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ON THE NUMERICAL SOLUTION OF A MIXED
BOUNDARY VALUE PROBLEM FOR THE ELLIPTIC

EQUATION WITH VARIABLE COEFFICIENTS
IN DOUBLY CONNECTED PLANAR DOMAINS

A.V.Beshley

Ðåçþìå. Ìè ðîçãëÿäà¹ìî ÷èñåëüíå ðîçâ'ÿçóâàííÿ ìiøàíî¨ çàäà÷i äëÿ
åëiïòè÷íîãî ðiâíÿííÿ äðóãîãî ïîðÿäêó çi çìiííèìè êîåôiöi¹íòàìè ó äâî-
çâ'ÿçíié îáëàñòi. Ðîçâ'ÿçîê çàäà÷i ïîäà¹òüñÿ ó âèãëÿäi ñóìè ïîòåíöiàëiâ
ç íåâiäîìèìè ãóñòèíàìè i ôóíêöi¹þ Ëåâi ó ÿêîñòi ÿäðà. Ïiäñòàâëÿþ÷è
ïîäàííÿ ðîçâ'ÿçêó â îñíîâíå ðiâíÿííÿ òà äâi êðàéîâi óìîâè, ìè îòðèìó¹ìî
ñèñòåìó ãðàíè÷íî-ïðîñòîðîâèõ iíòåãðàëüíèõ ðiâíÿíü. Çàìiíà çìiííèõ ïðè-
âîäèòü äî ïàðàìåòðèçîâàíî¨ ñèñòåìè, ÿêà òðàíñôîðìó¹òüñÿ ó ñèñòåìó
ëiíiéíèõ àëãåáðè÷íèõ ðiâíÿíü ïiñëÿ çàñòîñóâàííÿ êâàäðàòóð òà êîëîêà-
öi¨ àïðîêñèìàöiéíèõ ðiâíÿíü ó âiäïîâiäíèõ âóçëàõ. Íàïðèêiíöi íàâåäåíî
äåÿêi ÷èñåëüíi ðåçóëüòàòè.
Abstract. We consider a numerical solution of a mixed boundary value
problem for the second-order elliptic equation with variable coe�cients in a
doubly connected domain. A solution of the problem is represented as a sum
of potentials with unknown densities and Levi function as a kernel. Substi-
tuting the solution representation in the main equation and two boundary
conditions we obtain a system of boundary-domain integral equations. The
change of variables leads to the parameterised system which is being trans-
formed in a system of linear algebraic equations after quadratures application
and collocation of the approximating equations at appropriate points. Some
numerical results are provided at the end.

1. Introduction
The elliptic di�erential equations with variable coe�cients are widely spread

in many problems of mathematical physics. The coe�cients presented in a
di�erential operator mostly correspond to the speci�c material parameters (for
instance, thermal, electrical or hydraulic conductivity) of a considered physical
process.

There are well-known e�ective methods (the boundary element method, the
boundary integral equation method) for solving problems de�ned in bounded
or in�nite domains. The main advantage of these approaches is decreasing of
the dimension of the problem � the solution in a domain can be represented
using speci�c expression only over the boundary. However, in this case, a fun-
damental solution for a general di�erential operator is required. Unfortunately,
a fundamental solution, in general, is unknown for di�erential equations with

Key words. Elliptic equation with variable coe�cients, mixed boundary value problem,
parametrix, boundary-domain integral equations, quadrature formulas.
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variable coe�cients or its �nding can be quite complicated (in contrast to equa-
tions with constant coe�cients). Therefore, e�cient methods to solve such kind
of problems are welcomed.

One of the approaches that has been proposed for the numerical solution
of so-called the generalized Laplace equation [9] (a second-order linear elliptic
partial di�erential equation with variable coe�cients) is described in [10]. The
main idea is to transform the starting equation with variable coe�cients into a
constant-coe�cient equation for which a fundamental solution is available and
then any of mentioned above e�ective methods can be applied. The �rst step
in the procedure is to avoid the �rst partial derivatives of the unknown func-
tion and next step is to approximate the transformed equation using constant
coe�cients.

It is not mandatory to obtain the constant-coe�cient equation to solve the
problem. As an example, in [1] for solving a two-dimensional mixed problem
(where the Dirichlet condition prescribed on a part of the boundary and the
Neumann condition prescribed on the remaining part of the domain bound-
ary) with variable coe�cients a special function (parametrix) has been used in
the Green formula to reduce the initial boundary value problem to a boundary-
domain integral equation or boundary-domain integro-di�erential-equation with
the following discretisation of the domain and application of the collocation
method. Another similar technique for solving this problem, but with using
the radial integration method [5], has been proposed in [2]. The radial in-
tegration method was employed to convert domain integrals into equivalent
boundary integrals.

In this paper, we consider the numerical solution of a mixed boundary value
problem in a doubly connected domain where the Neumann condition is de�ned
on the outer boundary, meanwhile as the Dirichlet condition prescribed on the
inner boundary.

Let D0 be a simple bounded domain in R2 with boundary Γ0 ∈ C2. Let
D−1 be a domain bounded by curve Γ−1 ∈ C2 and D−1 ⊂ D0. We de�ne
that D = D0 \D−1. We consider the following mixed boundary value problem
in the doubly connected planar domain D for elliptic equation with variable
coe�cients: need to �nd function u ∈ H1(D) that satis�es the di�erential
equation

Lu(x) = div(σ(x) gradu(x)) = 0, x ∈ D, (1)

the Dirichlet condition on Γ−1

u = f1 on Γ−1 (2)

and the Neumann condition on Γ0

σ
∂u

∂ν
= f2 on Γ0. (3)

Here, σ ∈ C∞(D), σ > 0, f1, f2 are known functions and ν is the outward unit
normal to the boundary.

4
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This problem can be interpreted as a stationary heat transfer problem in an
isotropic medium for a two-dimensional bounded body with prescribed tem-
perature and heat �ux on di�erent boundaries. Since the main equation is
homogeneous we assume that a heat source is not available. The function σ(x),
in this case, is a known thermal conductivity.

For the outline of the work, in Section 2, we reduce our di�erential problem
to a system of boundary-domain integral equations, obtain an equivalent sys-
tem in a parameterised form and split singularities from some kernels. A full
discretisation of the system with applied quadratures and approximation for-
mula of the solution in a domain are presented in Section 3. In Section 4, two
numerical examples for di�erent domain con�gurations are considered. Some
conclusions are given in Section 5.

2. Reduction to a system of boundary-domain integral equations
As it was mentioned above, there is no ability to reduce the problem to a

boundary integral equation as a fundamental solution is not available in the
explicit form, in general case, for elliptic equations with variable coe�cients.
But, we can use a parametrix to work only with integrals instead of the di�er-
ential equation and boundary conditions, however, it leads to domain integrals
appearing. A parametrix (or Levi function) P (x, y), x, y ∈ R2 should satisfy
the following expression [8]

LxP (x, y) = δ(x− y) + R(x, y), (4)
where δ is the Dirac function and the remainder function R has a weak singu-
larity for x = y. In the two-dimensional case we can de�ne the parametrix as
the fundamental solution with frozen coe�cients a(x) = a(y) corresponding to
the operator L, i.e., in the form

P (x, y) =
ln |x− y|
2πσ(y)

, x, y ∈ R2, x 6= y

with the remainder function

R(x, y) =
(x− y) · gradσ(x)

2πσ(y)|x− y|2 , x, y ∈ R2 x 6= y.

It is not di�cult to verify that functions P (x, y) and R(x, y) satisfy (4).
Should note that the parametrix function is not unique.

We seek the solution as a sum of potentials, but instead of the fundamental
solution of the di�erential operator we use the Levi function

u(x) =
∫

D

ψ(y)P (x, y) dy +
∫

Γ−1

ψ−1(y)P (x, y) ds(y)+

+
∫

Γ0

ψ0(y)P (x, y) ds(y), x ∈ D,

(5)

where ψ ∈ C(D), ψ−1 ∈ C(Γ−1) and ψ0 ∈ C(Γ0) are unknown densities.
Substituting (5) in (1)-(3) we obtain the following system of a boundary-
domain integral equations
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ψ(x) +
∫

D

ψ(y)R(x, y) dy +
∫

Γ−1

ψ−1(y)R(x, y) ds(y)+

+
∫

Γ0

ψ0(y)R(x, y) ds(y) = 0, x ∈ D,

∫

D

ψ(y)P (x, y) dy +
∫

Γ−1

ψ−1(y)P (x, y) ds(y)+

+
∫

Γ0

ψ0(y)P (x, y) ds(y) = f1(x), x ∈ Γ−1,

−1
2
ψ0(x) +

∫

D

ψ(y)σ(x)
∂P (x, y)
∂ν(x)

dy+

+
∫

Γ−1

ψ−1(y)σ(x)
∂P (x, y)
∂ν(x)

ds(y)+

+
∫

Γ0

ψ0(y)σ(x)
∂P (x, y)
∂ν(x)

ds(y) = f2(x), x ∈ Γ0.

(6)

If σ(x) = 1 then the density ψ(x) vanishes (together with domain integrals)
and the system is being simpli�ed to a system of boundary integral equations
that correspond to the Laplace equation. The similar system for this case can
be found in [4].

Let D is symmetric relative to the origin and assume that the closed bound-
ary curves Γ0, Γ−1 are homothetic with factor ξ−1 and have the following
representations

Γ0 = {x(t) = (x1(t), x2(t)), t ∈ [0, 2π)},
Γ−1 = {x−1(t) = (ξ−1x1(t), ξ−1x2(t)), t ∈ [0, 2π)}, (7)

where ξ−1 is a �xed parameter and 0 < ξ−1 < 1. To obtain the system in the
parametrized form we use the change of variables in the integrals over domain
in (6)

y1 = p1(ξ, τ) = ξx1(τ),

y2 = p2(ξ, τ) = ξx2(τ),

where (ξ, τ) ∈ Π = (ξ−1, 1) × [0, 2π) and Jacobian J(ξ, τ) = ξ(x1(τ)x′2(τ) −
x2(τ)x′1(τ)). The notation p = (p1, p2) is used for the function mapping into
Π.
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This yields the following system




ϕ(η, t) +
1
2π

∫

Π

ϕ(ξ, τ)R̃(η, t; ξ, τ) dτdξ+

+
1
2π

2π∫

0

ϕ−1(ξ−1, τ)R̃−1(η, t; ξ−1, τ) dτ+

+
1
2π

2π∫

0

ϕ0(τ)R̃0(η, t; τ) dτ = 0, (η, t) ∈ Π,

1
2π

∫

Π

ϕ(ξ, τ)P̌ (ξ−1, t; ξ, τ) dτdξ+

+
1
2π

2π∫

0

ϕ−1(ξ−1, τ)P̌−1(ξ−1, t; ξ−1, τ) dτ+

+
1
2π

2π∫

0

ϕ0(τ)P̌0(ξ−1, t; τ) dτ = f̃1(ξ−1, t), t ∈ [0, 2π),

−1
2
ϕ0(t) +

1
2π

∫

Π

ϕ(ξ, τ)P̂ (t; ξ, τ) dτdξ+

+
1
2π

2π∫

0

ϕ−1(ξ−1, τ)P̂−1(t; ξ−1, τ) dτ+

+
1
2π

2π∫

0

ϕ0(τ)P̂0(t; τ) dτ = f̃2(t), t ∈ [0, 2π),

(8)

with the functions ϕ(η, t) = ψ(p(η, t)), ϕ−1(t) = ψ−1(x(t)), ϕ0(t) = ψ0(x(t)),
f̃1(t) = f1(x−1(t)), f̃2(t) = f2(x(t)) and kernels

R̃(η, t; ξ, τ) = 2πR(p(η, t), p(ξ, τ))J(ξ, τ),

R̃0(η, t; τ) = 2πR(p(η, t), x(τ))|x′(τ)|;
P̌ (ξ−1, t; ξ, τ) = 2πP (ξ−1x(t), p(ξ, τ))J(ξ, τ),

P̌0(ξ−1, t; τ) = 2πP (ξ−1x(t), x(τ))|x′(τ)|;

P̂ (t; ξ, τ) = 2πσ(x(t))
∂P (x(t), ξx(τ))

∂ν(x(t))
J(ξ, τ),

P̂0(t; τ) = 2πσ(x(t))
∂P (x(t), x(τ))

∂ν(x(t))
|x′(τ)|;

R̃−1(η, t; ξ−1, τ) = 2πR(p(η, t), ξ−1x(τ))ξ−1|x′(τ)|;
P̌−1(ξ−1, t; ξ−1, τ) = 2πP (ξ−1x(t), ξ−1x(τ))ξ−1|x′(τ)|;

7



A.V.BESHLEY

P̂−1(t; ξ−1, τ) = 2πσ(x(t))
∂P (x(t), ξ−1x(τ))

∂ν(x(t))
ξ−1|x′(τ)|.

Exploring the kernels it is easy to see that the kernels R̃ and P̌−1 have di�erent
singularities. The strong singularity in R̃ can be handled by applying the ideas
from [7] (for more details see [3]). The logarithmic singularity in the kernel P̌−1

can be split [6] as follows

P̌−1(ξ−1, t; ξ−1τ) = P̌
(1)
−1 (ξ−1, τ) ln

4
e

sin2 t− τ

2
+ P̌

(2)
−1 (ξ−1, t; ξ−1τ) (9)

with

P̌
(1)
−1 (t, τ) =

1
2

ξ−1|x′(τ)|
σ(ξ−1x(τ))

,

and

P̌
(2)
−1 (t, τ) =

ξ−1|x′(τ)|
σ(ξ−1x(τ))





1
2

ln
|ξ−1x(t)− ξ−1x(τ)|2

4
e sin2 t−τ

2

for t 6= τ,

1
2

ln
(
e|ξ−1x

′(t)|2) for t = τ.

3. Full discretisation and numerical solution of the system
For solving the system (8) we use the interpolation quadrature rules for

continuous integrands and integrands with weight function that corresponds to
the speci�c singularity. For continuous integrands we use

1
2π

∫

Π

g(ξ, τ)dτdξ ≈ 1
2n

N∑

k=1

2n−1∑

i=0

αkg(ηk, ti), (10)

1
2π

∫ 2π

0
f(τ) dτ ≈ 1

2n

2n−1∑

k=0

f(tk). (11)

The following quadratures are used for integrals with strong and logarithmic
singularities

1
2π

∫

Π

g(ξ, τ) cot
τ − t

2
dτdξ ≈

N∑

k=1

2n−1∑

i=0

αkg(ηk, ti)Ti(t), (12)

1
2π

∫ 2π

0
f(τ) ln

(
4
e

sin2 t− τ

2

)
dτ ≈

2n−1∑

k=0

f(tk) Fk(t), (13)

In formulas (10), (13) αk ∈ R2 are quadrature weights, ηk ∈ (0, 1), k =
1, . . . , N � some quadrature points. For 2π-periodic integrals we employ the
trapezoidal quadrature rule based on trigonometric interpolation with equidis-
tant points ti = iπ/n, i = 0, . . . 2n− 1, n ∈ N. The weight functions Ti(t) and

8
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Fk(t) are de�ned as follows

Ti(t) = − 1
n

n−1∑

m=1

sinm(t− ti)− 1
2n

sinn(t− ti),

Fk(t) = − 1
2n

(
1 + 2

n−1∑

m=1

1
m

cosm(t− tk) +
1
n

cosn(t− tk)

)
.

The use of these quadratures in (8) and collocation of the approximating equa-
tions at quadrature points lead to the linear system





ϕmi +
N∑

k=1

2n−1∑

j=0

αkϕkjR̄(ηm, ti; ηk, tj)+

+
1
2n

2n−1∑

j=0

ϕ−1jR̃−1(ηm, ti; ξ−1, tj)+

+
2n−1∑

j=0

ϕ0jR̃0(ηm, ti; tj) = 0,

1
2n

N∑

k=1

2n−1∑

j=0

αkϕkjP̌ (ξ−1, ti; ηk, tj) +
1
2n

2n−1∑

j=0

ϕ0jP̌0(ξ−1, ti, tj)+

+
2n−1∑

j=0

ϕ−1j

[
P̌

(1)
−1 (ξ−1, tj)Fj(ti) +

1
2n

P̌
(2)
−1 (ξ−1, ti; ξ−1, tj)

]
= f̃1i,

−1
2
ϕ̃0i +

1
2n

N∑

k=1

2n−1∑

j=0

αkϕkjP̂ (ti; ηk, tj)+

+
1
2n

2n−1∑

j=0

ϕ−1jP̂−1(ti; ξ−1, tj)+

+
1
2n

2n−1∑

j=0

ϕ0jP̂0(ti, tj) = f̃2i,

(14)

with

R̄(ηm, ti; ηk, tj) =





1
2n

R̃(ηm, ti; ηk, tj) for m 6= k,

1
2n

R̃(1)(ηm, ti; ηk, tj) + Tj(t)R̃(2)(ηm, ti; ηk, tj)
for m = k,

and the right-hand side f̃1i = f̃1(ti) and f̃2i = f̃2(ti).
Here, we use the following notation ϕmi ≈ ϕ(ηm, ti), ϕ−1i ≈ ϕ−1(ti) and

ϕ0i ≈ ϕ0(ti) for m = 1, . . . , N and i = 0, . . . , 2n− 1. The kernels R̃(1) and R̃(2)

are smooth functions and their representations are provided in [3].

9
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Solving the system (14) we obtain the approximate values of unknown densi-
ties. Having these values we can �nd the approximation of the solution (1)-(3)
in the domain D using the following formula

u(ηm, ti) ≈
N∑

k=1

2n−1∑

j=0

αkϕkjP (ηm, ti; ηk, tj)+

+
1
2n

2n−1∑

j=0

ϕ−1jP̃−1(ηm, ti; ξ−1, tj)+

+
1
2n

2n−1∑

j=0

ϕ0jP̃0(ηm, ti; tj),

(15)

with

P (ηm, ti; ηk, tj) =





1
2n

P̃ (ηm, ti; ηk, tj) for m 6= k,

P̃ (1)(ηm, ti; ηk, tj)Fj(ti) +
1
2n

P̃ (2)(ηm, ti; ηk, tj)
for m = k,

where P̃ (1)(ηm, ti; ηk, tj), P̃ (2)(ηm, ti; ηk, tj) smooth enough functions.

4. Numerical experiments
In this section, we present some numerical results for two di�erent examples.

Together with the approximation of solution in the domain, we will provide
numerical results for approximations of the normal derivative on Γ−1 (taking
into account the jump relations of the single-layer potential normal derivative
[6]) and the trace of the solution on Γ0

∂u

∂ν
(x) = −1

2
ψ−1(x) +

∫

D

ψ(y)
∂P (x, y)
∂ν(x)

dy +
∫

Γ−1

ψ−1(y)
∂P (x, y)
∂ν(x)

ds(y)+

+
∫

Γ0

ψ0(y)
∂P (x, y)
∂ν(x)

ds(y), x ∈ Γ−1,

u(x) =
∫

D

ψ(y)P (x, y) dy +
∫

Γ−1

ψ−1(y)P (x, y) ds(y)+

+
∫

Γ0

ψ0(y)P (x, y) ds(y), x ∈ Γ0.

Example 1. Let the domain D (see Fig. 1) is bounded by the two circles:
Γ0 = {x(t) = (1.2 cos(t), 1.2 sin(t)), t ∈ [0, 2π)},
Γ−1 = {x−1(t) = (0.6 cos(t), 0.6 sin(t)), t ∈ [0, 2π)}.

Here we have ξ−1 = 0.5. The function σ is given and equal

10
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Fig. 1. The solution domain D in Ex. 1

σ(x) = 4− x2
1 + x2

2, x ∈ D.

Let us choose the boundary functions f1 and f2 of the elliptic problem as
f1 = x1x2 on Γ−1, f2 = 0.6x1x2(4− x2

1 + x2
2) on Γ0.

Easy to verify that uex = x1x2 is the exact solution to (1)-(3).
In (10),(12) we use the midpoint quadrature as a quadrature rule with respect

to ξ ∈ (ξ−1, 1) with weights αk = 1−ξ−1

N and quadrature nodes ηk = 1 −
1−ξ−1

2N (2k − 1), k = 1, . . . , N .

Tabl. 1. Absolute error on inner curves Γ̃1-Γ̃3 for Ex. 1

N n ‖uNn − uex‖∞,Γ̃1
‖uNn − uex‖∞,Γ̃2

‖uNn − uex‖∞,Γ̃3

3 32 2.33E-05 6.64E-05 1.31E-04
64 8.86E-08 2.52E-07 5.47E-07

6 64 1.16E-05 3.45E-05 7.51E-05
128 4.97E-08 1.47E-07 3.21E-07

12 128 5.80E-06 1.76E-05 3.85E-05
256 2.63E-08 7.97E-08 1.74E-07

We will provide the numerical error of the proposed approach on three curves
within the domain that are homothetic to the outer boundary and have the
following parametric representations

Γ̃k : x̃k = (ξ−1 +
1− ξ−1

40
(12k − 5))x(t), t ∈ [0, 2π), k = 1, 2, 3. (16)

Straightforward calculation gives that homothetic factors related to the curves
Γ̃1, Γ̃2, Γ̃3 are 0.5875, 0.7375 and 0.8875 respectively. They correspond to the
4th, 10th, 16th curve counting from the �rst inner curve after Γ−1 in case when

11
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discretisation parameter N = 20. The absolute errors for di�erent discretisation
parameters N and n are presented in Table 1.

Tabl. 2. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 1

N n ‖∂uNn
∂ν − ∂uex

∂ν ‖∞,Γ−1 ‖uNn − uex‖∞,Γ0

‖uNn−uex‖L2(D)

‖uex‖L2(D)
· 100%

3 32 3.09E-04 1.03E-04 1.455
64 1.17E-06 3.38E-07 0.271

6 64 1.89E-04 5.67E-05 0.270
128 8.08E-07 2.53E-06 0.025

12 128 1.05E-04 3.37E-04 0.277
256 4.73E-07 7.98E-07 0.276

In Table 2 we present the absolute errors of the normal derivative on the
Γ−1 and the solution on the Γ0 together with relative errors with respect to the
L2-norm in the domain D for the same parameters N and n as in Table 1. To
calculate the relative error in the domain we use the following approximation
with Ñ = 20 and ñ = 32

‖uNn − uex‖L2(D)

‖uex‖L2(D)
≈




Ñ∑

k=1

2ñ−1∑

j=0

(uNn − uex)2(η̃k, t̃j)J(η̃k, t̃j)

Ñ∑

k=1

2ñ−1∑

j=0

u2
ex(η̃k, t̃j)J(η̃k, t̃j)




1/2

. (17)
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a). exact solution
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b). approximate solution

Fig. 2. Exact solution and numerical approximation in domain D for Ex. 1

The numerical approximation (for discretisation parameters N = 6, n = 64)
and the exact solution in the domain D are shown in Fig. 2. From the numerical
results, we see that parameters N and n are linked between each other � double
increase N requires to increase the parameter n at least by two times to decrease

12
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the error. But, in general, presented relative errors in the domain look pretty
good as well as absolute errors on inner curves.
Example 2. Let the domain D (see Fig. 3) bounded by the two ellipses:

Γ0 = {x(t) = (a cos(t), b sin(t)), t ∈ [0, 2π)},
Γ−1 = {x−1(t) = (0.4a cos(t), 0.4b sin(t)), t ∈ [0, 2π)}.

Fig. 3. The solution domain D in Ex. 2

Tabl. 3. Absolute error on inner curves Γ̃1-Γ̃3 for Ex. 2

N n ‖uNn − uex‖∞,Γ̃1
‖uNn − uex‖∞,Γ̃2

‖uNn − uex‖∞,Γ̃3

3 32 3.92E-04 9.38E-04 3.07E-03
64 3.28E-06 1.05E-05 3.76E-05

6 64 2.16E-04 5.30E-04 1.05E-03
128 1.99E-06 6.24E-06 1.63E-05

12 128 1.18E-04 2.82E-04 5.46E-04
256 1.14E-06 3.47E-06 8.72E-06

Tabl. 4. Absolute error of the normal derivative and the func-
tion on boundaries and relative error in D for Ex. 2

N n ‖∂ũ
∂ν − ∂uex

∂ν ‖∞,Γ−1 ‖ũ− uex‖∞,Γ0

‖uNn−uex‖L2(D)

‖uex‖L2(D)
· 100%

3 32 5.60E-03 7.67E-02 1.695
64 3.10E-05 1.59E-04 0.377

6 64 4.07E-03 2.99E-02 0.377
128 2.65E-05 1.02E-04 0.052

12 128 2.43E-03 5.54E-02 0.094
256 1.72E-05 8.45E-04 0.077

13
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Here we have parameters a = 2, b = 1 and ξ−1 = 0.4. The function σ has
following representation

σ(x) = 8 + 2x1x2, x ∈ D.

The boundary functions f1 and f2 are known

f1 = x2
1−x2

2 on Γ−1, f2 = (8+2x1x2)(x2
1− 4x2

2)(0.25x2
1 +4x2

2)
−0.5 on Γ0.

For this example, the exact solution is uex = x2
1 − x2

2.
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a). exact solution
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0

1

2

3
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b). approximate solution

Fig. 4. Exact solution and numerical approximation in domain D for Ex. 2

The absolute errors on inner curves (16) are shown in Table 3. Similarly to
the Ex. 1., the relative error of the solution in domain D, the absolute errors
of its normal derivative on the inner boundary Γ−1 and the solution error on
the outer boundary Γ0 are displayed in Table 4. In Fig. 4 the exact solution in
the domain D and its approximation for discretisation parameters N = 6 and
n = 128 are shown. Observing the results we can see the same high accuracy
of the obtained approximation of the solution as in Ex. 1.

5. Conclusion
An indirect integral equation method (based on the solution representation

via potentials with densities and using the Levi function) for the numerical so-
lution of a mixed boundary value problem for the generalized Laplace equation
in doubly connected domains was applied. The di�erential problem is reduced
to a system of boundary-domain integral equations. As a doubly connected do-
main, a domain bounded by two homothetic curves is considered. The change
of variables in double integrals, quadrature rules application and the collocation
of the obtained approximating equations at quadrature nodes lead to a system
of the linear equations. Having calculated approximate values of the unknown
densities we can �nd the approximation of the solution in the domain. Appli-
cability of the proposed approach is con�rmed by provided numerical results.

14
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A FEW WAYS TO FIND APPROXIMATE SOLUTION
TERMS OF THE METHOD OF GENERALIZED

SEPARATION OF VARIABLES

V.M.Biletskyy

Ðåçþìå. Ìåòîä óçàãàëüíåíîãî ðîçäiëåííÿ çìiííèõ áóäó¹ íàáëèæåííÿ
ðîçâ'ÿçêó çàäà÷i ó âèãëÿäi ñóìè äîäàíêiâ ç ðîçäiëåíèìè çìiííèìè. Äîäàí-
êè çíàõîäÿòü ïîñëiäîâíî ÿê ðîçâ'ÿçêè ïåâíèõ ìiíiìiçàöiéíèõ çàäà÷. Ó
öié ðîáîòi ìè ðîçãëÿíåìî äåÿêi ñïîñîáè çíàõîäæåííÿ íàñòóïíîãî äîäàíêó
íàáëèæåíîãî ðîçâ'ÿçêó òà íàâåäåìî ôîðìàëüíèé îïèñ àëãîðèòìiâ ìåòîäó.
Abstract. The method of generalized separation of variables approximates a
problem solution with a series of terms from a set of elements with separated
variables. The terms should be found consecutively as solutions of certain
minimization problems. In this paper we consider a few possible ways to �nd
the next series term and give a formal description of the method algorithms.

1. Introduction
The method of generalized separation of variables (MGSV) is an iterative

approach to approximate a solution of a linear multidimensional equation. Ac-
cording to the method instead of solving a single multidimensional problem we
solve a series of one-dimensional problems and build a solution approximation.
The method allows to dramatically decrease a computational complexity of
problem solution algorithms. Besides a solution approximation is much more
compact than the solution itself, i.e. requires less space.

The method has been originally suggested to solve multidimensional integral
and matrix equations [1]. In [4, 5] the method description is given for integral
Fredholm equations.

The main idea of the method is to represent a solution of a linear d-dimen-
sional equation Au = f as a series of terms with separated variables

u (x1, . . . , xd) =
∞∑

k=1

d∏

j=1

φ
(k)
j (xj),

which are found consecutively by minimizing the following functional

Jk (φ1, . . . , φd) = ‖f −
k−1∑

l=1

A
(
φ

(l)
1 ⊗ · · · ⊗ φ

(l)
d

)2
‖ → min .

Here A is a linear continuous operator in the corresponding space.

Key words. Method of generalized separation of variables, linear equation, multidimen-
sional problem, approximate solution.
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Paper [6] describes the MGSV modi�cation which builds a solution approx-
imation in a slightly di�erent way

u =
∞∑

k=1

A∗
(
φ

(k)
1 ⊗ · · · ⊗ φ

(k)
d

)
,

where A∗ is the adjoint of A and the terms of the series are found from

Jk (φ1, . . . , φd) = ‖A−1f −
k−1∑

l=1

A∗
(
φ

(l)
1 ⊗ · · · ⊗ φ

(l)
d

)2
‖ → min .

In [2,3] a convergence of the solution approximation series to the exact equa-
tion solution is proven for both MGSV and its modi�cation, respectively.

2. MGSV
Consider d complex separable Hilbert spaces Hj , j = 1, . . . , d. Let's denote

with (·, ·)j an inner product in Hj which de�nes the corresponding norm ‖[‖j]·.
Let H is a tensor product of the given spaces

H =
d⊗

j=1

Hj

with a norm ‖·‖ de�ned by its inner product (·, ·).
Note that H is also a complex separable Hilbert space and for any h

(1)
j , h

(2)
j ∈

Hj , j = 1, . . . , d

(
h

(1)
1 ⊗ · · · ⊗ h

(1)
d , h

(2)
1 ⊗ · · · ⊗ h

(2)
d

)
=

d∏

j=1

(
h

(1)
j , h

(2)
j

)
j
.

Consider a linear operator equation in H

Au = f, (1)
where u, f ∈ H and A ∈ L (H) is a linear continuous operator in H such that
there exists its continuous inverse operator ∃A−1 ∈ L (H). Note that under
such conditions the adjoint operator also exists and is continuous in H as well
∃A∗ ∈ L (H). Moreover the equation (1) has a unique solution in H.

The MGSV approximates the solution of (1) with a series where each term
has a special form called separable with respect to spaces Hj , j = 1, . . . , d. In
other words each term is a tensor product of d elements from H1, H2, . . . , Hd

respectively. Let's denote with G a set of separable elements of H with respect
to Hj , j = 1, . . . , d

G =





d⊗

j=1

hj : hj ∈ Hj , j = 1, . . . , d



 ,

Also we de�ne a set GA as a mapping A applied to the set G

GA = A (G) = {Ag : g ∈ G} . (2)
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Thus the MGSV solution approximation series consists of elements from G

∞∑

k=1

gk, gj ∈ G, (3)

where k-th term is found according to the minimum condition

‖f −A

(
k−1∑

l=1

gl + gk

)
‖ = inf

g∈G
‖f −A

(
k−1∑

l=1

gl + g

)
‖. (4)

The terms of (3) are constructed consecutively and produce a sequence of
approximate solutions. The sum of the �rst k terms of (3) is k-th solution
approximation of the equation (1)

uk =
k∑

l=1

gl, u0 = 0H ,

where 0H is a zero vector in H.
k-th term of the series (3) is called k-th approximate solution improvement

gk = uk − uk−1.

When we have k-th solution approximation uk by subtracting Auk from the
right-hand side of the equation (1) we get the very same initial equation (1) but
with di�erent right-hard side f −Auk which is called k-th residual equation

Au = f −Auk.

Let fk is a right-hand side of k-th residual equation

fk = f −Auk = f −A




k∑

j=1

gj


 , f0 = f.

In [2] it is proven that at least one such element gk satisfying (4) exists in H.
Therefore there always exists a minimization problem solution of the following
functional

Jk (h1, . . . , hd) = ‖fk−1 −A




d⊗

j=1

hj


‖2, hj ∈ Hj , j = 1, . . . , d. (5)

By considering the de�nition of GA (2) and the condition (4) it's easy to see
that element Agk+1 is the best approximation to the right-hand side of k-th
residual equation in the set GA

‖fk −Agk+1‖ = inf
g∈GA

‖fk − g‖.

Algorithm 1 describes a generic approach of MGSV.
The loop break (iteration stop) condition of algorithm 1

‖fk‖
‖f‖ =

‖f −Auk‖
‖f‖ < ε,

18



A FEW WAYS TO FIND APPROXIMATE SOLUTION TERMS OF THE MGSV

Algorithm 1 MGSV
Require: f ∈ H, A ∈ L (H), ε > 0
Ensure: ‖f −Aũ‖ < ε

k ← 0
u0 ← 0H

repeat
k ← k + 1
gk ← solution of the (4)
uk ← uk−1 + gk

fk ← f −Auk

until ‖fk‖
‖f‖ < ε

ũ ← uk

return ũ

can be replaced with alternatives, for example
‖gk‖
‖uk−1‖ =

‖uk − uk−1‖
‖uk−1‖ < ε.

The possible ways to �nd gk in algorithm 1 are considered below. In [2]
the convergence of approximate solution sequence of the MGSV to the exact
solution of the equation (1) is proven.

In practice implementations of MGSV consider a discrete case of the equation
(1). Assume Hj is a nj-dimensional space, j = 1, . . . , d. Since H is a tensor
product of H1, H2, . . . , Hd it is a n-dimensional space where

n = dimH =
d∏

j=1

dimHj =
d∏

j=1

nj .

Now the equation (1) is equivalent to a system of n linear equations. In
general a space required to store a solution of the equation linearly depends on
the number of dimensions n, i.e. the required storage is

O



d∏

j=1

nj


 . (6)

On the other hand since space H has a special structure a single term of the
MGSV approximate solution consumes only

O



d∑

j=1

nj


 (7)

of the storage. If we increase number of dimensions in all spaces H1, H2, . . . , Hd

simultaneously expression (6) will grow exponentially while expression (7) will
grow linearly. Thus as long as the number of terms in the solution approxi-
mation is relatively small MGSV produces a compact (in terms of the storage)
solution approximation of the equation (1).
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In a discrete case MGSV is closely related to approximations of a multidimen-
sional tensor with a product of one-dimensional tensors (vectors) [7]. Indeed,
elements u and f can be viewed as d-dimensional tensors of n1 × · · · × nd size
and operator A as (2d)-dimensional tensor of n1 × · · · × nd × n1 × · · · × nd

size. Then in order to �nd k-th solution improvement we have to minimize a
function with d one-dimensional vector parameters

Jk (x1, . . . , xd) = ‖fk−1 −A (x1 ⊗ · · · ⊗ xd)‖2. (8)

Here xj =
(
x

(1)
j , . . . , x

(nj)
j

)
is a one-dimensional vector of coordinates in Hj ,

j = 1, . . . , d. The norm of d-dimensional tensor t of n1 × · · · × nd size can be,
for example,

‖t‖ =
√√√√

∑

1≤kj≤nj

1≤j≤d

|tk1,...,kd
|2, t ∈ H.

The function (8) is a polynomial of total degree 2d with m variables

x
(1)
1 , . . . , x

(n1)
1 , . . . , x

(1)
d , . . . , x

(nd)
d .

Here

m =
d∑

j=1

nj .

3. Alternating Least Squares
Let's consider the minimization problem of functional (5). In general the

problem is nonlinear and can be solved using any nonlinear functional min-
imization methods. However note that if in (5) we �x all parameter values
except of one hj , 1 ≤ j ≤ d then we get a functional of a single parameter
hj ∈ Hj which minimization problem is linear.

Similarly if we �x values of all polynomial (8) variables except of x
(1)
j , . . .,

x
(nj)
j , 1 ≤ j ≤ d then we get a quadratic polynomial of nj variables. The

minimization of such polynomial can be done by solving a system of nj linear
equations with nj variables. This leads us to the method of alternating least
squares which can be used to approximate the next term of MGSV series.

The idea of Alternating Least Squares method (ALS) is to choose an ini-
tial values of (5) variables, �x all of them and then cyclically iterate over the
variables, release one of them, solve a linear minimization problem and adjust
the current variable value. Algorithm 2 describes a generic approach of ALS
method.

Alternatively as a loop break condition in algorithm 2 a relatively small
current value of functional (5) can be used instead

Jk

(
h

(l)
1 , . . . , h

(l)
d

)

Jk

(
h

(0)
1 , . . . , h

(0)
d

) < ε.
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Algorithm 2 ALS

Require: fk−1 ∈ H, A ∈ L (H), h
(0)
j ∈ Hj , j = 1, . . . , d, ε > 0

l ← 0
repeat

l ← l + 1
for j = 1 to d do
�x all variable values of (5) except of hj and solve

Jk

(
h

(l)
1 , . . . , h

(l)
j−1, hj , h

(l−1)
j+1 , . . . , h

(l−1)
d

)
−→ min

h
(l)
j ← the linear minimization problem solution

end for
until

‖h(l)
1 ⊗ · · · ⊗ h

(l)
d − h

(l−1)
1 ⊗ · · · ⊗ h

(l−1)
d ‖

‖h(l−1)
1 ⊗ · · · ⊗ h

(l−1)
d ‖

< ε

for j = 1 to d do
h̃j ← h

(l)
j

end for
return h̃1 ⊗ h̃2 ⊗ . . .⊗ h̃d

Consider a numerical sequence
{

Jk

(
h

(l)
1 , . . . , h

(l)
d

)}∞
l=0

. (9)

According to algorithm 2 the given sequence is monotonically non-increasing

∀l ≥ 1 Jk

(
h

(l)
1 , . . . , h

(l)
d

)
≤ Jk

(
h

(l−1)
1 , . . . , h

(l−1)
d

)
.

Since (9) is bounded by zero it converges to some non-negative number L

∃L ≥ 0 : lim
l→∞

Jk

(
h

(l)
1 , . . . , h

(l)
d

)
= L.

However in general sequence (9) does not converge to the in�mum of functional
(5).

The method of alternating least squares is simple for understanding and
implementation, but does not guarantee a convergence to the solution of mini-
mization problem of (5). Besides the method outcome might strongly depend
on the initial values h

(0)
1 , h

(0)
2 , . . . , h

(0)
d .

Note that in some cases a convergence to the minimization problem solution
can be proven. For example if the following condition holds
∀fk−1 ∈ H ∀j, l 1 ≤ j < l ≤ d

∀h1 ∈ H1 ∀h2 ∈ H2 . . . ∀hd ∈ Hd ∀ĥj ∈ Hj ∀ĥl ∈ Hk

Jk(h1, . . . , hj , . . . , hl, . . . , hd) > Jk(h1, . . . , ĥj , . . . , ĥl, . . . , hd) ⇒
Jk(h1, . . . , hj , . . . , hl, . . . , hd) > Jk(h1, . . . , hj , . . . , ĥl, . . . , hd) ∧
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Jk(h1, . . . , hj , . . . , hl, . . . , hd) > Jk(h1, . . . , ĥj , . . . , hl, . . . , hd) ∧
Jk(h1, . . . , ĥj , . . . , hl, . . . , hd) > Jk(h1, . . . , ĥj , . . . , ĥl, . . . , hd) ∧
Jk(h1, . . . , hj , . . . , ĥl, . . . , hd) > Jk(h1, . . . , ĥj , . . . , ĥl, . . . , hd)

then the sequence produced by ALS converges to the (5) minimization problem
solution.

Papers [7�9] consider problems of multidimensional tensor decomposition
with tensor products of one-dimensional vectors where the numerical ALS
method [10, 11] is widely used. Some e�ciency improvement techniques are
described in [12] while the initial ALS value selection problem is considered
in [13].

There are numerous of alternative methods which share the same basic idea
with ALS. In [14] some of such methods are compared with ALS:

� DTLD (direct trilinear decomposition);
� ATLD (alternating trilinear decomposition);
� SWATLD (self-weighted alternating trilinear decomposition);
� PALS (pseudo alternating least squares);
� ACOVER (alternating coupled vectors resolution);
� ASD (alternating slice-wise diagonalization);
� ACOMAR (alternating coupled matrices resolution).

According to the paper conclusions none of the methods is superior to ALS in
terms of a convergence to the exact solution.

Table 1 contains numerical results of MGSV with ALS for the following
equation

Au ≡
∫ 1

0

∫ 1

0
cos

(
x̂ŷ + x2 − y2

)
u (x̂, ŷ) dx̂dŷ − 4u (x, y) = sin

(
x2 + y2

)
. (10)

For both algorithms ε = 10−5. The �rst column corresponds to MGSV iteration
index k, the second column shows the value ‖fk−1‖

‖f‖ and each of the following
columns contains the value

‖fk−1 −A
(
h

(l)
1 ⊗ . . .⊗ h

(l)
d

)
‖

‖f‖
after the l-th iteration of ALS.

Tabl. 1. Numerical results for equation (10)

k before ALS l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
1 1.000000 0.344960 0.158934 0.153180 0.153133 0.153133 0.153133
2 0.153133 0.147828 0.025094 0.007752 0.007494 0.007493 0.007493
3 0.007493 0.001684 0.000297 0.000293 0.000293
4 0.000293 0.000288 0.000035 0.000011 0.000010
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4. Nonlinear Least Squares
Better approximation accuracy can be obtained by using Nonlinear Least

Squares methods (NLS). These gradient methods minimize nonlinear func-
tion (8). In particular NLS representatives are Gauss-Newton method [15, 16],
damped Gauss-Newton method [17,18] and PMF methods [19].

Algorithm 3 describes a generic approach of NLS methods for minimization
of nonlinear multivariable function (8).

Algorithm 3 NLS
Require: fk−1 ∈ H, A ∈ L (H), ε > 0

l ← 0
x(0) ← initial value {x(0) is a variable vector of function (8)}
repeat

l ← l + 1
x(l) = x(l−1) − φ

(
x(l−1)

)
{φ is a mapping which depends on Jk and a

particular method}
until ‖x(l)−x(l−1)‖

‖x(l−1)‖ < ε

x̃ ← x(l)

return x̃

NLS methods are mostly generalizations and modi�cations of Newton me-
thod. At each iteration based on a gradient we look for an optimal vector and
length of the next step.

NLS methods in general produce more accurate approximations than ALS
methods, they do not guarantee a convergence to the global minimum of func-
tion (8) though. However NLS methods are inferior to ALS in terms of com-
putational complexity. Numerical results provided in [12, 18] show that NLS
methods are slower and require more storage than ALS.

5. Stetter-M�oller Matrix Method Modification
Papers [20, 21] consider modi�cations of Stetter-M�oller matrix method [22,

23] which allows to �nd a global minimum of a multivariable higher degree
polynomial. Suggested approaches lead a polynomial minimization problem
to a generalized eigenvalue problem. A set of points where the polynomial
global minimum is achieved has several connected components. For each such
connected component the method �nds at least one point. There are no special
application requirements, i.e. the method �nds a minimum for an arbitrary
polynomial. Thus the method can be used to �nd a global minimum of function
(8).

Let p is a m-variable polynomial of total degree 2d

p (x1, . . . , xm) ∈ R [x1, . . . , xm] . (11)
Consider a polynomial

pλ (x1, . . . , xm) = p (x1, . . . , xm) + λ
(
x

2(d+1)
1 + . . . + x2(d+1)

m

)
, λ > 0.
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According to [20] the global minimum data of (11) can be retreived from pλ

when λ → 0.
A polynomial global minimum can be found from the �rst order conditions

by considering its values in critical points. For pλ if λ > 0 is �xed this leads
to a system of polynomial equations in Gr�obner basis [24] which has a �nite
number of solutions. Thus the Stetter-M�oller matrix method can be used.

First, we build matrices (Ax1 , . . . , Axm). Eigenvalues of these matrices which
correspond to a common eigenvector form a critical point of polynomial pλ.
Here matrix Axk

(1 ≤ k ≤ m) represents an operator of multiplication by xk in
quotient space R [x1, . . . , xm] /I where I is an ideal formed by �rst order partial
derivatives of pλ.

For an arbitrary polynomial r (x1, . . . , xm) matrix Ar = r (Ax1 , . . . , Axm)
contains values of polynomial r in critical points of polynomial pλ.

Algorithm 4 describes one of the possible approach implementations.

Algorithm 4 Stetter-M�oller Matrix Method Modi�cation
Require: p (x1, . . . , xm) ∈ R [x1, . . . , xm], λ > 0, ε > 0

l ← 0
λ0 ← λ(
x

(0)
1 , . . . , x

(0)
m

)
← (0, . . . , 0)

v0 ← p
(
x

(0)
1 , . . . , x

(0)
m

)

repeat
l ← l + 1
λl ← λl−1

2

compute matrices
(
A

(l)
x1 , . . . , A

(l)
xm

)
for polynomial pλl

compute matrix A
(l)
p = p

(
A

(l)
x1 , . . . , A

(l)
xm

)

vl ← minimum value of A
(l)
p(

x
(l)
1 , . . . , x

(l)
m

)
← the corresponding vector, i.e. p

(
x

(l)
1 , . . . , x

(l)
m

)
= vl

until |vl−vl−1|
|v0| < ε

(x̃1, . . . , x̃m) ←
(
x

(l)
1 , . . . , x

(l)
m

)

return (x̃1, . . . , x̃m)

A drawback of the described method is the size of matrix Ar which is equal
to (2d + 1)m and grows exponentially with m. However modern ways to solve
generalized eigenvalue problems which are based on Jacobi-Davidson or Arnoldi
methods [25, 26] do not require a construction of matrix Ar. Thus one of the
suggested method modi�cations [20,21] can be used instead.

Stetter-M�oller matrix method modi�cation unlike ALS and NLS methods
always �nds a global minimum of a function. However it requires a lot of
computational resources. Thus in practice quite often ALS or NLS methods
are preferred despite they are not perfectly accurate.
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ON THE FINITE ELEMENT APPROXIMATION OF
A SYSTEM OF ELLIPTIC QUASI-VARIATIONAL

INEQUALITIES RELATED TO HAMILTON-
JACOBI-BELLMAN EQUATIONS

M.Boulbrachene

Ðåçþìå. Â ðîáîòi ðîçâèíóòî íîâèé ïiäõiä, çàïðîïîíîâàíèé â [3], äëÿ
âèâ÷åííÿ ñêií÷åííî-åëåìåíòíî¨ àïðîêñèìàöi¨ ñèñòåì åëiïòè÷íèõ êâàçi-âà-
ðiàöiéíèõ íåðiâíîñòåé, ùî ïîâ'ÿçàíi ç ðiâíÿííÿìè Ãàìiëüòîíà-ßêîái-Áåëü-
òðàíà. Ìåòîä ïî¹äíó¹ â ñîái ïiäõîäè ÷àñòêîâèõ ðîçâ'ÿçêiâ, äèñêðåòíî¨
ðåãóëÿðíîñòi äëÿ âàðiàöiéíèõ íåðiâíîñòåé òà ãåîìåòðè÷íó çáiæíiñòü iòåðà-
öiéíî¨ ñõåìè, ùî íàáëèæà¹ ðîçâ'ÿçîê.
Abstract. In this paper, we exploit a new approach, introduced in [3], to
study the �nite element approximation of a system of elliptic quasi-variational
inequalities (Q.V.I.) related to Hamilton-Jacobi-Bellman (HJB) equations.
The method combines the concepts of subsolutions, discrete regularity for vari-
ational inequalities, and the geometrical convergence of an iterative scheme
approximating the solution.

1. Introduction
We are concerned with the standard �nite element approximation of the

system of elliptic quasi-variational inequalities (Q.V.I): Find U = (u1, ..., uM ) ∈(
H1

0 (Ω)
)M such that





ai(ui, v − ui) ≥ (fi, v − ui) ∀v ∈ H1
0 (Ω),

ui ≤ k + ui+1, v ≤ k + ui+1,
uM+1 = u1,

(1)

where, Ω is a bounded convex domain of RN with su�ciently smooth boundary
Γ, f ≥ 0 is a right hand in L∞(Ω), k > 0, (., .) is the inner product in L2(Ω),
a(., .) is the bilinear form de�ned by: ∀u, v ∈ H1(Ω)

ai(u , v) =
∫

Ω

(
N∑

j,k=1

ai
jk(x)

∂u

∂xj

∂v

∂xk
+

N∑

k=1

bi
k(x)

∂u

∂xk
v + ai

0(x)uv

)
dx (2)

such that
ai(v, v) ≥ δ ‖v‖2

H1(Ω) ∀v ∈ H1(Ω),

where the coe�cients ai
jk(x), bi

k(x), ai
0(x), (j, k = 1, ..., N), are su�ciently

smooth such that
ai

0(x) ≥ c0 > 0, ∀x ∈ Ω (3)

Key words. Quasi-variational inequalities, Iterative scheme, Finite element, Discrete regu-
larity, Subsolutions, Error estimate.

2000Mathematics Subject Classi�cation. 35 J85, 65N30, 65N15.

27



M.BOULBRACHENE

and ∑

1≤ j,k≤ N

ai
jk(x)ξjξk ≥ α |ξ|2 ; (x ∈ Ω̄, ξ ∈ RN , α > 0). (4)

Denoting by Vh, the �nite element space consisting of continuous piecewise
linear functions vanishing at the boundary, rh the usual interpolation operator,
we de�ne the discrete counterpart of (1) by: �nd Uh = (u1,h, ..., uM,h) ∈ (Vh)M

such that 



ai(ui,h, v − ui,h) ≥ (f, v − ui,h) ∀v ∈ Vh,

ui,h ≤ rh (k + ui+1,h) , v ≤ rh (k + ui+1,h) ,

uM+1,h = u1,h.

(5)

This system appears in stochastic control problems related to Hamilton-
Jacobi-Bellman equations (HJB) (see [1], [2]). Its �nite element approximation
was studied in (cf.,e.g., [4], [5], [6], where di�erent methods were employed.

In this paper, we exploit an idea developed in [3] to derive optimal conver-
gence order for the system of Q.V.I (1).

This method consists, mainly, of combining, in both the continuous and
discrete contexts, the concept of subsolutions for variational inequalities and
a geometrical convergence of an iterative scheme approximating the solution.
For a computational purpose, this method provides an interesting information
as it permits to control the error between the continuous iterative scheme and
its �nite element counterpart.

A brief description of this method is as follows: Let Un = (un
1 , ..., un

M )
be the nth iterate of the scheme approximating the solution U , and Un

h =
(un

1h, ..., un
Mh) its �nite element counterpart, approximating Uh.We construct a

sequence of continuous subsolutions βn = (βn
1 , ..., βn

M ) such that
βn ≤ Un

and
‖βn − Un

h ‖∞ ≤ Ch2 |ln h|2
and a sequence of discrete subsolutions γn = (γn

1,h, ..., γn
M,h) such that:

γn
h ≤ Un

h

and
‖Un − γn

h‖∞ ≤ Ch2 |ln h|2 .

In this situation, using a concept of discrete regularity, we establish an opti-
mal error estimate for the iterative scheme:

‖Un − Un
h ‖∞ ≤ Ch2 |ln h|2 (6)

and then, combining estimate (6) with the geometrical convergence of the iter-
ative scheme (Un) and (Un

h ) to the solutions U and Uh of systems (1) and (5),
respectively, we also derive error estimate for the system of Q.V.I. (1):

‖U − Uh‖∞ ≤ Ch2 |lnh|2 (7)
where

‖V ‖∞ = max ‖vi‖L∞(Ω) , V = (v1, ..., vM )
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and, in all the above error estimates, C is a constant independent of both h
and n.

It is worth pointing out that estimate (6) is new for the system (1).
The paper is organized as follows. In sections 2, we recall the construction

and convergence of the continuous iterative scheme for system (1). In section 3,
we also recall analog discrete results and detail discrete regularity for the dis-
crete iterative scheme. In section 4, we discuss the new approximation approach
and derive the main results of this paper. In section 5, we give a numerical
example and, �nally, in section 6, a short conclusion.

2. The Continuous Problem
2.1. A Continuous Iterative Scheme. Let U0 =

(
u0

1, ..., u
0
M

) ∈ (
H1(Ω)

)M

be such that u0
i solves the equation

a(u0
i , v) = (fi, v) ∀v ∈ H1

0 (Ω); ∀i = 1, ..., M. (8)
Then, starting from U0 solution of (8), we de�ne the continuous sequence

(Un) such that Un = (un
1 , ..., un

M ) and un
i solves the variational inequality (V.I)





a(un
i , v − un

i ) ≥ (fi, v − un
i ) ∀v ∈ H1

0 (Ω),

un
i ≤ k + un−1

i+1 , v ≤ k + un−1
i+1 ,

un−1
M+1 = un−1

1 .

(9)

Theorem 1. [5] The sequence (Un) de�ned in (9) converge decreasingly to the
solution U of of system (1). Moreover, there exists 0 < µ < 1 such that

‖Un − U‖∞ ≤ µn
∥∥U0

∥∥
∞ . (10)

3. The discrete Problem
For the sake of simplicity we suppose that Ω is polyhedral.We then consider

a regular and quasi-uniform triangulation τh of Ω̄, consisting of n-simplices K.
Denote by h = max K∈τh

hK , the meshsize of τh with hK being the diameter of
K. For each K ∈ τh, denote by P1(K) the set of polynomials on K with degree
no more than 1. The P1- conforming �nite element space is given by

Vh =
{
v : v ∈ H1(Ω) ∩ C(Ω̄), v/K ∈ P1(K), ∀K ∈ τh

}
.

Let Mi, 1 ≤ i ≤ Nh denote the the vertices of the triangulation τh, and let
ϕi, 1 ≤ i ≤ m(h), denote the functions of Vh which satisfy

ϕi(Mj) = δij , 1 ≤ i, j ≤ Nh

so that the functions ϕi form a basis of Vh. For every v ∈ H1(Ω) ∩ C(Ω̄), the
function

rhv(x) =
Nh∑

i=1

v(Mi)ϕi(x)

represents the interpolate of v over τh.
Now, in order to establish existence and uniqueness of a solution to V.I (5),

the sti�ness matrix is required to be an M-Matrix.
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De�nition 1. A real matrix d × d matrix C = (cls) with cls ≤ 0, ∀l 6= s,
1 ≤ l, s ≤ d, is called an M -Matrix if C is nonsingular and C−1 ≥ 0 (i.e., all
entries of its inverse are nonnegative).

3.1. Discrete Maximum Principle. Denote by Ai the matrices with generic
coe�cient

ai
ls = ai(ϕl, ϕs), 1 ≤ l, s ≤ Nh; i = 1, ..., M. (11)

Because the bilinear form ai(., .) is coercive, we have

Ai is positive de�nite (12)

and
ai

ll > 0 ∀l = 1, ..., m(h). (13)

Furthermore, if the matrix (ajk) involved in the bilinear form (2) is symmetric
(ajk = akj), then mesh conditions for which the o�-diagonal entries of Ai satisfy

ai
ls ≤ 0,∀i 6= j, 1 ≤ l, s ≤ m(h) (14)

can be found in [8]. Therefore, combining (12), (13) and (14), we have the
following lemma.

Lemma 1. The matrices Ai, i = 1, ..., M are M-Matrices.

Proof. See [8], [9]. ¤

3.2. A discrete Iterative Scheme. Let U0
h =

(
u0

1h, ..., u0
Mh

)
such that u0

i,h ∈
Vh solves the equation

ai(u0
i,h, v) = (fi, v) ∀v ∈ Vh; i = 1, ..., M. (15)

Now, starting from U0
h = 0, we de�ne the discrete sequence (Un

h ) such that
Un

h = (un
1h, ...un

Mh) and un
ih ∈ Vh solves the variational inequality (V.I)





a(un
ih, v − un

ih) ≥ (fi, v − un
ih) ∀v ∈ Vh,

un
ih ≤ k + un−1

i+1h, v ≤ k + un−1
i+1h,

un−1
M+1h = un−1

1h .

(16)

Theorem 2. [5] Under conditions of lemma 1, the sequence (Un
h ) and (Un,h)

converges decreasingly to the unique solution solution Uh of Q.V.I (5).Moreover,
there exists a constant 0 < µ < 1 such that

‖Un
h − Uh‖∞ ≤ µn

∥∥U0
h

∥∥
∞ , (17)

‖Un,h − Uh‖∞ ≤ µn
∥∥U0

h

∥∥
∞ . (18)
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3.3. Discrete regularity. Let ω ∈ H1
0 (Ω) be the solution of the V.I

{
a(ω, v − ω) ≥ (g, v − ω)∀v ∈ H1

0 (Ω) ,

v ≤ rhψ, ω ≤ rhψ
(19)

and ωh ∈ Vh,its discrete counterpart, the solution of the V.I
{

a(ωh, v − ωh) ≥ (g, v − ωh)∀v ∈ Vh,

v ≤ rhψ, ωh ≤ rhψ.
(20)

This concept of "discrete regularity", introduced in [10], can be regarded as
the discrete counterpart of the Lewy-Stampaccia estimate ‖Au‖∞ ≤ C (A being
the operator associated with bilinear form a(., .)), extended to the variational
form through the L1−L∞ duality. The main role it plays, in the present paper,
is in the regularization of the obstacles appearing in the discrete problems (16)
Lemma 2. [10] We assume that there exists a constant C independent of h
such that

|a(ωh, ϕs)| ≤ C ‖ϕs‖L1(Ω) ∀s = 1, 2, ..., Nh. (21)
Then, there exists a family of right hand sides g(h) such that∥∥∥g(h)

∥∥∥
∞
≤ C

and
a(ωh, v) = (gn,(h), v) ∀v ∈ Vh.

Theorem 3. Let conditions of lemma 2 hold. Then, there exists a sequence(
gn,(h)

)
n≥1

and a constant C > 0 independent of h and n such that
∥∥∥gn,(h)

∥∥∥
∞
≤ C,

a(un
ih, v) = (g(h), v) ∀v ∈ Vh,

where un
ih is de�ned in (16).

Proof. The proof will be carried out by induction. For n = 1, let u1
ih be the

solution of the V.I{
a(u1

ih, v − u1
h) ≥ (fi, v − u1

ih) ∀v ∈ Vh,

v ≤ k + u0
ih, u1

ih ≤ k + u0
ih,

where
a(u0

ih, v) = (fi, v) ∀v ∈ Vh,

So, clearly ∣∣a(u0
ih, ϕs)

∣∣ ≤ C ‖ϕs‖L1(Ω) ∀s = 1, 2, ..., Nh (22)
and, using the discrete Levy-Stampachia inequality [4], we have

−(fi, ϕs) ∧ a(k + u0
ih, ϕs) ≤ a(u1

ih, ϕi) ≤ (f, ϕs).

But
a(k + u0

ih, ϕs) = a(u0
ih, ϕs) + (kai

0(x), ϕs)
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and, using (22), there exists a constant C such that,
−(fi, ϕi) ∧ (−C,ϕs) ≤ a(u1

ih, ϕs) ≤ (f, ϕs)

which implies ∣∣a(u1
ih, ϕs)

∣∣ ≤ C ‖ϕs‖L1(Ω) ,∀s = 1, 2, ..., Nh.

Hence, making use of lemma 2, there exists a family of right-hands side{
g
1,(h)
i

}
∈ L∞(Ω) such that





i)
∥∥∥g

1,(h)
i

∥∥∥
∞
≤ C

and
ii) a(u1

ih, v) = (g1,(h)
i , v) ∀v ∈ Vh.

Now, assume that there exists a constant C independent of n such that
a(un−1

ih , ϕs) ≤ C ‖ϕs‖L1(Ω) , ∀s = 1, 2, ..., Nh. (23)
So, using the discrete Levy-Stampachia inequality , we get

−(f, ϕs) ∧ a(k + un−1
ih , ϕi) ≤ a(un

ih, ϕs) ≤ (f, ϕs)

or
−(f, ϕs) ∧ (a(k + un−1

ih , ϕs) ≤ a(un
ih, ϕs) ≤ (f, ϕs)

and, as
a(k + un−1

h , ϕs) = a(un−1
h , ϕs) + (kai

0(x), ϕs)
using (23) as above, we have

−(fi, ϕs) ∧ (−C, ϕs) ≤ a(un
h, ϕs) ≤ (f, ϕs)

which implies
|a(un

h, ϕs)| ≤ C ‖ϕs‖L1(Ω) .

So, making use of lemma 2, there exists family of right-hands side
{

g
n,(h)
i

}
∈

L∞ (Ω) such that




i)
∥∥∥g

n,(h)
i

∥∥∥
∞
≤ C

and
ii) a(un

ih, v) = (gn,(h)
i , v) ∀v ∈ Vh

which completes the proof. ¤
Note that, as

a(un
ih, v) = (gn,(h)

i , v)∀v ∈ Vh

one can de�ne
Un,(h) =

(
u

n,(h)
1 , ..., u

n,(h)
M

)
,

the discrete analog of
Un

h = (un
1h, ..., un

Mh)
such that ∥∥∥u

n,(h)
i

∥∥∥
W 2,p(Ω)

≤ C
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and
a(un,(h)

i , v) = (gn,(h)
i , v) ∀v ∈ H1

0 (Ω) (24)
and, by standard maximum norm estimates∥∥∥u

n,(h)
i − un

ih

∥∥∥
∞
≤ Ch2 |log h| . (25)

4. L∞ � Error Analysis
From now on, C will denote an arbitrary constant independent of both h

and n.
4.1. Background. We begin with recalling some useful properties enjoyed by
elliptic variational inequalities. Indeed, let
De�nition 2. w ∈ H1

0 (Ω) is said to be a subsolution for the VI (19) if
{

a(w, v) ≤ (g, v)∀v ∈ H1
0 (Ω), v ≥ 0,

w ≤ ψ.
(26)

Theorem 4. [7] The solution ω of V.I (19) is the least upper bound of the set
of subsolutions.
Theorem 5. [7] Let ω = ∂(ψ̃) and ω̃ = ∂(ψ̃). Then, we have

‖ω − ω̃‖∞ ≤ C
∥∥∥ψ − ψ̃

∥∥∥
∞

. (27)

Remark 1. Under conditions of lemma 1, the above properties of the solution
of V.I (19) remain valid in the discrete case.

Indeed, let ωh = ∂h(ψ) ∈ Vh be the solution of the discrete variational
inequality {

a(ωh, v − ωh) ≥ (g, v − ωh)∀v ∈ Vh,

ωh ≤ rhψ, v ≤ rhψ.
(28)

Next, we shall give the discrete analog of Theorems 3, 4. Their respective
proofs will be omitted as they are similar to their continuous counterparts.
De�nition 3. wh ∈ Vh is said to be a subsolution for the V.I (28) if{

a(wh, ϕs) ≤ (g, ϕs)∀s = 1, ..., Nh,

wh ≤ rhψ.
(29)

Theorem 6. Under conditions of lemma 1, the solution ωh of V.I (28) is the
least upper bound of the set of discrete subsolutions.
Theorem 7. Let ωh = ∂h(ψ) and ω̃h = ∂h(ψ̃). Then, under conditions of
lemma 1, we have

‖ωh − ω̃h‖∞ ≤ C
∥∥∥ψ − ψ̃

∥∥∥
∞

. (30)

Lemma 3. [11] If ψ ∈ W 2,p(Ω) and ω ∈ W 2,p(Ω), 2 ≤ p < ∞, then the
following error estimate holds

‖ω − ωh‖∞ ≤ Ch2 |lnh|2 . (31)
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4.2. L∞- Error estimate for the Iterative Scheme. In order to estimate
the error between the continuous iterative scheme and its �nite element coun-
terpart, we introduce the following sequences of variational inequalities.
An auxiliary sequence of continuous variational inequalities: We

introduce the sequence Ūn = (ūn
1 , ..., ūn

M )n≥1 such that ūn
i = ∂

(
k + ûn−1

i+1,h

)
∈

H1
0 (Ω) solves the continuous V.I:





ai(ūn
i , v − ūn) ≥ (f, v − ūn

i ) ∀v ∈ H1
0 (Ω),

ūn
i ≤ k + u

n−1,(h)
i+1 , v ≤ k + u

n−1,(h)
i+1 ,

un−1
M+1,h = u

n−1,(h)
i+1 ,

(32)

where u
n−1,(h)
i+1 is de�ned in (24).

An auxiliary sequence of discrete variational inequalities We de�ne
the sequence Ūn

h =
(
ūn

1,h, ..., ūn
i,h

)
n≥1

such that ūn
i,h = ∂h

(
k + un−1

i+1

) ∈ Vh

solves the discrete V.I



ai(ūn
i,h, v − ūn

h) ≥ (fi, v − ūn
h) ∀v ∈ Vh,

ūn
h ≤ rh

(
k + un−1

i+1

)
, v ≤ rh

(
k + un−1

i+1

)
,

un−1
M+1 = un−1

1 ,

(33)

where u0 and un are de�ned in (8) and (9), respectively.

Theorem 8. We have
∥∥Un − Ūn

h

∥∥
∞ ≤ Ch2 |ln h|2 . (34)

Proof. As ūn
i,h is the discrete counterparts of un

i and ‖un
i ‖W 2,p(Ω) ≤ C (indepen-

dent of n) (see [5]), making use of (31), we get the desired error estimates. ¤

Theorem 9.
‖Un − Un

h ‖∞ ≤ Ch2 |lnh|2 . (35)

Proof. We proceed by induction. Indeed, consider V.I (32) for n = 1:




ai(ū1
i , v − ū1

i ) ≥ (f, v − ū1
i ) ∀v ∈ H1

0 (Ω),

ū1
i ≤ k + u

0,(h)
i+1 , v ≤ k + u

0,(h)
i+1 ,

u
0,(h)
M+1 = u

0,(h)
1 .

So ∥∥ū1
i − u1

i,h

∥∥
∞ ≤ Ch2 |lnh|2 . (36)

Indeed, let ū1
i = ∂(k +u

0,(h)
i+1 ), ũ1

i,h = ∂h(k +u
0,(h)
i+1 ) and u1

i,h = ∂h(k +u0
i+1,h).

Then, as ũ1
i,h is the discrete analog of ū1

i , making use of (34), we have
∥∥ū1

i − ũ1
i,h

∥∥
∞ ≤ Ch2 |lnh|2 . (37)
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Moreover, using (30) and standard maximum error estimate, we get
∥∥u1

i,h − ũ1
i,h

∥∥
∞ ≤

∥∥∥u
0,(h)
i+1 − u0

i+1,h

∥∥∥
∞

≤ Ch2 |lnh| .
Thus

∥∥ū1
i − u1

i,h

∥∥
∞ ≤ ∥∥ū1

i − ũ1
i,h

∥∥
∞ +

∥∥ũ1
i,h − u1

i,h

∥∥
∞

≤ Ch2 |lnh|2 .

Now, as ū1
i is solution to a V.I, it is also a subsolution, i.e.,

a(ū1
i , v) ≤ (fi, v) ∀v ∈ H1

0 (Ω), v ≥ 0,

ū1
i ≤ k + u

0,(h)
i+1 .

But, as

ū1
i ≤ k +

∥∥∥u
0,(h)
i+1 − u0

i+1,h

∥∥∥
∞

+ u0
i+1 ≤

≤ k + Ch2 |lnh|2 + u0
i+1,

we have
a(ū1

i , v) ≤ (f, v)∀v ∈ H1
0 (Ω), v ≥ 0,

ū1
i ≤ k + Ch2 |ln h|+ u0

i+1.

Hence, ū1
i is also a subsolution for the V.I with obstacle k+Ch2 |ln h|2+u0

i+1.
Let ω̄1

i = ∂(k + Ch2 |ln h|2 + u0
i+1). Then, as u1

i = ∂(k + u0
i+1), making use of

(27) and standard maximum error estimate
∥∥u0

i+1 − u0
i+1,h

∥∥
∞ ≤ Ch2 |ln h| , (38)

we get
∥∥ω̄1

i − u1
i

∥∥
∞ ≤ Ch2 |ln h|2 +

∥∥u0
i+1 − u0

i+1,h

∥∥
∞ ≤

≤ Ch2 |ln h|2 .

Hence, making use of Theorem 4, we have
ū1

i ≤ ω̄1
i ≤ u1

i + Ch2 |ln h|2 .

Putting
β1

i = ū1
i − Ch2 |ln h|2 , ∀i = 1, ..., M,

we get
β1

i ≤ u1
i , ∀i = 1, ..., M. (39)

Further more, using estimate (36), we get
∥∥β1

i − u1
i,h

∥∥
∞ ≤ ∥∥ū1

i − u1
i,h

∥∥
∞ + Ch2 |lnh|2 ≤ (40)

≤ Ch2 |ln h|2 .
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Now consider the discrete V.I (33) for n = 1:
{

ai(ū1
i,h, v − ū1

i,h) ≥ (fi, v − ū1
i,h) ∀v ∈ Vh,

ū1
i,h ≤ rh

(
k + u0

i+1

)
, v ≤ rh

(
k + u0

i+1

)
,

ū1
i,h being also a discrete subsolution, we have

a(ū1
i,h, ϕi) ≤ (f, ϕi) ∀ϕi,

ū1
i,h ≤ rh

(
k + u0

i+1

)
,

and, from standard maximum error estimate∥∥u0 − u0
h

∥∥
∞ ≤ Ch2 |ln h| .

So
ū1

i,h ≤ k +
∥∥u0

i+1 − u0
i+1,h

∥∥
∞ + rhu0

i+1,h ≤
≤ k + Ch2 |lnh|2 + rhu0

i+1,h.

then
ai(ū1

i,h, ϕi) ≤ (fi, ϕi) ∀ϕi,

ū1
i,h ≤ k + Ch2 |lnh|2 + rhu0

i+1,h

because rh is Lipschitz. So, ū1
i,h is also a discrete subsolution for the V.I with

obstacle k + Ch2 |ln h|2 + rhu0
i+1,h. Let ω̄1

i,h = ∂h(k + Ch2 |ln h|2 + u0
i+1,h). As

u1
i,h = ∂h(k + u0

i+1,h), making use of (30) and (38), we get
∥∥ω̄1

i,h − u1
i,h

∥∥
∞ ≤ ∥∥u0

i+1,h − u0
i+1,h

∥∥
∞ ≤

≤ Ch2 |ln h|2
and, applying Theorem 6, we get

ū1
i,h ≤ ω̄1

i,h ≤ u1
i,h + Ch2 |ln h|2 .

Now, taking
γ1

i,h = ū1
i,h − Ch2 |ln h|2 , ∀i = 1, ..., M,

we have
γ1

i,h ≤ u1
i,h, ∀i = 1, ..., M. (41)

Hence, as u1
i,h is the discrete analog of u1

i , making use (30) and (34), we get
∥∥γ1

i,h − u1
i

∥∥
∞ ≤ ∥∥ū1

i,h − u1
i

∥∥
∞ + Ch2 |ln h|2 ≤ (42)

≤ Ch2 |ln h|2 .

Thus, combining (39), (40) and (41), (42), we obtain
u1

i ≤ γ1
i,h + Ch2 |ln h|2

≤ u1
i,h + Ch2 |lnh|2

≤ β1
i + Ch2 |ln h|2

≤ u1
i + Ch2 |lnh|2 .
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That is ∥∥u1
i − u1

i,h

∥∥
∞ ≤ Ch2 |lnh|2 .

Let us now assume that∥∥∥un−1
i − un−1

i,h

∥∥∥
∞
≤ Ch2 |lnh|2 . (43)

Since ũn
i,h = ∂h(k + u

n−1,(h)
i+1 ) is the discrete analog of ūn

i = ∂(k + u
n−1,(h)
i+1 ),

making use of (34), we get
∥∥ūn

i − ũn
i,h

∥∥
∞ ≤ Ch2 |lnh|2 . (44)

Let us now prove that ∥∥ūn
i − un

i,h

∥∥
∞ ≤ Ch2 |lnh|2 . (45)

Indeed, using (44) , (30), we get∥∥ūn
i − un

i,h

∥∥
∞ ≤ ∥∥ūn

i − ũn
i,h

∥∥
∞ +

∥∥ũn
i,h − un

i,h

∥∥
∞

≤ Ch2 |ln h|2 +
∥∥∥u

n−1,(h)
i+1 − un−1

i+1,h

∥∥∥
∞

≤ Ch2 |ln h|2 ,

On the other hand, the solution of V.I (32) is also a subsolution, that is
{

ai(ūn
i , v) ≤ (fi, v) ∀v ∈ H1(Ω), v ≥ 0,

ūn
i ≤ k + u

n−1,(h)
i+1 .

So, using (43), we have

ūn
i ≤ k +

∥∥∥un−1
i+1 − un−1

i+1,h

∥∥∥
∞

+ un−1
i+1,h

≤ k + Ch2 |lnh|2 + un−1
i+1,h

and thus,
ai(ūn

i , v) ≤ (fi, v) ∀v ∈ H1(Ω), v ≥ 0,

ūn
i ≤ k +

∥∥∥un−1
i+1 − un−1

i+1,h

∥∥∥
∞

+ un−1
i+1,h,

≤ k + Ch2 |lnh|2 + un−1
i+1,h.

So ūn
i is a subsolution for the V.I with obstacle k + Ch2 |ln h|2 + un−1

i+1,h. Let
ω̄n

i = ∂(k + Ch2 |ln h|2 + un−1
i+1,h). Then, as un

i = ∂(k + un−1
i+1 ), making use of

(27), and (43), we get

‖ω̄n
i − un

i ‖∞ ≤ Ch2 |ln h|2 +
∥∥∥un−1

i+1,h − un−1
i+1

∥∥∥
∞

≤ Ch2 |ln h|2 .

Hence, applying Theorem 4, we have
ūn

i ≤ ω̄n
i ≤ un

i + Ch2 |lnh|2 .

Now, putting
βn

i = ūn
i − Ch2 |lnh|2 , ∀i = 1, ...,M.
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we obtain
βn

i ≤ un
i , ∀i = 1, ..., M (46)

and, using (45) ,
∥∥βn

i − un
i,h

∥∥
∞ ≤

∥∥∥ūn
i − Ch2 |ln h|2 − un

i,h

∥∥∥
∞

(47)

≤ ∥∥ūn
i − un

i,h

∥∥
∞ + Ch2 |lnh|2

≤ Ch2 |lnh|2 .

Now, consider the discrete V.I (33)
{

ai(ūn
i,h, v − ūn

i,h) ≥ (fi, v − ūn
i,h) ∀v ∈ Vh,

ūn
i,h ≤ rh

(
k + un−1

i+1

)
, v ≤ rh

(
k + un−1

i+1

)
,

(48)

ūn
i,h being also a subsolution, we have

{
ai(ūn

i,h, ϕi) ≤ (fi, ϕi) ∀i = 1, ...,m(h),
ūn

i,h ≤ rh

(
k + un−1

i+1

)
.

(49)

So, making use of (43), we have
ūn

i,h ≤ k + rhun−1
i+1 − rhun−1

i+1,h + rhun−1
i+1,h

≤ k +
∥∥∥rhun−1

i+1 − rhun−1
i+1,h

∥∥∥
∞

+ rhun−1
i+1,h

≤ k + Ch2 |ln h|2 + rhun−1
i+1,h

and hence
a(ūn

i,h, ϕi) ≤ (fi, ϕi) ∀ϕi,

ūn
i,h ≤ k + Ch2 |ln h|2 + rhûn−1

i+1,h.

So, ūn
i,h is a subsolution for the V.I with obstacle k + Ch2 |lnh|2 + rhun−1

i+1,h.
Let ω̄n

i,h = ∂h(k + Ch2 |lnh|2 + rhun−1
i+1,h). Then, as un

i,h = ∂h(k + rhun−1
i+1,h),

making use of (30) and (43), we get
∥∥ω̄n

i,h − un
i,h

∥∥
∞ ≤ Ch2 |ln h|2 +

∥∥∥un−1
i+1,h − un−1

i+1,h

∥∥∥
∞

and, due to Theorem 6, we have
ūn

i,h ≤ ω̄n
i,h ≤ un

i,h + Ch2 |ln h|2 .

Now, taking
γn

i,h = ūn
i,h − Ch2 |ln h|2 , ∀i = 1, ..., M.

we obtain
γn

i,h ≤ un
i,h. (50)

Moreover, ūn
h being the discrete counterpart of un, using (34), we have

∥∥ūn
i,h − un

i

∥∥
∞ ≤ Ch2 |lnh|2 , ∀i = 1, ...,M
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and therefore
∥∥γn

i,h − un
i

∥∥
∞ ≤ ∥∥ūn

i,h − un
i

∥∥
∞ + Ch2 |lnh|2 (51)

≤ Ch2 |lnh|2 .

Finally, combining (46), (47) and (50), (51), we obtain
un

i ≤ γn
i,h + Ch2 |ln h|2

≤ un
i,h + Ch2 |ln h|2

≤ βn
i + Ch2 |lnh|2

≤ un
i + Ch2 |ln h|2 .

That is ∥∥un
i − un

i,h

∥∥
∞ ≤ Ch2 |lnh|2 ∀i = 1, ..., M.

¤

4.3. L∞-Error estimate for the system of QVIs. Now combining estimates
(10) , (17), and (35), we have:
Theorem 10.

‖U − Uh‖∞ ≤ Ch2 |ln h|2 . (52)
Proof. Indeed,

‖U − Uh‖∞ ≤ ‖U − Un‖∞ + ‖Un − Un
h ‖∞ + ‖Un

h − Uh‖∞ (53)
≤ µn

∥∥U0
∥∥
∞ + Ch2 |ln h|2 + µn

∥∥U0
h

∥∥
∞ .

So, passing to the limit, as n →∞, the desired result follows. ¤

Remark 2. For practical purposes, it is interesting to estimate the error be-
tween the exact solution and the actually computed approximations Un

h , that
is,

‖U − Un
h ‖∞ ≤ µn

∥∥U0
∥∥
∞ + Ch2 |ln h|2 . (54)

Proof. Indeed,
‖U − Un

h ‖∞ ≤ ‖U − Un‖∞ + ‖Un − Un
h ‖∞

≤ µn
∥∥U0

∥∥
∞ + Ch2 |ln h|2 .

¤

5. Numerical example
Let Ω = (0, 1)× (0, 1), M = 3, Ai = −4, f1 = sin2 x, f2 = cos2 x, f3 = ex.

We divide Ω into squares with edge h = 1
10 , then by diagonals with same

direction divide every square into two triangles. Then the �nite dimensional
quasi-variational inequalities system is

{
Ui ∈ Ki,(
AiUi − Fi, V − Ui

) ≥ 0, ∀V ∈ Ki, i = 1, ..., M,
(55)
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where Ai are the sti�ness matrices de�ned in (11), and the right-hand side Fi =
(fi, ϕl) , l = 1, ..., Nh,, Ki =

{
V ∈ RNh such that V ≤ K + Ui+1

}
, UM+1 = U1,

K = (k, ..., k))T .The iterative scheme is,{
Un+1

i ∈ Ki,n+1,
(
AiU i,n+1 − F i, V − U i,n+1

) ≥ 0, ∀V ∈ Ki,n+1, i = 1, ..., M,
(56)

where Ki,n+1 =
{
V ∈ RNh such that V ≤ K + U i,n

}
, UM+1,n = U1,n.

We take k = 0.01 and solve (56) (Jacobi type) with projected Gauss-Seidel as
inner iteration. The stopping criteria for the inner iteration and outer iteration
both are ε = 10−6, the initial value is U0 = (U0

1 , ..., U0
M ), such that AiU0

i =
F i, i = 1, ..., M.

The computation of the solution for h, h/2 and h/4 leads to a convergence
order p = 2.062, which is in good agreement with the theory.

6. Conclusion
This paper addresses the �nite element of the Dirichlet problem for an elliptic

quasi-variational inequalities system. The optimal error estimate is derived,
combining geometric convergence of an iterative scheme and its �nite element
error estimate, obtained by means of the concept of subsolutions and discrete
regularity for variational inequalities. A numerical example is also given to
support the theory.

In light of the �ndings of this work, we wonder whether these can be exploited
to:
1. Extend the study to the noncoercive problem.
2. Derive a posteriori error estimate for this system of Q.V.I.
This will be the focus of our attention in future works.
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COUPLING OF LAGUERRE TRANSFORM AND FAST
BEM FOR SOLVING DIRICHLET INITIAL-BOUNDARY

VALUE PROBLEMS FOR THE WAVE EQUATION

A.R.Hlova, S.V. Litynskyy, Yu.A.Muzychuk, A.O.Muzychuk

Ðåçþìå. Ïîäàíî ïîãëèáëåíèé àíàëiç äâîõ ïiäõîäiâ äî ðîçâ'ÿçóâàííÿ
ïî÷àòêîâî-êðàéîâî¨ çàäà÷i Äiðiõëå äëÿ îäíîðiäíîãî õâèëüîâîãî ðiâíÿííÿ,
ÿêèé áàçó¹òüñÿ íà ïî¹äíàííi ïåðåòâîðåííÿ Ëàãåðà çà ÷àñîâîþ çìiííîþ i
ìåòîäó ãðàíè÷íèõ åëåìåíòiâ (ÌÃÅ) ó íåîáìåæåíié ïðîñòîðîâié îáëàñòi.
Â ðåçóëüòàòi îáèäâà ïiäõîäè ïðèâîäÿòü äî òi¹¨ æ ñàìî¨ íåñêií÷åííî¨ òðè-
êóòíî¨ ñèñòåìè ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü. Àíàëiç ïðîâåäåíî ó
âàãîâèõ ïðîñòîðàõ Ñîáîë¹âà, åëåìåíòàìè ÿêèõ ¹ ôóíêöi¨ ÷àñîâî¨ çìiííî¨,
ÿêi íàáóâàþòü çíà÷åíü ó âiäïîâiäíèõ ïðîñòîðàõ Ñîáîë¹âà.

Äëÿ çìåíøåííÿ ïîòðåáè â îá÷èñëþâàëüíèõ ðåñóðñàõ ðåàëiçîâàíî øâèä-
êèé ÌÃÅ, âèêîðèñòîâóþ÷è àäàïòèâíó ïåðåõðåñíó àïðîêñèìàöiþ îòðèìà-
íèõ ìàòðèöü. Êðiì òîãî, ìåòîä ïîøèðåíî íà ðîçâ'ÿçóâàííÿ çàäà÷i Äiðiõëå
â îáëàñòi ç âêëþ÷åííÿì. Òàêîæ ïîäàíî ÷èñåëüíi ðåçóëüòàòè äëÿ ìîäåëü-
íèõ çàäà÷, ÿêi iëþñòðóþòü òî÷íiñòü i î÷iêóâàíèé ïîðÿäîê çáiæíîñòi çàï-
ðîïîíîâàíîãî ìåòîäó.
Abstract. We present an improved analysis of two approaches to solving of
the Dirichlet initial-boundary value problem for a homogeneous wave equa-
tion, which are based on the combination of the Laguerre transform for the
time variable with the Galerkin-BEM in an unbounded spatial domain. Both
approaches lead to the same in�nite triangular system of boundary integral
equations as a result. The analysis is done in weighted Sobolev spaces of
functions of the time variable taking values in suitable Sobolev spaces.

For reducing both storage and computational costs we implement the fast
BEM using adaptive cross approximation of obtained matrices. Furthermore,
we extend this method for solving the Dirichlet problem in the domain with
an inclusion. We also present numerical results for some model problems
which illustrate the accuracy and estimated convergence order of the proposed
method.

1. Introduction
In recent years, many studies have been dedicated to the development of

e�ective methods for the numerical solution of time domain boundary integral
equations (TDBIEs), which arise from initial-boundary value problems (IBVPs)
for the wave equation. Comprehensive lists of related works are presented
in [11, 35]. A common feature of these studies is the usage of deep analytical
concepts to take into account the dependence of the solutions on the time
variable. However, as noted in [10], the computational complexity of proposed

Key words. Dirichlet initial-boundary value problem, wave equation, Laguerre transform,
Fast Galerkin-BEM, time domain boundary integral equations, boundary integral equation,
retarded single layer potential, half-space with inclusion, adaptive cross approximation.
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approaches is still high for problems in 3D domains and the development of
e�ective numerical methods remains actual.

In this paper we present new results of solving both IBVPs and TDBIEs
by approach, which is based on the Laguerre transform (LT) [18, 25] in the
time variable. The advantage of this transform is that an inverse LT is easy
to calculate. Moreover, for solving both boundary value problems (BVPs) and
boundary integral equations (BIEs) in the Laguerre domain, e�cient recur-
sive algorithms can be constructed using techniques well developed for elliptic
problems and their BIEs.

We distinguish two approaches with respect to the order in which the LT is
applied in solving IBVPs. In the �rst case, the transform is applied directly
to the IBVP, and as a result, a BVP for in�nite triangular system of elliptic
equations is obtained. Such approach was used (without much theoretical justi-
�cation) for solving di�erent evolutional IBVPs in papers [4,5,13,28,29,33,37],
in which for the problems in the Laguerre domain a suitable representation of
the solution was also constructed and corresponding BIEs were derived. Varia-
tional formulations for such problems and associated BIEs were proposed and
justi�ed for the �rst time in [30].

Theoretical aspects of another approach, when the LT is directly applied to
retarded potentials, were investigated in [24, 25]. The results for Dirichlet and
Neumann IBVPs obtained therein have enabled to substantiate the equivalence
between each of these problems and in�nite triangular systems of corresponding
BIEs in the Laguerre domain and also to de�ne the scope of the problems that
can be solved with help of the LT.

Both aforementioned approaches lead to the same in�nite triangular system
of BIEs. This fact creates a basis for the justi�cation of the �rst approach, as
well as for the e�ective implementation of the BEM for numerical solution of
the system of BIEs. These two aspects determine the main research goal of this
article.

We begin in Section 1 with a brief description of the second approach, where
the LT is applied to the TDBIE, which arose from the Dirichlet IBVP by using
a retarded single layer potential. We introduce the needed functional spaces,
give a de�nition of the LT and obtain an in�nite sequence of BIEs.

In Section 2 we transform the IBVP to the BVP for an in�nite system of
elliptic equations and explain how this approach leads to a sequence of BIEs.
After that we derive the representation of the solution of the IBVP in the form of
the Fourier-Laguerre series, which coe�cients represent the solution of the BVP
in the Laguerre domain. Then in Section 3 we consider the IBVP in the half-
space with some inclusion and obtain the representation of its solution using a
Green's function for such domain. At the end in Section 4 we demonstrate the
implementation of the Galerkin-BEM and its fast modi�cation, and present the
results of the numerical experiments.

2. Reduction of the IBVP to the infinite system of BIEs
Let Ω− be a bounded domain in R3 with Lipschitz boundary Γ, Ω := R3\Ω−,

R+ := (0,∞), Q := Ω×R+ and Σ := Γ×R+. We consider the initial-boundary
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value problem for the homogeneous wave equation
∂2u(x, t)

∂t2
−∆u(x, t) = 0, (x, t) ∈ Q, (1)

where ∆ :=
3∑

i=1
∂2/∂x2

i is the Laplace operator. We �nd a function u(x, t),

(x, t) ∈ Q, which satis�es (in some sense) the equation(1), homogeneous initial
conditions

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, x ∈ Ω, (2)

and the Dirichlet boundary condition

u(x, t) = g(x, t), (x, t) ∈ Σ, (3)

where function g is given on Σ. We also call (1)-(3) a Dirichlet problem.
To solve the IBVP (1)-(3) we use a retarded single layer potential

(Sµ)(x, t) :=
1
4π

∫

Γ

µ(y, t− |x− y|)
|x− y| dΓy, (x, t) ∈ Q, (4)

where µ : Γ×R→ R is an unknown density. It is known (see, e.g., [34]) that if
an arbitrary function µ(y, τ) is smooth enough and µ(y, τ) = 0 for y ∈ Γ and
τ ≤ 0, then function

u(x, t) = (Sµ)(x, t), (x, t) ∈ Q, (5)

satis�es (in the classical sense) the wave equation and initial conditions. The
function u satis�es also the boundary condition (3), if µ is a solution of such
TDBIE

(Vµ)(x, t) :=
1
4π

∫

Γ

µ(y, t− |x− y|)
|x− y| dΓy = g(x, t), (x, t) ∈ Σ. (6)

Let X be a Hilbert space with an inner product (·, ·)X and an induced norm
|| · ||X . In order to construct a generalized solution of the IBVP (1)-(3) we
consider spaces of functions of the time variable which have values in some
Hilbert space X. For such functions the weighted Lebesgue space L2

σ(R+; X) [9]
with weight ρσ(t) = e−σt ( t ∈ R+ and parameter σ > 0) is the simplest Hilbert
space. Elements v ∈ L2

σ(R+; X) are measurable functions v : R+ → X such
that

∫
R+

||v(t)||2X e−σtdt < ∞. This space is equipped with the inner product

(v, w)L2
σ(R+;X) :=

∫

R+

(
v(t), w(t)

)
X

e−σtdt, v, w ∈ L2
σ(R+;X), (7)

and the norm

‖v‖L2
σ(R+;X) :=

√
(v, v)L2

σ(R+;X), v ∈ L2
σ(R+; X). (8)
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We also consider the weighted Sobolev spaces

Hm
σ (R+; X) :=

{
v ∈ L2

σ(R+; X) | v(k) ∈ L2
σ(R+; X),

v(k)(0) = 0, k = 0,m
} (9)

where m ∈ N (N is the set of natural numbers), with norm

‖v‖Hm
σ (R+;X) :=

(
m∑

k=0

∥∥∥v(k)
∥∥∥

2

L2
σ(R+;X)

)1/2

. (10)

Here derivatives v(k), k ∈ N, are understood in terms of the space D′(R+; X),
elements of which are distributions with values in the space X. We assume
that elements of the space Hm

σ (R+; X) are extended with zero for non-positive
arguments.

It is well known [18], that Laguerre polynomials {Lk(σ·)}k∈N0:=N∪{0} form an
orthogonal basis in the space L2

σ(R+) := L2
σ(R+;R), that is, for every function

f ∈ L2
σ(R+) there exists its expansion in the Fourier-Laguerre series

f(t) =
∞∑

k=0

fk Lk(σt), t ∈ R+, (11)

where Fourier-Laguerre coe�cients f0, f1, ..., fk, ... have the representation for-
mula

fk := σ

∫

R+

f(t) Lk(σt) e−σtdt, k ∈ N0. (12)

We write a sequence of any elements of the set X as a vector-column v :=
(v0, v1, ...)> and denote by X∞ a set of all possible sequences of elements of the
set X. In particular, we consider a space of numerical sequences l2 :=

{
v ∈

R∞ |
∞∑

j=0
|vj |2 < +∞}

with the inner product (v,w) =
∞∑

j=0
vjwj and the

norm ||v||l2 :=
( ∞∑

j=0
|vj |2

)1/2

for v,w ∈ l2.

We recall [18] that the Laguerre transform (LT) is a mapping L : L2
σ(R+) →

l2, which maps an arbitrary function f to a sequence f = (f0, f1, ..., fk, ...)>
according to the rule (12). We will also use the notation Lkf ≡ (Lf)(k) :=
fk ∀k ∈ N0. Note that the Parseval equality holds

||f ||2L2
σ(R+) =

1
σ

∞∑

k=0

|fk|2. (13)

The LT L is a bijective mapping and its inverse L−1 : l2 → L2
σ(R+) maps an

arbitrary sequence h = (h0, h1, ..., hk, ... )> to a function

(L−1h)(t) :=
∞∑

k=0

hk Lk(σt), t ∈ R+. (14)
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For the arbitrary function f ∈ L2
σ(R+) we have an equality

L−1Lf = f. (15)
In [24] the LT was extended on functions of time variable with values in the

Hilbert space X. LT was considered as a mapping L : L2
σ(R+;X) → X∞ which

operates according to the rule (12).
Let

l2(X) :=
{
v ∈ X∞ |

∞∑

j=0

‖vj‖2
X < +∞}

be a Hilbert space with the inner product (v,w) =
∞∑

j=0
(vj , wj)X and the norm

||v||l2(X) :=
( ∞∑

j=0
‖vj‖2

X

)1/2

, v,w ∈ l2(X).

Proposition 1 ( [24], Theorem 2). The mapping L : L2
σ(R+; X) → X∞ that

maps an arbitrary function f to a sequence f := (f0, f1, ..., fk, ... )> according
to the formula (12), is injective and its image is the space l2(X), and

‖f‖2
L2

σ(R+;X) =
1
σ

∞∑

k=0

||fk||2X . (16)

In addition, for the arbitrary function f ∈ L2
σ(R+; X) we have an equality

L−1Lf = f, (17)
where the mapping L−1 : l2(X) → L2

σ(R+; X) is the inverse to L and maps the
arbitrary sequence h := (h0, h1, ..., hk, ... )> to the function h according to the
formula (14).

De�nition 4 ( [24]). Let σ > 0 and X be a Hilbert space. Mappings

L : L2
σ(R+;X) → l2(X) and L−1 : l2(X) → L2

σ(R+; X),

mentioned in theorem 1, are called, respectively, direct and inverse Laguerre
transforms, and the formula (16) is an analogue of the Parseval equality.

De�nition 5 ( [23]). Let X, Y , Z be arbitrary sets and q : X × Y → Z be
some mapping. By a q-convolution of sequences u ∈ X∞ and v ∈ Y ∞ we
understand the sequence w := (w0, w1, ..., wj , ...)> ∈ Z∞, whose elements are
obtained by the rule

wj :=
j∑

i=0

q (uj−i, vi) ≡
j∑

i=0

q (ui, vj−i) , j ∈ N0; (18)

the q-convolution of u and v is shortly written in form w = u ◦
q
v.

If X = L(Y, Z) is a space of linear operators acting from the space Y into
the space Z and q(A, v) = Av, A ∈ L(Y, Z), v ∈ Y , then components of
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the q-convolution of arbitrary sequences A ∈ (L(Y, Z)
)∞ and v ∈ Y ∞ are

represented by the formula

wj =
j∑

i=0

Aj−ivi, j ∈ N0. (19)

In this case we write w = A ◦
Z
v.

Note that for any function f ∈ L2
σ( R+; X) the Fourier-Laguerre series of the

function f(t−a), a > 0, can be expressed in terms of the sequence f := Lf [24,
Lemma 1]:

f
( · −a

)
= e−σa

∞∑

j=0

( j∑

i=0

ζj−i(σa)fi

)
Lj(σ·) in L2

σ(R+;X), (20)

where
ζ0(s) := 1, ζk(s) := Lk(s)− Lk−1(s), s ∈ R+ = [0,∞), k ∈ N. (21)

Let H1(Ω) and H1/2(Γ) denote the usually de�ned (see, e.g., [17]) Sobolev
spaces and H−1/2(Γ) := (H1/2(Γ))′. Consider now the retarded single layer
potential (4) and TDBIE (6). Assuming the density µ ∈ L2

σ(R+;H−1/2(Γ)) is
su�ciently smooth, we can write the expansion [24]:

(Sµ)(x, t) =
∞∑

j=0

uj(x) Lj(σt), (x, t) ∈ Q, (22)

where coe�cients uj := Lj Sµ, j ∈ N0, are components of the q-convolution
u(x) :=

(
S ◦

H1(Ω)
µ

)
(x), x ∈ Ω. (23)

Here µ := Lµ and the sequence S consists of operators Sk : H−1/2(Γ) →
H1(Ω), k ∈ N0, acting on any function ξ ∈ L2(Γ) according to the rule

(Skξ)(x) :=
∫

Γ

ξ(y)ek(x− y) dΓy, x ∈ Ω, (24)

where

e0(z) :=
e−σ|z|

4π|z| , ek(z) :=
e−σ|z|

4π|z|
(
Lk(σ|z|)− Lk−1(σ|z|)

)
, z ∈ R3 \ {0}, k ∈ N.

(25)
One can extend the expression (24) to the H−1/2(Γ)×H1/2(Γ) duality product
(Skξ)(x) =

〈
ξ(·), ek(x− ·)

〉
Γ
, x ∈ Ω, for elements ξ ∈ H−1/2(Γ) [24].

Similarly, applying the LT to the equation (6), we obtain an in�nite trian-
gular system of BIEs

V ◦
H1/2(Γ)

µ = g on Γ, (26)

where g := Lg and V is a sequence of boundary operators Vk : H−1/2(Γ) →
H1/2(Γ), k ∈ N0, which may be expressed as a composition Vk := γ0 ◦ Sk of
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operator Sk with trace operator γ0. In case of ξ ∈ L2(Γ) we have

(Vkξ)(x) =
∫

Γ

ξ(y)ek(x− y) dΓy, x ∈ Γ. (27)

Proposition 2 ( [24], Theorem 1). Let g ∈ Hm+4
σ0

(R+;H1/2(Γ)) for some
σ0 > 0 and m ∈ N0. Then there exists a unique generalized solution of the
problem (1)-(3), it belongs to the space Hm+1

σ0
(R+; H1(Ω)) and for any σ ≥ σ0

such an inequality holds

||u||Hm+1
σ (R+;H1(Ω)) ≤ C||g||Hm+4

σ (R+;H1/2(Γ)), (28)

where C > 0 is a constant that is not dependent on g.
In addition, the generalized solution of the problem (1)-(3) can be represented

as a sum of series (22), that is convergent in the space L2
σ0

(R+; H1(Ω)), which
coe�cients u are de�ned by formula (23), where the sequence µ ∈ l2(H−1/2(Γ))
is a solution of the system of the BIEs (26) with g := Lg.

Note that the assumption about the function g in the proposition 2 guaran-
tees the applicability of the LT at all stages of constructing of the numerical
solution to the problem (1)-(3) without any additional assumption about re-
lation between parameters m and σ0. On theoretical aspects of generalized
solutions to such problems in other functional spaces, see, for example, in [21].

3. System of the convolutional type and its solution
We can also obtain both the representation (22) of the generalized solution of

the problem (1)-(3) and the system of the BIEs (26) in another way. For this we
use such property of the LT for the derivatives of the function f ∈ H2

σ(R+; X):

Lk

(
∂2f(t)

∂t2

)
= σ2

k∑

l=0

(k − l + 1)Ll

(
f(t)

)
, k ∈ N0. (29)

By applying the LT to the wave equation (1) directly and using (29), in Ω we
obtain the following in�nite triangular system of elliptic equations





Pu0 = 0,
c1u0 + Pu1 = 0,
c2u0 + c1u1 + Pu2 = 0,

. . . . . . . . . . .
cku0 + ck−1u1 + ... + Puk = 0,

. . . . . . . . . . . . .

(30)

where uk := Lku, k ∈ N0, are the unknown functions and P := c0I −∆, ck :=
(k + 1)σ2, I is the identity operator. Henceforth we denote u := (u0, u1, ...)>
and G the in�nite triangular matrix in the left hand side of (30). This allows
us to rewrite the system in form

Gu=0 in Ω. (31)
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By the LT we obtain from the condition (3) a sequence of boundary conditions
regarding the unknown functions

γ0u = g := Lg on Γ. (32)

Theorem 1. Let the given function g satis�es the condition of the proposition
2, that is, g ∈ Hm+4

σ0
(R+; H1/2(Γ)) for some σ0 > 0 and m ∈ N0. Then the

unique generalized solution u ∈ Hm+1
σ0

(R+;H1(Ω)) of the problem (1)-(3) can
be represented by the solution u := (u0, u1, ...)> of the boundary value problem
(31), (32) as the sum of a series

u(x, t) =
∞∑

j=0

uj(x)Lj(σt), (x, t) ∈ Q. (33)

Proof. Let us consider a top part Gkuk=0 of the system (31) for any �xed
k ∈ N0, which consists from the k + 1 equations. According to the [30, Lemma
2] its any solution uk := (u0, u1, ..., uk)> can be represented in Ω by the formula

uj(x) =
j∑

i=0

〈
µi(·), ej−i(x− ·)

〉
Γ
, x ∈ Ω, j ∈ N0, (34)

where µj , j ∈ N0, are some elements of the space H−1/2(Γ) and functions
ej , j ∈ N0, may be expressed through a fundamental solutionE := (E0, E1, ...)>
of the operator G in form

e0 := E0, ej := Ej − Ej−1, j ∈ N. (35)

In addition, if the sequence µk :=
(
µ0, µ1, ..., µk

)> is obtained as a solution of
the system of BIEs

j∑

i=0

〈
µi(·), ej−i(x− ·)

〉
Γ

= gj , x ∈ Γ, j ∈ 0, k, (36)

then the sequence uk will be the solution of suitable Dirichlet problem for the
system Gkuk=0.

Notice that (35) may be reduced to form (25) [31, Theorem 1]. Therefore,
the formula (34) coincides with the representation of the Fourier-Laguerre coef-
�cients of the retarded potential (4) and BIEs in the system (36) are the same
as in the in�nite system (26). So sequence µ :=

(
µ0, µ1, ...

)> coincides with
LT of the solution µ of the TDBIE (6) and, as a consequence, the solution u
of the problem (31), (32) coincides with LT of the solution u of the problem
(1)-(3). As a conclusion from the Proposition 2 we have that µ ∈ l2(H−1/2(Γ))
and u ∈ l2(H1(Ω)).
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Using the notation (21), in the case µi ∈ L2
σ(Γ) we can rewrite the formula

(34)

uj(x) =
j∑

i=0

∫

Γ

µi(y)ej−i(x− y)dΓy =

=
∫

Γ

e−σ|x−y|

4π|x− y|
j∑

i=0

µi(y)ζj−i(σ|x− y|)dΓy.

(37)

By substituting the expression (37) into the partial sum

ũk(x, t) :=
k∑

j=0

uj(x)Lj(σt), (x, t) ∈ Q, (38)

and taking the external sum into the integral over Γ we obtain

ũk(x, t) =
∫

Γ

e−σ|x−y|

4π|x− y|
k∑

j=0

j∑

i=0

µi(y)ζj−i(σ|x− y|)Lj(σt)dΓy, (x, t) ∈ Q. (39)

Taking into account, that µ ∈ l2(H−1/2(Γ)) and formula (20) holds for this
sequence, putting k →∞ we �nally get

u(x, t) =
∫

Γ

1
4π|x− y|µ(y, t− |x− y|)dΓy, (x, t) ∈ Q, (40)

where µ = L−1µ. Since µ is the solution of the TDBIE (6), the retarded
potential (40) coincides with potential (4). Therefore, (40) is the solution of
the problem (1)-(3). ¤

Taking into account that the system (26) is triangular we rewrite it as a
sequence of BIEs





(V0µ0)(x) = g0(x),
(V0µ1)(x) = g̃1(x),

. . . . . . . . .
(V0µk)(x) = g̃k(x), k ∈ N, x ∈ Γ,

. . . . . . . . .

(41)

with recurrent expressions in right-hand sides

g̃k(x) := gk(x)−
k−1∑

i=0

(Vk−iµi)(x), k ∈ N. (42)

Since the boundary operator V0 is H−1/2(Γ)-elliptical [6,17], for arbitrary �xed
k ∈ N0 the k−th equation in (41) with gk ∈ H1/2(Γ) has a unique solution µk ∈
H−1/2(Γ). We can choose (by some criteria) the value of parameter N and �nd
from (41) the �rst components for the sequence µN :=

(
µ0, µ1, ..., µN , 0, 0, ...

)>.
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Using it for calculation a sequence uN :=
(
u0, u1, ..., uN , 0, 0, ...

)> by the for-
mula

uN (x) =
(
S ◦

H1/2(Γ)
µN

)
(x), x ∈ Ω, (43)

we obtain an approximate solution ũN (x, t) of the problem (1)-(3) as a partial
sum (38) of the expansion (22) of the exact solution u(x, t).

4. Problems in the domain with an inclusion
Reducing the IBVP (1)-(3) to the BVP (31), (32) allows us to solve it by

numerical approaches, which have been successfully used for solution of the
elliptic problems. In particular, it concerns the use of surface potentials, which
are based on Green's function [8] for speci�c domain Ω0 instead of the funda-
mental solution (25) for operator G in R3. Suppose Γ0 is a Lipschitz boundary
of Ω0.

De�nition 6 ( [31]). Let N(x, y) := (N0(x, y), N1(x, y), ...)>, (x, y) ∈ Ω0×Ω0

be a solution of the equation
Gu = δ̄y in

(D′(Ω0)
)∞

, (44)

where δ̄y := ( δ(· − y), 0, 0, ... )>. We say that N is Green's function for the
Dirichlet problem for the system (31) in the domain Ω0 if all its components
vanish for (x, y) ∈ Γ0 × Ω0.

Building the Green's function for the domain with arbitrary geometry isn't a
simple task in general. But for domains with a certain type of symmetry it can
be built analytically by the re�ection method [31]. Without loss of generality
we present here the Green's function for the Dirichlet problem in case of the
half-space Ω0 = R2 × R+:

Nk(x, y) = ek(x− y)− ek(x− y∗), k ∈ N0, (45)
where y∗ is a point symmetric to the point y in regards to the plane Γ0 and
functions ek are de�ned by (25).

Let us denote the unit exterior normal vector to the surface Γ0 as ν. Consider
a sequence D which consists of operators Dk : H1/2(Γ0) → H1(Ω)), k ∈ N0,
that act on an arbitrary function ξ ∈ H1/2(Γ0) according to the rule

(Dkξ)(x) :=
∫

Γ0

ξ(y) ∂νNk(x, y) dΓy, x ∈ Ω0, (46)

where ∂ν is the notation of the normal derivative. If λ ∈ l2(H1/2(Γ0)) is an
arbitrary sequence then a sequence

u(x) := −(
D ◦

H1(Ω)
λ

)
(x), x ∈ Ω0, (47)

satis�es the system (31) [31].
Let bounded domain Ω− with a Lipschitz boundary Γ is an inclusion in

the domain Ω0 (Γ0 ∩ Γ = ®) and Ω := Ω0 \ Ω−. For an arbitrary function
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µ ∈ L2
σ(R+; H−1/2(Γ)) let us consider q-convolution

u(x) :=
(
S̃ ◦

H1(Ω)
µ

)
(x), x ∈ Ω, (48)

of sequences µ := Lµ and S̃ := (S̃0, S̃1, ...)>, where operators S̃k : H−1/2(Γ) →
H1(Ω)), k ∈ N0, act on an arbitrary ξ ∈ L2(Γ) according to the rule

(S̃kξ)(x) :=
∫

Γ

ξ(y) Nk(x, y) dΓy, x ∈ Ω. (49)

For ξ ∈ H−1/2(Γ) one can extend the expression (49) to the H−1/2(Γ)×H1/2(Γ)
duality product (S̃kξ)(x) =

〈
ξ(·), Nk(x− ·)

〉
Γ
with x ∈ Ω. It is easy to see that

for arbitrary functions µ ∈ L2
σ(R+;H−1/2(Γ)) and λ ∈ L2

σ(R+; H1/2(Γ0)) a
combination of the sequences

u(x) :=
(
S̃ ◦

H1(Ω)
µ

)
(x)− (

D ◦
H1(Ω)

λ
)
(x), x ∈ Ω, (50)

satis�es the system (31) in Ω and the boundary condition γ0u = λ on Γ0.
Suppose u satis�es the wave equation (1) and initial conditions (2) in Ω and

traces γ0,0u = λ and γ0,1u = g are given on the cylinders Σ0 := Γ0 × R+ and
Σ = Γ × R+ respectively. Then unknown sequence µ for the representation
(50) can be obtained from the system of BIEs

Ṽ ◦
H1/2(Γ)

µ = g + γ0,1

(
D ◦

H1(Ω)
λ

)
on Γ, (51)

where g := Lg and the components of the sequence Ṽ are boundary operators
Ṽk := γ0,1 ◦ S̃k, Ṽk : H−1/2(Γ) → H1/2(Γ), k ∈ N0. Note that the resulting
system can be reduced to the sequence of BIEs similar to (41) and has only one
solution.

5. Fast BEM and results of numerical experiments
Both (26) and (51) systems are triangular so one can solve their equations

sequentially. For this we use Galerkin-BEM and it fast modi�cation [16,36].
Let ΓM =

⋃M
l=1 τ l be some approximation of the boundary Γ by triangular

boundary elements {τl}M
l=1 and

{
ϕ0

l

}M

l=1
be a set of linearly-independent on ΓM

piece-wise constant functions

ϕ0
l (x) =

{
1, x ∈ τl,
0, x /∈ τl.

(52)

Treating a value h := max
l=1,M

( ∫
τl

ds
)1/2 as a parameter of the spatial approx-

imation, we will consider a �nite-dimensional space S0
h(Γ) := span

{
ϕ0

l

}M

l=1

and represent a numerical solution of the system (41) by a sequence µN,h :=
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(
µh

0 , µh
1 , ..., µh

N , 0, 0, ...
)> which components are linear combinations of piece-

wise constant functions

µh
k =

M∑

l=1

µh
k,lϕ

0
l ∈ S0

h(Γ), k ∈ N0. (53)

Here
{

µh
k,l

}M

l=1
=: µh

k ∈ RM is a vector of unknown coe�cients which can be
found from the following system of linear algebraic equations

Vh
0µh

k = gh
k −

k−1∑

j=0

Vh
k−jµ

h
j , k ∈ N0, (54)

where gh
k [i] =

∫
τi

gk(x)dsx, i = 1,M, and elements of the matrix Vh
p have

following form

V h
p [i, l] =

∫

τi

∫

τl

ep(x− y)dsydsx, i, l = 1,M, p ∈ N0. (55)

Notice, that for any k ≥ 1 the components µ0, µ1, ..., µk−1, obtained from BIE
(41) on previous steps, are included into the expression in the right-hand side
of the current equation. The evaluation of the surfaces integrals (55) has been
discussed in [32].

We interpret sequences

µN,h :=
(
µh

0 , µh
1 , ..., µh

N , 0, 0, ...
)>

and
uN,h :=

(
uh

0 , uh
1 , ..., uh

N , 0, 0, ...
)>

with some �xed value of the parameter N as numerical solutions of the sys-
tems of BIEs (26) and the BVP (31)-(32), respectively. As well, a partial sum

ũN,h(x, t) :=
N∑

j=0
uh

j (x)Lj(σt) we use as a numerical solution of the problem

(1)-(3).
Let us assess the accuracy of the proposed method. Taking into account an

obvious inequality ‖u − ũN,h‖H1
σ(R+;H1(Ω)) ≤ ‖u − ũN‖H1

σ(R+;H1(Ω)) + ‖ũN −
ũN,h‖H1

σ(R+;H1(Ω)), in this paper we restrict ourselves to examining the poste-
riori error of the numerical solution, which corresponds to the second term in
the right hand part of this inequality. An asymptotic error of the numerical
solution in this case has been investigated in [22].

In the following we demonstrate numerical solutions of some model problems
for the wave equation in the domain Ω = R3\Ω−, where Ω− = (−1, 1)×(−1, 1)×
(−1, 1). For generating boundary values we use a spherical impulse represented
by the formula

w(x, t) := |x|−1w∗(t− |x|+ 1)ϑ(t− |x|+ 1), (x, t) ∈ R3 \ {0} × R0, (56)
with a cubic B-spline w∗ and the Heaviside step function ϑ(t). Notice that the
function w satis�es (1) and (2).
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Example 1. We consider the problem (1)-(3) in Ω× R+ with the given trace
data g = w on Σ and analyze accuracy and convergence of numerical solutions
uh

k and ũN,h on the sequence of discretization ΓM with increasing M and with
N = 20.

Tabl. 1. Convergence analysis of uh
0 , uh

10 and ũN,h for Exam-
ple 1 with σ = 4, N = 20 and increasing M

M
uh

0 (x) uh
10 ũN,h

δh
0 eoc0 εh

0 δh
10 eoc10 εh

10 δ̃N,h ẽoc
N,h

ε̃N,h

108 1.92·10−4 3.24 2.92·10−3 22.21 2.40·10−2 4.66
300 7.01·10−5 2.03 1.18 8.46·10−4 2.43 6.43 8.11·10−3 2.13 1.57
768 3.22·10−5 2.42 0.54 2.97·10−4 2.23 2.26 3.09·10−3 2.05 0.60

1452 1.83·10−5 2.24 0.31 1.49·10−4 2.16 1.14 1.62·10−3 2.03 0.31
1728 1.55·10−5 2.16 0.26 1.24·10−4 2.14 0.94 1.36·10−3 2.02 0.26
2700 1.02·10−5 2.14 0.17 7.72·10−5 2.12 0.59 8.63·10−4 2.03 0.17
4800 5.93·10−6 2.11 0.10 4.22·10−5 2.10 0.32 4.83·10−4 2.02 0.09

At �rst we consider the impact of the parameter h on the approximation
error of numerical solutions uh

k , k ∈ 0, N , and ũN,h with some �xed value
of the parameter N . For this we compute values δh

k := ||uh
k − uk||L2(Ωa,b) and

εh
k := δh

k/||uk||L2(Ωa,b)∗100 %, and also values δ̃N,h := ||ũN,h−ũN ||L2
σ(R+;L2(Ωa,b))

and ε̃N,h := δ̃N,h/||ũN ||L2
σ(R+;L2(Ωa,b)) ∗ 100 %, where (a, b) =: Ω(a,b) is a spatial

interval from which observation points are taken. Notice that we provide es-
timates in the norm of such Lebesgue space with aim to simplify calculations
in the unbounded exterior domain Ω. Using a sequence of �nite-dimensional
spaces S0

h(Γ) with decreasing h for both kinds of numerical solutions we eval-
uate estimated orders of convergence [36] eock := ln(δhj−1

k /δ
hj

k )/ln(hj−1/hj),
k ∈ 0, N , and ẽocN,h := ln(δ̃N,hj−1/δ̃N,hj )/ln(hj−1/hj), where hj−1 and hj are
consequent values of the parameter h.

Computed in Ω(a,b) with a = (1.2, 0, 0) and b = (10, 0, 0), some results of
the series of numerical experiments are given in Table 1. They highlight that
eoc ≈ 2 for both numerical solutions uh

k and ũN,h.
Now we assume that the cube Ω− is included in the half space Ω0 = R2 ×

(−2,∞) and Ω = Ω0 \ Ω−. For generating boundary functions in this case we
use a function ŵ(x, t) := w(x, t)−w(x∗, t), where x∗ is a point symmetric to the
point x with respect to the plane Γ0 = {(x1, x2, x3) | x3 = −2}. It is obvious
that function ŵ satis�es (1) and (2) and ŵ(x, t) ≡ 0 on Γ0.
Example 2. We consider the problem (1)-(3) in Ω × R+ with traces γ0,0u =
λ ≡ 0 and γ0,1u = g = ŵ given on the cylinders Σ0 := Γ0×R+ and Σ = Γ×R+

respectively, and analyze accuracy and convergence of numerical solutions uh
k

and ũN,h on the sequence of discretization ΓM with increasing M and with
N = 20.
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We solve this problem by modi�ed BEM using the representation (50) based
on Green's functions for the Dirichlet problem for the system (31) in the domain
Ω0. In this approach after discretization of BIEs we obtain matrices Ṽh

k similar
to the Vh

k , k ∈ N0. Results of the numerical experiment are plotted in Figure
1.

As we can see from the Table 2 numerical solutions, obtained in this ap-
proach, have the same accuracy and the convergence order as in the previous
example. Notice that some complication of the method due to the use of Green's
functions does not lead to signi�cant increase of computational resources for
solving the problem in the domain with inclusion. The fact that we have avoided
solving BIEs on the unbounded surface Γ0 is an advantage of the modi�ed BEM
in solving such problems.

Tabl. 2. Convergence analysis of uh
0 , uh

10 and ũN,h for Exam-
ple 2 with σ = 4, N = 20 and increasing M

M
uh

0 (x) uh
10 ũN,h

δh
0 eoc0 εh

0 δh
10 eoc10 εh

10 δ̃N,h ẽoc
N,h

ε̃N,h

108 8.58·10−5 3.24 1.36·10−3 7.59 1.78·10−2 3.35
300 3.14·10−5 2.03 1.19 3.33·10−4 2.76 1.85 4.96·10−3 2.50 0.94
768 1.44·10−5 2.42 0.55 9.97·10−5 2.56 0.56 1.77·10−3 2.20 0.33

1452 8.14·10−6 2.23 0.31 4.64·10−5 2.40 0.26 9.06·10−4 2.10 0.17
1728 6.93·10−6 2.16 0.26 3.79·10−5 2.31 0.21 7.57·10−4 2.05 0.14
2700 4.56·10−6 2.13 0.17 2.27·10−5 2.29 0.13 4.79·10−4 2.06 0.09

We now wish to notice that matrices Vh
k and Ṽh

k , k ∈ 0, N , which arise
after discretization of boundary operators in equations (26) and (51), are fully
populated and can reach large sizes. So for their calculation we apply the Fast
BEM which based on adaptive cross approximation (ACA) of these matrices
[3, 12]. Because this approach is universal in relation to the function in the
kernel of boundary operators, an e�cient algorithm can be constructed for
calculating all the above matrices.

It can be checked that functions in the sequence e(x−y) =
(
e0(x−y), e1(x−

y), ...ek(x−y), ...
)> are asymptotically smooth [3, De�nition 3.2.]. This ensures

that for each of the matrices Vh
k ACA algorithm admits admissible partitions

into blocks that can be approximated by the product of matrices of smaller rank.
For example, if some block A ∈ Rm×n in Vh

k is admissible it can be approxi-
mated with arbitrary small error ε in Frobenius norm by the matrix Sr := QT>,
where Q ∈ Rm×r and T ∈ Rn×r are matrices of rank r ≤ min(m,n). To do
this we have to calculate and store in RAM only a subset of elements of the
block A [3, Chapter 3].

In order to demonstrate e�ciency of the ACA we apply Fast BEM to the
problem which we have considered in the Example 1. As we can see from the
Figure 2, memory consumption for storing data of the approximated matrix
Vh

0 depends on the parameter M almost linearly. By contrast, we need to store
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Fig. 1. Numerical solution of the problem in Example 2 in two
sets of the observation points {(x1, 0, 0)} and {(0, 0, x3)}

Fig. 2. Memory consumption for storing data of the matrix Vh
0

for the Fast BEM (ε = 10−2 and ε = 10−3 ) and for the ordinary
BEM (ε = 0)

M2 elements of Vh
0 using ordinary BEM. The same dependency concerns the

time needed for calculating data of Vh
0 by the fast and the ordinary BEM.

Note that according to the ACA algorithm admissible blocks are allocated
outside of the main diagonal of the matrix. So their approximation doesn't
require high accuracy. On Figure 3 we demonstrate the error of the numerical
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Fig. 3. Error δ̃10,h of numerical solutions for Example 1, which
was obtained by the Fast BEM ( ε = 10−2 and ε = 10−3) and
by the ordinary BEM (ε = 0)

solutions for Example 1, which were obtained by the Fast BEM with approxi-
mation of admissible blocks in matrices Vh

k with some �xed values of the error
ε. As we can see, the numerical solution in case of ε = 10−3 has almost the
same error δ̃N,h as in case of the application the ordinary BEM, when all ele-
ments of matrices Vh

k were calculated (on the �gure we denote this solution by
ε = 0).

6. Conclusions
We have described two approaches based on the Laguerre transform in the

time domain, that require the solution of a sequence of boundary integral equa-
tions to obtain an approximate solution of the Dirichlet problem for the wave
equation. After an additional justi�cation for such transform, we have shown
the application of the boundary elements method for solving integral equa-
tions in the Laguerre domain and derived a representation of the approximate
solution of the wave equation.

In solving evolutional problems the coupling of the LT and the BEM makes
it possible to use other techniques, that have been developed for elliptical prob-
lems. In particular, we have modi�ed this method for solving Dirichlet problem
in the domain with an inclusion, using Green's functions for the representation
of the solution. Also we have implemented the Fast BEM using adaptive cross
approximation for reducing both the storage and computational costs.

Finally, we can point out that in this article we have con�ned ourselves to
considering a problem with a Dirichlet boundary condition in order to simplify
the presentation. For other boundary conditions the approaches considered
above will lead to other boundary integral equations that will need to be solved
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by another implementation of the BEM. We also remark that the Laguerre
transform can be combined with other suitable methods. For example, for
solving more general second-order hyperbolic equations, which coe�cients are
variable in the space domain, the Laguerre transform can be similarly combined
with the �nite elements method.
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LAGRANGE INTERPOLATION FORMULA
IN LINEAR SPACES

O.F.Kashpur, V.V.Khlobystov

Ðåçþìå. Â ëiíiéíîìó íåñêií÷åííîâèìiðíîìó ïðîñòîði çi ñêàëÿðíèì äî-
áóòêîì i â ñêií÷åííîâèìiðíîìó åâêëiäîâîìó ïðîñòîði äîñëiäæåíà òî÷íiñòü
ôîðìóëè Ëàãðàíæà íà ïîëiíîìàõ âiäïîâiäíîãî ñòåïåíÿ.

Abstract. In a linear in�nite-dimensional space with scalar product and in
a �nite-dimensional Euclidean space the accuracy of the Lagrange formula on
polynomials of the corresponding degree is investigated.

The problem of polynomial approximation of nonlinear operators is an ac-
tual in both the theoretical and in the applied senses. One of the methods of
its solution is interpolation. A partial case of this problem is the polynomial
interpolation of many-variable functions. It was shown in [1] that for the con-
struction of the unique interpolation polynomial in the Euclidean space Ek it
is necessary that the relation (between the n-th degree of the polynomial and
the number of nodes m) m = (n+k)!/n!k! be executed. Moreover constructing
an n-th degree interpolant in Ek induces some di�culties. In practice, there
are cases where the number of interpolation nodes is given less than what is
needed to construct of the unique interpolant of the corresponding degree. In
[2], it is shown that the number of nodes can be chosen less than dimension
of the space of polynomials used for seeking the solution, with the problem
will be invariantly solvable and will be have the unique solution with minimum
norm generated by a scalar product by the Gaussian measure [3, 7]. We call an
interpolation task invariantly solvable if it has a solution at arbitrary values of
the function in the nodes.

In [4] interpolation operator polynomials in Hilbert spaces are given. In
the article one of these interpolants is considered. It is shown that it is an
interpolation Lagrange formula with fundamental functional polynomials in a
linear space with a scalar product. This interpolation Lagrange formula (the
number of nodes m and the degree of polynomial n are not interconnected)
is studied both for the case of an in�nite-dimensional linear space and for
the case of the �nite-dimensional Euclidean space Ek, the conditions for the
accuracy of the Lagrange formula on polynomials of the corresponding degree
are determined.

Key words. Hilbert space, Euclidean space, operator, interpolation polynom, invariance of
solution.
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It was shown in [4] that the interpolation operator polynomial of n-th degree
for the operator f has the form

Pn(x) =

〈
f, Γ+

m

n∑

p=0

(xi, x)p|mi=1

〉
, (1)

where xi is an interpolation node, Pn(xi) = f(xi) = fi, i = 1,m, f =
(f1, f2, ..., fm), xi, x ∈ H, H is the Hilbert space, f : H → Y, Y is a linear
space, fi ∈ Y, Γ+

m is the Moore-Penrose pseudo-inverse matrix to the matrix

Γm = ‖
n∑

p=0

(xi, xj)p‖, < ·, · >=
m∑

i=1

fiαi, αi ∈ R1.

In [4], in the event of ful�llment of the necessary and su�cient condition for
solvability of operator interpolation task, such as

A0f = 0, A0 = E − Γ+
mΓ = E − ΓΓ+

m, (2)
A0 is an idempotent symmetric matrix. Based on (2), we get: if the matrix Γm

is nonsingular (Γ+
m = Γ−1

m ), then the problem will be invariantly solvable, that
is, the solution will exist for any values of the operator in the nodes.

We denote Γk
m = ‖(xi, xj)k‖. In [4] it is shown that in the case of ful�llment-

ing of the condition
rg(Γ0

m + Γ1
m) + n− 1 ≥ m (3)

the operator interpolation problem is invariantly solvable.
Consequently, let us consider the case when the problem is invariantly solv-

able: Γ+
m = Γ−1

m , and the formula (1) turn in to the form:

Pn(x) =

〈
f, Γ−1

m

n∑

p=0

(xi, x)p|mi=1

〉
. (4)

In the following, the formula (4) will be rewritten in a di�erent form and
we reduce it to the Lagrange formula in a linear space with a scalar prod-
uct. Let X, Y be linear spaces, X with a scalar product (·, ·), f : X →
Y, Pn(x) be an interpolation operator polynomial of n-th degree for f with
nodes x1, x2, ..., xm, Pn(xi) = f(xi) = fi, x, xi ∈ X, i = 1, m, and the nodes xi

are chosen in such a way that the matrix ‖Pni(xj)‖ will be nonsingular, where

Pni(x) =
n∑

k=0

Lkix
k, Lkix

k = (xi, x)k, L0i = 1, Pni : X → R1, i = 1,m.

The invertibility of the matrix for a �nite-dimensional Euclidean space is
considered in [2] by the choice of independent vectors related with nodes. In
the following, we denote: Pn(x) = (Pn1(x), Pn2(x), ..., Pnm(x)), and by P−1

ni (xj)
the elements of the matrix ‖Pni(xj)‖−1. According to [4] we get

Pn(x) =
〈
f, ‖Pni(xj)‖−1Pn(x)

〉
=

=
〈
f, ‖P−1

ni (xj)‖Pn(x)
〉

=
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=
m∑

i=1

fi

m∑

j=1

P−1
ni (xj)Pnj(x) =

m∑

i=1

fili(x), (5)

where
li(x) =

m∑

j=1

P−1
ni (xj)Pnj(x),

li(xk) =
m∑

j=1

P−1
ni (xj)Pnj(xk) = δik, (6)

δik is the Kronecker symbol. Since (5), (6), we obtain

Pn(xk) =
m∑

i=1

fili(xk) = fk = f(xk), k = 1,m.

Thus, the formula (5) is the Lagrange formula for an interpolation polynomial
in a linear space with a scalar product

Pn(x) =
m∑

i=1

fili(x), li(xk) = δik, i, k = 1,m, (7)

where li(x) are fundamental functional Lagrange polynomials of n-th degree,
li : X → R1.

Note that the interpolant (7) with the nodes xi, i = 1,m is not a unique
polynomial in X. Indeed, if pn : X → Y is an arbitrary operator polynomial of
n-th degree [5], then formula

Pn(x) = pn(x) +
m∑

i=1

(fi − pn(xi))li(x) (8)

de�nes the set of interpolation operator polynomials of n-th degree for the
operator f ,

Pn(xk) = pn(xk) +
m∑

i=1

(fi − pn(xi))li(xk) =

= pn(xk) +
m∑

i=1

(fi − pn(xi))δik = fk = f(xk), k = 1,m.

In [4] it is proved that the interpolant (7) belonging to the set (8) has a minimal
norm generated by a scalar product by the Gaussian measure [3, 7].

It is known that in in�nite-dimensional spaces, the �nite set of nodes does
not guarantee the uniqueness of the interpolant and its invariance with respect
to polynomials of the corresponding degree. It was shown in [6-8] that the
continuum information used to construct an interpolation polynomial does not
provide the uniqueness of the interpolation formula. The so-called "Kergin
insterpolation" for many-variable functions and in the Banach space was con-
siderated in the paper [8]. We note, �rstly, that the interpolation formulas
(see [8])are convergence with the formulas from [6, 7] obtained in the 1960s
up to equivalent integral transformations, and secondly, the classical Newton
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interpolation formulas for many-variable functions can not be derived from this
formulas [9].

It has been known that the expression

pn(x)−
m∑

i=1

pn(xi)li(x) (9)

does not turn into a zero element of the in�nite-dimensional linear space Y [5],
that is, the Lagrange formula is not exact on the operator polynomial of the
corresponding degree, and when constructing polynomial (5) the numbers m
and n are not related.
Example 1. Let's put in (9) n = 1, where p1 : C[0, 1] → C[0, 1], p1(x) =∫ 1

0 K(t, s)x(s)ds,K(t, s) is a continuous function on [0, 1] × [0, 1]. Taking into
account the form li(x), we obtain that p1(x) − ∑m

i=1 p1(xi)li(x) 6= 0. Conse-
quently, in an in�nite-dimensional linear space, the Lagrange formula is not
exact on polynomials of the corresponding degree.

Let us consider the partial case where X is a �nite-dimensional Euclidean
space on an example of the space E2, f : E2 → R1, u ∈ E2, u = (x, y), ui =
(xi, yi), i = 1,m, where ui is selected so that the matrix ‖∑n

p=0(xixj + yiyj)p‖
has to be nonsingular (see [2]). From (5) we get

Pn(x, y) =


f,

∥∥∥∥∥∥

n∑

p=0

(xixj + yiyj)p

∥∥∥∥∥∥

−1
n∑

p=0

(xxi + yyi)p|mi=1


 =

=
m∑

i=1

fili(x, y).

(10)

Then

li(x, y)|mi=1 =

∥∥∥∥∥∥

n∑

p=0

(xixj + yiyj)p

∥∥∥∥∥∥

−1
n∑

p=0

(xxi + yyi)p|mi=1,

li(xk, yk) = δik, i, k = 1,m.

Taking into account (10), we obtain

Pn(xk, yk) =
m∑

i=1

fili(xk, yk) = fk = f(xk, yk), k = 1,m

and the formula (6) is the interpolation Lagrange formula for f : E2 → R1,
where li(x, y) are the fundamental Lagrange n-th degree polynomials of two
variables. Also on the basis of [4] Pn(x, y) is the minimum norm interpolant [3,
7] on the set of n-th degree interpolants of two variables.

In the following, we assume that the number m is given (�xed), and the
n-th degree of the interpolation polynomial is chosen from the inequality m ≤
min p = p, where p is the dimension of the space of n-th degree polynomials in
E2, p = (n + 1)(n + 2)/2 [10].
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Example 2. Let m = 2, ui = (xi, yi), i = 1, 2, u1 = (0, 1), u2 = (1, 0). Then
m = 2 ≤ min(n + 1)(n + 2)/2 = p = 3, n = 1.

Let us verify the condition (3) of the invariant solvability of the problem:
rg(Γ0

m + Γ1
m) + n− 1 = 2 + 1− 1 = 2 ≥ m, m = 2.

Thus, with such a choice of nodes, the problem is invariantly solvable, that is,
the matrix Γ2 has an invertible.

Let us construct the interpolation polynomial. We get
∥∥∥∥∥∥

1∑

p=0

(ui, uj)p

∥∥∥∥∥∥

−1

=
1
3

∥∥∥∥
2 −1
−1 2

∥∥∥∥ ,

∥∥∥∥∥∥

1∑

p=0

(ui, uj)p

∥∥∥∥∥∥

−1
1∑

p=0

(ui, uj)p|2i=1 =
1
3

∥∥∥∥
1− x + 2y
1 + 2x− y

∥∥∥∥ ,

l1(x, y) =
1
3
(1− x + 2y),

l2(x, y) =
1
3
(1 + 2x− y),

li(uj) = δij , i, j = 1, 2,

P1(x, y) =
2∑

i=1

fili(x, y).

Let f(x, y) = 1 + 2x + 3y. Then f1 = f(0, 1) = 4, f2 = f(1, 0) = 3,

P1(x, y) = 4 · 1
3
(1− x + 2y) + 3 · 1

3
(1 + 2x− y) =

=
1
3
(7 + 2x + 5y) 6= 1 + 2x + 3y,

that is, in the case of m = 2, p = 3, n = 1, the interpolant P1(x, y) is not exact
on the polynomial of the 1-st degree.
Example 3. Let m = 3, ui = (xi, yi), i = 1, 2, 3, u1 = (0, 1), u2 = (1, 0), u3 =

(0,−1). Then
m = 3 ≤ min(n + 1)(n + 2)/2 = p = 3, n = 1.

Check the condition (3):
rg(Γ0

m + Γ1
m) + n− 1 = 3 + 1− 1 = 3 ≥ m, m = 3.

The condition is ful�lled, hence there exists Γ−1
3 . Let us construct the interpo-

lation polynomial. We obtain
∥∥∥∥∥∥

1∑

p=0

(ui, uj)p

∥∥∥∥∥∥

−1

=
1
4

∥∥∥∥∥∥

3 −2 1
−2 4 −2
1 −2 3

∥∥∥∥∥∥
,
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∥∥∥∥∥∥

1∑

p=0

(ui, uj)p

∥∥∥∥∥∥

−1
1∑

p=0

(ui, u)p|3i=1 =
1
2

∥∥∥∥∥∥

1− x + y
2x

1− x− y

∥∥∥∥∥∥
,

P3(u) =
3∑

i=1

fili(u),

l1(x, y) = 1/2(1− x + y), l2(x, y) = x, l3(x, y) = 1/2(1− x− y),

li(uj) = δij , i, j = 1, 2, 3.

Let f(u) = 1 + 2x + 3y, then
f1 = f(0, 1) = 4, f2 = f(1, 0) = 3, f3 = f(0,−1) = −2.

We get

P1(x, y) = 4 · 1
2
(1− x + y) + 3x− 2 · 1

2
(1− x− y) = 1 + 2x + 3y,

that is, in the case of m = 3, p = 3, n = 1, the Lagrange interpolant (10) is
exact on the �rst degree polynomial of two variables.

Thus, for the �nite-dimensional Euclidean space E2, the conclusion is as
follows: in the case of m < p we have the unique Lagrange interpolant with
minimum norm, herewith it is not exact on polynomials of the corresponding
degree (Example 2). In the paper [2] this interpolant is called underdetermined.
If m = p, then the Lagrange interpolation polynomial is unique and is exact on
the polynomial of the corresponding degree [1] (example 3).

Similar considerations and transformations can be made for the Euclidean
space Ek, u ∈ Ek, u = (x1, x2, ..., xk), where the number of nodes m is given
(�xed), and the n-th degree of the interpolant is determined from the condition

m ≤ min p = p, p = (n + k)!/n!k!, k ≥ 2, (11)
where p is the dimension of the space of n-th degree polynomials in Ek [1].
We select the nodes u1, u2, ..., um in such a way that there exists the inverse
matrix in (5), and the degree of the interpolation polynomial is determined
from inequality (11).

Let us formulate the following conclusion for the space Ek. We get
Theorem 1. Let f : Ek → R1, k ≥ 2, m be given. Then, if m = p, then the

Lagrange interpolant Pn(u), u ∈ Ek will be exact on all polynomials of degree
not higher than n, and if m < p, then the minimum norm interpolant Pn(u),
does not have such a property.

We �x the degree of the interpolation polynomial and the number of nodes,
for example, n = 2,m = 4. For this case, we construct interpolants in spaces
R1, Ek, k = 2, 3, . . .. Let pk be the dimension of polynomials of the second
degree in Ek.

In the space E2, when n = 2,m = 4, we obtain that p2 = 6. So, for un-
ambiguous de�nition of P2(x, y), there are not enough two interpolation nodes.
If we consider the construction of the interpolation polynomial of the second
degree in E3, in the case of m = 4, we obtain that p3 = 10 and for the un-
ambiguous construction of the interpolant there are not enough 6 nodes. If we
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continue this process, then it is clear that as the dimension of the space Ek

grows, the dimension of the polynomial space of the two variables pk increases,
and therefore, when constructing the interpolation polynomial of the 2-nd de-
gree for 4 nodes, we are in a situation of "underdeterminacy". As you can see,
the larger the dimension of the space Ek, the more indeterminacy (uncertainty)
and less accurate of the constructed interpolation polynomial. We arrive at the
following conclusion: in the case of decreasing of the Euclidean space dimen-
sion, the "underdeterminacy" of the Lagrange interpolant is decreases, and in
the case f : R1 → R1 we have m = p = n + 1, that is, we obtain the classical
n-th degree Lagrange polynomial with n+1 nodes for the function of one vari-
able. In the space R1 for m = 4 we get that p = 3, that is, we can construct the
interpolation polynomial of the third degree, herewith the resulting interpolant
is unique.

As regards the linear space X with a scalar product, the following statement
holds. If the interpolation nodes are chosen so that the corresponding matrix is
nonsingular, then there is always the unique Lagrange interpolation polynomial
with minimum norm [3, 7], but this interpolant is not exact on the operator
polynomials of the corresponding degree (Example 1). We note that, the num-
bers m (number of nodes) and n (interpolation degree) are not related to each
other when the interpolation operator Lagrange polynomial is constructed[4].
Remark. We consider the polynomial (8) in the following form

Pn(x) = pn(x, f) +
m∑

i=1

(fi − pn(xi, f))li(x), x ∈ X, (12)

where pn(x, f) is a c-polynomial, that is pn(x, f) = f , if f = pn(x) is an
arbitrary polynomial operator of degree not higher than n [4]. Then the formula
(12) de�nes an exact interpolant on polynomials of the corresponding degree.
Several examples of constructing a c-polynomial are considered in [4].
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ALGEBRAIC AND TRIGONOMETRIC GENERALIZED
INTERPOLATION OF HERMITE-BIRKHOFF TYPE
FOR OPERATORS DEFINED ON FUNCTIONAL

SPACES AND FUNCTIONS OF MATRIX
VARIABLE, AND THEIR APPLICATIONS

A.P.Khudyakov, Ye.V. Panteleyeva, A.A.Trofimuk

Ðåçþìå. Ó ðîáîòi ïîáóäîâàíî àëãåáðà¨÷íó ôîðìóëó òèïó Åðìiòà äëÿ
îïåðàòîðiâ, âèçíà÷åíèõ ó ôóíêöiîíàëüíèõ ïðîñòîðàõ. Iíòåðïîëÿöiéíà
ôîðìóëà ïîäiáíîãî âèäó, ÿêà ìiñòèòü çíà÷åííÿ äèôåðåíöiàëiâ Ãàòî äî-
âiëüíîãî ïîðÿäêó, ïîáóäîâàíà íà ìíîæèíi ìàòðèöü. Îòðèìàíî ìàòðèöþ,
àíàëîãi÷íó äî ôîðìóëè Ëåéáíiöà. Ñêîíñòðóéîâàíî ôîðìóëó àïðîêñèìàöi¨
äèôåðåíöiàëiâ Ãàòî äîâiëüíîãî ïîðÿäêó ç ìàòðè÷íèìè àðãóìåíòàìè. Íà
îñíîâi ìàòðè÷íî¨ iíòåðïîëÿöiéíî¨ ôîðìóëè òèïó Åðìiòà ïîáóäîâàíî ÷è-
ñåëüíèé ìåòîä äëÿ ðîçâ'ÿçóâàííÿ çàäà÷i Êîøi äëÿ ìàòðè÷íî-äèôåðåíöià-
ëüíîãî ðiâíÿííÿ. Ïðîäåìîíñòðîâàíî ïðèêëàä ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ
çàäà÷i Êîøi äëÿ ìàòðè÷íî-äèôåðåíöiàëüíîãî ðiâíÿííÿ ïåðøîãî ïîðÿäêó.
Ïîáóäîâàíî i äîñëiäæåíî ïàðàìåòðè÷íå ñiìåéñòâî òðèãîíîìåòðè÷íèõ ìàò-
ðè÷íèõ iíòåðïîëÿöiéíèõ ïîëiíîìiâ òèïó Åðìiòà-Áiðêãîôà.
Abstract. For operators de�ned in function spaces, the algebraic interpo-
lation formula of Hermite type is constructed. The interpolation formula of
similar type, containing the value of the Gateaux di�erential of an arbitrary
order, is constructed for operators on the set of matrices. Matrix analogues
of the Leibniz formula are obtained. The formula for approximate calcula-
tion of the Gateaux di�erential of an arbitrary order of the matrix argument
function is constructed. Based on the matrix interpolation formula of the Her-
mite type, the approximate method for solving the Cauchy problem for the
matrix-di�erential equation is obtained. The illustrative example of approxi-
mate solving the Cauchy problem for a �rst-order matrix-di�erential equation
is constructed. A parametric family of trigonometric matrix interpolation
polynomials of Hermite-Birkho� type is constructed and investigated.

1. Introduction
The fundamentals of the theory of operator interpolation are given in [1, 2].

Here, in particular, the problem of operator interpolation of Hermite-Birkho�
type is investigated. The complexity of this problem lies in the fact that even
with di�erent interpolation nodes it can either have a non-unique solution, or do
not have a solution at all. Some basics of matrix interpolation are also contained
in [1, 2]. The theory of matrix interpolation is quite fully given in [3]. The
papers [4�6] are devoted to the construction and research of Hermite-Birkho�
generalized matrix interpolation formulas for concrete Chebyshev systems.

Key words. Generalized interpolation of Hermite-Birkho� type, Gateaux di�erential, Leib-
niz formula, matrix argument function, Cauchy problem for the matrix-di�erential equation.
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In the given work the interpolation formulas for functions of a scalar ar-
gument, constructed and investigated in [7, 8], are summarized to the case of
operators de�ned in functional spaces and on the set of matrices. When prov-
ing the theorems on the ful�llment of interpolation conditions for the respective
polynomials, matrix analogues of the Leibniz formula are used, which are also
obtained in this work. The parametric family of trigonometric matrix Hermite-
Birkho� polynomials is constructed.

2. Algebraic interpolation
Let X be a certain given set of functions x = x(s), de�ned on the segment

[a, b], Y =
{
y(s, t), t ∈ T ⊂ RN

}
� some function space where T is a given

numerical set of N -dimensional space RN , and let F (x) ≡ F (t; x(s)) be an
operator mapping X into Y . Let's assume that in the various elements xk =
xk(s) (k = 0, 1, . . . , n) of the set X, such that xk(s) 6= xν(s) on [a, b], the
values F (xk) of the operator F (x), x ∈ X are known. We choose in the set
X functions h1(s), h2(s), . . . , hn+1(s) such that h1(s)h2(s) · · ·hn+1(s) 6= 0 on
[a, b]. Let the value Dn+1(F ; xn+1) of the operator of the form

Dn+1F (x) = δn+1F [x;h1h2 · · ·hn+1],

where δn+1F [x; h1h2 · · ·hn+1] is the Gateaux di�erential of the order n + 1 of
the operator F (x) at the point x in the directions h1, h2, . . . , hn+1, be known
in the node xn+1 = xn+1(s) ∈ X.

We now consider further the operator polynomials Pn+1 : X → Y of the
form

Pn+1(x) =
n+1∑

ν=0

aν(t, s)xν(s), (1)

where aν(t, s) are some functions of the variables t and s.
We introduce the polynomials ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)×

×(x− xk+1) · · · (x− xn), ωn(x) = (x− x0)(x− x1) · · · (x− xn).

Theorem 1. The interpolation polynomial

L̃n+1(x) = Ln(x) +
ωn(x)Dn+1F (xn+1)
(n + 1)!h1h2 · · ·hn+1

,

where

Ln(x) =
n∑

k=0

ln,k(x)F (xk)
ln,k(xk)

, (2)

satis�es the interpolation conditions

L̃n+1(xk) = F (xk) (k = 0, 1, . . . , n);

Dn+1

(
L̃n+1; xn+1

)
= Dn+1(F ;xn+1). (3)

The formula (2) is exact for the operator polynomials of the type (1) of the
degree not higher than n + 1.
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Proof. Since ln,k(xi) = δkiln,k(xk), where δki is the Kronecker symbol, and
ωn(xk) = 0, k, i = 0, 1, . . . , n, then the ful�llment of the �rst group of interpo-
lation conditions in (3) is obvious.

Since δn+1Pn[x;h1h2 · · ·hn+1] ≡ 0, where Pn(x) is an arbitrary operator alge-
braic polynomial of a degree not higher than n, then δn+1Ln[x; h1h2 · · ·hn+1] ≡
≡ 0. It is also obvious that δn+1ωn[x; h1h2 · · ·hn+1] = (n + 1)!h1h2 · · ·hn+1.
Taking into account the structure of the polynomial (2), we will obtain that
the last condition in (3) also holds.

We now prove the invariance of the formula (2) with respect to the polyno-
mials of the form (1) of the degree not higher than n + 1. If F (x) = Pn(x),
where Pn(x) is a polynomial of the form (1) of the degree not higher than
n, then as is known in [2, p. 361], Ln(Pn; x) ≡ Pn(x). And since in this
case Dn+1Pn(x) ≡ 0, then L̃n+1(Pn;x) ≡ Pn(x). Let further suppose F (x) =
P̃n+1(x) = = xn+1(s), then Dn+1P̃n+1(x) = (n + 1)!h1h2 · · ·hn+1, and

L̃n+1(P̃n+1; x) = Ln(P̃n+1; x) + ωn(x).

By analogy with to the scalar case [7, p. 6], L̃n+1

(
P̃n+1; x

)
≡ P̃n+1(x).

Thus, the formula (2) is exact for operator polynomials of the form (1) of the
degree not higher than n + 1. ¤

We now consider the problem of interpolating operators on the set of ma-
trices. Let X be the set of functional or stationary square matrices A = A(t),
t ∈ T ⊂ ⊂ R. Let's introduce di�erential operator of type

DnF (A) =
dnF (z)

dzn

∣∣∣∣
z=A

, D =
d

dz
, z ∈ C, A ∈ X, (4)

where F (z) is the entire function.
The value of the operator (4) for the matrix function of the type B1F (A)B2,

where B1 and B2 are some �xed matrices from X, is calculated by the formula
Dn (B1F (A)B2) = B1D

nF (A)B2. The operator D, which is included in (4), for
the function of the type F (cA+B), where c ∈ C, and B is a certain �xed matrix
of X, de�ned by the equality DF (cA+B) = cF ′(z)|z=cA+B, and for the product
U(A)V (A) by the formula D (U(A)V (A)) = DU(A)V (A)+U(A)DV (A). In the
last expression, it is important in what order the multipliers in matrix products
are taken. For example, D (V (A)U(A)) = DV (A)U(A) + V (A)DU(A), and in
the general case, D (U(A)V (A)) 6= D (V (A)U(A)). Similarly, the values of
higher-order operators are calculated, as well as operators from the products of
functions with a number of multipliers more than two.

In mathematical analysis, the Leibniz formula for the derivative of n-th order
(n ∈ N) of the product of two scalar functions is known [9]

(u(z) · v(z))(n) =
n∑

k=0

Ck
nu(n−k)(z)v(k)(z), where Ck

n =
n!

k!(n− k)!
, (5)

which holds if the functions u(z) and v(z) are n times di�erentiable at the
point z ∈ C. We generalize this formula to the case of functions of the matrix
argument and operator of the type (4).
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Theorem 2. If the functions U(z) and V (z), z ∈ C, are di�erentiable n times,
then the formula

Dn (U(A)V (A)) =
n∑

k=0

Ck
nDkU(A)Dn−kV (A), A ∈ X, (6)

is valid.
Proof. We apply the method of mathematical induction. When n = 1 we will
have

D1 (U(A)V (A)) = DU(A)V (A) + U(A)DV (A) =
= C0

1D1U(A)V (A) + C1
1U(A)D1V (A).

Let's assume that the formula (6) is exact for n = k. We prove that it also
holds for n = k + 1.

Dk+1 (U(A)V (A)) = D

[
n∑

k=0

Ck
nDkU(A)Dn−kV (A)

]
=

=
n∑

k=0

Ck
n

[
Dk+1U(A)Dn−kV (A) + DkU(A)Dn−k+1V (A)

]
=

= C0
nD0U(A)Dn+1V (A) +

n∑

k=1

(
Ck−1

n + Ck
n

)
DkU(A)Dn−k+1V (A)+

+Cn
nDn+1U(A)D0V (A).

Since Ck−1
n + Ck

n = Ck
n+1, C0

n = C0
n+1 = 1, Cn

n = Cn+1
n+1 = 1, then

Dk+1 (U(A)V (A)) =
n+1∑

k=0

Ck
n+1D

kU(A)Dn+1−kV (A).

¤
We now introduce the di�erential operator of the form
D̃n+1F (A) ≡ D̃n+1F (A; Hn+1Hn · · ·H1) = δn+1F [A; Hn+1Hn · · ·H1], (7)

where δn+1F [A; Hn+1Hn · · ·H1] is Gateaux di�erential of order n + 1 at the
point A ∈ X in the directions H1,H2, . . . , Hn+1 from X. We assume that
D̃0F (A) ≡ F (A).
Theorem 3. If the functions U(A) and V (A) are Gateaux di�erentiable n
times at the point A ∈ X, then the formula

D̃n (U(A)V (A); HnHn−1 · · ·H1) = (8)

=
n∑

k=0

∑

i1,...,ik
j1,...,jn−k

D̃kU(A; HikHik−1
· · ·Hi1)D̃n−kV (A; Hjn−k

Hjn−k−1
· · ·Hj1)

holds true.
Here, for each value of k (0 ≤ k ≤ n) the summation is over for all disjoint

sets (i1, i2, . . . , ik) and (j1, j2, . . . , jn−k) such that 1 ≤ i1 < i2 < . . . < ik ≤ n;
1 ≤ j1 < j2 < . . . < jn−k ≤ n.
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Proof. We use, as in the proof of theorem 2, the method of mathematical in-
duction. If n = 1 by the de�nition of the Gateaux di�erential we will have

D̃1 (U(A)V (A); H1) = δ [U(A)V (A); H1] = lim
λ→0

(
U(A + λH1)V (A + λH1)

λ
−

−U(A)V (A)
λ

)
= lim

λ→0

(
U(A + λH1)V (A + λH1)− U(A)V (A + λH1)

λ
+

+
U(A)V (A + λH1)− U(A)V (A)

λ

)
= δU [A; H1]V (A) + U(A)δV [A; H1] =

= D̃1U(A; H1)V (A) + U(A)D̃1V (A; H1). (9)
Hereinafter the expression of the form δ [U(A)V (A); H1] should be understood
as the Gateaux di�erential δW [A; H1], respectively, of the function W (A) =
= U(A)V (A) at the point A in the direction H1.

Let's suppose that formula (8) is true when n = m. We show that it holds
for n = m + 1. From (7) � (9) we have

D̃m+1 (U(A)V (A); Hm+1 · · ·H1) = δ
[
D̃m (U(A)V (A); Hm · · ·H1) ; Hm+1

]
=

=
n∑

k=0

∑

i1,...,ik
j1,...,jn−k

(
D̃k+1U (A; Hn+1Hik · · ·Hi1) D̃n−kV

(
A; Hjn−k

· · ·Hj1

)
+

+D̃kU (A; Hik · · ·Hi1) D̃n+1−kV
(
A; Hn+1Hjn−k

· · ·Hj1

))
=

=
n+1∑

k=0

∑

i1,...,ik
j1,...,jn+1−k

D̃kU (A; Hik · · ·Hi1) D̃n+1−kV
(
A; Hjn+1−k

· · ·Hj1

)
.

Here the summation is carried out in the same way as in the formulation
of the theorem, while 1 ≤ i1 < i2 < . . . < ik ≤ n + 1; 1 ≤ j1 < j2 < . . . <
< jn+1−k ≤ n + 1. ¤

In the special case, for example, for n = 3 the formula (8) has the form
D̃3 (U(A)V (A);H3H2H1) = D̃3U (A; H3H2H1) V (A) + D̃2U (A;H3H2)×

×D̃1V (A;H1) + D̃2U (A;H3H1) D̃1V (A; H2) + D̃2U (A; H2H1)×
×D̃1V (A;H3) + D̃1U (A; H1) D̃2V (A; H3H2) + D̃1U (A;H2)×

×D̃2V (A; H3H1) + D̃1U (A; H3) D̃2V (A;H2H1) + U(A)D̃3V (A; H3H2H1) .

We suppose that in the elements Ak(t) of the set X such that Ak(t) −
Aν(t) are invertible matrices, t ∈ T , k, ν = 0, 1, . . . , n, k 6= ν, the values
of the operator F (A) are known, as well as at the node An+1(t) the value
D̃mF (An+1) ≡ D̃mF (An+1; HmHm−1 · · ·H1) of the operator (7) from F (A),
where 1 ≤ m ≤ n, Hk ∈ X (k = 1, 2, . . . , m) is known. Let's introduce the nota-
tions ω(A) = (A−A0)(A−A1) · · · (A−An), lk(A) = (A−A0) · · · (A−Ak−1)(A−
−Ak+1) · · · (A−An), Bk = D̃mlk(An+1), Ãk = BkAn+1+B−1

k

m∑
i=1

D̃m−1lk(An+1;
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Hm · · ·Hi+1Hi−1 · · ·H1)BkHi (k = 0, 1, . . . , n). We will assume that the ma-
trices Bk, lk(Ak), BkAk − Ãk (k = 0, 1, . . . , n) and D̃mω(An+1) are invertible.
Theorem 4. The matrix polynomial of the degree not higher than n + 1

L̃n+1(F ; A) =
n∑

k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)+

+ω(A)
[
D̃mω(An+1)

]−1
D̃mF (An+1) (10)

satis�es the interpolation conditions
L̃n+1(Ak) = F (Ak) (k = 0, 1, . . . , n); D̃mL̃n+1(An+1) = D̃mF (An+1). (11)

Proof. Since lk(Ai) = δkilk(Ak) (k, i = 0, 1, . . . , n), where δki is the Kronecker
symbol, and ω(Ak) = 0 for the same values of k, then the �rst group of the
conditions in (11) is satis�ed. By the formula (8)

D̃m

(
lk(A)(BkA− Ãk);Hm · · ·H1

)
= D̃mlk(A;Hm · · ·H1)(BkA− Ãk)+

+
m∑

i=1

D̃m−1lk(A; Hm · · ·Hi+1Hi−1 · · ·H1)D̃1(BkA− Ãk; Hi).

Due to the fact that D̃1(BkA− Ãk; Hi) = BkHi, then for A = An+1

D̃m

(
lk(A)(BkA− Ãk);Hm · · ·H1

)∣∣∣
A=An+1

= Bk(BkAn+1 − Ãk)+

+
m∑

i=1

D̃m−1lk(A; Hm · · ·Hi+1Hi−1 · · ·H1)BkHi = 0.

Taking into account the structure of the formula (10), we will obtain that
the last condition in equation (11) also holds. ¤

Using the interpolation polynomial (10), we can construct a formula for
approximate calculation of the Gateaux di�erential of the m-th (1 ≤ m ≤ n)
order from the function of the matrix argument F (A) by its values at the nodes
A0, A1, . . . , An. Indeed, the relation

F (A) =
n∑

k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)+

+ω(A)
[
D̃mω(An+1)

]−1
D̃mF (An+1) + Rn(F ;A),

where Rn(F ; A) is the remainder term of the formula (10), holds true. Then,
expressing from the last equality D̃mF (An+1), we will have

D̃mF (An+1) = D̃mω(An+1)ω−1(A)

(
F (A)−

n∑

k=0

lk(A)(BkA− Ãk)×

×
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)−Rn(F ; A)

)
. (12)
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Discarding in (12) the remainder term Rn(F ; A) of the formula (10), we will
obtain the required approximate formula for calculating the Gateaux di�erential

δmF [A; HmHm−1 · · ·H1] ∼= D̃mω(An+1)ω−1(A)×

×
(

F (A)−
n∑

k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)

)
. (13)

Here, the matrix A must be such that the matrices entering into the formula
are invertible.

3. The solving matrix-differential equations
Let X be the set of square stationary matrices of �xed size. We consider the

matrix equation containing the �rst-order Gateaux di�erential of the matrix
function

δU [A; H] = F (U,A), U(A0) = U0, A, H ∈ X, (14)
where U(A) is a function of the matrix argument, F is some generally non-
linear function of two arguments, δU [A;H] is the Gateaux di�erential at the
point A in the direction H satisfying the speci�ed in (14) initial condition.

For the approximate solving the Cauchy problem (14), we use the formula
(13) for approximating the Gateaux di�erential of the matrix argument func-
tion. In our case it takes the form

δU [A; H] = δω[A;H]ω−1(An+1)× (15)

×
(

U(An+1)−
n∑

k=0

lk(An+1)(BkAn+1 − Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
U(Ak)

)
,

where Bk = Bk(A) = δlk[A; H], Ãk = Ãk(A) = Bk(A)A + B−1
k (A)lk(A)×

×Bk(A)H. Here A0, A1, . . . , An are the matrices from X such that the inverse
matrices in (15) exist.

Substituting (15) into (14), we obtain

δω[A; H]ω−1(An+1)

(
Yn+1 −

n∑

k=0

lk(An+1)(BkAn+1 − Ãk)×

×
[
lk(Ak)(BkAk − Ãk)

]−1
Yk

)
= F (Y, A), Y0 = U0, (16)

where Y0, Y1, . . . , Yn+1 is approximate solution of the problem (14) in the ma-
trix nodes A0, A1, . . . , An+1. If now we substitute the matrix nodes Ak (k =
1, 2, . . . , n + 1) instead of A in (16), then we obtain the system (in the gen-
eral case, non-linear) matrix equations. Solving this system by some direct or
iterative method, we obtain the required approximate solution of the problem
(14).
Example. Let X be the set of square matrices of size 2. We consider the

Cauchy problem for the function of the matrix variable U(A), A ∈ X

δU [A; H] = 3U(A) + 2A, U(A0) = U0, (17)
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where A0 =
(

0.312 0.467
0.457 0.02

)
, U0 =

(
0.316 0.338
0.23 0.002

)
, H =

(
0.021 0.43
0.405 0.223

)
.

Let's introduce the matrix nodes A1 =
(

0.11 0.032
0.223 0.155

)
, A2 =

(
0.004 0.085
0.5 0.305

)
,

A3 =
(

0.234 0.028
0.2 0.004

)
, A4 =

(
0.051 0.291
0.176 0.498

)
.

For the approximate solving of the problem (14) we use the formula (16) for
n = 3. We construct a system of matrix equations. In this case, it is linear.
We have

Y0 = U0 =
(

0.316 0.338
0.23 0.002

)
, δω[Ai; H]ω−1(A4)

(
Y4 −

3∑

k=0

lk(A4) ×

×
(
Bk(Ai)A4 − Ãk(Ai)

) [
lk(Ak)

(
Bk(Ai)Ak − Ãk(Ai)

)]−1
Yk

)
=

= 3Yi + 2Ai, i = 1, 2, 3, 4. (18)
Let's present numerically the system of the matrix equations (18) to within

3 signi�cant digits to determine the unknowns Y0, Y1, Y2, Y3, Y4

Y0 = U0, −
(

0.992 0.186
0.180 0.0380

)
Y0 −

(
292 302
47.5 51.9

)
Y1 +

(
0.142 4.05
0.268 6.00

)
Y2 +

+
(

2.49 −15.5
2.00 −12.3

)
Y3 +

(
3.33 4.20
0.815 0.606

)
Y4 =

(
0.22 0.064
0.446 0.31

)
,

(
2.48 14.1
−2.12 −12.1

)
Y0 −

(
1368 2630
−1190 −2289

)
Y1 −

(
246 297
−235 −285

)
Y2 +

+
(−50.8 6.08

52.1 −6.20

)
Y3 +

(−8.96 −14.4
7.56 12.5

)
Y4 =

(
0.008 0.17
1.0 0.61

)
, (19)

(
8.20 −2.04
1.83 −0.441

)
Y0 −

(
211 135
49.2 32.5

)
Y1 +

(
13.7 21.9
2.06 3.15

)
Y2 +

+
(−10.2 −34.7

1.20 8.53

)
Y3 −

(
7.12 12.0
1.92 2.75

)
Y4 =

(
0.468 0.056
0.4 0.008

)
,

(
0.149 0.662
−0.286 −0.975

)
Y0 +

(
230 340
−363 −539

)
Y1 +

(
2.60 3.26
−1.86 −2.36

)
Y2 +

+
(−0.991 0.424

0.727 −0.138

)
Y3 +

(−14.4 −15.6
15.9 21.2

)
Y4 =

(
0.102 0.582
0.352 0.996

)
.

The system of the matrix equations (19) can be written element-by-element,
having obtained a system of 20 linear algebraic equations with respect to 20
unknowns (elements of matrices Y0, Y1, Y2, Y3, Y4). Immediately excluding Y0

from the remaining matrix equations in (19), we will obtain the system of
16 linear algebraic equations that can be solved, for example, by the Gauss
method. According to this method, the solution of the system (19) has the
form

Y0 = U0, Y1 =
(

0.00221 0.00618
−0.00177 −0.00416

)
, Y2 =

(−0.0393 0.00504
0.0264 −0.0223

)
,
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Y3 =
(

0.133 0.132
−0.0130 −0.0395

)
, Y4 =

(−0.171 −0.546
0.148 0.455

)
.

The solution of the problem (17) obtained in the matrix nodes can be re-
stored using the matrix interpolation formula [2, p. 459] of the form Ln0(A) =
n∑

k=0

lk(A)l−1
k (Ak)F (Ak), where, as before, lk(A) = (A − A0) · · · (A − Ak−1)×

×(A − Ak+1) · · · (A − An) (k = 0, 1, . . . , n), satisfying the interpolation condi-
tions Ln0(Ak) = F (Ak) for k = 0, 1, . . . , n. In our case, n = 4, F (Ak) = Yk

(k = 0, 1, 2, 3, 4) and U(A) ≈ Y (A) = L4,0(A).
We introduce the matrices of the form Āi = (Ai−1 +Ai)/2 (i = 1, 2, 3, 4) and

de�ne the norms of the residual matrices between the left and right sides of
the matrix-di�erential equation of the problem (14). We calculate the Gateaux
di�erential δY [A; H] = δL4,0[A; H] by the known [10] formula δY

[
Āi;H

]
=

= lim
λ→0

{
λ−1

[
Y (Āi + λH)− Y (Āi)

]}
.

We denote by Ri = ‖δY [
Āi; H

]− 3Y
(
Āi

)− 2Āi‖2, i = 1, 2, 3, 4, where ‖·‖2

is the spectral norm of the corresponding matrix [11]. In our case, these norms
are equal to R1 = 0.699, R2 = 0.528, R3 = 0.959, R4 = 0.250. The numerical
experiment shows that the discrepancy between the left and right sides of the
equation (14) is small, however, the accuracy of the approximation is not high.
To obtain a higher accuracy of the solution it is necessary to involve more nodes
or to use other methods of approximating the matrix-di�erential operator.

Analogous methods for solving matrix-di�erential equations can be obtained
using the formulas of trigonometric, exponential, and other types of matrix
generalized Hermite-Birkho� interpolation.

4. Trigonometric interpolation
In [7] for 2π-periodic scalar functions the parametric family of trigonometric

interpolation polynomials of degree not higher than n + 1 of the form

Tα,β
n+1(x) = Hn(x) +

Ωα,β
n+1(x)D2n+1(f ; xj)

D2n+1(Ω
α,β
n+1;xj)

, (20)

where Ωα,β
n+1(x) =

(
α sin

x

2
+ β cos

x

2

) 2n∏
k=0

sin
x− xk

2
, α2 + β2 6= 0, Hn(x) is a

trigonometric interpolation polynomial of degree not higher than n of Lagrange
type, and the di�erential operator D2n+1f(x) is de�ned by the formula

D2n+1f(x) = (D2 + n2) · · · (D2 + 12)Df(x), D =
d

dx
,

is constructed. The polynomial (20) satis�es the interpolation conditions

Tα,β
n+1(xi) = f(xi) (i = 0, 1, . . . , 2n); D2n+1(T

α,β
n+1; xj) = D2n+1(f ;xj).

We generalize the formula (20) in the case of functions of the matrix ar-
gument. Let X be the set of square matrices, F (z) be an entire 2π-periodic
function, z ∈ C. In di�erent matrix nodes Ak such that the matrices Ak − Aν
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(k, ν = 0, 1, . . . , 2n) are invertible, the values F (Ak) of the function F (A),
A ∈ X, are known. The value D2n+1(F ;Aj) of the matrix-di�erential operator

D2n+1F (A) = (D2 + n2) · · · (D2 + 12)DF (z)
∣∣
z=A

, D =
d

dz
, (21)

is also known in one of the nodes Aj .
Let's consider the di�erential operator of even order

D2nF (A) =
(
D2 + (n− 1)2

) · · · (D2 + 12
)
D2F (z)

∣∣
z=A

. (22)

The values of the operator for functions of the forms B1F (A)B2, F (cA + B)
and U(A)V (A) are calculated similarly, as are the values of the operator (4)
for functions of this type. We assume that D0F (A) ≡ F (A).

Let's generalize the Leibniz formula (5) to the case of functions of the matrix
argument, and when the di�erential operators (21) and (22) are taken instead
of the derivatives. Is valid
Theorem 5. If the functions U(z) and V (z), z ∈ C, are di�erentiable m times,
then the formula

Dm (U(A)V (A)) = D2p+1 (U(A)V (A)) =
m∑

k=0

Ck
mDm−kU(A)DkV (A), (23)

Dm (U(A)V (A)) = D2p+2 (U(A)V (A)) =
m∑

k=0

Ck
mDm−kU(A)DkV (A)−

−m(m− 1)
4

m−3∑

k=1,3,...

Ck
m−2Dm−k−2U(A)DkV (A), A ∈ X, p = 0, 1, . . . ,

is valid.
The proof of the theorem 5 repeats the proof of the analogous theorem for

the scalar case [8, p. 18-21]. In this case, the order of the multipliers in the
matrix products must be strictly preserved: the values of the operators (21),
(22) from the function U(A) should be located to the left of the values of these
operators from the function V (A).
Lemma 1. For trigonometric polynomials of the form

Pn(A) = sin
A−B1

2
sin

A−B2

2
· · · sin A−B2n

2
,

where B1, B2, . . . , B2n are some matrices from X, the following identities are
valid

DjPn(A) ≡ 0, j = 2n + 1, 2n + 2, . . . (24)

Proof. Let's apply the method of mathematical induction. When n = 1

P1(A) = sin
A−B1

2
sin

A−B2

2
,

and by the formula (23) for m = 3 we have

D3P1(A) = D3 sin
A−B1

2
· sin A−B2

2
+ 3D2 sin

A−B1

2
·D1 sin

A−B2

2
+
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+3D1 sin
A−B1

2
·D2 sin

A−B2

2
+ sin

A−B1

2
·D3 sin

A−B2

2
.

Since
D1 sin

A−Bk

2
= D sin

A−Bk

2
=

1
2

cos
A−Bk

2
,

D2 sin
A−Bk

2
= D2 sin

A−Bk

2
= −1

4
sin

A−Bk

2
,

D3 sin
A−Bk

2
=

(
D3 + D

)
sin

A−Bk

2
=

3
8

cos
A−Bk

2
(k = 1, 2),

then D3P1(A) ≡ 0.
For the operator (21), (22) the properties D2n+2F (A) = DD2n+1F (A),

D2n+3F (A) =
(
D2 + (n + 1)2

)
D2n+1F (A), n ∈ N, where F (A) is some matrix

function for which the values of the operators (21) and (22) at the point A ∈ X
exist, are hold. Then it is obvious that DjP1(A) ≡ 0 when j = 4, 5, . . .

Let's suppose that the relations (24) hold when n = k. We will show that
they are true when n = k + 1. By the formula (23) for m = 2k + 3 we have

D2k+3Pk+1(A) = D2k+3

(
Pk(A)P̃1(A)

)
=

2k+3∑

i=0

Ci
2k+3D2k+3−iPk(A) ·DiP̃1(A),

where
P̃1(A) = sin

A−B2k+1

2
sin

A−B2k+2

2
.

For i ≤ 2, by assumption, the identities D2k+3−iPk(A) ≡ 0 hold, and when
i > 2 the identities DiP̃1(A) ≡ 0 are valid. Therefore D2k+3Pk+1(A) ≡ 0. ¤

Let α and β be some �xed matrices from X that are not simultaneously zero.

Theorem 6. The trigonometric polynomial
Tn+1(A) ≡ Tn+1(A; α, β) =

= Hn(A) + Ωn+1(A)
[
D2n+1(Ωn+1; An+1)

]−1
D2n+1(F ; An+1), (25)

where

Hn(A) =
2n∑

k=0

Ψk(A)Ψ−1
k (Ak)F (Ak), (26)

Ψk(A) = sin
A−A0

2
· · · sin A−Ak−1

2
sin

A−Ak+1

2
· · · sin A−A2n

2
,

Ωn+1(A) ≡ Ωn+1(A; α, β) =
(

α sin
A

2
+ β cos

A

2

) 2n∏

k=0

sin
A−Ak

2
,

satis�es the interpolation conditions
Tn+1(Ak) = F (Ak) (k = 0, 1, . . . , 2n);

D2n+1(Tn+1;A2n+1) = D2n+1(F ; A2n+1). (27)
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Proof. Since Ψk(Ai) = δkiΨk(Ak), where δki is the Kronecker symbol (k, i =
= 0, 1, . . . , 2n), then the polynomial (26) coincides with the operator F (A) at
the interpolation nodes A0, A1, . . . , A2n. It's obvious that Ωn+1(Ak) = 0 when
k = 0, 2n. Therefore, the polynomial (25) coincides with F (A) at the above-
mentioned interpolation nodes.

We show that the last condition in (27) also holds. By the lemma
D2n+1Ψk(A) = 0 for k = 0, 1, . . . , 2n, so D2n+1Hn(A) = 0. Taking into account
the structure of the formula (25), we obtain that the condition stated above for
the polynomial Tn+1(A) is satis�ed. ¤

5. Conclusion
In this work we obtained the following new results: interpolation formulas

for functions of a scalar argument are generalized to the case of operators
de�ned in functional spaces and on the set of matrices. The algebraic operator
and matrix interpolation Hermite�Birkho� polynomials are constructed, as well
as the parametric family of trigonometric matrix interpolation polynomials of
Hermite type. Theorems on the ful�llment of the interpolation conditions are
proved. For the operator interpolation formula, a class of polynomials for which
it is exact is found. Matrix analogues of the Leibniz formula for linear matrix-
di�erential operators of a special form are constructed. Based on the matrix
algebraic interpolation polynomial, the formula for the approximation of the
Gateaux di�erential of an arbitrary order of the matrix argument function is
obtained. This formula is used in the construction of the approximate method
for solving the Cauchy problem with a matrix-di�erential equation of the �rst
order. In the computer algebra system, the illustrative example of a numerical
solving the Cauchy problem of the indicated type is realized.
Acknowledgements. The work has been carried out with the �nancial

support of the Belarusian Republican Foundation for Fundamental Research
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CONVERGENCE OF A TWO-STEP METHOD FOR
THE NONLINEAR LEAST SQUARES PROBLEM

WITH DECOMPOSITION OF OPERATOR

S.M. Shakhno, R. P. Iakymchuk, H. P.Yarmola

Ðåçþìå. Ó ðîáîòi çàïðîïîíîâàíî äâîêðîêîâèé ìåòîä äëÿ ðîçâ'ÿçóâàííÿ
íåëiíiéíî¨ çàäà÷i íàéìåíøèõ êâàäðàòiâ ç äåêîìïîçèöi¹þ îïåðàòîðà òà äîñ-
ëiäæåíî éîãî çáiæíiñòü çà êëàñè÷íèõ óìîâ Ëiïøèöÿ äëÿ ïîõiäíèõ ïåðøîãî
i äðóãîãî ïîðÿäêiâ äèôåðåíöiéîâíî¨ ÷àñòèíè òà ïîäiëåíèõ ðiçíèöü ïåðøîãî
ïîðÿäêó íåäèôåðåíöiéîâíî¨ ÷àñòèíè äåêîìïîçèöi¨. Âñòàíîâëåíî ïîðÿäîê
i ðàäióñ çáiæíîñòi ìåòîäó, à òàêîæ îáëàñòü ¹äèíîñòi ðîçâ'ÿçêó íåëiíiéíî¨
çàäà÷i ïðî íàéìåíøi êâàäðàòè. Ïðîâåäåíî ÷èñåëüíi åêñïåðèìåíòè íà ðÿäi
òåñòîâèõ çàäà÷àõ.
Abstract. In this article, we propose a two-step method for the nonlinear
least squares problem with the decomposition of the operator. We investigate
the convergence of this method under the classical Lipschitz condition for the
�rst- and second-order derivatives of the di�erentiable part and for the �rst-
order divided di�erences of the non-di�erentiable part of the decomposition.
The convergence order as well as the convergence radius of the method are
studied and the uniqueness ball of the solution of the nonlinear least squares
problem is examined. Finally, we carry out numerical experiments on a set of
test problems.

1. Introduction
Let us consider the nonlinear least squares problem:

min
x∈IRn

1
2
F (x)T F (x), (1)

where F is a Fr�echet di�erentiable operator de�ned on IRn with its values on
IRm , m ≥ n. The best known method for �nding an approximate solution of
the problem (1) is the Gauss-Newton method, which is de�ned as

xk+1 = xk − [F ′(xk)T F ′(xk)]−1F ′(xk)T F (xk), k = 0, 1, 2, .... (2)
The convergence analysis of the method (2) under various conditions was con-
ducted in [6�8]. In paper [18], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

Key words. Nonlinear least squares problem, two-step method, Gauss-Newton method,
decomposition of operator, Lipschitz conditions, radius of convergence, uniqueness ball.
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In particular, Shakhno [18] proposed the Secant-type method, which was
later also studied by Ren and Argyros in [12], as follows

xk+1 = xk − [F (xk, xk−1)T F (xk, xk−1)]−1F (xk, xk−1)T F (xk),
k = 0, 1, 2, ....

(3)

This study [18] also determines the convergence order of the method (3) in case

of zero residual, which equals to 1 +
√

5
2

= 1, 618....
In [2, 4, 10, 11], there was considered a two-step modi�cation of the Gauss-

Newton method for solving the problem (1)
{

xk+1 = xk − [F ′(zk)T F ′(zk)]−1F ′(zk)T F (xk),
yk+1 = xk+1 − [F ′(zk)T F ′(zk)]−1F ′(zk)T F (xk+1), k = 0, 1, 2, ...,

(4)

where zk = (xk+yk)/2; x0 and y0 are given. In case when m = n, this method is
equivalent to the methods proposed by Bartish [3] and Werner [23]. On each it-
eration, the method (4) computes the inversion of the matrix [F ′(zk)T F ′(zk)]−1

only once.
In [17], we proposed the di�erence variant of the method (4) that uses divided

di�erences instead of derivatives as follows
{

xk+1 = xk − [F (xk, yk)T F (xk, yk)]−1F (xk, yk)T F (xk),
yk+1 = xk+1 − [F (xk, yk)T F (xk, yk)]−1F (xk, yk)T F (xk+1), k = 0, 1, 2, ....

(5)
This method is built on top of the Secant-type method [12,18] (3) for solving the
nonlinear least squares problem. This method can also be applied to problems
with non-di�erentiable operators.

However, for some problems the nonlinear function in (1) is composed of the
di�erentiable and non-di�erentiable parts. In this case, the problem (1) can be
written as

min
x∈IRn

1
2
(F (x) + G(x))T (F (x) + G(x)), (6)

where the residual function F + G is de�ned on IRn with its values on IRm

and it is nonlinear by x; F is a continuously di�erentiable function; G is a
continuous function, di�erentiability of which, in general, is not required. To
solve the problem (6), we proposed in [14,19] a method that takes into account
the speci�c features of both F and G as

xk+1 = xk − [AT
k Ak]−1AT

k (F (xk) + G(xk)), k = 0, 1, ..., (7)

where Ak = F ′(xk) + G(xk, xk−1); F ′(xk) is a Fr�echet derivative of F (x);
G(xk, xk−1) is the divided di�erence of the �rst-order of the function G(x)
at points xk, xk−1; x0, x−1 are given starting points. This method has the

convergence order of 1 +
√

5
2

for solving the problem (6) with zero residual. In
case when m = n, the method (7) reassembles the well-know Newton-Secant
method for nonlinear equations [1, 5, 15].
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In this article, we propose a two-step iterative method, for solving the prob-
lem (6), which considers the decomposition of the nonlinear operator, as follows

{
xk+1 = xk − [AT

k Ak]−1AT
k (F (xk) + G(xk)),

yk+1 = xk+1 − [AT
k Ak]−1AT

k (F (xk+1) + G(xk+1)), k = 0, 1, ...,
(8)

where Ak = F ′(
xk + yk

2
)+G(xk, yk). The main goal of this paper is to analyze

the local convergence of the method (8) for the problem (6) with zero as well
as non-zero residuals. Additionally, we study both the order and the radius of
the convergence of the method (8) as well as the uniqueness ball of the solution
of the problem (6). To note, this method as well as the method (5) have the
same convergence order of 1 +

√
2 in case of zero residual.

In case of m = n, the problem (6) reduces to solving a system of n nonlinear
equations with n unknown and the method (8) reduces to the method [16,20,21].

2. Preliminaries
Let us denote B(x∗, r) = {x ∈ D ⊆ IRn : ‖x− x∗‖ < r} as an open ball with

the radius r (r > 0) at x∗, D is an open convex subset of IRn .
Let IRm×n , m ≥ n, denote a set of all m × n matrices. Then, for a full

rank matrix A ∈ IRm×n , its Moore-Penrose pseudo-inverse [8] is de�ned as
A† = (AT A)−1AT .

Lemma 1 ( [13,22]). Let A,E ∈ IRm×n . Assume that C = A+E, ‖A†‖‖E‖ <
1, and rank(A) = rank(C). Then,

‖C†‖ ≤ ‖A†‖
1− ‖A†‖‖E‖ .

If rank(A) = rank(C) = min(m,n), we can obtain

‖C† −A†‖ ≤
√

2‖A†‖2‖E‖
1− ‖A†‖‖E‖ .

Lemma 2 ( [6]). Let A,E ∈ IRm×n . Assume that C = A + E, ‖EA†‖ < 1,
and rank(A) = n, then rank(C) = n.

3. Local Convergence Analysis of the Method (8)
In this section, we investigate the convergence of the method (8) and deter-

mine its convergence radius.

Theorem 1. Let F + G : IRn → IRm , m ≥ n, be continuous operator, where
F is a twice Fr�echet di�erentiable operator and G is a continuous operator on
a subset D ⊆ IRn . Assume that the problem (6) has a solution x∗ ∈ D and an
operator A∗ = F ′(x∗)+G(x∗, x∗) has full rank. Suppose that Fr�echet derivatives
F ′(x) and F ′′(x) satisfy the Lipschitz conditions on D

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖, (9)
‖F ′′(x)− F ′′(y)‖ ≤ N‖x− y‖, (10)
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and the function G has the �rst order divided di�erence G(x, y) and

‖G(x, y)−G(u, v)‖ ≤ M(‖x− u‖+ ‖y − v‖) (11)

for all x, y, u, v ∈ D; L, N , and M are non-negative numbers.
Also, the radius r > 0 is a root of the equation

βNp2 + 120βTp + 48
√

2αβ2T − 24 = 0, (12)

where
2
√

2αβ2T < 1. (13)
Then, for all x0, y0 ∈ B(x∗, r) ⊆ D the sequences {xk} and {yk}, which are
generated by the method (8), are well de�ned, remain in B(x∗, r) for all k ≥ 0,
and converge to x∗ such that

ρ(xk+1) ≤ β

1− βTτk

(
(N/24)ρ(xk)3 + Tρ(xk)ρ(yk) +

√
2αβTτk

)
, (14)

ρ(yk+1) ≤ β

1− βTτk

(
(N/24)ρ(xk+1)3 + (15)

+T (ρ(xk+1) + ρ(xk) + ρ(yk))ρ(xk+1) +
√

2αβTτk

)
,

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0, (16)

where

0 < q =
β
(
(N/24)ρ(x0)2 + T (2ρ(x0) + ρ(y0)) + 2

√
2αβT

)

1− βTτ0
< 1, (17)

ρ(x) = ‖x−x∗‖, τk = τ(xk, yk) = ‖xk−x∗‖+‖yk−x∗‖, r0 = max{ρ(x0), ρ(y0)},
α = ‖F (x∗) + G(x∗)‖, β = ‖(AT∗A∗)−1AT∗ ‖, T =

L + 2M

2
, βTτ0 < 1.

Proof. From (13) it follows that (12) has the unique positive root, which we
annotate as r.

Let choose arbitrary x0, y0 ∈ B(x∗, r) and denote Ak = F ′
(xk + yk

2

)
+

G(xk, yk). For k = 0, we have the following estimate

‖A0 −A∗‖ =
∥∥∥F ′

(x0 + y0

2

)
+ G(x0, y0)− (F ′(x∗) + G(x∗, x∗))

∥∥∥ =

=
∥∥∥F ′

(x0 + y0

2

)
− F ′(x∗) + G(x0, y0)−G(x∗, x∗)

∥∥∥ ≤

≤
∥∥∥F ′

(x0 + y0

2

)
− F ′(x∗)

∥∥∥ + ‖G(x0, y0)−G(x∗, x∗)‖ ≤

≤ L

2
(‖x0 − x∗‖+ ‖y0 − x∗‖) + M(‖x0 − x∗‖+ ‖y0 − x∗‖) ≤

≤ L + 2M

2
(‖x0 − x∗‖+ ‖y0 − x∗‖) = T (‖x0 − x∗‖+ ‖y0 − x∗‖)

and

‖(AT
∗A∗)−1AT

∗ [A0 −A∗]‖ ≤ βT (‖x0 − x∗‖+ ‖y0 − x∗‖) = βTτ0 < 1.
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According to Lemma 1

‖(AT
0 A0)−1AT

0 ‖ ≤
β

1− βT (‖x0 − x∗‖+ ‖y0 − x∗‖) =
β

1− βTτ0
,

and to Lemma 2

‖(AT
0 A0)−1AT

0−(AT
∗A∗)−1AT

∗ ‖ ≤
√

2β2T (‖x0 − x∗‖+ ‖y0 − x∗‖)
1− βT (‖x0 − x∗‖+ ‖y0 − x∗‖) =

√
2β2Tτ0

1− βTτ0
.

For x1, y1 that are generated by (8), we have

x1 − x∗ = x0 − x∗ −
[
AT

0 A0

]−1
AT

0 (F (x0) + G(x0)) =

=
[
AT

0 A0

]−1
AT

0 [A0(x0 − x∗)− (F (x0) + G(x0)) + (F (x∗) + G(x∗))] +

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) + G(x∗))−

[
AT

0 A0

]−1
AT

0 (F (x∗) + G(x∗)) =

=
[
AT

0 A0

]−1
AT

0

[
F ′

(
x0 + x∗

2

)
(x0 − x∗)− F (x0) + F (x∗)+

+ G(x0, x∗)(x0 − x∗)−G(x0) + G(x∗) +

+
(

A0 − F ′
(

x0 + x∗
2

)
−G(x0, x∗)

)
(x0 − x∗)

]
+

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) + G(x∗))−

[
AT

0 A0

]−1
AT

0 (F (x∗) + G(x∗));

y1 − x∗ = x1 − x∗ −
[
AT

0 A0

]−1
AT

0 (F (x1) + G(x1)) =

=
[
AT

0 A0

]−1
AT

0 [A0(x1 − x∗)− (F (x1) + G(x1)) + (F (x∗) + G(x∗))] +

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) + G(x∗))−

[
AT

0 A0

]−1
AT

0 (F (x∗) + G(x∗)) =

=
[
AT

0 A0

]−1
AT

0

[
F ′

(
x1 + x∗

2

)
(x1 − x∗)− F (x1) + F (x∗) +

+ G(x1, x∗)(x1 − x∗)−G(x1) + G(x∗) +

+
(

A0 − F ′
(

x1 + x∗
2

)
−G(x1, x∗)

)
(x1 − x∗)

]
+

+
[
AT
∗A∗

]−1
AT
∗ (F (x∗) + G(x∗))−

[
AT

0 A0

]−1
AT

0 (F (x∗) + G(x∗)).

According to Lemma 1 from [23] with the value ω = 1/2 we can write

F (x)− F (y)− F ′
(

x + y

2

)
(x− y) =

=
1
4

∫ 1

0
(1− t)

[
F ′′

(
x + y

2
+

t

2
(x− y)

)
−

−F ′′
(

x + y

2
+

t

2
(y − x)

)]
(x− y)2dt.

By setting x = x∗ and y = x0 in the equation above, we receive
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∥∥∥∥F (x∗)− F (x0)− F ′
(

x0 + x∗
2

)
(x∗ − x0)

∥∥∥∥ =

=
1
4

∥∥∥∥
∫ 1

0
(1− t)

[
F ′′

(
x0 + x∗

2
+

t

2
(x∗ − x0)

)
−

− F ′′
(

x0 + x∗
2

+
t

2
(x0 − x∗)

)]
(x∗ − x0)2dt

∥∥∥∥ ≤

≤ 1
4

∫ 1

0
t(1− t)N‖x0 − x∗‖3dt =

1
24

Nρ(x0)3.

Using to the Lipschitz conditions (9) and (11), we get the following estimates
∥∥∥A0 − F ′

(x0 + x∗
2

)
−G(x0, x∗)

∥∥∥ =
∥∥∥F ′

(x0 + y0

2

)
− F ′

(x0 + x∗
2

)
+

+G(x0, y0)−G(x0, x∗)
∥∥∥ ≤ T‖y0 − x∗‖,

∥∥∥A0 − F ′
(x1 + x∗

2

)
−G(x1, x∗)

∥∥∥ =
∥∥∥F ′

(x0 + y0

2

)
− F ′

(x1 + x∗
2

)
+

+G(x0, y0)−G(x1, x∗)
∥∥∥ ≤

≤ T (‖x0 − x1‖+ ‖y0 − x∗‖) ≤
≤ T (‖x0 − x∗‖+ ‖x1 − x∗‖+ ‖y0 − x∗‖).

Hence, from (12) it follows that

0 < q =
β
(
(N/24)ρ(x0)2 + T (2ρ(x0) + ρ(y0)) + 2

√
2αβT

)

1− βTτ0
<

<
β
(
(N/24)r2 + 3Tr + 2

√
2αβT

)

1− 2βTr
= 1.

Thus, by Lemmas 1, 2, conditions (9), (10) and (11), we obtain

‖x1 − x∗‖ ≤ β
(
(N/24)ρ(x0)3 + Tρ(x0)ρ(y0) +

√
2αβTτ0

)

1− βTτ0
≤ qr0 < r.

Similarly,

‖y1 − x∗‖ ≤ β
(
(N/24)ρ(x1)3 + T (ρ(x0) + ρ(x1) + ρ(y0))ρ(x1)

)

1− βTτ0
+

+
√

2αβ2Tτ0

1− βTτ0
≤ qr0 < r.

Therefore, x1, y1 ∈ B(x∗, r) and both (14) and (15) follow. Also, (16) is satis�ed

r1 = max{‖x1 − x∗‖, ‖y1 − x∗‖} ≤ qr0.
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Using mathematical induction, assume that xk, yk ∈ B(x∗, r) and (16) holds
for k > 0. Then, for k + 1 from (8) we obtain that

‖xk+1 − x∗‖ ≤ β
(
(N/24)ρ(xk)3 + Tρ(xk)ρ(yk) +

√
2αβTτk

)

1− βTτk
≤

≤ β
(
(N/24)ρ(x0)2 + Tρ(x0) + 2

√
2αβT

)
rk

1− βTτ0
≤ qrk < r

and

‖yk+1 − x∗‖ ≤ β
(
(N/24)ρ(xk+1)3 + T (ρ(xk) + ρ(xk+1) + ρ(yk))ρ(xk+1)

)

1− βTτk
+

+
√

2αβ2Tτk

1− βTτk
≤ β

(
(N/24)ρ(x0)2 + T (2ρ(x0) + ρ(y0))

)
rk

1− βTτ0
+

+
2
√

2αβ2Trk

1− βTτ0
= qrk < r.

According to (17) and both inequalities (14) and (15), we receive

rk+1 = max{‖xk+1 − x∗‖, ‖yk+1 − x∗‖} ≤ qrk ≤ q2rk−1 ≤ · · · ≤ qk+1r0.

Thus, xk+1, yk+1 ∈ B(x∗, r) as well as (14), (15) and (16) hold. ¤

From (12) it follows that the convergence radius of the method (8) is

r =
2(1− 2

√
2αβ2T )

5βT +
√

(5βT )2 + 1
6βN(1− 2

√
2αβ2T )

.

Remark 3. Note that the condition (11) can be replaced with the weaker one

‖G(x, y)−G(u, v)‖ ≤ M1‖x− u‖+ M2‖y − v‖ (18)

for all x, y, u, v ∈ D, M1 and M2 are positive numbers. This enlarges applica-
bility of the method (8).

For zero residual (F (x∗) + G(x∗) = 0), the Theorem 1 can be formulated as

Theorem 2. Let F + G : IRn → IRm , m ≥ n, be continuous operator, where
F is a twice Fr�echet di�erentiable operator and G is a continuous operator
on a subset D ⊆ IRn . Assume that the problem (6) has a solution x∗ ∈ D,
and the îðårator A∗ = F ′(x∗) + G(x∗, x∗) has full rank. Suppose that Fr�echet
derivatives F ′(x) and F ′′(x) on D satisfy the classic Lipschitz conditions as in
(9) and (10), respectively; the function G has the �rst order divided di�erence
G(x, y) that satis�es the Lipschitz conditions as in (11). Moreover, the radius
r > 0 is a unique positive root of the following equation

βNp2 + 120βTp− 24 = 0.
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Then, the combined method (8) converges to x∗ for all x0, y0 ∈ B(x∗, r) ⊆ D
such that

ρ(xk+1) ≤ β

1− βTτk

(
(N/24)ρ(xk)3 + Tρ(xk)ρ(yk)

)
, (19)

ρ(yk+1) ≤ β
(
(N/24)ρ(xk+1)3 + T (ρ(xk+1) + ρ(xk) + ρ(yk))ρ(xk+1)

)

1− βTτk
,(20)

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0,

where ρ(x) = ‖x − x∗‖, τk = τ(xk, yk) = ‖xk − x∗‖ + ‖yk − x∗‖, r0 =
max{ρ(x0), ρ(y0)}, β = ‖(AT∗A∗)−1AT∗ ‖, βTτ0 < 1,

0 < q =
β
(
(N/24)ρ(x0)2 + T (2ρ(x0) + ρ(y0))

)

1− βTτ0
< 1.

From Theorem 2, the convergence radius is

r =
2

5βT +
√

(5βT )2 + 1
6βN

<
1

5βT
.

This radius is two times smaller than the convergence radius of the di�erential
method (4) from [11] (a two-step modi�cation of the Gauss-Newton method)
and equals to the convergence radius of the di�erence method (5) from [17].

Corollary 1. Convergence order of the iterative method (8) in case of zero
residual is equal to 1 +

√
2.

Proof. Let us denote γ =
βN/24

1− βTτ0
, η =

βT

1− βTτ0
, ak = ρ(xk), bk = ρ(yk),

k = 0, 1, 2, ... Since the residual is zero, i.e. α = ‖F (x∗)+G(x∗)‖ = 0, from the
inequalities (19) and (20) we have

ak+1 ≤ ak(γa2
k + ηbk), (21)

bk+1 ≤ ak+1

[
γa2

k+1 + η/3(ak + ak+1 + bk)
] ≤ (22)

≤ ak+1 [(γak + 2η/3)ak + ηbk/3] ≤
≤ ak+1ak [γr + η] = ak+1akφ1.

From (21) and (22) for large enough k, it follows

ak+1 ≤ ak(γa2
k + ηbk) ≤ ak(γa2

k + ηφ1akak−1) ≤ a2
kak−1(γ + ηφ1) = a2

kak−1φ2.

From this inequality, we obtain an equation

ρ2 − 2ρ− 1 = 0.

The positive root of the latter, which is ρ∗ = 1+
√

2, is the order of convergence
of the iterative method (8). ¤

Under the classic Lipschitz condition a theorem for the uniqueness of the
solution can be written as follow
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Theorem 3. Suppose x∗ satis�es (6) and F (x) has a continuous derivative
F ′(x) and G(x) has a divided di�erence G(x, y) in D. Moreover, operator
F ′(x∗) + G(x∗, x∗) has full rank; F ′(x) satis�es the Lipschitz condition as in
(9); the divided di�erence G(x, y) satis�es the Lipschitz condition as in (11).
Let r > 0 satis�es

β(Lr/2 + M) + αβ0(L + 2M) ≤ 1,

where β0 = ‖(F ′(x∗) + G(x∗, x∗))T (F ′(x∗) + G(x∗, x∗))‖. Then, x∗ is a unique
solution of the problem (6) in B(x∗, r).

The proof of this theorem is analogous to the one in [6].
To note, in case when G(x) = 0, we obtain the same results as in Theorem

2 in [11].

4. Numerical experiments
In this section, we give two examples to show the application of our results.

We consider method (8) and its partial cases, namely the two-step Gauss-
Newton method (G ≡ 0) and the two-step Secant method (F ≡ 0). We use the

norm ‖x‖ =

√
p∑

i=1
x2

i for x ∈ IRp .

Example 1. Consider function F + G : D = IR → IR2 given by [12]:

F (x) + G(x) =
(

x + µ
λx2 + x− µ

)
,

where λ, µ ∈ IR are two parameters.
It is known, that x∗ = 0 is the unique solution of the considered problem.

Therefore, we can de�ne constants α and β as follows:

α =
√

2|µ|, β =
1√
2
.

Let G(x) = (0, 0)T . Then

F ′(x) =
(

1
2λx + 1

)
, F ′′(x) =

(
0
2λ

)

and
‖F ′(x)− F ′(y)‖ =

∥∥∥∥
(

0
2λ(x− y)

)∥∥∥∥ = 2|λ||x− y|,

‖F ′′(x)− F ′′(y)‖ =
∥∥∥∥
(

0
0

)∥∥∥∥ = 0|x− y|.

That is, we can set constants L = 2|λ|, N = 0, M = 0, T =
L

2
=

2|λ|
2

= |λ|.
Let F (x) = (0, 0)T . Then

G(x, y) =




x + µ− y − µ

x− y
λx2 + x− µ− λy2 − y + µ

x− y


 =

(
1

λ(x + y) + 1

)
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and

‖G(x, y)−G(u, v)‖ =
∥∥∥∥
(

0
λ(x− u + y − v)

)∥∥∥∥ ≤ |λ|(|x− y|+ |u− v|).

That is, we can set constants L = 0, N = 0, M = |λ|, T = M = |λ|.
Then equation (12) for both methods has form

5
√

2|λ|r + 4|λµ| − 2 = 0.

It has unique positive solution

r =
√

2− 2
√

2|λµ|
5|λ|

if parameters λ and µ satisfy

λ 6= 0, |λµ| < 1
2
.

Let x0 = 0.2, y0 = 0.2001. For this problem Ak =
(

1
λ(xk + yk) + 1

)
in

both cases. Therefore, we get the same result by the two-step Gauss-Newton
method and the two-step Secant method.

Tabl. 1. The results for λ = 1, µ = 0

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 1.893e-002 3.946e-002 3.412e-003 7.821e-003
1 3.229e-005 4.640e-005 3.600e-007 5.190e-007
2 5.812e-012 8.220e-012 9.487e-017 1.342e-016
3 0 3.899e-028 0 0

Tabl. 2. The results for λ = 0.5, µ = 0.2

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 2.624e-002 6.308e-002 1.881e-002 5.121e-002
1 2.326e-003 4.755e-003 2.230e-003 4.617e-003
2 2.284e-004 4.578e-004 2.274e-004 4.564e-004
3 2.280e-005 4.560e-005 2.279e-005 4.559e-005
4 2.279e-006 4.558e-006 2.279e-006 4.558e-006
5 2.279e-007 4.558e-007 2.279e-007 4.558e-007
6 2.279e-008 4.558e-008 2.279e-008 4.558e-008
7 2.279e-009 4.558e-009 2.279e-009 4.558e-009
8 2.279e-010 4.558e-010 2.279e-010 4.558e-010

If λ = 1 and µ = 0 we obtain 2
√

2αβ2T = 0 < 1, βTτ0 ≈ 0.2829134232 < 1,
q ≈ 0.5917483231 < 1, r ≈ 0.2828427125 and B(x∗, r) ⊂ D. If λ = 0.5
and µ = 0.2 we obtain 2

√
2αβ2T = 0.2 < 1, βTτ0 ≈ 0.1414567116 < 1,

q ≈ 0.4800775864 < 1, r ≈ 0.4525483400 and B(x∗, r) ⊂ D. From Tables 1,
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2, we can see that sequences {xk} and {yk} converges to the solution x∗ and
error estimates (14) and (15) are true for all k ≥ 0.
Example 2. Consider function F + G : D ⊆ IR → IR3 given by:

F (x) + G(x) =




x + µ
λx3 + x− µ
λ|x2 − 1| − λ


 ,

F (x) =




x + µ
λx3 + x− µ

0


 , G(x) =




0
0

λ|x2 − 1| − λ


 ,

where λ, µ ∈ IR are two parameters.
The unique solution of this problem is x∗ = 0. Therefore, we can set con-

stants α and β as follows:

α =
√

2|µ|, β =
1√
2
.

Let D = {x : |x| < 0.5}. Then

F ′(x) =




1
3λx2 + 1

0


 , F ′′(x) =




0
6λx
0




and

‖F ′(x)− F ′(y)‖ =

∥∥∥∥∥∥




0
3λ(x2 − y2)

0




∥∥∥∥∥∥
=

= 3|λ||x + y||x− y| ≤ 3|λ||x− y|,

‖F ′′(x)− F ′′(y)‖ =

∥∥∥∥∥∥




0
6λ(x− y)

0




∥∥∥∥∥∥
= 6|λ||x− y|;

G(x, y) =




0
0

λ|x2 − 1| − λ− λ|y2 − 1|+ λ

x− y


 =

=




0
0

λ(1− x2 − 1)− λ(1− y2)
x− y


 =




0
0

−λ(x + y)




and

‖G(x, y)−G(u, v)‖ =

∥∥∥∥∥∥




0
0

−λ(x− u + y − v)




∥∥∥∥∥∥
≤

≤ |λ|(|x− u|+ |y − v|).

That is, we can set constants L = 3|λ|, N = 6|λ|, M = |λ|, T =
5|λ|
2

.
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Then equation has form
√

2|λ|r2 + 50
√

2|λ|r + 40|λµ| − 8 = 0.

It has unique positive solution

r =

√
5000|λ|2 − 4

√
2|λ|(40|λµ| − 8)− 50

√
2|λ|

2
√

2|λ|
if parameters λ and µ satisfy

λ 6= 0, |λµ| < 1
5
.

Let x0 = 0.1, y0 = 0.1001. If λ = 1 and µ = 0 we obtain 2
√

2αβ2T = 0 < 1,
βTτ0 ≈ 0.3537301673 < 1, q ≈ 0.8236105147 < 1, r ≈ 0.1128822370 and
B(x∗, r) ⊂ D. If λ = 0.5 and µ = 0.2 we obtain 2

√
2αβ2T = 0.5 < 1,

βTτ0 ≈ 0.1768650836 < 1, q ≈ 0.9307554564 < 1, r ≈ 0.1128822370 and
B(x∗, r) ⊂ D.

Tabl. 3. The results for λ = 1, µ = 0

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 1.002e-003 2.765e-002 1.503e-005 5.509e-004
1 1.216e-010 2.684e-008 1.063e-016 2.189e-013
3 0 2.285e-026 0 0

Tabl. 4. The results for λ = 0.5, µ = 0.2

k ρ(xk+1) The right side of (14) ρ(yk+1) The right side of (15)
0 1.980e-003 7.163e-002 1.494e-003 6.120e-002
1 4.549e-007 8.738e-004 4.526e-007 8.712e-004
2 3.090e-014 2.269e-007 3.090e-014 2.269e-007
3 1.185e-017 1.545e-014 1.185e-017 1.545e-014

Therefore, all conditions in Theorem 1 are satis�ed for the two-step method
(8). Hence, Theorem 1 applies.

5. Conclusions
We studied the local convergence of the method (8) for the nonlinear least

squares problem with the decomposition of the operator under the classic Lip-
schitz conditions for the �rst- and second-order derivatives and for the divided
di�erences of the �rst order. We determined the convergence order and the
radius of the method (8) as well as proved the uniqueness ball of the solution
of the nonlinear least squares problem (6). We gave examples that con�rm the
theoretical results. Furthermore, the method (8) has promising characteristics
for parallelization, which we plan to utilize for constructing and developing new
parallel methods for solving the problem (6).
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METHOD OF TWO-SIDED APPROXIMATIONS FOR FINDING
POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS
FOR SEMILINEAR ELLIPTIC SYSTEMS: THE USE OF THE

GREEN-RVACHEV'S QUASI-FUNCTION

M.V. Sidorov

Ðåçþìå. Ðîçãëÿäà¹òüñÿ îäíîðiäíà çàäà÷à Äiðiõëå äëÿ ñèñòåìè íàïiâ-
ëiíiéíèõ åëiïòè÷íèõ ðiâíÿíü. Äëÿ ïîáóäîâè äâîái÷íèõ íàáëèæåíü äî äî-
äàòíîãî ðîçâ'ÿçêó öi¹¨ ñèñòåìè âèêîðèñòîâó¹òüñÿ ïåðåõiä äî åêâiâàëåíòíî¨
ñèñòåìè íåëiíiéíèõ iíòåãðàëüíèõ ðiâíÿíü (çà äîïîìîãîþ êâàçiôóíêöi¨ Ãði-
íà-Ðâà÷îâà) ç ïîäàëüøèì ¨¨ àíàëiçîì ìåòîäàìè òåîði¨ íàïiâóïîðÿäêîâàíèõ
ïðîñòîðiâ. Ðîáîòà i åôåêòèâíiñòü ðîçðîáëåíîãî ìåòîäà ïðîäåìîíñòðîâàíà
îá÷èñëþâàëüíèì åêñïåðèìåíòîì äëÿ òåñòîâî¨ ñèñòåìè ç åêñïîíåíöiàëüíîþ
íåëiíiéíiñòþ.
Abstract. A homogeneous Dirichlet problem for a system of semilinear el-
liptic equations is investigated. To construct two-sided approximations to à
positive solution of this system, the transition to an equivalent system of non-
linear integral equations (with the help of the Green-Rvachev's quasi-function)
with its subsequent analysis by methods of the theory of semiordered spaces is
used. The work and e�ciency of the developed method are demonstrated by
a computational experiment for a test system with exponential nonlinearity.

1. Introduction
Let us consider the problem of �nding a positive solution of a system of n

semilinear elliptic equations with a homogeneous Dirichlet condition:
−∆ui = fi(x, u1, ..., un), x ∈ Ω, (1)

ui(x) > 0, x ∈ Ω, (2)
ui|∂Ω = 0, i = 1, ..., n, (3)

or in a vector form
−∆u = f(x,u), x ∈ Ω,

u > θ, x ∈ Ω,

u|∂Ω = θ,

where Ω is a bounded Jordan-measurable domain from Rm with piecewise
smooth boundary ∂Ω (Ω̄ = Ω ∪ ∂Ω), x = (x1, ..., xm), u = (u1, ..., un), −∆u =
(−∆u1, ...,−∆un), f = (f1, ..., fn), θ = (0, ..., 0), ∆ is the Laplace operator,
∆ = ∂2

∂x2
1

+ ... + ∂2

∂x2
m
.

Let us assume that the functions fi(x, u1, ..., un) are continuous and positive
for x ∈ Ω̄, u1, ..., un > 0, for all i = 1, 2, ..., n.

Key words. Positive solution; semilinear elliptic systems; heterotone operator; two-sided
approach; Green-Rvachev's quasi-function.
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The problem (1) � (3) is a mathematical model of many stationary processes,
which are considered in chemical kinetics, biology, combustion theory, etc. [12],
and the condition of positivity (2) naturally arises from the physical meaning
of the functions u1, . . . , un as the substance concentration, population size,
temperature, etc. Many studies are devoted to the investigation of problem
(1) � (3) [1, 2, 6, 9, 10, 12, 19, etc.], but the focus in these papers was mainly on
elucidating the conditions of the existence and uniqueness of a positive solu-
tion of the problem or on the conditions of the presence a solution with radial
symmetry for the case when Ω is the unit ball. In the paper [17] for numer-
ical analysis of the problem (1) � (3) a method of two-sided approximations,
which consists in the transition to an equivalent system of Hammerstein inte-
gral equations with its subsequent investigations by methods of the theory of
nonlinear operators in semiordered spaces, in particular, using the theory of
heterotone operators developed by V. I. Opo��cev, was proposed. The method
showed e�ectiveness in solving the test problem, but it has some limitations in
practical application. They are related to the fact that an analytic expression
for the Green's function must be known. This signi�cantly limits the range of
regions Ω, in which a numerical solution can be found, to the cases presented
in the reference literature [15].

The purpose of the paper is to develop iterative methods for solving the
boundary value problem (1) � (3), which have a two-sided nature of conver-
gence to the desired solution and would not be tied to the presence of a known
Green's function. Two-sided approximate methods for solving nonlinear opera-
tor equations based on the theory of nonlinear operators in semiordered spaces
were developed in [4, 5, 7, 8, 13, 14]. This paper continues the research begun
in [17,18], and extends them to areas of arbitrary geometry.

2. Some information from the theory
of nonlinear operators in spaces with cones

Let us give from the theory of nonlinear operators in semiordered spaces
some concepts and facts, which will be used further [7, 13,14].

Let E be a real Banach space, θ is a zero element of space E . A closed convex
set K ⊂ E is called a cone, if from the fact that u ∈ E , u 6= θ, follows αu ∈ K
with α ≥ 0 and −u /∈ K.

Any cone K ⊂ E allows to enter in space E a semiordering by the rule: v 6 w,
if w − v ∈ K. The elements u > θ (i.e. u ∈ K) are called positive. The set
of elements < v, w > of a semiordered space, which consists of those u ∈ E for
which v 6 u 6 w, is called a cone segment.

An important class of cones for the applications of the theory of semiordered
spaces in computational mathematics is normal cones. A cone K is called
normal if there exists a number N(K) > 0, that from θ 6 x 6 y follows
‖x‖ ≤ N(K) ‖y‖. In this case, it is said that the norm is semimonotonic.
If N(K) = 1, then the cone is called acute and it is said that the norm is
monotonous.

The operator T : E → E is called positive if it leaves invariant the cone K,
i.e. T (u) ∈ K for any u ∈ K.
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The operator T : E → E is called heterotone (or mixed monotone [3,11, etc.]),
if it allows a diagonal representation T (u) ≡ T̂ (u, u), where the companion
operator T̂ : E × E → E monotonically increases with respect to the �rst
argument and decreases with respect to the second one, i.e.

a) if v1 6 v2, then T̂ (v1, w) 6 T̂ (v2, w) for all w ∈ E ;
b) if w1 6 w2, then T̂ (v, w1) > T̂ (v, w2) for all v ∈ E .
A cone segment < v0, w0 > is called strongly invariant for a heterotone

operator T , if
T̂ (v0, w0) ≥ v0, T̂ (w0, v0) ≤ w0. (4)

For the equation u = T (u) with the heterotone operator T , let us form two
iterative processes

v(k+1) = T̂ (v(k), w(k)), w(k+1) = T̂ (w(k), v(k)), k = 0, 1, 2, ..., (5)

starting from the point (v0, w0) formed by the ends of the strongly invariant
cone segment < v0, w0 >.

From the heterotony of the operator T for which the operator T̂ is a compan-
ion one, it follows that the sequence {v(k)} does not increase, and the sequence
{w(k)} does not decrease with respect to the cone K. If the cone K is normal
and the operator T̂ is completely continuous, then the limits v∗ and w∗ of these
sequences exist. Thus, the chain of inequalities holds:

v0 = v(0) 6 v(1) 6 ... 6 v(k) 6 ... 6 v∗ 6 w∗ 6 ... 6
6 w(k) 6 ... 6 w(1) 6 w(0) = w0.

In this case, two cases are possible: v∗ < w∗ and v∗ = w∗. In the second
case, u∗ := v∗ = w∗ is the unique on < v0, w0 > �xed point of the operator T ,
that is, it is the unique on < v0, w0 > solution of the equation u = T (u).

The elements v∗ and w∗ are a solution of the system

v(k+1) = T̂ (v(k), w(k)), w(k+1) = T̂ (w(k), v(k)), k = 0, 1, 2, .... (6)

The equality v∗ = w∗ will hold if the system (6) does not have on < v0, w0 >
such solutions (v, w) that v 6= w.

Then the results of [7] imply the following fact.

Theorem 1. Let the cone segment < v0, w0 > be strongly invariant for the
heterotone operator T for which the operator T̂ is a companion one, the cone K
be normal, and the operator T̂ be completely continuous. Then the successive
approximations, which are formed according to scheme (5), where v(0) = v0,
w(0) = w0, converge to the unique on < v0, w0 > �xed point u∗ of the operator
T and the following inequalities

v0 = v(0) 6 v(1) 6 ... 6 v(k) 6 ... 6 u∗ 6 ... 6
6 w(k) 6 ... 6 w(1) 6 w(0) = w0

(7)

are satis�ed.
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The chain of inequalities (7) characterizes the iterative process (5) as a
method of two-sided approximations.

The condition that the system (6) does not have on < v0, w0 > such solutions
(v, w) that v 6= w, can be complicated for practical employment. A su�cient
condition of the ful�lment of the equality v∗ = w∗ is the existence of such
γ ∈ (0; 1) that ∥∥∥T̂ (v, w)− T̂ (w, v)

∥∥∥ ≤ γ ‖v − w‖ (8)

for all v, w ∈< v0, w0 > [3].
If the condition (8) is satis�ed, it is obtained the estimate

∥∥∥w(k) − v(k)
∥∥∥ =

∥∥∥T̂ (w(k−1), v(k−1))− T̂ (v(k−1), w(k−1))
∥∥∥ ≤

≤ γ
∥∥∥w(k−1) − v(k−1)

∥∥∥ ≤ ... ≤ γk
∥∥w0 − v0

∥∥ .

Then, if

u(k) =
1
2
(w(k) + v(k)) (9)

is taken as the approximate solution of the operator equation u = T (u) on the
k-th iteration, then the following error estimate holds:

∥∥∥u∗ − u(k)
∥∥∥ ≤ γk

2

∥∥w0 − v0
∥∥ . (10)

Thus, the following theorem holds.

Theorem 2. Let the cone segment < v0, w0 > be strongly invariant for the het-
erotone operator T for which the operator T̂ is a companion one, the cone K be
normal, and the operator T̂ be completely continuous. Then, if condition (8) is
satis�ed, the successive approximations that are formed according to the scheme
(5), where v(0) = v0, w(0) = w0, two-sided in the sense of (7) converge to the
unique on < v0, w0 > �xed point u∗ of the operator T and for the approximate
solution of the form (9) on the k-th iteration the estimate (10) holds.

From estimation (10) it follows that for a faster convergence of iterations (5)
it is necessary to choose a strongly invariant cone segment < v0, w0 > of as
short as possible length

∥∥w0 − v0
∥∥.

If the accuracy ε > 0 with which it is necessary to �nd an approximate
solution of the equation u = T (u), is given, then, using the estimate (10),
from the inequality

∥∥u∗ − u(k)
∥∥ < ε, it is obtained that to achieve the speci�ed

accuracy it is necessary to do

k0(ε) =


 ln ‖w0−v0‖

2ε

ln 1
γ


 + 1 (11)

iterations, where the square brackets denote the integer part of the number.

99



M.V. SIDOROV

3. Construction of two-sided approximations
To analyze the problem (1) � (3) and construct two-sided approximations to

its positive solution, let us use the methods of the theory of nonlinear operators
in semiordered spaces [7,13,14] and the Green-Rvachev's quasi-function [16,18].

Let the boundary ∂Ω of the domain consists of a �nite number of pieces of
lines σi(x) = 0, i = 1, 2, ..., r, where each σi(x) is an elementary function. Then
with the help of the R-functions method [15] one can construct in the form of
a single analytic expression an elementary function ω(x), which describes the
geometry of the region Ω, that is:

a) ω(x) > 0 in Ω;
b) ω(x) = 0 on ∂Ω;
c) |∇ω(x)| 6= 0 on ∂Ω.
Also, the function ω(x) can have certain properties of di�erentiation due to

the use of various su�ciently complete systems of R-functions [16].

De�nition 7. Let gm(r) be a fundamental solution of the equation ∆u = 0 in
Rm. The Green-Rvachev's quasi-function of the �rst boundary value problem
for the Laplace operator in Rm is the function

Qm(x, ξ) = gm(r)− g̃m(x, ξ), (12)
where x = (x1, ..., xm), ξ = (ξ1, ..., ξm),

r = |x− ξ| =
√√√√

m∑

i=1

(xi − ξi)
2, g̃m(x, ξ) = gm

(√
r2 + 4ω(x)ω(ξ)

)
,

ω(x) is the function that describes the geometry of the domain Ω.

Let us note [16] that for the case when Ω is a ball of radius R in Rm, and
ω(x) = 1

2R(R2 − x2
1 − ...− x2

m), the Green-Rvachev's quasi-function (12) turns
into the exact Green's function of the �rst boundary value problem for the
Laplace operator considered in a ball Ω.

The fundamental solutions of the Laplace equation have the form

g2(r) =
1
2π

ln
1
r
,

g3(r) =
1
4π

· 1
r
,

gm(r) =
1

|S1| (m− 2)
· 1
rm−2

, m > 3,

where |S1| is the area of a single sphere in Rm, consequently, the Green-
Rvachev's quasi-function acquires the form

Q2(x, ξ) =
1
2π

ln

√
1 +

4ω(x)ω(ξ)
r2

in R2, (13)

Q3(x, ξ) =
1
4π

·
√

r2 + 4ω(x)ω(ξ)− r

r
√

r2 + 4ω(x)ω(ξ)
in R3, (14)
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Qm(x, ξ) =
1

|S1| (m− 2)
· (r

2 + 4ω(x)ω(ξ))
m
2
−1 − rm−2

rm−2(r2 + 4ω(x)ω(ξ))
m
2
−1

in Rm, m > 3. (15)

From (13) � (15) and De�nition 7 the following lemma on the properties of
the Green-Rvachev's quasi-function follows.

Lemma 1. The Green-Rvachev's quasi-function (12) has the following proper-
ties:

a) Q(x, ξ) = 0 on ∂Ω;
b) is a symmetric function: Q(x, ξ) = Q(ξ,x);
c) has the same feature for x = ξ as the usual Green's function;
d) is positive in the area Ω: Q(x, ξ) > 0, x, ξ ∈ Ω, x 6= ξ.

According to [16, 18], from each of the equations (1) let us proceed to an
integral equation of the form

ui(x) =
∫

Ω

Km(x, ξ)ui(ξ)dξ+

+
∫

Ω

Qm(x, ξ)fi(ξ, u1(ξ), ..., un(ξ))dξ, i = 1, ..., n,

(16)

where Km(x, ξ) = − ∂2

∂ξ2
1
g̃m(x, ξ)− ...− ∂2

∂ξ2
m

g̃m(x, ξ).
The system of equations (16) can be written in the form of a vector equation

of Urysohn
u(x) =

∫

Ω

P(x, ξ,u(ξ))dξ,

where
P(x, ξ,u(ξ)) = (P1(x, ξ, u1(ξ), ..., un(ξ)), ..., Pn(x, ξ, u1(ξ), ..., un(ξ))),

Pi(x, ξ, u1(ξ), ..., un(ξ)) = Km(x, ξ)ui(ξ) + Q(x, ξ)fi(ξ, u1(ξ), ..., un(ξ))),
i = 1, ..., n.

If the boundary value problem (1) � (3) has a classical solution, then it also
satis�es the system of equations (16). If the classical solution of the problem
does not exist, then the system of equations (16) can be used to introduce the
concept of a generalized solution of the boundary value problem (1) � (3).

The system of equations (16) will be considered in a Banach space Cn(Ω̄) =
{u = (u1, ..., un) : ui ∈ C(Ω̄), i = 1, ..., n} of vector functions continuous in
Ω̄ with the norm ‖u‖n = max{‖u1‖ , ..., ‖un‖}, where ‖ui‖ = max

x∈Ω̄
|ui(x)|,

i = 1, ..., n. Let us select in Cn(Ω̄) the cone K+ = {u = (u1, ..., un) ∈ Cn(Ω̄) :
ui(x) ≥ 0,x ∈ Ω̄, i = 1, ..., n} of vector functions with non-negative coordinates.
Note that the cone K+ in Cn(Ω̄) is normal (and even acute).

With the help of the cone K+ in the spaceCn(Ω̄) let us introduce a semiorder-
ing by the rule:

for u,v ∈ Cn(Ω̄) u 6 v, if v − u ∈ K+,
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that is,
u 6 v, if ui(x) ≤ vi(x) for all x ∈ Ω̄ and for all i = 1, ..., n.

De�nition 8. By a solution (generalized) of the problem (1) � (3) will be
meant a vector-valued function u∗ ∈ K+, which is a solution of the system of
integral equations (16).

Let us construct a process of two-sided approximations for �nding the so-
lution of the integral equations system (16) (and consequently, the solution of
the boundary value problem (1) � (3)).

Let us introduce a nonlinear integral operator T acting in Cn(Ω̄) by the rule,
which is determined by the right-hand side of the equations system (16)

T(u)(x) =
∫

Ω

P(x, ξ,u(ξ))dξ = (T1(u)(ξ), ..., Tn(u)(ξ)), (17)

where

Ti(u)(x) =
∫

Ω

Pi(x, ξ, u1(ξ), ..., un(ξ))dξ =

=
∫

Ω

Km(x, ξ)ui(ξ)dξ +
∫

Ω

Qm(x, ξ)fi(ξ, u1(ξ), ..., un(ξ))dξ. (18)

The operator T of the form (17) can be represented as the sum of a linear
integral operator T1 acting in Cn(Ω̄) by the rule

T1(u)(x) =




∫

Ω

K1(x, ξ)u1(ξ)dξ, ...,

∫

Ω

Kn(x, ξ)un(ξ)dξ


 ,

and a nonlinear Hammerstein operator T2 acting in Cn(Ω̄) by the rule

T2(u)(x) =




∫

Ω

Qm(x, ξ)f1(ξ, u1(ξ), ..., un(ξ))dξ, ...,

∫

Ω

Qm(x, ξ)fn(ξ, u1(ξ), ..., un(ξ))dξ


 .

From the item d) of Lemma 1 it follows that the operator T2 is a positive
operator, because it leaves the cone K+ invariant, but because there is no
assurance in the sign of the function Km(x, ξ) for x, ξ ∈ Ω (x 6= ξ), the question
of the positivity of the operator T1 is an open one. Therefore, we can not say
that the operator T is positive. However, the operator T of the form (17) can
be represented as a di�erence of positive operators.

Let us denote
K+

m(x, ξ) = max{0,Km(x, ξ)}, K−
m(x, ξ) = max{0,−Km(x, ξ)}.

It is clear that K+
m(x, ξ) ≥ 0 and K−

m(x, ξ) ≥ 0 for x, ξ ∈ Ω (x 6= ξ).
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Then

Km(x, ξ) = K+
m(x, ξ)−K−

m(x, ξ), |Km(x, ξ)| = K+
m(x, ξ) + K−

m(x, ξ)

and the operators Ti, i = 1, ..., n, of the form (17) will be written in the form

Ti(u)(x) =
∫

Ω

K+
m(x, ξ)ui(ξ)dξ −

∫

Ω

K−
m(x, ξ)ui(ξ)dξ+

+
∫

Ω

Qm(x, ξ)fi(ξ, u1(ξ), ..., un(ξ))dξ, i = 1, ..., n. (19)

Suppose that the vector-valued function f(x,u) allows a diagonal representa-
tion f(x,u) = f̂(x,u,u) = (f̂1(x,u,u), ..., f̂n(x,u,u)), besides, continuous on
the sets of variables x, v, w functions f̂i(x,v,w) = f̂i(x, v1, ..., vn, w1, ..., wn)
monotonically increase with respect to all vi and monotonically decrease with
respect to all wi, i = 1, ..., n, for all x ∈ Ω. Then the operator T of the form
(17) will be heterotone with the companion operator

T̂(v,w)(x) = (T̂1(v,w)(x), ..., T̂n(v,w)(x)), (20)

where

T̂i(v,w)(x) =
∫

Ω

K+
m(x, ξ)vi(ξ)dξ −

∫

Ω

K−
m(x, ξ)wi(ξ)dξ+

+
∫

Ω

Qm(x, ξ)f̂i(ξ, v1(ξ), ..., vn(ξ), w1(ξ), ..., wn(ξ))dξ, i = 1, ..., n. (21)

It is clear that the operators T and T̂ are completely continuous, and the
operator Ti of the form (18) will be heterotone with the companion operator
T̂i of the form (21).

In the cone K+ let us select a strongly invariant cone segment < v0,w0 >,
v0 = (v0

1, ..., v
0
n), w0 = (w0

1, ..., w
0
n), by conditions (4), which for the operator

T̂ that is de�ned by (20), will have the form: for all x ∈ Ω̄
∫

Ω

K+
m(x, ξ)v0

i (ξ)dξ −
∫

Ω

K−
m(x, ξ)w0

i (ξ)dξ+ (22)

+
∫

Ω

Qm(x, ξ)f̂i(ξ, v0
1(ξ), ..., v0

n(ξ), w0
1(ξ), ..., w0

n(ξ))dξ ≥ v0
i (x), i = 1, ..., n,

∫

Ω

K+
m(x, ξ)w0

i (ξ)dξ −
∫

Ω

K−
m(x, ξ)v0

i (ξ)dξ+ (23)

+
∫

Ω

Qm(x, ξ)f̂i(ξ, w0
1(ξ), ..., w0

n(ξ), v0
1(ξ), ..., v0

n(ξ))dξ ≤ w0
i (x), i = 1, ..., n.
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Let us form an iterative process by the scheme (5):

v
(k+1)
i (x) =

∫

Ω

K+
m(x, ξ)v(k)

i (ξ)dξ −
∫

Ω

K−
m(x, ξ)w(k)

i (ξ)dξ+

+
∫

Ω

Qm(x, ξ)f̂i(ξ, v
(k)
1 (ξ), ..., v(k)

n (ξ), w(k)
1 (ξ), ..., w(k)

n (ξ))dξ, (24)

w
(k+1)
i (x) =

∫

Ω

K+
m(x, ξ)w(k)

i (ξ)dξ −
∫

Ω

K−
m(x, ξ)v(k)

i (ξ)dξ+

+
∫

Ω

Qm(x, ξ)f̂i(ξ, w
(k)
1 (ξ), ..., w(k)

n (ξ), v(k)
1 (ξ), ..., v(k)

n (ξ))dξ, (25)

i = 1, ..., n, k = 0, 1, 2, ...; (26)

v
(0)
i (x) = v0

i (x), w
(0)
i (x) = w0

i (x), i = 1, ..., n. (27)
Taking into account Theorem 1, such conditions for the existence of a unique

solution of the problem (1) � (3) and the convergence of successive approxima-
tions (24) � (27) to it can be given.

Theorem 3. Let < v0,w0 > be a strongly invariant cone segment for the
heterotone operator T of the form (17) with the companion operator T̂ of the
form (20) and the system of 2n integral equations

vi(x) =
∫

Ω

K+
m(x, ξ)vi(ξ)dξ −

∫

Ω

K−
m(x, ξ)wi(ξ)dξ+

+
∫

Ω

Qm(x, ξ)f̂i(ξ, v1(ξ), ..., vn(ξ), w1(ξ), ..., wn(ξ))dξ, i = 1, ..., n,

wi(x) =
∫

Ω

K+
m(x, ξ)wi(ξ)dξ −

∫

Ω

K−
m(x, ξ)vi(ξ)dξ+

+
∫

Ω

Qm(x, ξ)f̂i(ξ, w1(ξ), ..., wn(ξ), v1(ξ), ..., vn(ξ))dξ, i = 1, ..., n,

does not have on < v0,w0 > solutions such that v 6= w. Then the iterative
process (24) � (27) converges in the norm of the space Cn(Ω̄) to the unique on
< v0,w0 > continuous positive solution u∗ of the boundary value problem (1)
� (3), and a chain of inequalities hold:

v0 = v(0) 6 v(1) 6 ... 6 v(k) 6 ... 6 u∗ 6 ... 6 w(k) 6 ... 6 w(1) 6 w(0) = w0.

Let us now use Theorem 2. Let for each i, i = 1, ..., n, there exist such
number Li > 0 that the function f̂i(x, v1, ..., vn, w1, ..., wn) for all numbers v1,
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. . . , vn, w1, . . . , wn such that 0 < vi, wi < M i
0, where M i

0 = max
x∈Ω̄

w0
i (x),

i = 1, ..., n, and for all x ∈ Ω satis�es the inequality∣∣∣f̂i(x, v1, ..., vn, w1, ..., wn)− f̂i(x, w1, ..., wn, v1, ..., vn)
∣∣∣ ≤

≤ Li max{|v1 − w1| , ..., |vn − wn|}. (28)

Let us consider for an arbitrary i, i = 1, ..., n, the di�erence T̂i(w,v)(x) −
T̂i(v,w)(x):

T̂i(w,v)(x)− T̂i(v,w)(x) =
∫

Ω

[K+
m(x, ξ) + K−

m(x, ξ)][wi(ξ)− vi(ξ)]dξ+

+
∫

Ω

Qm(x, s)[f̂i(ξ, w1(ξ), ..., wn(ξ), v1(ξ), ..., vn(ξ))−

− f̂i(ξ, v1(ξ), ..., vn(ξ), w1(ξ), ..., wn(ξ))]dξ.

Then, taking into account the inequality (28), we get an estimate∥∥∥T̂(w,v)− T̂(v,w)
∥∥∥

n
= max

i=1,...,n
max
x∈Ω̄

∣∣∣T̂i(w,v)(x)− T̂i(v,w)(x)
∣∣∣ ≤

≤ max
i=1,...,n

{M1 + LiM} · max
i=1,...,n

max
x∈Ω̄

|wi(x)− vi(x)| = (M1 + LM)‖w − v‖n,

where
M = max

x∈Ω̄

∫

Ω

Qm(x, ξ)dξ, (29)

M1 = max
x∈Ω̄

∫

Ω

[K+
m(x, ξ) + K−

m(x, ξ)]dξ, (30)

L = max
i=1,...,n

Li. (31)

Therefore, ∥∥∥T̂(w,v)− T̂(v,w)
∥∥∥

n
≤ γ‖w − v‖n,

where γ = M1 + LM .
Thus, the following theorem holds.

Theorem 4. Let < v0,w0 > be a strongly invariant cone segment for the
heterotone operator T of the form (17) with the companion operator T̂ of the
form (20) and the condition (28) holds, besides, γ = M1 + LM < 1, where
the constants M , M1 and L are de�ned by the equalities (29), (30) and 31)
respectively. Then, the iterative process (24) � (27) two-sided converges in the
norm of the space Cn(Ω̄) to the unique on < v0,w0 > continuous positive
solution u∗ of the boundary value problem (1) � (3).

On the k-th iteration, in accordance with (9), as an approximate solution of
the boundary value problem (1) � (3) the vector function

u(k)(x) =
1
2
(w(k)(x) + v(k)(x))
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is accepted.
Then there will be a posteriori estimate of the error of the approximation

u(k)(x): ∥∥∥u∗ − u(k)
∥∥∥

n
≤ 1

2
max

i=1,...,n
max
x∈Ω̄

(w(k)
i (x)− v

(k)
i (x)).

If the accuracy ε > 0 is given, then the iterative process should be carried
out until the inequality

max
i=1,...,n

max
x∈Ω̄

(w(k)
i (x)− v

(k)
i (x)) < 2ε (32)

will be satis�ed and then with an accuracy ε it can be expected that u∗(x) ≈
u(k)(x).

If the conditions of Theorem 4 are satis�ed, then an a priori estimate of the
error will be:

∥∥∥u∗ − u(k)
∥∥∥

n
≤ γk

2
max

i=1,...,n
max
x∈Ω̄

(w0
i (x)− v0

i (x)),

from which it is obtained that to achieve the accuracy ε it is necessary to do

k0(ε) =


 ln

max
i=1,...,n

max
x∈Ω̄

(w0
i (x)−v0

i (x))

2ε

ln 1
γ


 + 1 (33)

iterations, where the square brackets denote the integer part of the number.

4. Numerical experiment
The construction of two-sided approximations to the solution of the boundary

value problem (1) � (3) will be demonstrated on the system of two equations
with exponential nonlinearities:

−∆u1 = eu2 , −∆u2 = e−u1 , x ∈ Ω, (34)

u1(x) > 0, u2(x) > 0, x ∈ Ω, (35)
u1|∂Ω = u2|∂Ω = 0, (36)

where Ω = {x = (x1, x2) : 0 < x1, x2 < 1}.
The functions f1(x, u1, u2) = eu2 , f2(x, u1, u2) = e−u1 are positive and con-

tinuous with respect to the set of variables, if u1, u2 > 0 and allow a diagonal
representation with the help of functions

f̂1(x, v1, v2, w1, w2) = ev2 , f̂2(x, v1, v2, w1, w2) = e−w1 . (37)
The problem (34) � (36) is replaced by an equivalent system of integral

equations
u1(x) =

∫

Ω

K2(x, ξ)u1(ξ)dξ +
∫

Ω

Q2(x, ξ)eu2(ξ)dξ, (38)

u2(x) =
∫

Ω

K2(x, ξ)u2(ξ)dξ +
∫

Ω

Q2(x, ξ)e−u1(ξ)dξ, (39)
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where Q2(x, ξ) is determined by the formula (13),

K2(x, ξ) = − ∂2

∂ξ2
1

g̃2(x, ξ)− ∂2

∂ξ2
2

g̃2(x, ξ),

g̃2(x, ξ) =
1
2π

ln
1√

r2 + 4ω(x)ω(ξ)
,

ω(x) = [x1(1− x1)]∧0[x2(1− x2)] ≡

≡ x1(1− x1) + x2(1− x2)−
√

x2
1(1− x1)

2 + x2
2(1− x2)

2.

With the system (38) � (39) let us associate a heterotone operator

T(u1, u2) =




∫

Ω

K2(x, ξ)u1(ξ)dξ +
∫

Ω

Q2(x, ξ)eu2(ξ)dξ,

∫

Ω

K2(x, ξ)u2(ξ)dξ +
∫

Ω

Q2(x, ξ)e−u1(ξ)dξ


 , (40)

for which the companion operator has the form

T̂(v1, v2, w1, w2) =




∫

Ω

K+
2 (x, ξ)v1(ξ)dξ −

∫

Ω

K−
2 (x, ξ)w1(ξ)dξ+

+
∫

Ω

Q2(x, ξ)ev2(ξ)dξ,

∫

Ω

K+
2 (x, ξ)v2(ξ)dξ−

−
∫

Ω

K−
2 (x, ξ)w2(ξ)dξ +

∫

Ω

Q2(x, ξ)e−w1(ξ)dξ


 ,

where

K+
2 (x, ξ) = max{0,K2(x, ξ)}, K−

2 (x, ξ) = max{0,−K2(x, ξ)}.
For the operator T of the form (40) a strongly invariant cone segment

will be sought in the form < v0,w0 >, where v0(x) = (v0
1(x), v0

2(x)) =
(α1ω(x), α2ω(x)), w0(x) = (w0

1(x), w0
2(x)) = (β1ω(x), β2ω(x)), 0 < α1 < β1,

0 < α2 < β2.
For the chosen vector-valued functions v0, w0 the system of inequalities (22),

(23) for determining the constants α1, α2, β1, β2 has the form: for all x ∈ Ω̄

α1

∫

Ω

K+
2 (x, ξ)ω(ξ)dξ − β1

∫

Ω

K−
2 (x, ξ)ω(ξ)dξ+

+
∫

Ω

Q2(x, ξ)eα2ω(ξ)dξ ≥ α1ω(x),
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α2

∫

Ω

K+
2 (x, ξ)ω(ξ)dξ − β2

∫

Ω

K−
2 (x, ξ)ω(ξ)dξ+

+
∫

Ω

Q2(x, ξ)e−β1ω(ξ)dξ ≥ α2ω(x),

β1

∫

Ω

K+
2 (x, ξ)ω(ξ)dξ − α1

∫

Ω

K−
2 (x, ξ)ω(ξ)dξ+

+
∫

Ω

Q2(x, ξ)eβ2ω(ξ)dξ ≤ β1ω(x),

β2

∫

Ω

K+
2 (x, ξ)ω(ξ)dξ − α2

∫

Ω

K−
2 (x, ξ)ω(ξ)dξ+

+
∫

Ω

Q2(x, ξ)e−α1ω(ξ)dξ ≤ β2ω(x).

These inequalities are satis�ed, for example, by the numbers α1 = 0, 01,
α2 = 0, 01, β1 = 0, 59, β2 = 0, 55.

Because for 0 < v1, w1 <
√

2−1
2
√

2
β1, 0 < v2, w2 <

√
2−1

2
√

2
β2 (max

x∈Ω̄
ω(x) =

√
2−1

2
√

2
)

∣∣∣f̂1(x, v1, v2, w1, w2)− f̂1(x, w1, w2, v1, v2)
∣∣∣ = |ev2 − ew2 | ≤

≤ e

√
2−1

2
√

2
β2 |v2 − w2| ≤ e

√
2−1

2
√

2
β2 max{|v1 − w1| , |v2 − w2|},∣∣∣f̂2(x, v1, v2, w1, w2)− f̂2(x, w1, w2, v1, v2)

∣∣∣ =
∣∣e−w1 − e−v1

∣∣ ≤
≤ |v2 − w2| ≤ max{|v1 − w1| , |v2 − w2|},

then
L = max

{
e

√
2−1

2
√

2
β2 , 1

}
= max{1, 08388; 1} = 1, 08388.

Further we �nd

M = max
x∈Ω̄

∫

Ω

Q2(x, ξ)dξ = 0, 04093,

M1 = max
x∈Ω̄

∫

Ω

[K+
2 (x, ξ) + K−

2 (x, ξ)]dξ = 0, 70819,

γ = M1 + LM = 0, 753.

Thus, γ < 1 and by Theorem 4, the successive approximations that are
formed by the scheme

v
(k+1)
1 (x) =

∫

Ω

K+
2 (x, ξ)v(k)

1 (ξ)dξ −
∫

Ω

K−
2 (x, ξ)w(k)

1 (ξ)dξ+

+
∫

Ω

Q2(x, ξ)ev
(k)
2 (ξ)dξ,
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v
(k+1)
2 (x) =

∫

Ω

K+
2 (x, ξ)v(k)

2 (ξ)dξ −
∫

Ω

K−
2 (x, ξ)w(k)

2 (ξ)dξ+

+
∫

Ω

Q2(x, ξ)e−w
(k)
2 (ξ)dξ,

w
(k+1)
1 (x) =

∫

Ω

K+
2 (x, ξ)w(k)

1 (ξ)dξ −
∫

Ω

K−
2 (x, ξ)v(k)

1 (ξ)dξ+

+
∫

Ω

Q2(x, ξ)ew
(k)
2 (ξ)dξ,

w
(k+1)
2 (x) =

∫

Ω

K+
2 (x, ξ)w(k)

2 (ξ)dξ −
∫

Ω

K−
2 (x, ξ)v(k)

2 (ξ)dξ+

+
∫

Ω

Q2(x, ξ)e−v
(k)
2 (ξ)dξ, k = 0, 1, 2, ...,

v
(0)
1 (x) = α1ω(x), v

(0)
2 (x) = α2ω(x),

w
(0)
1 (x) = β1ω(x), w

(0)
2 (x) = β2ω(x),

two-sided converge to the solution of problem (34) � (36).

Tabl. 1. The values of the estimate of the approximate solution
error

Iteration number k ε
(k)
1 ε

(k)
2

0 0, 42 · 10−1 0, 40 · 10−1

1 0, 23 · 10−1 0, 22 · 10−1

2 0, 12 · 10−1 0, 11 · 10−1

3 0, 60 · 10−2 0, 56 · 10−2

4 0, 29 · 10−2 0, 28 · 10−2

5 0, 14 · 10−2 0, 13 · 10−2

6 0, 70 · 10−3 0, 66 · 10−3

7 0, 34 · 10−3 0, 32 · 10−3

8 0, 17 · 10−3 0, 16 · 10−3

9 0, 80 · 10−4 0, 76 · 10−4

Let us choose ε = 10−4. Then, in accordance with (33), to achieve this
accuracy, it is necessary to make k0(ε) =

[
ln

max{β1,β2}
2ε

ln 1
γ

]
+ 1 = 28 iterations.

In fact, the accuracy ε = 10−4 was achieved at the ninth iteration. As one
can see, the theoretical error estimate turned out to be greatly overestimated.
As an approximate solution of problem (34) � (36), the functions u

(9)
1 (x) =

v
(9)
1 (x)+w

(9)
1 (x)

2 , u
(9)
2 (x) = v

(9)
2 (x)+w

(9)
2 (x)

2 will be accepted.
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Tabl. 2. The values of the approximate solution in points xi =
(0, 1i; 0, 5), i = 0, 1, ..., 10

xi = (0, 1i; 0, 5) u
(9)
1 (xi) u

(9)
2 (xi)

(0; 0, 5) 0 0
(0, 1; 0, 5) 0, 0301 0, 0274
(0, 2; 0, 5) 0, 0520 0, 0471
(0, 3; 0, 5) 0, 0666 0, 0599
(0, 4; 0, 5) 0, 0751 0, 0672
(0, 5; 0, 5) 0, 0778 0, 0696
(0, 6; 0, 5) 0, 0751 0, 0672
(0, 7; 0, 5) 0, 0666 0, 0599
(0, 8; 0, 5) 0, 0520 0, 0471
(0, 9; 0, 5) 0, 0301 0, 0274
(1; 0, 5) 0 0

(a) (b)

Fig. 1. Graphs of the cross-sections of upper and lower ap-
proximations w

(k)
1 (x1, 0, 5), v

(k)
1 (x1, 0, 5) (a) and w

(k)
2 (x1, 0, 5),

v
(k)
2 (x1, 0, 5) (b), k = 0, 2, 6, 8

Table 1 gives the data how the estimate ε
(k)
i = max

x∈Ω̄

1
2(w(k)

i (x) − v
(k)
i (x)) of

the norm of the error
∥∥∥u∗i − u

(k)
i

∥∥∥ of the approximate solution u
(k)
i (x), i = 1, 2,

varies depending on the iteration number k, k = 0, 1, ..., 9. Table 2 shows
the values, found with accuracy ε = 10−4 of the approximate solution u

(9)
1 (x),

u
(9)
2 (x) at the points located on the straight line x2 = 0, 5 with the step 0, 1,

and also it was found that
∥∥∥u

(9)
1

∥∥∥ = 0, 0778,
∥∥∥u

(9)
2

∥∥∥ = 0, 0696.
Fig. 1 shows the graphs of the cross-sections of the upper w

(k)
1 (x), w

(k)
2 (x)

and the lower v
(k)
1 (x), v

(k)
2 (x) approximations at x2 = 0, 5 for k = 0, 2, 6, 8.

Fig. 2, 3 show the surfaces of the approximate solutions u
(9)
1 (x), u

(9)
2 (x) and
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(a) (b)

Fig. 2. Graphs of the approximate solutions u
(9)
1 (x) (a) and

u
(9)
2 (x) (b)

(a) (b)

Fig. 3. Contour lines of the approximate solutions u
(9)
1 (x) (a)

and u
(9)
2 (x) (b)

their contour lines (with the step 0, 01) respectively. Considering the relation-
ship ε

(k+1)
i

ε
(k)
i

, k = 0, 1, ..., 10, i = 1, 2, according to the table 1, it was received

that ε
(k+1)
1

ε
(k)
1

≈ ε
(k+1)
2

ε
(k)
2

≈ 0, 486, that indicates the geometric rate of convergence
of the iterative sequence with the corresponding index. Let us note that the
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convergence exponent turned out to be less than the exponent γ estimated in
accordance with Theorem 4.

5. Conclusions
In the paper a method of two-sided approximations of the solution of the

homogeneous Dirichlet problem for a system of semilinear elliptic equations is
proposed on the basis of the Green-Rvachev's quasi-function method. A com-
putational experiment carried out for a system with exponential nonlinearity
demonstrated the possibilities and e�ectiveness of the method. The proposed
approach to the numerical solution of semilinear systems can be used in solv-
ing various applied problems, the mathematical model of which is the problem
(1) � (3). The proposed method is more universal than the existing methods,
and it allows to solve the problem in question in areas of arbitrary geometry,
provided that this region can be described by the R-function method.
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