be normal, and the operator T be completely continuous. Then the successive
approximations, which are formed according to scheme (5), where 00 = WY,
w©® =, converge to the unique on < v°,w® > fired point u* of the operator
T and the following inequalities

0 = p© < oM <. vk <...<ur <.

N

(7)

<. <
w® < <w® <w® =

NN

are satisfied.

98



METHOD OF TWO-SIDED APPROXIMATIONS FOR FINDING POSITIVE ...

The chain of inequalities (7) characterizes the iterative process (5) as a
method of two-sided approximations.

The condition that the system (6) does not have on < v% w® > such solutions
(v,w) that v # w, can be complicated for practical employment. A sufficient
condition of the fulfilment of the equality v* = w* is the existence of such

€ (0;1) that

T(v,w) = Tw, )| < v [lo -] ®)

for all v,w €< v, w® > [3].
If the condition (8) is satisfied, it is obtained the estimate

wa) _ U(k)” -

<7 Hw(kfl) — v(kfl)H <. < 'yk Hwo — UOH .

Tw*=D k=) _ p(yp=D), w(k—n)H <

Then, if
O %(w(m o) (9)

is taken as the approximate solution of the operator equation v = T'(u) on the
k-th iteration, then the following error estimate holds:

|

Thus, the following theorem holds.

k
u*—u(k)H < %HwO—UOH. (10)

Theorem 2. Let the cone segment < v°, w® > be strongly invariant for the het-
erotone operator T for which the operator T isa companion one, the cone IC be
normal, and the operator T be completely continuous. Then, if condition (8) is
satisfied, the successive approzimations that are formed according to the scheme
(5), where v© =0, WO = w0, two-sided in the sense of (7) converge to the
unique on < v, w’ > fized point u* of the operator T and for the approzimate
solution of the form (9) on the k-th iteration the estimate (10) holds.

From estimation (10) it follows that for a faster convergence of iterations (5)
it is necessary to choose a strongly invariant cone segment < v%,w® > of as
short as possible length Hwo — UOH.

If the accuracy € > 0 with which it is necessary to find an approximate
solution of the equation u = T'(u), is given, then, using the estimate (10),
from the inequality Hu* —u®) H < g, it is obtained that to achieve the specified

accuracy it is necessary to do
el
ko(e) = | ——2—| +1 (11)

Ini
v

iterations, where the square brackets denote the integer part of the number.
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3. CONSTRUCTION OF TWO-SIDED APPROXIMATIONS
To analyze the problem (1) — (3) and construct two-sided approximations to
its positive solution, let us use the methods of the theory of nonlinear operators
in semiordered spaces [7,13,14] and the Green-Rvachev’s quasi-function [16,18].
Let the boundary 99 of the domain consists of a finite number of pieces of
lines 05(x) = 0,7 =1,2,...,r, where each 0;(x) is an elementary function. Then
with the help of the R-functions method [15] one can construct in the form of
a single analytic expression an elementary function w(x), which describes the
geometry of the region 2, that is:
a) w(x) >0in
b) w(x) =0 on 09;
¢) |Vw(x)| # 0 on 09.
Also, the function w(x) can have certain properties of differentiation due to
the use of various sufficiently complete systems of R-functions [16].

Definition 7. Let g,,(r) be a fundamental solution of the equation Au = 0 in
R™. The Green-Rvachev’s quasi-function of the first boundary value problem
for the Laplace operator in R™ is the function

Qm(Xaf) = gm(T) - gm(xag)a (12)

where x = (21, ..., 2m), € = (&1, -, &m),

r=lx—gl=

S (@60 Gnlx.€) = g (VP F W18

i=1

w(x) is the function that describes the geometry of the domain €.

Let us note [16] that for the case when Q is a ball of radius R in R™, and
w(x) = %%(R2 — 2% — ... — 12)), the Green-Rvachev’s quasi-function (12) turns
into the exact Green’s function of the first boundary value problem for the
Laplace operator considered in a ball 2.

The fundamental solutions of the Laplace equation have the form

1 1
g2(r) = %ln o
1 1
93(7’) = E : ;7
1 1

gm(T) m > 3,

TS (m—2)
where |S;| is the area of a single sphere in R™, consequently, the Green-
Rvachev’s quasi-function acquires the form

Q2(x,§) = %ln 1+ W in R, 13)

1 V72 +dwx)w(€) —r o RS
Qslx.8) = AT /12 + dw(x)w(€) ol 1)
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1 (r? 4+ dw(ow(€)® -t
[S1] (m —2) rm=2(r2 + 4w(x)w(£))%_1
From (13) — (15) and Definition 7 the following lemma on the properties of
the Green-Rvachev’s quasi-function follows.

Qm(x,§) =

, m>3. (15)

Lemma 1. The Green-Rvachev’s quasi-function (12) has the following proper-
ties:

a) Q(x,&) =0 on 0%

b) is a symmetric functwn Q(x,&) = Q(&,x);

c)

has the same feature for x = € as the usual Green’s function;

d) is positive in the area Q: Q(x,€) >0, x,£ € Q, x # €.

According to [16, 18], from each of the equations (1) let us proceed to an
integral equation of the form

=1/B%xx£ﬁu@ﬁﬁ+
Q

+/Qm(x,ﬁ)fi(g,ul(g),...,un(ﬁ))dg, 1=1,..,n,
Q

2 2
where Km(X,E) = _%ﬁgm(xvé) e T %gm(xvg)

The system of equations (16) can be written in the form of a vector equation
of Urysohn

mw=/?@@m@w¢
Q
where

P(X7£7 U_(E)) = (Pl(x7£7u1(£)7 7un(€))7 aE Pn(X,ﬁ,lu(E), 7un(€)))7

Pi(x, & u1(§), -y un(§)) = K (x, §)ui(§) + Q(x, &) fi(§, ur(§), ..., un(§))),
i=1,...,n

If the boundary value problem (1) — (3) has a classical solution, then it also
satisfies the system of equations (16). If the classical solution of the problem
does not exist, then the system of equations (16) can be used to introduce the
concept of a generalized solution of the boundary value problem (1) - (3).

The system of equations (16) will be considered in a Banach space C,(Q) =
{u = (ug,..,un) : u; € C(Q),i = 1,...,n} of vector functions continuous in
Q with the norm ||ull,, = max{|uill,..., |us]|}, where ||w;]| = max lui(x)],
XE

i=1,...,n. Let us select in C*(Q) the cone Ky = {u = (u1, ..., u,) € C*(Q) :
ui(x) > 0,x € Q,i =1, ...,n} of vector functions with non-negative coordinates.
Note that the cone IC; in C™(f2) is normal (and even acute).

With the help of the cone K in the space C™(Q2) let us introduce a semiorder-
ing by the rule:

foru,ve C"(Q) u<v,ifv-uek,,

101



M. V.SIDOROV

that is,
u < v, if u;(x) < wv(x) for all x € Q and for all i = 1, ..., n.

Definition 8. By a solution (generalized) of the problem (1) — (3) will be
meant a vector-valued function u* € K, which is a solution of the system of
integral equations (16).

Let us construct a process of two-sided approximations for finding the so-
lution of the integral equations system (16) (and consequently, the solution of
the boundary value problem (1) — (3)).

Let us introduce a nonlinear integral operator T acting in C,,(Q2) by the rule,
which is determined by the right-hand side of the equations system (16)

T(u)(x) = /P(X,E,U(S))dﬁ = (T1(a)(§), ..., Tu(u)(§)), (17)
Q

where

T)(u) (x) = / Pi(x, &1 (), . tn (€))dE =

Q
_ / Ko (. €)us (€) € + / Q5. €) fi(€ w1 (€)oo un(€))dE. (18)
Q Q

The operator T of the form (17) can be represented as the sum of a linear

integral operator T; acting in C,(€2) by the rule
i) = | [ Kib€ur(€)dg, o [ Kolx unle)i |
Q Q
and a nonlinear Hammerstein operator T acting in C,(f2) by the rule

Ty () (x) = / Qo (%, €)1 (6, 01 (€). s tn (€)) ..
Q

/ Qo (%, €) (€, 01 (€), . 1n (€))dE
Q

From the item d) of Lemma 1 it follows that the operator T is a positive
operator, because it leaves the cone K, invariant, but because there is no
assurance in the sign of the function K,,(x, &) for x, £ € Q (x # &), the question
of the positivity of the operator T; is an open one. Therefore, we can not say
that the operator T is positive. However, the operator T of the form (17) can
be represented as a difference of positive operators.

Let us denote

Ky (x,€) = max{0, Kin(x,£)}, Ky, (x,€) = max{0, —Kn(x,§)}.
It is clear that K (x,€) > 0 and K, (x,£) > 0 for x,£€ € Q (x # £).
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Then
Km(x,§) = K,(x,€) — K, (x,€),  |[Kn(x,8)|=K}(x,§) + K, (x,§)
and the operators 7T;, ¢ = ,n, of the form (17) will be written in the form

/ K5 (x, €)ui(€)dE — / - (%, E)ui (€)de+
4 / Qo (5, €) fi(€, 11 (€), oy un(€))dE, i =1, .1, (19)
Q

Suppose that the vector-valued function f (X u) allows a diagonal representa-
tion f(x,u) = f(x,u,u) = (fi(x,u,u), ..., f(x,u,u)), besides, continuous on
the sets of variables x, v, w functions fl(x vV, W) = fz(x ULy ooy Upy W1y +eey Why)
monotonically increase with respect to all v; and monotonically decrease with
respect to all w;, ¢ = 1,...,n, for all x € Q). Then the operator T of the form
(17) will be heterotone with the companion operator

T(v,w)(x) = (T1(v,w)(x), ..., T (v,w)(x)), (20)

where

- / KA ©u(€)d6 — [ K ©uil)de+
Q Q
+/Qm<x,£)ﬁ-<£,v1<e>,-..,vn(s>7w1<£>,--.,wn@))ds, i=1..n  (21)
Q

It is clear that the operators T and T are completely continuous, and the
operator T; of the form (18) will be heterotone with the companion operator
T; of the form (21).

In the cone ICy let us select a strongly invariant cone segment < v0 w9 >

v0 = (09,...,09), w9 = (w?,...,w?), by conditions (4), which for the operator

T that is defined by (20), will have the form: for all x € Q

/ K (x, £)00(€)dE — / K (%, )l (€)dE+ (22)
Q Q

+ /Qm(x7 S)fl(s’ v?(&)? ---7’02(5)’11}(]?(5), "'7w2(£))d£ Z U’LO(X)7 /]’ = 17 "'7n7
Q

/ K (x, €)u? (€)d / K (x, £)00(€)de + (23)
Q

/@m €)Fi(€.1w0(E), . wl(€),00(E), ... 12 (€))dE < wl(x), i=1,..n.
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Let us form an iterative process by the scheme (5):

o1 !/K+x£ mg—/xg@@wﬁ%©%+
Q

+ / Qu(x, &) fi(&, 07 (&), ... oD (€), WV (&), ... (€))dE, (24
Q

W () /K+x5<k ) — /K (x, 6o (€)de+

/k%mxg e, wP (@), .., w® (€), 0P (€), .. v (€)de,  (25)
i=1,..n, k=012 .; (26)

vl@)(x) = v?(x), w(O)(x) =uwd(x), i=1,..,n. (27)

)

Taking into account Theorem 1, such conditions for the existence of a unique
solution of the problem (1) — (3) and the convergence of successive approxima-
tions (24) — (27) to it can be given.

Theorem 3. Let < v',w® > be a strongly invariant cone segment for the
heterotone operator T of the form (17) with the companion operator T of the
form (20) and the system of 2n integral equations

/K+X§m ) — /K (x, €)wi(€)dg+

/Qm fl 57 /Ul(g) (5)711]1(5)7 "'7wn(5>)d£7 Z = 17 "'7n7

/KWsm>s/mm&mm+
/Qm fl 57 wl(&) (E)’UI(E)’ ---7?}n(£>)d£7 Z - 17 "'7n7

does not have on < v¥, w% > solutions such that v # w. Then the iterative
process (24) — (27) converges in the norm of the space Cp,(Q) to the unique on
< v?, w% > continuous positive solution u* of the boundary value problem (1)
~ (3), and a chain of inequalities hold:

VO=vO <vD ¢ <vP < <cur <. <wh® < <w® <w® = wO,

Let us now use Theorem 2. Let for each ¢, ¢ = 1,...,n, there exist such
number L; > 0 that the function f;(x,v1,..., Vs, w1, ..., wy) for all numbers vy,
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.oy Up, Wi, ..., wy such that 0 < v, w; < M, where M{ = ma(gz(w?(x),
i1 =1,...,n, and for all x € {2 satisfies the inequality *
fi(xjvh...7vn,w1,...,wn) — fi(x, W1y eeey Wiyy V1 vy U )| <
< Limax{|vy — wi|, ..., v, — wy]}. (28)

Let us consider for an arbitrary i, i = 1,...,n, the difference Tj(w, v)(x) —
T (v, w)(x):

Ti(w. v)(x) = Ti(v, w)(x) :/[K;g(x,g) + K, (%, §)][wi(§) — vi(§)]dE+

Q

4 / Qon (56, ) (€, 1(€), e, W (€), 11(€), - v (€))—
Q

— i€, 01(8), ooy 0 (&), w1 (€), ...y wn (£))]dE.

Then, taking into account the inequality (28), we get an estimate

H'i‘(w,v) - T(V,W)H = max max Ti(w,v)(x) — Ti(v,w)(x)| <
n 1=1,...,n x&Q)
< max {M; + LM} max max wi(x) —vi(x)] = (M + LM)[[w = v],,
i=1,...n i=1,....n xeQ
where
M = max / Qo (x, €)E, (29)
Xe o
My = max [ K5x,8) + Ko )de, (30)
xXE o
L= max L;. (31)
Therefore,

T(w,v) = Dv,w)| < alw vl

where v = M; + LM.
Thus, the following theorem holds.

Theorem 4. Let < v°,w® > be a strongly invariant cone segment for the

heterotone operator T of the form (17) with the companion operator T of the
form (20) and the condition (28) holds, besides, v = My + LM < 1, where
the constants M, My and L are defined by the equalities (29), (30) and 31)
respectively. Then, the iterative process (24) — (27) two-sided converges in the
norm of the space Cn(Q) to the unique on < vO,w® > continuous positive
solution u* of the boundary value problem (1) — (3).

On the k-th iteration, in accordance with (9), as an approximate solution of
the boundary value problem (1) — (3) the vector function

u® (x) = %(W(k) (x) + v®) (x))
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is accepted.
Then there will be a posteriori estimate of the error of the approximation

ul®(x):
|

If the accuracy € > 0 is given, then the iterative process should be carried
out until the inequality

1
u —u®| < 7, Mnax max (w™ (x) = v (x).

n i=1,....,n xeQ) v

max max (wgk) (x) — vgk) (x)) < 2¢ (32)
1=1,....,n xeQ)

will be satisfied and then with an accuracy ¢ it can be expected that u*(x) ~
u®)(x).

If the conditions of Theorem 4 are satisfied, then an a priori estimate of the
error will be:

from which it is obtained that to achieve the accuracy ¢ it is necessary to do

k
' —u®| <2 max max (w!(x) - o)),
n 2 i=1,..,n xeQ

_max max (w?(x)—v)(x))
n xef

ko(e) = = +1 (33)

iterations, where the square brackets denote the integer part of the number.

4. NUMERICAL EXPERIMENT
The construction of two-sided approximations to the solution of the boundary
value problem (1) - (3) will be demonstrated on the system of two equations
with exponential nonlinearities:

—Au; =e*2, —Aug=¢e ", xe€q, (34)
ui(x) >0, wa(x)>0, xe€, (35)
Ul’aQ = U2|aQ =0, (36)

where Q = {x = (z1,22) : 0 < 21,22 < 1}.

The functions f1(x,u1,u2) = €2, fo(x,u1,us) = e~ ! are positive and con-
tinuous with respect to the set of variables, if u;,u2 > 0 and allow a diagonal
representation with the help of functions

F1(%, 01, v, w1, w9) = €2, fa(x,v1,v9, w1, we) = e (37)

The problem (34) — (36) is replaced by an equivalent system of integral
equations

1m@=/&@@m@@+/@mQW©a, (38)
Q Q

qmmz/m@@w@a+/@@@fw%a (39)
Q Q

106



METHOD OF TWO-SIDED APPROXIMATIONS FOR FINDING POSITIVE ...

where Q2(x, &) is determined by the formula (13),
2 82

Ks(x,8) = 66292(X &) — 65292(X &),

1
RNV WEE
w(x) = [1'1(1 — xl)]/\o[l’z(l — x2>] =
=z1(1—21) + 22(1 — 22) — \/x%(l —11)? + 23(1 — x2)%
With the system (38) — (39) let us associate a heterotone operator

92(x,8) =

Y

T (ui,u2) = (/K2X€U1 d§+/Q2X€ u2(8) g,

/K2(X,£)U2(€)d€+/Q2(Xv§)@ul(g)dg) ’ (40)
0 Q

for which the companion operator has the form
T(v1, 02, w1, wa) = (/K (x,&)v1(€)dE — /K2 x, &)wi(§)d€+

+ / Qalx, €)™ de, / K (x, €)0a(€)dé—
Q Q

/K2(X,S)wg(ﬁ)d£+/Q2(X,£)ew1(€)d€) ’
Q Q

K (x,€) = max{0, Ka(x,€)}, K, (x,&) = max{0, —K»(x,£)}.

For the operator T of the form (40) a strongly invariant cone segment
will be sought in the form < v% w" > where v(x) = (v9(x),v3(x)) =
(c10(x), a20(x)), wO(x) = (), uf(x)) = (Brw(x), faw(x)), 0 < a1 < B,
0<ag < 52.

For the chosen vector-valued functions v¥, w” the system of inequalities (22),
(23) for determining the constants ay, ao, 1, B2 has the form: for all x € Q

where

0

or [ Kf x&(@de - i1 [ K (x()ie+
Q Q

+ / Qa(x, €)e“ O dE > anw(x),
Q
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as / K (x, €)w(€)dE — o Q/ Ky (x, €)w(€)de-+

Q

+ /Qg(x,ﬁ)e_ﬁl“’(g)dﬁ > aow(x),

51 [ K €1 — o [ K (x i)+
Q

Q

4 / Qalx, €)™ dg < fruo(x),

o [ K x €l€)d6 — o [ K (x i)+
Q

Q

4 / Qalx, €)e~ O < Po(x).

These inequalities are satisfied, for example, by the numbers a; = 0,01,
ag = 0,01, 51 = 0,59, B2 = 0,55.

Because for 0 < vy, w1 < ‘[ 1ﬁ1, 0 <wv,ws < f 62 (maxw(x) = \f\/%l)
x€e)

A~

F1(x, 01, v2, w1, wa) — fi(x, w1,wz,v1,v2)‘ = |e¥2 — 2| <

V2-1p, 16,
<e2v2 77 |ug — wy| <e2f max{|v; — wi|,|ve — wal},

‘fz (X, 01, V2, w1, w2) — fo(X,wr, w, v1,v9)| = |e7W — 71| <
< |vg — wa| < max{|vy —wy], [v2 — wa|},

then

V2lg,
L =max<qe2v2 "™ 15 =max{1,08388;1} = 1,08388.
Further we find
M = maX/Q2x§d£—0 04093,

M; = max / (K (x,€) + K, (x,£)]dé = 0,70819,
x€eN A

v=M;+ LM =0,753.
Thus, v < 1 and by Theorem 4, the successive approximations that are
formed by the scheme

ol / K (x, €)M (€)de — / Ky (x, €)wi® (€)de+
Q

k)
+ [ Qulx. €)™ ©ag,
[
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S /K+X5 )@/Kﬂx@@m®%+
+/Q2 X, £)e s 2@ g i
ey (/K+Xg s)&—/ Ky (x. €0 (€)de +
+/Q2x§ew2 ©)de,
Wl /K2 x, &) (€)de — /K;(x,&)vék)(i)d@r
5

+/Qxxs—% g, k=012,
Q

é%wzaw@»zﬁk>—mm>

W (x) = prw(x), W (x) = faw(x),

two-sided converge to the solution of problem (34) - (36).

TABL. 1. The values of the estimate of the approximate solution
error

Iteration number & Egk) eék)

0 0,42-10711]0,40-107"T
0,23-1071]0,22-10°1
0,12-107T[0,11-107"T
0,60-1072 10,56 - 1072
0,29-1072 0,28 1072
0,14-1072]0,13-1072
0,70-10731]0,66-1073
0,34-10720,32-1073
0,17-1073]0,16-1073
0,80-107*]0,76-10"*%

OO0 ~J| | U x| W DN~

Let us choose ¢ = 1074 Then, in accordance with (33), to achieve this
max{81,82}
2¢

., 1 . .
accuracy, it is necessary to make ko(e) = [n = ] + 1 = 28 iterations.
ad

In fact, the accuracy ¢ = 10~* was achieved at the ninth iteration. As one
can see, the theoretical error estimate turned out to be greatly overestimated.

As an approximate solution of problem (34) — (36), the functions ugg) (x) =

(9) (9) (9) (9)
LB A B (x);wl (x), u(29) (x) = 2202 % Gtwz () will be accepted.
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TABL. 2. The values of the approximate solution in points x; =
(0,14;0,5),7=0,1,...,10

x; = (0,14;0,5) ugg) (xi) uég) (xi)

(0;0,5) 0 0
(0,1;0,5) 0,0301 | 0,0274
(0,2;0,5) 0,0520 | 0,0471
(0,3;0,5) 0,0666 | 0,0599
(0,4;0,5) 0,0751 | 0,0672
(0,5;0,5) 0,0778 | 0,0696
(0,6;0,5) 0,0751 | 0,0672
(0,7;0,5) 0,0666 | 0,0599
(0,8;0,5) 0,0520 | 0,0471
(0,9;0,5) 0,0301 | 0,0274

(1;0,5) 0 0

o (,,0,5), ¥P(2,,0,5) o (1,0,5), o (21,0,5)

0.06

0.04

0.02

kvl &

Fic. 1. Graphs of the cross-sections of upper and lower ap-
proximations wgk)(x1,0,5), vgk)(ml,(), 5) (a) and wék)($1,0,5),
v$¥(21,0,5) (b), k =0,2,6,8

Table 1 gives the data how the estimate 51@ = max %(w(k) (x) — UZ-(k) (x)) of

xeN !
(k)

*

the norm of the error ‘ H of the approximate solution ugk) (x),i=1,2,
varies depending on the iteration number &k, £k = 0,1,...,9. Table 2 shows
the values, found with accuracy e = 10~ of the approximate solution ugg) (x),
u(29) (x) at the points located on the straight line zo = 0,5 with the step 0,1,

and also it was found that Hug9>H = 0,078, |[uf” | = 0,0696.

Fig. 1 shows the graphs of the cross-sections of the upper w%k) (x), wék) (x)
and the lower ’U%k) (x), Uék) (x) approximations at zo = 0,5 for k = 0,2,6,8.

Fig. 2, 3 show the surfaces of the approximate solutions u(lg) (x), u(29) (x) and
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FiG. 2. Graphs of the approximate solutions ugg) (x) (a) and

u$ (x) (b)

1.0 ‘ L — 1.0 — e —
0.8 r j 084 r ﬁ i
0.6 i 0.6 I
§ i §

0.4H I 0.4 I
02 : L J | 02 _ L J |
0.0 —— 0.0 H———— e ——

00 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0

&l &l
(4) (B)

(9)

F1G. 3. Contour lines of the approximate solutions u;”’ (x) (a)
and vl (x) (b)

their contour lines (with the step 0,01) respectively. Considering the relation-
RCESY

ship =5, k = 0,1,...,10, © = 1,2, according to the table 1, it was received
o))

2
(k+1) (k+1)
that Elw ~ EQT ~ 0,486, that indicates the geometric rate of convergence
1> 82

1
of the iterative sequence with the corresponding index. Let us note that the
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convergence exponent turned out to be less than the exponent v estimated in
accordance with Theorem 4.

5. CONCLUSIONS

In the paper a method of two-sided approximations of the solution of the
homogeneous Dirichlet problem for a system of semilinear elliptic equations is
proposed on the basis of the Green-Rvachev’s quasi-function method. A com-
putational experiment carried out for a system with exponential nonlinearity
demonstrated the possibilities and effectiveness of the method. The proposed
approach to the numerical solution of semilinear systems can be used in solv-
ing various applied problems, the mathematical model of which is the problem
(1) = (3). The proposed method is more universal than the existing methods,
and it allows to solve the problem in question in areas of arbitrary geometry,
provided that this region can be described by the R-function method.
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