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AN ITERATIVE METHOD FOR THE CAUCHY
PROBLEM FOR THE LAPLACE EQUATION

IN THREE-DIMENSIONAL DOMAINS

I. V. Borachok

Ðåçþìå. Ìè ðîçãëÿäà¹ìî iòåðàöiéíèé óçàãàëüíåíèé ìåòîä Ëàíäâåáåðà
äëÿ çàäà÷i Êîøi äëÿ ðiâíÿííÿ Ëàïëàñà ó äâîçâ'ÿçíèõ òðèâèìiðíèõ îáëàñ-
òÿõ. Öåé ìåòîä ¹ ðåãóëÿðèçóþ÷îþ ïðîöåäóðîþ äëÿ îòðèìàííÿ ñòàáiëüíîãî
ðîçâ'ÿçêó. Íà êîæíîìó êðîöi iòåðàöiéíîãî ìåòîäó ïîòðiáíî ðîçâ'ÿçàòè
äâi êîðåêòíi ïðÿìi çàäà÷i äëÿ ðiâíÿííÿ Ëàïëàñà. Êîæíà ïðÿìà çàäà÷à
âèðiøó¹òüñÿ ìåòîäîì ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü iç çàñòîñóâàííÿì
ïðîåêöiéíîãî ìåòîäó Ãàëüîðêiíà äëÿ äèñêðåòèçàöi¨. Íàïðèêiíöi íàâåäåíi
äåÿêi ÷èñåëüíi ðåçóëüòàòè.
Abstract. We consider an iterative generalized Landweber method for the
Cauchy problem for the Laplace equation in doubly connected 3-dimensional
domains. This method is a regularizing procedure for obtaining a stable so-
lution to the Cauchy problem, and consists of solving two well-posed direct
problems for the Laplace equation at each iteration step. Each direct problem
is solved by a boundary integral equations method with a projection Galerkin
method for the discretisation. Some numerical results are given and discussed
as well at the end.

1. Introduction
The Cauchy problem for the Laplace equation has important applications.

For example, it occurs in electrostatics, non-destructive testing, cardiology,
leak identi�cation, etc. This problem belongs to the class of ill-posed linear
inverse problems, since it is unstable with respect to input data [7] (a small
remark here, the input Cauchy data should be compatible [6]). We focus on
the numerical solution of this Cauchy problem in three-dimensional doubly
connected domains.

The Cauchy problem can be solved numerically in a stable way by com-
bining direct methods, such as for example the boundary integral equations
method [4,10�12,15] or the method of fundamental solutions [14] etc, with some
regularization strategy, for example, Tikhonov regularization with an appropri-
ate way of selecting the regularization parameter like the Morozov discrepancy
principle or the L-curve method [4, 12, 15]. Another approach for numerically
solving the Cauchy problem is to use iterative methods, where the choice of the
termination of the iterations is part of the regularization. Numerical examples
show that iterative methods give good results in the case of noisy data, namely,

Key words. Laplace equation, Cauchy problem, Landweber method, Robin boundary
problem, boundary integral equations, projection Galerkin method, Wienert's method, R3

domains.
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we can calculate an approximation with an error being equal to the noise level
or even smaller, by selecting a good strategy for the numerical implementa-
tion of the iterative approach. Commonly used methods are the alternating
method [5, 8, 12] and the Landweber procedure [12] in combination with the
boundary integral equations method for solving the direct problems needed in
both these iterative algorithms.

In this paper, we apply one recent approach being a generalized Landweber
method proposed in [2], for 3-dimensional doubly connected domains. The main
di�erence from the standard Landweber method is that we do not need to use
any adjoint operator, that is we do not need to involve any adjoint di�erential
equation.

We then describe more on the problem formulation. Let D1 ⊂ R3, D2 ⊂ R3

be simply connected smooth bounded domains with boundary surfaces Γ1 and
Γ2, respectively, that satisfy: D1 ⊂ D2. Let D = D2 \ D1 be the solution
domain and ν = (ν1, ν2, ν3)t the outward unit normal to the boundary of D;
this boundary is denoted by ∂D = Γ1 ∪ Γ2.

The Cauchy problem is then as follows. We need to �nd a classical solution
u ∈ C2(D) ∩ C1(D) of the Laplace equation:

∆u = 0 in D (1)

that satis�es the boundary conditions:

u = f and ∂u

∂ν
= g on Γ2. (2)

It is not the full solution in D that is of prime interest, it is instead to �nd
(reconstruct) the corresponding Cauchy data

{
u,

∂u

∂ν

}
on the interior boundary

surface Γ1.
As mentioned, for the numerical solution of the above problem, we apply

one adjoint-free Landweber method [2] being a regularizing procedure for ob-
taining a stable numerical solution [2]. At each step of the iterative procedure,
we need to solve the Dirichlet respectively the Robin direct problems for the
Laplace equation. We use the boundary integral equations method for solving
the required direct problems in the iterative method, and this choice is based
on good numerical results for domains in R2, see [11,12] as well as for domains
in R3 [4,5], together with advantages such as reduction of the dimension of the
problem and the �exibility in terms of the form of the boundary surfaces. As
a stopping rule for the iterations, the Morozov discrepancy principle is used.

The solution of each direct problem is represented as a combination of poten-
tials [4,9,12]. Based on this representation, we obtain a system of linear integral
equations for �nding the unknown densities by requiring that the given Cauchy
data should be satis�ed. For discretization Wienert's method is applied; it is
a Galerkin discrete projection method, where the unknown densities are rep-
resented as a linear combination of spherical harmonics [1] and the boundary
integrals are rewritten over the unit sphere, and to those obtained integrals
certain cubature rules are then applied [13,16].
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AN ITERATIVE METHOD FOR THE CAUCHY PROBLEM ...

An outline of this work is: in Section 2, we consider the iterative algorithm,
the boundary integral equations method for one of the direct problems in the
procedure (having boundary conditions of Robin type) is given in Section 3 and
in Section 4 some numerical results are shown and discussed.

2. The iterative algorithm
We consider one of the iterative methods proposed in [2], in three-dimensional

doubly connected domains. At each iteration step, we need to solve one Dirich-
let and one Robin boundary value problem for the Laplace equation. The
algorithm is as follows:

� The �rst approximation u0 of the solution u is calculated by solving the
Dirichlet boundary value problem:

∆u0 = 0 in D, (3)
u0 = η0 on Γ1 and u0 = f on Γ2, (4)

where η0 is an arbitrary initial starting approximation on the boundary
Γ1.

� Then the element v0 is obtained by solving the Robin boundary value
problem:

∆v0 = 0 in D, (5)
∂v0

∂ν
+ κv0 = 0 on Γ1 and ∂v0

∂ν
+ κv0 = g − ∂u0

∂ν
on Γ2. (6)

� Having obtained uk−1 and vk−1, the approximation uk is obtained from
the Dirichlet boundary value problem:

∆uk = 0 in D, (7)
uk = ηk on Γ1 and uk = f on Γ2, (8)

where
ηk = ηk−1 + γvk−1|Γ1

, γ > 0. (9)
� Then the solution vk is obtained by solving the following Robin boundary

value problem:
∆vk = 0 in D, (10)

∂vk

∂ν
+ κvk = 0 on Γ1 and ∂vk

∂ν
+ κvk = g − ∂uk

∂ν
on Γ2. (11)

The iterative procedure then continues by iterating in the last two steps. The
stopping rule is the Morozov discrepancy principle. The initial approximation
is arbitrary for linear problems, and we select it as the zero-function.

The parameter κ in the Robin boundary condition is positive: κ > 0. The
parameter γ > 0 in the iterative procedure is a relaxation parameter, which is
needed for convergence of the algorithm [2].

The Dirichlet and Robin boundary value problems are well-posed in L2(D)
for boundary data from L2(Γ1) and L2(Γ2). Moreover, given f, g ∈ L2(Γ2)
one can show that lim

k→∞
‖u− uk‖L2(D) = 0, where uk is the k-th approxima-

tion generated from the above algorithm and u is the solution of the Cauchy
problem (1)�(2). Furthermore, for noisy data

{
f δ, gδ

}
, with δ > 0, we have

5
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∥∥∥f δ − uδ
k

∥∥∥
L2(Γ2)

≤ τδ, for τ > 1, where uδ
k is the k-th approximation obtained

from the iterative algorithm using the noisy data. For further information and
details on these estimates, see [2].

3. Numerical solution of the boundary value problems
To solve each of the boundary value problems used in the iterative procedure,

we use the boundary integral equations method. In the introduction, we men-
tioned some advantages of this approach such as reducing the dimension of the
problem compared with the dimension of the solution domain, the �exibility of
applying it for domains of di�erent shapes or even to unbounded domains, its
super-algebraic convergence for analytical data etc.

In [3], it is demonstrated how to solve the Dirichlet boundary value problem
using a single-layer representation of the solution. The similar ideas can be
applied to the Dirichlet boundary value problem by instead using a combina-
tion of single- and double-layer potentials to represent the solution, thereby
obtaining an integral equation of the second kind to solve [9].

We then turn to the Robin boundary value problem:
∆u = 0 in D, (12)

∂u

∂ν
+ κu = h on Γ1 and ∂u

∂ν
+ κu = w on Γ2, (13)

where κ > 0, h ∈ L2(Γ1), w ∈ L2(Γ2) are given.
To obtain an integral equation of the second kind, we represent the solution

of (12)�(13) as a sum of two single-layer potentials:

u(x) =
2∑

l=1

∫

Γl

ϕl(y)Φ(x, y) ds(y), x ∈ D, (14)

where Φ(x, y) =
1

4π|x− y| is a fundamental solution of the Laplace equation in

R3 and ϕl ∈ C(Γl), l = 1, 2, are unknown densities.
From the representation of the solution (14) requiring the boundary condi-

tions (13) to be satis�ed, invoking properties of single-layer potentials [9], we
obtain a system of linear integral equations for �nding the unknown densities:



−1

2
ϕ1 + K11ϕ1 + K12ϕ2 + κ (S11ϕ1 + S12ϕ2) = h, on Γ1,

1
2
ϕ2 + K21ϕ1 + K22ϕ2 + κ (S21ϕ1 + S22ϕ2) = w, on Γ2,

(15)

where we used the following boundary integral operators for l, r = 1, 2:

(Slrψ)(x) =
∫

Γr

ψ(y)Φ(x, y) ds(y), x ∈ Γl, ψ ∈ C(Γr), (16)

(Klrψ)(x) =
∫

Γr

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y), x ∈ Γl, ψ ∈ C(Γr). (17)

6



AN ITERATIVE METHOD FOR THE CAUCHY PROBLEM ...

Notice here that for the Robin boundary problem the approximation of the
solution on the internal boundary surface Γ1 needed in the above generalized
Landweber algorithm, can be obtained as

u(x) = (S11ϕ1)(x) + (S12ϕ2)(x), x ∈ Γ1. (18)
We assume that the two boundary surfaces can be smoothly mapped one-

to-one to the unit sphere S2 =
{
x̂ ∈ R3 : |x̂| = 1

}
. In that case there exist

one-to-one mappings ql : S2 → Γl, l = 1, 2, having smoothly varying Jacobian
Jql

, l = 1, 2. Therefore, based on (16) and (17), we can rewrite the system of
integral equations (15) over the unit sphere:



−1

2
φ1 + K̃11φ1 + K̃12φ2 + κ

(
S̃11φ1 + S̃12φ2

)
= h̃, on S2,

1
2
φ2 + K̃21φ1 + K̃22φ2 + κ

(
S̃21φ1 + S̃22φ2

)
= w̃, on S2,

(19)

where φl(x̂) = ϕl(ql(x̂)), l = 1, 2, h̃(x̂) = h(q1(x̂)), w̃(x̂) = w(q2(x̂)) for x̂ ∈ S2

and the parametrised integral operators are for l, r = 1, 2:

(S̃lrψ)(x̂) =
∫

S2

ψ(ŷ)Llr(x̂, ŷ) ds(y), ψ(x̂) ∈ C(S2), x̂ ∈ S2, (20)

and
(K̃lrψ)(x̂) =

∫

S2

ψ(ŷ)Mlr(x̂, ŷ) ds(y), ψ(x̂) ∈ C(S2), x̂ ∈ S2, (21)

with

Llr(x̂, ŷ) =





Jqr(ŷ)Φ(ql(x̂), qr(ŷ)), l 6= r,

Rl(x̂, ŷ)
|x̂− ŷ| , l = r,

Mlr(x̂, ŷ) =





−Jqr(ŷ)
(ql(x̂)− qr(ŷ))T ν(ql(x̂)))

4π|ql(x̂)− qr(ŷ)|3 , l 6= r,

R̃l(x̂, ŷ)
|x̂− ŷ| , l = r,

where

Rl(x̂, ŷ) =
Jql

(ŷ)
4π





|x̂− ŷ|
|ql(x̂)− ql(ŷ)| , x̂ 6= ŷ

1
Jql

(x̂)
, x̂ = ŷ

and

R̃l(x̂, ŷ) = −Rl(x̂, ŷ)





(ql(x̂)− qr(ŷ))T ν(ql(x̂)))
4π|ql(x̂)− qr(ŷ)|2 , x̂ 6= ŷ ,

−
2

3∑
j=1

q
′
jl(x̂)νj(x̂)−

3∑
j=1

q
′′
jl(x̂)νj(x̂)

2J2
ql
(x̂)

, x̂ = ŷ .

From this representation, it can be seen that the integral operators Sll and
Kll, l = 1, 2, each have a weak singularity.

7
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For the numerical approximation of the integrals in (20) and (21), we next
use the following cubature rules for n

′
> 0, see [13, 16]:

� cubature for integrals with a continuous integrand:
∫

S2

f(ŷ) ds(ŷ) ≈
2n
′
+1∑

p
′
=0

n
′
+1∑

s
′
=1

µ̃p′ ãs′f(ŷs′p′ ); (22)

� cubature for integrals with a weak singularity in the integrand:
∫

S2

f(ŷ)
|x̂− ŷ| ds(ŷ) ≈

2n
′
+1∑

p′=0

n
′
+1∑

s′=1

µ̃p
′ b̃s

′f(T−1
x̂ ŷs

′
p
′ ). (23)

In the cubature rules (22)�(23), we use the following cubature points:

ŷs′p′ =
(
sin θs′ cosϕp′ , sin θs′ sinϕp′ , cos θs′

)
,

with ϕp
′ =

p
′
π

n′ + 1
, θs

′ = arccos zs
′ , where zs

′ are the zeros of the Legendre

polynomials Pn′+1 [1]. The weights of the cubature rules are: µ̃p′ =
π

n′ + 1
,

ãs′ =
2(1− z2

s′
)

((n′ + 1)Pn′ (zs′ ))
2
, b̃s′ = ãs′

n
′∑

l=0

Pl(zs′ ). Following [13], we use an or-

thogonal transformation Tx̂ to move the weak singularity in the integrands to
appear at the north pole of the sphere; it is present in (23). The transformation
Tx̂ is de�ned as follows:

Tx̂ = DF (ϕ)DT (θ)DF (−ϕ), x ∈ S2

with

DF (ψ)




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 , DT (ψ)




cos(ψ) 0 − sin(ψ)
0 1 0

sin(ψ) 0 cos(ψ)


 .

The cubatures (22)�(23) have exponential convergence for a su�ciently smooth
integrand f , see [16].

For discretisation of the system (19), we use a Galerkin projection method.
The unknown densities φl, l = 1, 2, are �rst approximated by a linear combi-
nation of real-valued spherical harmonics:

φl ≈ φ̃l =
n∑

k=0

k∑

m=−k

φl
k,mY R

k,m, l = 1, 2, (24)

where φl
k,m are the unknown coe�cients, and the real-valued spherical harmon-

ics are:

Y R
k,m =

{
ImYk,|m|, 0 < m ≤ k,

ReYk,|m|, −k ≤ m ≤ 0

with Yk,m the spherical harmonics [1].

8



AN ITERATIVE METHOD FOR THE CAUCHY PROBLEM ...

We consider the following discrete inner product, de�ned from the cubature
rule (22):

(v, d) =
2n+1∑

p=0

n+1∑

s=1

µpasv(ŷsp)d(ŷsp), v, d ∈ C(S2), (25)

where the weights and points are generated from (22) for the parameter n > 0.
After approximating the unknown densities in (19) by (24), and by applying

(n + 1)2 times the inner product (25) to (19) with Y R
k,m, k = 0, . . . , n, m =

−k, . . . , k, taking into account the representation of the integral operators (20)
and (21), we obtain a linear system of equations for �nding the unknown coef-
�cients in the representation (24):





n∑
k=0

k∑
m=−k

(
φ1

k,mA11
kk
′
mm

′ + φ2
k,mA12

kk
′
mm

′

)
=

=
2n+1∑
p=0

n+1∑
s=1

µpash̃(x̂sp)Y R
k,m(x̂sp),

n∑
k=0

k∑
m=−k

(
φ1

k,mA21
kk′mm′ + φ2

k,mA22
kk′mm′

)
=

=
2n+1∑
p=0

n+1∑
s=1

µpasw̃(x̂sp)Y R
k,m(x̂sp),

(26)

for k
′
= 0, . . . , n, m = −k, . . . , k, n = 0, 1, . . . , with coe�cients for l, r = 1, 2

given by:

Alr
kk
′
mm

′ =
2n+1∑
p=0

n+1∑
s=1

2n
′
+1∑

p′=0

n
′
+1∑

s′=1

µp′µpasY
R
k
′
,m
′ (x̂sp)×

×








ã
′
sY

R
k,m(ŷs′p′ )

(
Mlr(x̂sp, ŷs′p′ ) + κLlr(x̂sp, ŷs′p′ )

)
, l 6= r

b̃
′
sY

R
k,m(ŷs

′
p
′

sp )
(

R̃l(x̂sp, ŷ
s
′
p
′

sp ) + κRl(x̂sp, ŷ
s
′
p
′

sp )
)

, l = r

+





0, l 6= r

(−1)l 1
2
Y R

k,m(x̂sp), l = r


 ,

where ŷs
′
p
′

sp = T−1
x̂sp

ŷs′p′ .
Calculation of the coe�cients Alr

kk
′
mm

′ requires many operations. We can
reduce the number of operations by using sequential calculation of smaller ad-
ditional matrices [4, 5]. Employing this strategy, we can reduce the number of
operations from O(n8) to O(n5). The coe�cients Alr

kk′mm′ of the system (26)
need only to be calculated once, and can then be used at each step of the gen-
eralized Landweber iterative algorithm. In fact, we only need to calculate the
right-hand side of the system (26) at each step for di�erent functions h̃ and w̃.

After �nding the unknown coe�cients φl
k,m, l = 1, 2, from (26), we can �nd

an approximation of the unknown densities φ̃l, l = 1, 2, from (24).
The solution of the Robin boundary value problem (12)�(13) on the interior

surface Γ1 is given by (18); using the approximation of the densities (24), the

9
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cubature rule (22) and the representation of the integral operator (16), an
approximation of the solution on Γ1 is then given by:

u(x̂) ≈
n
′
+1∑

s′=1

2n
′
+1∑

ρ′=0

(
b̃s
′ µ̃ρ

′ φ̃1(T−1
x̂ ŷs

′
ρ
′ )R1(x̂, T−1

x̂ ŷs
′
ρ
′ )+

+ ãs′ µ̃ρ′ φ̃2(ŷs′ρ′ )L12(x̂, ŷs′ρ′ )
)
, x̂ ∈ Γ1.

4. Numerical experiments
In this section, we give some numerical examples. The main example is

the numerical solution of the Cauchy problem (1)�(2) by using the iterative
generalized Landweber algorithm with exact and noisy data. However, we �rst
start by giving results for the Robin boundary value problem (12)�(13) needed
in the iterative algorithm, to see how our proposed boundary integral equations
method and discretisation perform for this direct problem.

Fig. 1. The solution domain D in Ex. 1

Example 1 (Robin problem (12)�(13)). Let the doubly connected do-
main D (see Fig. 1) be bounded by the two surfaces:
Γl = {x(θ, ϕ) = r1(θ, ϕ) (sin θ cosϕ, 2 sin θ sinϕ, cos θ) , θ ∈ [0, π], ϕ ∈ [0, 2π]} ,

where radial function r1 is:

r1(θ, ϕ) =
1

2
√

1 +
√

2

√
cos(2θ) +

√
2− sin2(2θ),

and
Γ2 =

{
x(θ, ϕ) = (sin θ cosϕ, 1.5 sin θ sinϕ, 1.5 cos θ) , θ ∈ [0, π], ϕ ∈ [0, 2π]

}
.

10
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Tabl. 1. L2-errors for the Robin boundary value problem in Ex. 1

n = n′
‖uex − un‖L2(Γ1)

‖uex‖L2(Γ1)

2 5.13-E01
4 1.27-E02
6 6.56-E04
8 2.81-E05
10 1.91-E06
12 1.50-E07

The boundary data needed in the Robin boundary problem are generated
from the exact solution: uex(x) = x2

2 − x2
3 + x1, x = (x1, x2, x3), thus we get:

∂u

∂ν
(x) + κu(x) = ν1(x) + 2x2ν2(x)− 2x3ν3(x)+

+ κ(x2
2 − x2

3 + x1), x ∈ Γl, l = 1, 2.

Values of the relative L2-errors for the Robin boundary value problem (12)�
(13) are presented in Table 1. As we can see from this table, super-algebraic
convergence is present. In Fig. 2 are the exact and the numerical approximation
for the function values on the internal boundary surface Γ1, obtained with the
discretisation parameters being n = n′ = 12.

a). exact solution b). approximate solution

Fig. 2. Exact and numerical approximation for the function values
on the internal boundary Γ1 for the solution of the Robin boundary
problem in Ex. 1

Example 2 (Cauchy problem (1)�(2)). Let the domain D (see Fig. 3)
be bounded by the two surfaces:

Γl =
{
x(θ, ϕ) = rl(θ, ϕ) (sin θ cosϕ, sin θ sinϕ, cos θ) ,

θ ∈ [0, π], ϕ ∈ [0, 2π]
}
, l = 1, 2,

11
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Fig. 3. The solution domain D in Ex. 2

a). exact solution b). approximate solution

Fig. 4. Reconstruction of the solution on the boundary Γ1 in Ex. 2
(exact data)

where the radial functions are as follows:

r1(θ, ϕ) = 0.2
(
0.6 +

√
4.25 + 2 cos(3θ)

)

and
r2(θ, ϕ) =

√
0.8 + 0.2 (cos(2ϕ)− 1) (cos(4θ)− 1) .

We take a harmonic function uex(x) = ex2 cosx1 − ex1 sinx2 as an exact
solution of the Cauchy problem (1)�(2). The necessary data for the Cauchy
problem are generated from the exact solution uex on the external boundary
Γ2, as in Example 1.

12
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a). exact solution b). approximate solution

Fig. 5. Reconstruction of the solution on the boundary Γ1 in Ex. 2
(3% noise)

a). exact data b). 3% noisy data

Fig. 6. L2-errors in Ex. 2

The results of the numerical reconstruction of the function uex by the gen-
eralized Landweber algorithm on the boundary Γ1, for the cases of exact and
noisy data, are shown in Figs. 4�5. Values of the relative L2-errors at each
iteration are presented in Fig. 6. In the case of exact data, after 700 iterations,
we get

‖uex − u700‖L2(Γ1)

‖uex‖L2(Γ1)
= 0.0078

and for noisy data after 88 iterations (noise is 3%) we obtain

‖uex − u88‖L2(Γ1)

‖uex‖L2(Γ1)
= 0.0283,

in both cases the discretisation parameters for the direct boundary value prob-
lems are n′ = n = 10. The relaxation parameter γ for the generalized Landwe-
ber method is selected as 0.5 (both for exact and noisy data).

13
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5. Conclusion
We employed a generalized iterative Landweber algorithm, which can be ap-

plied to obtain a stable solution to the Cauchy problem, in particular it was
used to �nd a stable approximation of the function values of the solution on
the interior boundary surface of doubly connected three-dimensional domains.
At each iteration step of the algorithm, we need to solve one Dirichlet and one
Robin boundary value problem. Each of these direct boundary problems is
solved by an indirect integral equations method in conjunction with a Galerkin
method for the discretisation. Applicability of proposed algorithm and discreti-
sation are highlighted by some numerical examples both for direct problems as
well as for the Cauchy problem.
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ON A BOUNDARY INTEGRAL EQUATION METHOD
FOR ELASTOSTATIC CAUCHY PROBLEMS

IN ANNULAR PLANAR DOMAINS

R. S.Chapko, B.T. Johansson, M.V. Shkolyk

Ðåçþìå. Ðîçãëÿíóòî çàäà÷ó Êîøi ðåêîíñòðóêöi¨ ïîëÿ çñóâó (ïåðåìiùåí-
íÿ) ïëàíàðíîãî êiëüöåïîäiáíîãî ëiíiéíîãî ïðóæíîãî òiëà, êîëè âiäîìî
âåêòîð ïåðåìiùåííÿ òà íàïðóæåíü íà çîâíiøíié ãðàíèöi. Øóêàíå çíà÷åí-
íÿ ïðåäñòàâëåíå ó âèãëÿäi åëàñòîñòàòè÷íîãî ïîòåíöiàëó ïðîñòîãî øàðó
ïî äâîõ ãðàíèöÿõ òiëà, ùî ìiñòèòü äâi íåâiäîìi ãóñòèíè. Âèêîðèñòîâóþ÷è
çàäàíi ãðàíè÷íi óìîâè, îòðèìàíî ñèñòåìó iíòåãðàëüíèõ ðiâíÿíü äëÿ çíà-
õîäæåííÿ öèõ ãóñòèí. Äîñëiäæåíî âëàñòèâîñòi ñèñòåìè, çäiéñíåíî äèñêðå-
òèçàöiþ çà ñõåìîþ Íèñòüîìà òà ðåãóëÿðèçàöiþ Òiõîíîâà. Íàâåäåíi ÷èñåëü-
íi ðåçóëüòàòè ïîêàçóþòü, ùî ïåðåìiùåííÿ òà âiäïîâiäíå ïîëå íàïðóæåíü
íà ãðàíèöi, äå íå çàäàíî ïî÷àòêîâèõ çíà÷åíü, ìîæíà äîñòàòíüî òî÷íî
ðåêîíñòðóþâàòè ÿê äëÿ òî÷íèõ âõäiíèõ äàíèõ, òàê i äëÿ äàíèõ ç ïîõèáêîþ.
Abstract. The Cauchy problem of reconstructing the displacement �eld of a
planar annular linear elastic body from knowledge of the displacement vector
and normal stress (traction) on the outer boundary is considered. The sought
�eld is represented in terms of a single-layer elastic potential over the two
boundary curves of the body involving two unknown densities. These densities
are found by imposing the given boundary conditions, rendering a system of
two boundary integrals to be solved for the densities. Properties of this system
is investigated, and discretisation is done via a Nystr�om scheme together with
Tikhonov regularization. Numerical results are included showing that the
displacement can be accurately reconstructed in a stably way both for exact
and noisy data together with the corresponding stress �eld on the boundary
part where no information is initially given.

1. Introduction
Let D ⊂ R2 be an annular planar domain with su�ciently smooth boundaries

Γ1 and Γ2. Each boundary part is a simple closed curve, and Γ1 is contained
in the bounded interior of Γ2. The domain D is then the bounded region in-
between Γ1 and Γ2 as illustrated in Fig. 1. We consider D to be a representative
for a planar linear isotropic elastic body.

In some applications it is not possible to take measurements throughout the
boundary of D. There can be a hostile environment or the body can be partly
buried making only a part of the boundary accessible for measurements.

We assume that the external boundary Γ2 is accessible for measurements
but not Γ1. Our aim is to reconstruct the missing data on Γ1. We work in
the setting of elastostatics (static elastic deformation), and, as mentioned, D is

Key words. Elastostatics, Cauchy problem, boundary integral equation method, trigono-
metrical quadrature method.
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considered as a planar linear isotropic material. The displacement vector u =
(u1, u2) ∈ C2(D)∩C1(D) describes the deformation of D. Under the standard
assumptions of elastostatics (in particular small deformations of an isotropic
and homogeneous linear elastic material) the displacement �eld satis�es the
Navier equation

µ∆u + (λ + µ)grad divu = 0 in D, (1)
with the constants µ and λ (µ > 0, λ > −µ) being the Lam�e coe�cients
characterizing physical properties of the body.

We assume that the displacement and normal stress (the traction �eld) can
be measured on Γ2, giving respectively the Dirichlet boundary condition

u = f on Γ2 (2)
and Neumann boundary condition

Tu = g on Γ2. (3)
The vector functions f and g are given, and are commonly termed as Cauchy
data. The element Tu is the stress tensor (due to molecular interactions from
the deformation) in the outward unit normal direction to the boundary and is
denoted as the traction. The traction can be expressed as

Tu = λdivu ν + 2µ(ν · grad)u + µdiv(Qu)Qν,

where ν is the outward unit normal vector to the boundary, and the matrix Q

is given by Q =
(

0 1
−1 0

)
. The introduction of the matrix Q makes for an easy

way to express the last term in the right-hand side in the de�nition of Tu in
the planar case, which otherwise has to be written in terms of a projection of
a rotational �eld.

The Cauchy problem in elastostatics is then to solve (1)�(3), and in particu-
lar to �nd the displacement and traction on the boundary part Γ1. Uniqueness
is clear from standard results of elliptic equations such as the Holmgren the-
orem. However, the solution will not in general depend continuously on the
data, that is the Cauchy problem is ill-posed. We tactically assume that the
data are compatibly such that there exists a displacement �eld u.

In [3], an overview is given of a regularizing method based on a single-layer
approach for the stable numerical solution to the corresponding classical Cauchy
problem for the Laplace equation (for both two and three dimensional regions).
The method surveyed builds on ideas given in [6] and [1]. We continue the work
of [3], by extending the single-layer approach to the above Cauchy problem in
elastostatics.

The Cauchy problem for elliptic equations is classical, and it is not possible
in this work to give adequate overview and references. To at least guide the
reader to some works, see the introduction in [2]. It is stationary heat trans-
fer problems that make up the majority of the works on numerical methods
for Cauchy problems, the corresponding results for elasticity is more limited.
However, the �rst and third author of the work [8] have been active on inverse
problems in elasticity, see for example [8, 9] and references therein (there are
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plenty more from these authors). However, the numerics is via the boundary
element method or the method of fundamental solutions for simply connected
domains. In [4] an iterative regularizing method is developed for the Cauchy
problem of elastostatics in a half-plane containing a bounded inclusion.

For the outline of the work, in Section 2, we recall the fundamental solution
to the Navier equation and discuss some classical integral formulations. In
Section 3, the Cauchy problem is reduced to a system of boundary integral
equations by representing the solution in terms of a single-layer solution over
the boundary curves giving two unknown densities to determine. Furthermore,
by parameterising the boundary curves, a parameterised system of integral
equations is obtained. Properties of system is stated, see Theorem 1. Then,
in Section 4, the parameterised system is discretised using a Nystr�om scheme.
The discrete linear system obtained is ill-conditioned due to the ill-posedness of
the Cauchy problem, hence Tikhonov regularization is invoked for its solution.
In Section 5, numerical examples are presented for two di�erent planar regions,
showing that accurate and stable numerical results can be obtained both for
the displacement and traction on the boundary part Γ1. Some conclusions are
given in the �nal section, Section 6.

Fig. 1. Example of an annular planar domain D with boundary
parts Γ1 and Γ2

2. Reduction to integral equations by Betti's formula
Reduction of the Cauchy problem (1)�(3) to a system of integral equations

involves the use of the fundamental solution to the equation (1). In this section,
we recall that fundamental solution, and for the sake of completeness, we state
some direct representation formulas for the solution of (1)�(3). However, these
representation formulas will not be further used, instead, in the next section,
we introduce an alternative single-layer approach.
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It is known [7] that the fundamental solution of the Navier equation (1) is
given by

Φ(x, y) =
C1

2π
Ψ(x, y)I +

C2

2π
J(x− y), (4)

where
C1 =

λ + 3µ

µ(λ + 2µ)
, C2 =

λ + µ

µ(λ + 2µ)
,

and
Ψ(x, y) = ln

1
|x− y| , x, y ∈ R2, x 6= y.

Here, I is identity matrix (of size 2× 2), J is de�ned by the formula

J(ω) =
ωω>

|ω|2 , ω ∈ R2 \ {0}.

An analogue of the Green's formula for the Laplace equation is the so-called
Betti's formula for the Navier equation; details and derivation of this formula
can be found in for example [7]. Using Betti's formula, we seek the solution of
(1)�(3) in the form

u(x) =
∫

Γ1

[TyΦ(x, y)]> ψ1(y)− Φ(x, y)ψ2(y) ds(y) + B(x), x ∈ D, (5)

where
B(x) =

∫

Γ2

Φ(x, y)g(y)− [TyΦ(x, y)]> f(y) ds(y).

The unknown vector-densities ψ1 and ψ2 represent the sought values (Cauchy
data) on the inner inaccessible boundary Γ1, that is

ψ1(x) = u(x) and ψ2(x) = Tu(x), x ∈ Γ1.

The representation (5) is then matched against the Cauchy data, that is
against the displacement u(x) respectively traction Tu(x) on Γ2. Using classical
jump relations for the potentials in (5), we obtain the following system of
integral equations of the second kind,

1
2
ψ1(x)−

∫

Γ1

[TyΦ(x, y)]> ψ1(y) ds(y) +
∫

Γ2

Φ(x, y)ψ2(y) ds(y) = B(x),

1
2
ψ2(x)− Tx

∫

Γ1

[TyΦ(x, y)]> ψ1(y) ds(y)+

+
∫

Γ2

TxΦ(x, y)ψ2(y) ds(y) = TB(x),

(6)

where x ∈ Γ1.
The described method of reducing the problem (1)�(3) to the above system

of integral equations (IE) is naturally denoted the direct integral equation ap-
proach. We do not employ this but consider a related alternative strategy based
on single-layer potentials.
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3. Reduction to integral equations by potential theory
To reduce the Cauchy problem (1)�(3) to a the system of integral equations,

we apply what is termed as an indirect integral equations approach based on
potential theory.

We seek the solution of (1)�(3) as a single�layer elastic potential

u(x) =
∫

Γ1

Φ(x, y)ϕ1(y) ds(y) +
∫

Γ2

Φ(x, y)ϕ2(y) ds(y), x ∈ D (7)

with unknown vector-densities ϕ1 and ϕ2. We have the following result.
Proposition 1. The single-layer potential (7) is the solution of the Cauchy
problem (1)�(3) provided that the densities ϕ1 and ϕ2 are solutions of the fol-
lowing system of integral equations∫

Γ1

Φ(x, y)ϕ1(y) ds(y) +
∫

Γ2

Φ(x, y)ϕ2(y) ds(y) = f(x), x ∈ Γ2,

∫

Γ1

TxΦ(x, y)ϕ1(y) ds(y) +
1
2
ϕ2(x)+

+
∫

Γ2

TxΦ(x, y)ϕ2(y) ds(y) = g(x), x ∈ Γ2.

(8)

A proof of the proposition is obtained by matching the representation against
the given Cauchy data involving classical jump relations for elastic single-layer
potentials (for formulas, see [5, 7]).

There are singularities present in kernels in the above system. It is advan-
tageous, both for theoretical and numerical investigations, to parameterise the
system and make the singularities explicit. For the parameterisation, assume
that the boundary curves Γ1 and Γ2 each have a parametric representation

Γi := {xi(t) = (xi1(t), xi2(t)) : t ∈ [0, 2π]}, i = 1, 2,

where xi1 and xi2 are both 2π�periodic and twice continuously di�erentiable.
Using the representation of the boundary curves, we obtain from (8) the

parameterised system of integral equations,




1
2π

2π∫
0

K21(t, τ)µ1(τ) dτ + 1
2π

2π∫
0

K22(t, τ)µ2(τ) dτ = f(t),

1
2π

2π∫
0

N21(t, τ)µ1(τ) dτ + 1
2

µ2(t)
|x′2(t)| +

1
2π

2π∫
0

N22(t, τ)µ2(τ) dτ = g(t),
(9)

where
Kij(t, τ) = 2πΦ(xi(t), xj(τ)), i, j = 1, 2,

Nij(t, τ) =
1

|x′i(t)|
{

M1
ij(t, τ) + M2

ij(t, τ)
}

, i, j = 1, 2,

M1
ij(t, τ) = C3

(xi(t)− xj(τ)) · x′i(t)
|xi(t)− xj(τ)|2 Q, i 6= j,
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M2
ij(t, τ) =− (xi(t)− xj(τ)) ·Qx′i(t)

|xi(t)− xj(τ)|2
[
C3I + C4J̃(xi(t), xj(τ))

]
,

t 6= τ when i = j,

J̃(xi(t), xj(τ)) = J(xi(t)− xj(τ)), t 6= τ when i = j,

and

J̃(xi(t), xi(t)) =
x′i(t) [x′i(t)]

>

|x′i(t)|2
.

We have used the notation
f(t) = f(x2(t)), g(t) = g(x2(t)), µi(τ) = ϕi(xi(τ))|x′i(τ)|, i = 1, 2,

and de�ned
C3 = − 2µ

λ + 2µ
and C4 =

4(λ + µ)
λ + 2µ

.

The kernels K22 and N22 (to be precise the component M1
22) have singu-

larities that can be written in an additive way using special weight functions.
Put

Kii(t, τ) = K̃i(t, τ)− C1

2
ln

{
4
e

sin2 t− τ

2

}
I, i = 1, 2, (10)

where

K̃i(t, τ) =





Kii(t, τ) + C1
2 ln

{
4
e sin2 t−τ

2

}
I, t 6= τ,

C1
2 ln 1

e|x′i(t)|2 I + C2J̃(xi(t), xi(t)), t = τ.

Similar manipulations can be done for the kernels N11 and N22. Denote by

M1
ii(t, τ) = M3

i (t, τ) +
C3

2
cot

t− τ

2
Q, i = 1, 2.

Then,

M3
i (t, τ) =





M1
ii(t, τ)− C3

2 cot t−τ
2 Q, t 6= τ,

−C3
2

x′i(t)·x′′i (t)

|x′i(t)|2 Q, t = τ.

As a result of these expressions, we obtain

Nii(t, τ) = Ñi(t, τ) +
C3

2|x′i(t)|
cot

t− τ

2
Q, i = 1, 2, (11)

where

Ñi(t, τ) =





Nii(t, τ)− C3
2|x′i(t)| cot t−τ

2 Q, t 6= τ,

1
|x′i(t)|

{
M3

i (t, t) + M2
ii(t, t)

}
, t = τ.

Using for example L'Hopital's rule, it is straightforward to verify that the
components M2

ii are at least continuous across t = τ :

M2
ii(t, t) = −x′i(t) ·Qx′′i (t)

2|x′i(t)|2
[
C3I + C4J̃(xi(t), xi(t))

]
, i = 1, 2.
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Introduce the integral operators:

(Siiµi)(t) = 1
2π

2π∫
0

[
K̃i(t, τ)− C1

2 ln
{

4
e sin2 t−τ

2

}
I
]
µi(τ) dτ, i = 1, 2,

(Sijµj)(t) = 1
2π

2π∫
0

Kij(t, τ)µj(τ) dτ, i, j = 1, 2, i 6= j,

(Liiµi)(t) = 1
2π

2π∫
0

[
Ñi(t, τ) + C3

2|x′i(t)| cot t−τ
2 Q

]
µi(τ) dτ, i = 1, 2,

(Lijµj)(t) = 1
2π

2π∫
0

Nij(t, τ)µj(τ) dτ, i, j = 1, 2, i 6= j.

Taking into account the above expressions for the singularities in the kernels,
the system of integral equations (9) can be written in operator form:

{
(S21µ1)(t) + (S22µ2)(t) = f(t),
(L21µ1)(t) +

((
1
2I + L22

)
µ2

)
(t) = g(t). (12)

It can then be shown that for the operator corresponding to this system, the
following holds.

Theorem 1. The operator M : L2[0, 2π] × L2[0, 2π] → L2[0, 2π] × L2[0, 2π]
de�ned as

M =
(

S21 S22

L21
1
2I + L22

)

is injective and has a dense range.

This follows in the same way as for the corresponding theorem for the Laplace
operator; for details in the case of the Laplace operator, see [3].

4. Full discretization and Tikhonov regularization
For the discretization of the system (12) of integral equations, we use quadra-

tures rules that are based on trigonometric interpolation. The quadrature rules
presume introducing an equidistant mesh of nodal points,

tj =
π

n
j, j = 0, 2n− 1, n ∈ N. (13)

The operator S22 in (12) contains a logarithmic singularity. We therefore use
the quadrature

1
2π

2π∫

0

ln
{

4
e

sin2 t− τ

2

}
f(τ) dτ ≈

2n−1∑

j=0

Rj(t)f(tj), (14)

where Rj(t) is a weight function given by

Rj(t) := − 1
2n

{
1 + 2

n−1∑

k=1

cos k(t− tj)
k

+
cosn(t− tj)

n

}
.
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For a singularity of the kind contained in the operator L22 in (12), we apply
instead the quadrature formula

1
2π

2π∫

0

cot
τ − t

2
f(τ), dτ ≈

2n−1∑

j=0

T̃j(t)f(tj), (15)

with a weight function

T̃j(t) := − 1
n

n−1∑

k=1

sin k(t− tj)− 1
2n

sinn(t− tj).

Since we work with 2π-periodic functions, it natural to use the trapezoidal rule

1
2π

2π∫

0

f(τ) dτ ≈ 1
2n

2n−1∑

j=0

f(tj). (16)

Derivation of the quadrature formulas (14)�(16), and proof of their order of
convergence can be found in [5].

For a partial discretization of the system of integral equations (12), we apply
the quadrature formulas (14)�(16) on the equidistant nodal points (13). After
then also collocating at these points, we obtain a system of linear equations





1
2n

2n−1∑
j=0

K21(ti, tj)µ1j +
2n−1∑
j=0

[
1
2nK̃2(ti, tj)− C1

2 Rj(ti)I
]
µ2j = f(ti),

1
2n

2n−1∑
j=0

N21(ti, tj)µ1j+
{

1
2|x′2(ti)|I +

2n−1∑
j=0

[
1
2nÑ2(ti, tj)− C3

2|x′2(ti)| T̃j(ti)Q
]}

µ2j = g(ti),

(17)

where i = 0, 2n− 1, and
µkj ≈ µk(tj), k = 1, 2, j = 0, 2n− 1.

In a matrix-vector form, the system (17) can be written as
Aµ̄ = F. (18)

As noted earlier, the problem (1)�(3) is ill-posed (there is no continuous
dependence with respect to the input data). Hence, the system (12) is also
ill-posed. A consequence of this is that the discrete linear system (17) is ill-
conditioned, since it is obtained from (12). In order to obtain a stable numerical
solution to (12), a regularizing method is needed. One such method is, for
example, the classical Tikhonov regularization.

Tikhonov regularization for a linear system Ax = b is based on minimizing
the functional

min
x
‖Ax− b‖2

2 + α‖x‖2
2,

where the number α > 0 is the regularization parameter to be appropriately
chosen.
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The minimization problem is reduced to the approximation of xα from the
equality

(αI + A∗A)xα = A∗b,
where A∗ is adjoint operator of A.

In the case of a discrete system as (17), the usual transposed matrix A> acts
as an adjoint operator to the matrix A. Therefore, the regularization for (17)
consists in �nding µ̄α from the system

(αI + A>A)µ̄α = A>F, (19)
where the matrix A and vector F are determined in accordance with (17).

Taking into account the representation (7) of the solution to the Cauchy
problem (1)�(3) and classical properties of the single-layer potential, the dis-
placement vector u and traction Tu can be constructed on the inner boundary
Γ1 by the formulas

u(x) = (S11ϕ1)(x) + (S12ϕ2)(x), x ∈ Γ1

and
Tu(x) =

((
−1

2
I + L11

)
ϕ1

)
(x) + (L12ϕ2)(x), x ∈ Γ1.

We generate an approximation to the quantities in discrete form by the formulas

u(x1(ti)) ≈
2n−1∑

j=0

[
1
2n

K̃1(ti, tj)− C1

2
Rj(ti)I

]
µ1j+

1
2n

2n−1∑

j=0

K12(ti, tj)µ2j ,

i = 0, 2n− 1

(20)

and

Tu(x1(ti)) ≈ −1
2

µ1i

|x′1(ti)|
+

2n−1∑

j=0

[
1
2n

Ñ1(ti, tj)− C3

2|x′1(ti)|
T̃j(ti)Q

]
µ1j+

1
2n

2n−1∑

j=0

N12(ti, tj)µ2j , i = 0, 2n− 1,

(21)

where µkj is the solution of the regularized system (19).

5. Numerical experiments
We shall present numerical results for two di�erent con�gurations.
Example 1. Consider the annular domain of Fig. 2 having boundary curves

Γ1 =
{

x1(t) = (1.2 cos t, 1.6
√

0.4 sin2 t + cos2 t sin t) : t ∈ [0, 2π]
}

,

Γ2 =
{

x2(t) = (3 cos t, 4
√

0.4 sin2 t + cos2 t sin t) : t ∈ [0, 2π]
}

.

As the exact solution to compare our numerical reconstructions with, we take
uex(x) = Φ1(x, y∗), x ∈ D,

where Φ1 is the �rst column of the matrix constituting the fundamental solution
Φ in (4), and y∗ is an arbitrary point which does not belong to the domain D.
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Fig. 2. Domain in Example 1

Then boundary values of the solution uex can be calculated exactly by the
formulas

fex_i(x) = Φ1(x, y∗) and gex_i(x) = TΦ1(x, y∗), x ∈ Γi, i = 1, 2.

(a)

α δ = 0

E-10 3.94E-4

E-11 9.37E-5

E-12 2.92E-5

E-13 2.59E− 5

E-14 1.49E-4

E-15 1.33E-3

(b)

α δ = 0.03 δ = 0.05

E-2 3.97E-2 4.18E-2

E-3 2.81E-2 4.92E-2

E-4 3.65E− 3 5.36E− 3

E-5 7.39E-3 8.56E-3

E-6 1.02E-2 1.76E-2

E-7 3.32E-2 5.33E-2

Tabl. 1. Error in the reconstructed element f11 compared with
the exact solution, for di�erent parameters α in the case of (A)
exact and (B) noisy data with noise level δ

Let the Cauchy data (2) and (3) be generated as f = fex_2 and g = gex_2,
respectively. Concerning parameters, we use y∗ = (0, 0), the Lam�e coe�cients
are λ = 2, µ = 1, and the discretization parameter n = 32 in (13).
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 3. Approximated ( ) and exact ( ) solutions of f11

(left) and f12 (right) for noise level δ

Due to the ill-posedness of the Cauchy problem, we apply Tikhonov regu-
larization as mentioned in the previous section. The regularizing parameter α
is chosen by trial and error. The optimal regularization parameter used is as
given in Table 1 for exact data and for noisy data having 3% and 5% random
pointwise error added into the data, respectively.
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 4. Approximated ( ) and exact ( ) solutions of g11

(left) and g12 (right) for noise level δ

The number in bold is the value chosen for α.
To be more precise about noisy data, we point out that noisy data gδ is

generated from the exact value g as follows
gδ = g + δ(2η − 1)‖g‖L2 ,
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with noise level δ and a random value η ∈ (0, 1).
The approximation of the displacement f1 = (f11, f12) and traction g1 =

(g11, g12) on the inner boundary Γ1, are calculated according to the formu-
las (20) and (21). The obtained results are shown in the Fig. 3 and Fig. 4.

As expected, the displacement vector is more accurately reconstructed than
the traction. However, it is pleasing to see that also with noisy data, the
reconstructions of the traction components follow the exact values. When more
noise is added, the accuracy decreases but in a stable manner meaning that the
results still resembles the exact values.

To convince the reader that the results presented are not optimised but are
of the form to be expected for other con�gurations and data, we present results
for a di�erent domain and set of Cauchy data.
Example 2. In this example, we consider the doubly connected planar

domain shown in Fig. 5. The boundary curves have parametric representation
given by:

Γ1 =
{
x1(t) = (0.7 cos t, 0.72 sin t + 0.6 cos2 t) : t ∈ [0, 2π]

}
,

Γ2 =
{
x2(t) = (1.8 cos t, 1.68 sin t + 1.4 cos2 t) : t ∈ [0, 2π]

}
.

Fig. 5. Domain in Example 2

To have some data to compare against, we generate the Cauchy data arti�-
cially. This means that we �rst solve a Dirichlet boundary value problem, with
values on the boundary curves as

fi(x) =
(

x1 + x2

5x1 − x2

)
, x = (x1, x2) ∈ Γi, i = 1, 2.

Let the Lam�e parameters be λ = 2, µ = 2, and the discretization parameter is
set to n = 32 in (13).
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(a)

α δ = 0

E-7 6.47E-5

E-8 1.42E-5

E-9 4.27E-6

E-10 1.22E− 6

E-11 2.61E-6

E-12 2.59E-5

(b)

α δ = 0.03 δ = 0.05

E-1 1.52E-1 2.11E-1

E-2 2.45E-1 2.97E-1

E-3 3.78E-2 5.66E-2

E-4 2.55E− 2 3.13E− 2

E-5 8.57E-2 8.01E-2

E-6 1.71E-1 2.08E-1

Tabl. 2. Error in the reconstructed element f12 compared with
the exact solution, for di�erent parameters α in the case of (a)
exact and (b) noisy data with noise level δ

Let the solution of the above Dirichlet problem be given as a single-layer
elastic potential (7). After performing the similar manipulations that have
been described for the Cauchy problem (that is parameterisation of the obtained
system, making singularities explicit and then discretize), we obtain a system
of linear equations
2n−1∑

j=0

[
1
2n

K̃m(ti, tj)− C1

2
Rj(ti)I

]
µmj+

1
2n

2n−1∑

j=0

Kml(ti, tj)µlj = fm(xm(ti)),

i = 0, 2n− 1, m = 1, 2, l = 3−m.

Solving for µmj , we can then calculate the Neumann boundary values by the
formula

gm(xm(ti)) ≈

≈ (−1)m 1
2

µmi

|x′m(ti)| +
2n−1∑

j=0

[
1
2n

Ñm(ti, tj)− C3

2|x′m(ti)| T̃j(ti)Q
]

µmj+

+
1
2n

2n−1∑

j=0

Nml(ti, tj)µlj , i = 0, 2n− 1, m = 1, 2, l = 3−m.

(22)

The Cauchy data in (2) and (3) is then generated as f = f2 and g = g2.
As in the previous example, we have to choose a regularization parameter α.

The values used are given in bold in Table 2.
The numerical approximation of the Cauchy data on the inner boundary

Γ1 is found via the formulas (20) and (21). The results obtained are shown in
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 6. Approximated ( ) and exact ( ) solutions of f11

(left) and f12 (right) for noise level δ

Fig. 6 and Fig. 7. It should be noted that in this example what is denoted as the
exact Neumann data in the Cauchy problem is in fact an approximation since
it is generated via solving the Dirichlet problem as explained above. But since
the direct Dirichlet problem is well-posed and the discretization parameter is
su�ciently large (n = 32), a high-order accuracy of the data generated by (22)
is expected.
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 7. Generated ( ) and approximated ( ) solutions of
g11 (left) and g12 (right) for noise level δ

The obtained results are similar to those found in the previous example.
The traction vector is also here reconstructed with less accuracy than the

placement as expected but follows the exact solution.

6. Conclusion
A regularizing method based on the elastic single-layer potential was derived

for the Cauchy problem in elastostatics. The Cauchy data in the form of the
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displacement and traction is given on the outer boundary curve of a planar an-
nular and linear isotropic body. From the single-layer representation, a system
of boundary integrals to be solve for two unknown densities were obtained by
matching against the data. It was shown that the system has at most one solu-
tion, and that there exists a solution for a dense set of square integrable data.
Discretisation was done via a Nystr�om scheme in conjunction with Tikhonov
regularization. Special care was taken to handle the various singularities in
the kernels. The suggested approach performs well as veri�ed by two numeri-
cal examples. The reconstructions corroborated well both for the displacement
vector and traction with the sought solutions, also in the case of noisy data.
The traction vector is naturally found with less accuracy. Overall, the outlined
approach is a lightweight and �exible method for elastostatic Cauchy prob-
lems, and generalizes naturally earlier work [3] on a single-layer approach for
the Cauchy problem for the Laplace equation.
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HETEROGENEOUS MODEL OF THE PROCESS OF
THERMAL CONDUCTIVITY IN A MULTILAYERED

MEDIUM WITH THIN LAYERS

L.M.Diakoniuk, Ya.H. Savula

Ðåçþìå. Ìè ðîçãëÿäà¹ìî ïî÷àòêîâî êðàéîâó çàäà÷ó òåïëîïðîâiäíîñòi
â áàãàòîøàðîâîìó ñåðåäîâèùi ç ìàëèìè òîâùèíàìè øàðiâ. Ïîáóäîâàíî
êîìï'þòåðíó ìîäåëü, ùî äîçâîëÿ¹ âðàõîâóâàòè ìàëi òîâùèíè øàðiâ òà
óíèêàòè òðóäíîùiâ, ÿêi ïîâ'ÿçàíi ç ÷èñåëüíîþ ðåàëiçàöi¹þ çàäà÷i. Äîâåäå-
íî òåîðåìó ïðî íåïåðåðâíiñòü òà åëiïòè÷íiñòü áiëiíiéíèõ ôîðì âàðiàöiéíèõ
ðiâíÿíü. Äëÿ ÷èñåëüíîãî äîñëiäæåííÿ ðîçâ'ÿçêó âèêîðèñòàíî íàïiâàíàëi-
òè÷íèé ìåòîä ñêií÷åííèõ åëåìåíòiâ.

Abstract. We consider initially the boundary value problem of thermal con-
ductivity in a multilayered medium with small layer thicknesses. A computer
model has been constructed, which allows to take into account the small thick-
nesses of the layers and avoid the di�culties associated with the numerical
implementation of the problem. The theorem on the continuity and ellipticity
of bilinear forms of variational equations is proved. The semi-analytic �nite
elements method used for numerical investigation of the solution.

1. Introduction
Modern materials and constructions, that are used in an instrument making,

often have a di�cult, heterogeneous structure. Natural environments physical
processes areinvestigated in that, too in swingeing majority is heterogenous. It
is known that at the mathematical design of problems in such environments
there are two going neartaking into account of them di�cult structure. The
�rst approach envisages the use of process of homogenization, and second � in
development of multiscale strategy. At development of the second approach,
that allows more exactly to take into account the features of structure of en-
vironment, often there are the di�culties, constrained with the use of numeral
methods( in particular, at application of Finite Elements Method) in areas
that contain the thin including. In such cases build various-scale mathematical
models to development of that the devoted works of many authors, in particu-
lar [1], [3], [4], [5] [7].

In this work we numerically construct a heterogeneous mathematical model
of the process of heat and mass transfer in multilayer environments, where the
thicknesses of layers are much smaller than other characteristic sizes.

Key words. Heat equation, heterogeneous model, �nite elements method.
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2. Formulation of problem
Let's consider the problem of heat conductivity for a multilayered medium

of complex shape, which occupies an area

V =
⋃

Vk, k = 1, n; Vi

⋂
Vj = ®, i 6= j

with di�erent thermal characteristics of the material of each layer. Boundary
Vk of each regions consists of the lateral surface Sk and front surfaces S−k and
S+

k and is considered Lipschitz (Fig.1).

Fig. 1. The domain with thin layer

We denote J2 the set of indexes of the regions Vk corresponding to "thin"
layers whose thickness is small in comparison with other characteristic sizes.
We will denote J3 the set of indices of other areas. We associate each of the
regions with some curvilinear coordinate systems related to the median surface
of the area. The Lame coe�cients of these regions are given by the relations

H1j = A1j(1 + k1jα
j
3),H2j = A2j(1 + k2jα

j
3),H3j = 1.

Here Aj
1, A

j
2 are the Lame coe�cients of median surface, kj

1, k
j
2 are coe�cient of

curvature of the median surface. Let's consider the process of heat conduction
in the described region, assuming that on the outer boundary there is a heat
exchange according to Newton's law, and on the interfaces there is an ideal
contact [2].

3. Transformation the three-dimensional heat transfer problem
to two-dimensional in a thin layer

Consider a thin layer, where thickness is small compared with other char-
acteristic of its size, occupying the area Vj . Let us itroduce the curvilinear
coordinate system (αj

1, α
j
2, α

j
3) associated with the median surface Ωj of the

region with the boundary Γj . The coordinate lines of this surface are the lines
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of major curvature. This

Vj = {αj
1, α

j
2, α

j
3 : (αj

1, α
j
2) ∈ Ωj ,−hj

2
≤ αj

3 ≤
hj

2
},

where Ωj is a two-dimensional region with a Lipschitz boundary on the median
surface of the layer, hj is the thickness of the layer. We will assume that on
the facial surfaces αj

3 = hj

2 and αj
3 = −hj

2 the heat �uxes q+
n and q−n are given

respectively, and on the lateral surface there is a heat exchange according to
Newton's law

−λj
∂Tj

∂n
|S = (Tj − Tc), (1)

where λj is the coe�cient of thermal conductivity, n is the external normal
to the surface, Tj is the temperature function of the layer, Tc is the ambient
temperature. At the initial moment of time, the temperature distribution is
given by the ratio

Tj(α
j
1, α

j
2, α

j
3, 0) = T j

0 (αj
1, α

j
2, α

j
3). (2)

The process of thermal conductivity in the orthogonal coordinate system asso-
ciated with the median surface of the layer can be described with the following
equation:

cjρj
∂Tj

∂τ
=

2∑

l=1

1
H1jH2j

(
∂

∂αj
l

λj
H1jH2j

Hlj

∂Tj

∂αl
) + qvj , (3)

where cj is a coe�cient of speci�c heat capacity, ρj is a coe�cient of density, qvj

is the density of internal heat sources, τ is the time parameter. Considering that
the thickness of the layer is small, we assume that the distribution of the desired
function of temperature over the thickness of the layer is according to the linear
law. In accordance with this assumption, we will supply the temperature in
the region in the form

Tj(α
j
1, α

j
2, α

j
3, τ) = t1(α

j
1, α

j
2, τ) +

2αj
3

hj
t2(α

j
1, α

j
2, τ). (4)

We substitute (4) into (3) and orthogonalize the non-relation of the Bubnov-
Galerkin equation to functions v1(α

j
1, α

j
2) and αj

3v2(α
j
1, α

j
2), wheare v1(α

j
1, α

j
2),

v2(α
j
1, α

j
2) ∈ W 1

2 (Ωj).
We select and calculate the integral over the variable αj

3 in the interval
[−hj

2 ,−hj

2 ]. At the same time, let's take into account that the element of
the volume and we use development in the Macrolena series of quantities
1
/
Aj

1(1 + kj
1)α

j
3, 1

/
Aj

2(1 + kj
2)α

j
3. Having neglected the magnitude O((hjk

j
i )

2),
i = 1, 2 and taking into account the fact that v1(α

j
1, α

j
2), v2(α

j
1, α

j
2) are arbi-

trary functions, we obtain the following key equations with the respect to the
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unknown functions tj1, t
j
2 :

cjρjhj
∂tj1
∂τ

+ cjρj

h2
j

6
(kj

1 + kj
2)

∂tj2
∂τ

=
2∑

i=1

(
hj

Aj
1A

j
2

∂

∂αj
i

(λj

Aj
3−i

Aj
i

∂tj1
∂αj

i

)+

+
h2

j

6Aj
1A

j
2

∂

∂αj
i

(λj

Aj
3−i

Aj
i

(kj
3−i − kj

i )
∂tj2
∂αj

i

)) + (1 + kj
1

hj

2
)(1 + kj

2

hj

2
)q+

n +

+(1− kj
1

hj

2
)(1− kj

2

hj

2
)q−n − q1 = 0,

(5)

cjρj

h2
j

6
(kj

1 + kj
2)

∂tj1
∂τ

+ cjρj
hj

3
∂tj2
∂τ

=

=
2∑

i=

(
h2

j

6Aj
1A

j
2

∂

∂αj
i

(λj

Aj
3−i

Aj
i

(kj
3−i − kj

i )
∂tj1
∂αj

i

)+

+
hj

3Aj
1A

j
2

∂

∂αj
i

(λj

Aj
3−i

Aj
i

∂tj2
∂αj

i

)) + (1 + kj
1

hj

2
)(1 + kj

2

hj

2
)q+

n +

+(1− kj
1

hj

2
)(1− kj

2

hj

2
)q−n +

4λj

hj
− q2 = 0.

(6)

We use the following notation

q1 =
∫ hj

2

−hj
2

qv(1 + kj
1α

j
3)(1 + kj

2α
j
3)dαj

3,

q2 =
2
hj

∫ hj
2

−hj
2

qv(1 + kj
1α

j
3)(1 + kj

2α
j
3)α

j
3dαj

3,

−λj
∂Tj

∂αj
3

= q+
n , for αj

3 =
hj

2
.

By performing similar transformations to the boundary condition on the lateral
cylindrical surface, we obtain boundary conditions for functions tj1, t

j
2 in the

form

−(
λjhj

Aj
i

∂tj1
∂αj

i

+
1
6

λjh
2
j

Aj
i

(kj
3−i − kj

i )
∂tj2
∂αj

i

)ni = α(hjt
j
1 +

h2
j

6
kj

Γtj2 − tc1),

−(
1
6

λh2
j

Aj
i

(kj
3−i − kj

i )
∂tj1
∂αj

i

+
hj

3
λj

Aj
i

∂tj2
∂αj

i

)ni = α(
h2

j

6
kj

Γtj1 +
hj

3
tj2 − tc2),

(7)

tc1 =
∫ hj

2

−hj
2

Tc(1 + kj
Γαj

3)dαj
3,

tc2 =
2
hj

∫ hj
2

−hj
2

Tc(1 + kj
Γαj

3)α
j
3dαj

3,

kj
Γ = kj

1n
2
1 + kj

2n
2
2, (n1, n2) are the coordinates of the unit normal vector to Γ.
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Here the element of the surface area
dS = Aj

Γ(1 + kj
Γαj

3)dΓ,

where Aj
Γ = Aj

1n
2
1 + Aj

2n
2
2.

In the same way from equation (6)�(7) we also obtain the initial conditions

hjt
j
1(α

j
1, α

j
2, 0) +

h2
j

6
(kj

1 + kj
2)t

j
2(α

j
1, α

j
2, 0) = t01,

h2
j

6
(kj

1 + kj
2)t

j
1(α

j
1, α

j
2, 0) +

hj

3
t2(α

j
1, α

j
2, 0) = t02,

(8)

where

t01 =
∫ hj

2

−hj
2

T j
0 (1 + kj

1α
j
3)(1 + kj

2α
j
3)dαj

3,

t02 =
2
hj

∫ hj
2

−hj
2

T j
0 (1 + kj

1α
j
3)(1 + kj

2α
j
3)α

j
3dαj

3.

Thus, for a thin layer it is possible to reduce the dimensionality of the problem
to two-dimensional relative curvilinear coordinates on the median surface. As a
result, we obtain a mathematical model of the process of thermal conductivity
in a thin layer, consisting of equations (5), (6), boundary conditions (7) and
initial conditions (8).

4. Description of the process of thermal conductivity
in a multilayer area

Considering the results obtained in the previous section, the heterogeneous
mathematical model of the heat conduction process in a multilayered medium,
can be presented as the following system of di�erential equations of di�erent
measurements in spatial coordinate

cjρj
∂Tj

∂τ
=

3∑

l=1

1
H1jH2j

(
∂

∂αj
l

λj
H1jH2j

Hlj

∂Tj

∂αl
) + qvj , j ∈ Vj , (9)

cjρjhj
∂t

(j)
1

∂τ
+ cjρj

h2
j

6
(k(j)

1 + k
(j)
2 )

∂t
(j)
2

∂τ
=

+
2∑

i=1

(
hj

A
(j)
1 A

(j)
2

∂

∂α
(j)
i

(λj

A
(j)
3−i

A
(j)
i

∂t
(j)
1

∂α
(j)
i

)+

+
h2

j

6A
(j)
1 A

(j)
2

∂

∂α
(j)
i

(λj

A
(j)
3−i

A
(j)
i

(k(j)
3−i − k

(j)
i )

∂t
(j)
2

∂α
(j)
i

)+

+(1 + k
(j)
1

hj

2
)(1 + k

(j)
2

hj

2
)q(j)+

n +

+(1− k
(j)
1

hj

2
)(1− k

(j)
2

hj

2
)q(j)−

n − q1 = 0,

(10)
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cjρj

h2
j

6
(k(j)

1 + k
(j)
2 )

∂t
(j)
1

∂τ
+ cjρj

hj

3
∂t

(j)
2

∂τ
=

=
2∑

i=1

(
h2

j

6A
(j)
1 A

(j)
2

∂

∂α
(j)
i

(λj

A
(j)
3−i

A
(j)
i

(k(j)
3−i − k

(j)
i )

∂t
(j)
1

∂α
(j)
i

)+

+
hj

3A
(j)
1 A

(j)
2

∂

∂α
(j)
i

(λj

A
(j)
3−i

A
(j)
i

∂t
(j)
2

∂α
(j)
i

)+

+(1 + k
(j)
1

hj

2
)(1 + k

(j)
2

hj

2
)q(j)+

n +

+(1− k
(j)
1

hj

2
)(1− k

(j)
2

hj

2
)q(j)−

n +
4λ

hj
− q2 = 0.

(11)

On the boundary with the external environment, the desired functions must
satisfy the relation

(−λj
∂Tj

∂n
− a(Tj − Tck

))|Sj = 0, (12)

−
2∑

i=1

(
λjhj

A
(j)
i

∂t
(
1j)

∂α
(j)
i

+
1
6

λjh
2
j

A
(j)
i

(k(j)
3−i − k

(j)
i )

∂t
(j)
2

∂α
(
ij)

)ni =

= a(hjt
(j)
1 +

h
(2)
j

6
k

(j)
Γ t

(j)
2 − tc1),

(13)

−
2∑

i=1

(
1
6

λjh
2
j

A
(j)
i

(k(j)
3−i − k

(j)
i )

∂t
(
1j)

∂α
(j)
i

+
1
3

λjhj

A
(j)
i

∂t
(j)
2

∂α
(
ij)

)ni =

= a(
1
6
h2

jk
(j)
Γ t

(j)
1 +

h
(2)
j

3
t
(j)
2 − tc2)

(14)

and initial conditions
Tj(α

j
1, α

j
2, α

j
3, 0) = T j

0 (αj
1, α

j
2, α

j
3), for j ∈ J3, (15)

hjt
(j)
1 (α1, α2, 0) +

h2
j

6
(k(j)

1 + k
(j)
2 )t(j)2 (α1, α2, 0) = t01, for j ∈ J2, (16)

h2
j

6
(k(j)

1 + k
(j)
2 )t(j)1 (α1, α2, 0) +

hj

3
(t(j)2 (α1, α2, 0) = t02, for j ∈ J2. (17)

For a complete description of the mathematical model, it is necessary to intro-
duce the conjugation conditions, which describe the equality of the functions
of temperature distribution and heat �uxes on the boundary of the collisions
of the regions:

T1j1
|Sj = T1j2

, (18)

λj1

∂Tj1

∂n
|Sj = λj2

∂Tj2

∂n
. (19)

If the contact layer is thin, it should be taken into account that the temperature
on the upper face surface is given by the ratio

Tj1 = t
(j2)
1 + t

(j2)
2
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and on the bottom, respectively

Tj1 = t
(j2)
1 − t

(j2)
2 .

Taking into account all the described relations, we obtained a closed system
of di�erential equations of the second order for the determination of unknown
unknown temperature functions.

5. Variational formulation
According to the Bubnov-Galerkin method, we construct the variational

equations of the problem (9)�(19). For the transformation of the integrals
we use the following formula, derived from the Green's formula:

−
∫

V
div(λ∇u)vdV =

∫

V
λ∇u∇vdV −

∫

S
λ

∂u

∂n
vdS. (20)

Consider the variational problem of thermal conductivity in a multilayered
medium with subtle inclusions, that is to �nd functions u, which satisfy the
equation ∑

k∈J3

Ak(Tk, u
k) +

∑

j∈J2

aj(tj , uj) +
∑

j∈J2

mj(t′j , u
j) =

=
∑

k∈J3

(fk, u
k) +

∑

j∈J2

(f j , uj),
(21)

Mk(Tk, u
k) =

∫

Vk

ckρkTku
kdv,

Ak(Tk, u
k) =

∫

Vk

λk gradu gradTkdv −
∫

Sk

λk ∂Tk

∂v
ukdS+

+g11

∫

S+

aTcku
ckds + g12

∫

S−
aTcku

ckds,

aj(tj , uj) =
∫

Ωj

tjTp AujdΩ +
∫

Γj

tjT GujdΓ+

+g21

∫

Ωj+

(1 + k1
h

2
)(1 + k2

h

2
)(tj+1 + tj+2 )(uj+

1 + uj+
2 )dΩ+

+g22

∫

Ωj−
(1− k1

h

2
)(1− k2

h

2
)(tj−1 − tj−2 )(uj−

1 − uj−
2 )dΩ,

mj(tj , uj) =
∫

Ωj

tjT
′
MujA

j
1A

j
2dα1dα2, (22)

tT = (t1, t2), uT = (u1, u2), t
′T = (

∂t1
∂τ

,
∂t2
∂τ

),

tTp = (
∂t1
∂α1

,
∂t1
∂α2

,
∂t2
∂α1

,
∂t2
∂α2

)T , uT
p = (

∂u1

∂α1
,
∂u1

∂α2
,
∂u2

∂α1
,
∂u2

∂α2
)T ,
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A =




λjhj 0 λj(hj)2(kj
2−kj

1)
6 0

0 λjhj 0 λj(hj)2(kj
2−kj

1)
6

λj(hj)2(kj
2−kj

1)
6 0 λj hj

3 0

0 λj(hj)2(kj
2−kj

1)
6 0 λj hj

3




,

M =
(

cjρjhj 1
6cjρj(hj)2(kj

1 + kj
2)

1
6cjρj(hj)2(kj

1 + kj
2)

1
3cjρjhj

)
,

G =

(
ahj a (hj)2

6 kΓ

a (hj)2

6 kΓ ahj

3

)
,

g1i = 0, g2i = 1,

g1i = 0, g2i = 1,

if the layer containing the outer surface,

g1i = 1, g2i = 0

otherwise, conjugation condition

Tk1 = Tk2 , (23)

the initial condition,
∑

k∈J3

M (k)(Tk − T 0
k , u(k)) +

∑

j∈J2

m(j)(tj − tj0, u
(j)) = 0, τ = 0 (24)

for arbitrary functions uk ∈ Uk(Ωk), u
j
1, u

j
2 ∈ Uj(Ωj), where, those that imple-

ment the main junction conditions. Let us prove the following lemma.

Lemma 1. The bilinear forms associated with the operator of the problem (20)�
(23) are symmetric under the homogeneous boundary condition of the third kind.

Proof. Let us prove that for bilinear forms aj(u, v),mj(u, v) the following
statements hold true:

1) the domain of the operator of the problem is a dense set.
2) a(j)(u, v) = a(j)(v, u);m(j)(u, v) = m(j)(v, u).
3)The �rst statement is executed because C∞

0 (V ) ⊂ D.
Obviously, the implementation of the second equality for bilinear forms

a(u, v),m(u, v) provided by the symmetry of the matrices A and M The lemma
is proved. The following theorem holds true.

Theorem 1. Let the condition holds true:

hj |kj
i | ≤

√
3, j ∈ J2, (25)

Then the bilinear forms of the problem (20)-(23) are continuous and elliptic,
assuming uniform third-order boundary condition.
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Proof. First we prove, that the theorem holds true in the case j = 1, j ∈ J2;
k = 1, k ∈ J3. Then the indices can be neglected.

The proof of the ellipticity and continuity of bilinear forms A(u, v),M(u, v)
is is described in [6]. In order to show that the bilinear forms a(u, v),m(u, v)
have the property of ellipticity, one must prove that the inequalities are true

m(u, u) ≥ c1‖u‖, a(u, u) ≥ c2‖u‖, where c1 > 0, c2 > 0.

We show that the matrices A andM are positively de�ned. Let's �nd eigen
values of matrices M , which are the roots of the algebraic equation. They are

η1,2 =
cjρjhj

3
(2±

√
1 +

h2
j (k

j
1 + kj

2)2

4
)

From the fact that c(αj
1, α

j
2, 0), c(αj

1, α
j
2, 0)-positive functions

hj |kj
i | ≤

√
3, i = 1, 2, (26)

that the eigen values η1, η2 are positive. Then for a quadratic form m(u, u) the
following estimation is valid ∫

Ω
uT AudΩ ≥

≥ (
cρh

3
(2−

√
1 +

h2 minΩ(k1 + k2)2

4
))2

∫

Ω
(u2

1 + u2
2)dΩ = γ2

1‖u‖L2(Ω),

(27)

where
c = min

(α1,α2)∈Ω
(c), ρ = min

(α1,α2)∈Ω
(ρ),

γ2
1 =

cρh

3
(2−

√
1 +

h2 maxΩ(k1 + k2)2

4
))2.

Thus, m(u, v) is elliptic in space L2(Ω) To prove continuity we use the Cauchy-
Bunyakovskii inequality.

|m(t, u)| = |
∫

Ω
tT MudΩ| = |

∫

Ω
cρht1u1dΩ +

∫

Ω

1
6
cρ(k1 + k2)h2t2u1dΩ+

+
∫

Ω

1
6
cρ(k1 + k2)h2t1u2dΩ +

∫

Ω

1
3
cρht2u2dΩ| ≤

≤ cρh‖t1‖V ‖u1‖V +
1
6
cρh2|k1 + k2|‖t2‖V ‖u1‖V +

+
1
6
cρh2|k1 + k2|‖t1‖V ‖u2‖V +

1
3
cρh‖t2‖V ‖u2‖V ≤

≤ C2
1 (‖t1‖V ‖u1‖V + ‖t1‖V ‖u2‖V + ‖t2‖V ‖u1‖V + ‖t2‖V ‖u2‖V ) =

= C2
1 (‖t1‖V + ‖t2‖V )(‖u1‖V + ‖u2‖V ) = C2

1‖t‖‖u‖,

c = max
Ω
|c|, ρ = max

Ω
|ρ|, C2

1 = cρmax{h,
h(k1 + k2)

6
},

k1 = max
Ω
|k1|, k2 = max

Ω
|k2|,
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‖u‖ = ‖u‖W 1
2 (Ω).

To prove the ellipticity of the bilinear form a(u, v), we use the inequality (25).
We �rst �nd the eigenvalues of a matrix of bilinear form

Q(ξ, η) = λhξ2 +
1
3
h2(k3−i − ki)ξη +

λh

3
η2, (28)

solving the equation for this u(k) ∈ Uk, u
(j)
1 , u

(j)
2 ∈ U j We obtain the following

eigen values

y1,2 =
2
3
λh± 1

3
λh

√
(1 +

h2(k3−i − ki)2

4
). (29)

Referencing 25,the eigen values are positive. So,

Q(ξ, η) ≥ λh(
2
3
− 1

3

√
(1 +

h2(k3−i − ki)2

4
))(ξ2 + η2). (30)

Similarly, after �nding the eigenvalues of a matrix of bilinear form

N(ξ, η) = ahξ2 + ah2 kΓ

3
ξη + a

h

3
η2 (31)

we obtain the inequality

N(ξ, η) ≥ a(
2
3
− 1

3

√
1 +

h2k2
Γ

4
)(ξ2 + η2). (32)

Taking into account (25), (30), (32) and the Friedrichs inequality, we obtain

a(u, u) ≥ µ2
1

∫

Ω

(
(
∂u1

∂αi
)2+

+(
∂u2

∂αi
)2

)
dΩ + µ2

2

∫

Ω
(u2

1 + u2
2)dΩ + µ2

3

∫

Γ
(u2

1 + u2
2)dΓ ≥

≥ γ2
2

(∫

Ω

(
(
∂u1

∂αi
)2 + (

∂u2

∂αi
)2

)
dΩ +

∫

Ω
(u2

1 + u2
2)dΩ

)
= γ2

2‖u‖2,

µ2
1 = λh

(2
3
− 1

3

√
1 +

h2 maxΩ(k3−i − ki)2

4

)
,

µ2
2 = max{g21, g22} (2−√3)2

4
,

µ2
3 = ah

(2
3
− 1

3

√
1 +

h2 maxΩ(k2
Γ)

4

)
,

λ = min
(α1,α2)∈Ω

(λ), a = min
(α1,α2)∈Γ

(a)

γ2
2 =

{
min{µ2

1, µ
2
2}, µ2 6= 0,

min{1
2µ2

1,
1
2µ2

1µ
2
4}, µ2 = 0

and µ2
4 is a constant obtained from Friedrichs's inequality.

The continuity of the bilinear form follows from the following inequality

|a(t, u)| ≤ |
∫ T

Ω
AudΩ|+ |

∫

Γ
tT GudΓ| ≤ σ1|

∫

Ω

∂t1
∂αi

∂u1

∂αi
dΩ|+
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+σ2i|
∫

Ω

∂t2
∂αi

∂u1

∂αi
dΩ|+ σ2i|

∫

Ω

∂t1
∂αi

∂u2

∂αi
dΩ|+

+σ3|
∫

Ω

∂t2
∂αi

∂u2

∂αi
dΩ|+ σ4|

∫

Ω
t2u2dΩ|

+σ5|
∫

Ω
t1u1dΩ|+ σ6|

∫

Ω
t2u1dΩ|+ σ6|

∫

Ω
t1u2dΩ|+ σ5|

∫

Ω
t2u2dΩ|+

+σ7|
∫

Γ
t1u1dΓ|+ σ8|

∫

Γ
t2u1dΓ|+ σ8|

∫

Γ
t1u2dΓ|+ σ7|

∫

Γ
t2u2dΓ| ≤

≤ C2(‖t1‖V ‖u1‖V + ‖t1‖V ‖u2‖V + ‖t2‖V ‖u1‖V + ‖t2‖V ‖u2‖V ) ≤ C2‖t‖‖u‖,
where

σ1 = max
Ω
|λh

A2
i

|, σ2i =
1
6

max
Ω
|λh2

A2
i

(k3−i − ki)|,

σ3 =
1
3

max
Ω
|λh

A2
i

|, σ4 =
1
3

max
Ω
|4λ

h
|,

σ5 = max
Ω

(1+ k1k2
h2

4
), σ6 =

h

2
max

Ω
(k1 + k2), σ7 = max

Γ
ah, σ8 = max

Γ
|ah2k2

Γλ

6
|.

We have proved the properties of the bilinear forms for any thin and ordinary
layer. However, these propositions hold true for the operator of a problem for a
multilayered medium, since they are executed for a single term, which derives
that they will be executed for the sum in the formula. Note that the inequality
(25) can be considered as a criterion for the thin layer. The theorem is proved.

6. Approximation of the solution
To solve the beforementioned variational problem, we discretize the solution

in spatial variables. In this case, for sampling functions Tj(α
j
1, α

j
2, α

j
3, τ) we

apply the approximations of the semi-analytic �nite elements method and for
functions t

(j)
1 (αj

1, α
j
2, τ), t(j)2 (αj

1, α
j
2, τ) are the approximations of the �nite el-

ements method. According to these methods, we choose the approximation
spaces {Vh} from space V so that

dimVh −→∞, h −→ 0,⋃
Vh-tightly enclosed in V.

We will present the unknown functions in the

Tj(α
j
1, α

j
2, α

j
3, τ) =

M∑

k=1

N∑

i=1

T j
ki(τ)ψ̃k(α

j
3)φ̃i(α

j
1, α

j
2), (33)

tjh1 (αj
1, α

j
2, τ) =

N∑

i=1

tj1i(τ)φ̃i(α
j
1, α

j
2), (34)

tjh2 (αj
1, α

j
2, τ) =

N∑

i=1

tj2i(τ)φ̃i(α
j
1, α

j
2), (35)

where ψ̃k, φ̃i(α
j
1, α

j
2) are basic functions, T

j
ki, t

j
1i, t

j
2i−− are unknown coe�cients.

To approximate the desired solution for the third spatial coordinate, we use
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the expansion of the desired function in a series of functions-"bubbles". These
functions on the interval [-1,1] are given by the relations

ψ̃1(ξ) =
1 + ξ

2
, ψ̃2(ξ) =

1− ξ

2
, ψ̃i(ξ) = Φi−1(ξ), i = 3, 4...;

Φi−1(ξ) =

√
2i− 1

2

∫ ξ

−1
Pi−1(t)dt. (36)

Here Pi(t) are known Legendre polynomials. It is convenient to use the recur-
rence formula for calculations

Φj(ξ) =
1√

2(2j − 1)
(Pj(ξ)− Pj−2(ξ)). (37)

The property of the orthogonality of the Legendre polynomial follows an im-
portant property of internal forms

ψi(−1) = ψi(−1) = 0, i = 3, 4, ... (38)
External forms allow to calculate solutions at the borders. It is essentially
used for convenient and easy implementation of junction conditions with other
areas. In addition, this system of functions has favorable properties in terms
of numerical stability. In order to approximate the time-domain solution, we
propose to use the well-known Crank-Nicholson di�erence scheme [6].

7. Numerical example
Based on the constructed heterogeneous mathematical model and the pro-

posed numerical approximations, a program complex was created in the lan-
guage C# that implements this approach. A series of computational experi-
ments was conducted using it.

Let us consider the problem of stationary heat conductivity in an axisym-
metric in�nite hollow cylinder with a thin outer coating. The problem is to
�nd the distribution of the function of temperature, if it is known that on the
outer and inner parts of the cylinder surface there is a heat exchange accord-
ing to Newton's law with di�erent values of the temperature of the medium.
Coe�cients of thermal conductivity of the coating are λ1 = const, massive
part � λ2 = const. For the analysis of stationary heat conductivity in a cylin-
der, a stationary analogue of the proposed mathematical model is used. Since
boundary conditions and geometry do not depend on spatial coordinates the
solution of the problem will depend only on one coordinate. This allows us to
get rid of the dependence on the relationship between the parameters of the
�nite-element grid along two coordinate axes, to carry out only the P-adaptive
re�nement in the radial direction and to investigate its in�uence on the result-
ing solution. The mathematical model of the described problem is a system of
ordinary di�erential equations. To analyze its numerical solution, we �rst �nd
the analytic solution of the classical mathematical model without taking into
account the small thickness of the layer.

ε =
maxV |Ti − Tan|

maxV |Tan| 100. (39)
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Fig. 2. Graphs of the function of temperature distribution us-
ing di�erent numbers of members in expansion in thickness.
(The curve with diamonds � analitical solution Tan, the curve
with squares � numerical solution Ti for p = 2)

Fig. 3. Charts of the absolute error dependence on the thick-
ness of the thin cylindrical layer (1. λ = 385 Dg

Kms , 2. λ =
3.85 Dg

Kms)

This solution is used to compare the results calculated using the algorithm
proposed in the work. In the computational experiment, the e�ect of the con-
tent of a di�erent number of members in the sum (33) was investigated to
approximate the solution in thickness. Experiment results are shown in Fig.2.

The "Analytical solution" curve of this �gure corresponds to the analytical
solution, and the curve "Numerical solution" shows results, obtained with the
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Tabl. 1. The dependence of the relative error on the content
of a di�erent number of basic functions over the thickness of the
layer

Number of polynomials Relative error
2 3,1931
3 0,3321
4 0,0333
5 0,0034
6 0,0040
7 0,0001

algorithm using 2 members of the expansion for the thickness of the lower layer
of the cylinder. In a numerical experiment, the solution of the model was also
studied in the case of preserving 3, . . . , 7 members of the decomposition. The
graphs of the obtained solutions in the current scale almost coincide. As it
should be expected, with increasing order of approximation, the graph of the
numerical solution goes to the analytic solution, which con�rms the theoretical
conclusion about the convergence of the proposed algorithm. To con�rm this,
as a criterion for the analysis of approximate solutions (Fig. 3), the relative
error rate is used

Here Tan is the analytical solution of the problem, Ti is the numerical solu-
tion. Table 1 it shows its decline, depending on the increase in the members of
the schedule.

8. Conclusion
The sugested heterogeneous model allows to e�ectively analyze the process of

thermal conductivity in multilayer environments, since it avoids the di�culties
associated with the application of numerical methods.
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ON THE APPLICATION OF THE ONE HP-ADAPTIVE
FINITE ELEMENT STRATEGY FOR NONSYMMETRIC
CONVECTION-DIFFUSION-REACTION PROBLEMS

R.G.Drebotiy, H.A. Shynkarenko

Ðåçþìå. Ìè ðîçãëÿäà¹ìî çàñòîñóâàííÿ îäíi¹¨ hp-àäàïòèâíî¨ ñòðàòåãi¨
ìåòîäó ñêií÷åííèõ åëåìåíòiâ äî ðîçâ'ÿçóâàííÿ íåñèìåòðè÷íèõ êðàéîâèõ
çàäà÷ êîíâåêöi¨-äèôóçi¨-ðåàêöi¨. Â îñíîâi ðîçãëÿäóâàíî¨ ñòðàòåãi¨ ëåæèòü
ïðîöåäóðà âèáîðó íà êîæíîìó ñêií÷ííîìó åëåìåíòi ìiæ çáiëüøåííÿì éîãî
ïîðÿäêó ÷è ïîäiëîì, ùî áàçó¹òüñÿ íà ïîðiâíÿííi íîðì íàáëèæåíü äî ïî-
õèáêè äëÿ ðîçãëÿäóâàíèõ ñïîñîáiâ ïåðåáóäîâè ñêií÷åííîãî åëåìåíòà. Ìè
ðîçãëÿäà¹ìî àëãîðèòì àäàïòóâàííÿ òà íàâîäèìî îá ðóíòóâàííÿ iäå¨ àëãî-
ðèòìó ó âèïàäêó ñèìåòðè÷íî¨ êðàéîâî¨ çàäà÷i. Çàñòîñîâíiñòü àëãîðèòìó
äî íåñèìåòðè÷íèõ çàäà÷ ìè àíàëiçó¹ìî øëÿõîì ðîçãëÿäó ðåçóëüòàòiâ ÷èñ-
ëîâèõ åêñïåðèìåíòiâ, à òàêîæ äîïîâíþ¹ìî íàâåäåíi ðåçóëüòàòè òåîðåòè÷-
íèì àíàëiçîì ìîæëèâîñòi çâåäåííÿ âèõiäíî¨ âàðiàöiéíî¨ çàäà÷i äî ñèìåò-
ðè÷íî¨ ôîðìè. Ìè íàâîäèìî äâi ïðîöåäóðè, ùî äàþòü çìîãó ïåðåéòè âiä
íåñèìåòðè÷íî¨ çàäà÷i äî åêâiâàëåíòíî¨ ñèìåòðè÷íî¨, àáî äî ïîñëiäîâíîñòi
ñèìåòðè÷íèõ çàäà÷, ïîñëiäîâíiñòü ðîçâ'ÿçêiâ ÿêèõ çáiãà¹òüñÿ äî ðîçâ'ÿçêó
âèõiäíî¨ íåñèìåòðè÷íî¨ çàäà÷i. Îòðèìàíèé ðåçóëüòàò âðåøòi ìîæå áóòè
âèêîðèñòàíèé äëÿ ïîáóäîâè êîìáiíîâàíèõ àëãîðèòìiâ íà îñíîâi îäíi¹¨ iç
ñõåì ñèìåòðèçàöii¨ òà àëãîðèòìó hp-àäàïòóâàííÿ.

Abstract. We consider application of certain hp-adaptive strategy for �-
nite element method for solving nonsymmetric convection-di�usion-reaction
boundary value problems. In the base of described strategy lies re�nement
selection procedure which is used to choose on each �nite element between
degree increase or bisection. It uses special comparative criteria for norms of
approximation to local errors on di�erent re�nement patterns. We present the
adaptation algorithm itself and proof of idea behind it for symmetric prob-
lems. For the case when problem is nonsymmetric we provide corresponding
analysis of numerical experiments and also we add pure theoretical analysis
of the possibility of bringing given variational problem to symmetric form,
taking into account that the algorithm is naturally applicable in the latter
case. We describe two approaches that can provide transition from nonsym-
metric variational problem to directly equivalent symmetric problem in the
�rst approach or to sequence of symmetric problems, solutions of which forms
sequence of functions that is convergent to the solution of initial nonsymmet-
ric problem in the second approach. Obtained result can be used to build
algorithms, based on a combination of one of the described symmetrization
methods with hp-adaptive scheme.

Key words. Convection-di�usion-reaction problem, �nite element method, a posteriori er-
ror estimator, adaptive strategy, hp-adaptivity, nonsymmetric problem.
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1. Introduction
Space mesh adaptivity today is the major technique which is used to opti-

mize the process of �nding the approximate solution by �nite element method
in various free and commercial engineering simulation tools. Using it also is
crucial, since in most cases the nature of considered boundary problem is char-
acterized by highly nonuniform distribution of local errors in the case of uniform
mesh. In the context of modeling of convection-di�usion-reaction phenomena,
the reason of such error distribution lies in relatively large values of P�eclet and
Strouhal numbers for the given problem.

Special and natural attention is on so-called hp-adaptive methods [2, 4, 5,
8�10], since they provide most wide approximation capabilities by using both
space mesh adaptivity (h-) and element polynomial degree adaptivity (p-). De-
spite that there are reasonable facts to believe that such algorithms (hp-) can be
considered "exotic" in some sense, investigation in that �eld is still important,
since it is proved [8] that there is possibility to obtain exponentially convergent
sequence of approximations by using hp-re�ned meshes.

In this paper we study the possibility of application of hp-adaptive strat-
egy, introduced in [5], to nonsymmetric variational problems. The fact is that
the nature of introduced algorithm can be explained only for problems with
self-adjoint operators. Despite this, in practice, it can be seen, that algorithm
still can be used for nonsymmetric problems which is shown in provided nu-
merical example. The goal is of this example is to demonstrate that algorithm
can provide solid results, regardless of the used a posteriori error estimators or
adaptation criteria. The second part of this work is the pure theoretical investi-
gation of the possible methods of symmetrization of nonsymmetric variational
problems.

The paper structure is the following: in section 2 we de�ne model problem;
in section 3 we construct variational formulation; in section 4 we present hp-
adaptation algorithm and discuss the main idea behind it; in section 5 we
extend algorithm with some speci�c error estimator; in section 6 we review
adaptation criteria which we will use in numerical experiment; in section 7
we provide numerical results for direct application of described algorithm and
in section 8 we study two methods of symmetrization of variational problem.
Final conclusions are given in section 9.

2. Model boundary value problem
Let us consider the following boundary value problem:
Find function u = u(x) such that




− (

µu′
)′ + βu′ + σu = f in Ω = (0, L)

(µu′)
∣∣
x=0

= α[u(0)− ū0], −(µu′)
∣∣
x=L

= γ[u(L)− ūL],
(1)

where
α, γ ≥ 0, µ = µ(x) ≥ µ0 > 0, β(0) ≤ 0, β(L) ≥ 0, σ = σ(x) ≥ 0,

σ(x)− β′(x)/2 ≥ σ0 > 0 almost everywhere in (0, L), (2)
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µ, β, σ ∈ L∞(0, L), f ∈ L2(0, L).

Considered problem is used in analysis of ecologic phenomena, semiconduc-
tors, biology etc. Many real problems of such kind are singularly perturbed [3].
In the terms of di�erential equation parameters it means that coe�cients near
highest order derivatives are relatively small in comparison to others. So in
this case a second order equation is almost degenerated to �rst order one. In
combination with standard boundary conditions it causes existence of layers
near domain's boundary with high solution gradient. Those boundary layers
are making the solving of problem by using well-known uniform-mesh-based
FEM quite di�cult. Such conditions leads to large P�eclet and Strouhal criteria
and to nonuniform local error distribution.

3. Variational formulation
Using standard approach [1], we can simply de�ne variational problem cor-

responding to (1): �nd solution u ∈ V , such that

a(u, v) = 〈l, v〉 ∀v ∈ V, (3)

where

a(u, v) :=

L∫

0

[µu′v′ + βu′v + σuv] dx + αu(0)v(0) + γu(L)v(L),

〈l, v〉 :=

L∫

0

fv dx + αū0v(0) + γūLv(L), ∀u, v ∈ V := H1(0, L).

(4)

Under conditions (2) problem data satis�es (for details see [6]) conditions of
Lax-Milgram theorem [1] and therefore this variational problem is well-posed.

For further needs, let us de�ne energy norm ‖v‖E =
√

a(v, v).
To discretize obtained variational problem we use general �nite element

method with high-order polynomial basis functions. In other words, we de-
�ne some space Vh ⊂ V, dimVh < +∞, of piecewise-polynomial functions and
�nd �nite element approximation uh ∈ Vh as a solution of variational equation:

a(uh, vh) = 〈l, vh〉 ∀vh ∈ Vh. (5)

Now if we construct �nite basis {ϕi}n
i=1 of space Vh then by expanding uh =∑n

i=1 qiϕi, where qi ∈ R, i = 1, n we can clearly see, that (5) is equal to the
following system of algebraic linear equations for qi, i = 1, n:

n∑

i=1

qia(ϕi, ϕj) = 〈l, ϕj〉 j = 1, n. (6)

For general reference see [2, 9, 10].
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4. hp-adaptation algorithm
In this section we brie�y present discussion and review of algorithm from [5].
Let us consider �nite element mesh τh = {K = (xk−1, xk)}n

k=1 where 0 =
x0 < x1 < · · · < xn = L. Let us de�ne global error approximation space in the
form:

Eh =
⊕

K∈τh

EK
h , (7)

where space of functions EK
h = {v ∈ V | supp v ⊂ K} and dimEK

h < +∞. Let
us de�ne the following variational problem for error approximation:





�nd eh ∈ Eh such that

a(eh, vh) =
∫

Ω
R[uh]vhdx ∀vh ∈ Eh,

(8)

where R is the residual:
R[uh] := f − (

µuh
′)′ − βuh

′ − σuh. (9)
It is not hard to see that problem (8) can be decomposed per elements. For
each element we have to solve a problem:





�nd eK
h ∈ EK

h such that

a(eK
h , vK

h ) =
∫

K
R[uh]vK

h dx ∀vK
h ∈ EK

h

(10)

and then eh =
∑

K∈τh
eK
h .

Consider now the case β ≡ 0, i.e. the problem has symmetric bilinear form.
Then the following well-known equality holds:

‖u− uh‖2
E = ‖u‖2

E − ‖uh‖2
E . (11)

Since error estimation problem has the same bilinear form as the original,
then for �nite element error approximation eh the equality above also holds:

‖e− eh‖2
E = ‖e‖2

E − ‖eh‖2
E . (12)

From this equality we see that if energy norm of error approximation increases
than also increases accuracy of this approximation. Denote the �nite element
solution on the current mesh as uh ∈ Vh and corresponding error e = u − uh.
Then (12) we can rewrite as

‖u− (uh + eh)‖2
E = ‖u− uh‖2

E − ‖eh‖2
E . (13)

Let us �nd �nite element solution ũh in space Ṽh = Vh + Eh ⊂ V , where Eh

is the error approximation space, de�ned in (7). For symmetric case we have
well-known optimality inequality:

‖u− ũh‖E ≤ ‖u− ṽh‖E , ∀ṽh ∈ Ṽh. (14)

Using now (13), and the fact that uh + eh ∈ Ṽh we have:

‖u− ũh‖2
E ≤ ‖u− uh‖2

E − ‖eh‖2
E . (15)
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Decomposing the second term in the right part we obtain inequality:

‖u− ũh‖2
E ≤ ‖u− uh‖2

E −
∑

K∈τh

∥∥eK
h

∥∥2

E
. (16)

Consider now decomposition of approximation space Vh into local approxima-
tion spaces V K

h , K ∈ τh. Spaces V K
h +EK

h are considered as re�ned local �nite
element spaces according to transition from current mesh to mesh de�ned by
space Ṽh. In the case when EK

h consists of piecewise-polynomial functions it
directly de�nes some re�nement pattern on element K. For each element K we
can consider now several di�erent choices of space EK

h : E1, . . . , ES and taking
into account (16) we see, that it is optimal to use re�nement pattern de�ned
by the space EK

h := EsK , sK ∈ {1, . . . , S} which gives a maximum to a value
of

∥∥eK
h

∥∥
E
in the right part of (16).

So, now we can review the entire algorithm, which consists of two phases:
Initialization:
Compute:

µ0 = min
x∈[0,L]

µ(x),

σ0 = min
x∈[0,L]

{
σ(x)− β′(x)

2

}
,

C = 2 · [min {µ0, σ0}]−1/2 .

(17)

Set τh to some initial �nite element mesh.
For each �nite element K = (xk−1, xk) ∈ τh we de�ne quadratic bubble

function
ωK(x) := (xk − x)(x− xk−1). (18)

TOL is acceptable relative error level in percent.
pmax is the maximum supported degree of polynomial basis function on �nite

element.
θ ∈ (0, 1) is �xed value.
Iteration:

Step 1: Find FEM solution uh on the current mesh τh. De�ne uK
h as restriction

of uh to the element K and pK := deg(uK
h ).

Step 2: For all elements K ∈ τh compute

ηK =
C√

pK(pK + 1)
‖√ωKR[uh]‖L2(K) . (19)

De�ne η :=
√∑

K η2
K .

Then if η
‖uh‖E

× 100% < TOL we stop the algorithm, else:
Step 3: Choose elements for re�nement.
Compute ηmax = max

K
ηK .

We will change those elements K, for which ηK > (1 − θ)ηmax. The set of all
selected elements we name as Aθ.
Step 4: Mesh modi�cation. For all selected elements K = (xk−1, xk) ∈ Aθ

choose between bisection and increasing of polynomial degree on it by 1.
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Step 4a: If pK = pmax then we divide element into two with orders (pK , pK),
otherwise:
Step 4b: De�ne Xp(a, b) as a space of all polynomials of order p on closed
interval [a, b].

De�ne spaces:

V 1
hp(K) = {v ∈ C(K)|v ∈ XpK (xk−1, (xk−1 + xk)/2),

v ∈ XpK ((xk−1 + xk)/2, xk), v|∂K = 0}
V 2

hp(K) = {v ∈ XpK+1(K)| v|∂K = 0}.
(20)

Now we solve problem (10) for EK
h := V 1

hp(K) and EK
h := V 2

hp(K). Let us
denote obtained solutions as e1

h and e2
h respectively.

Compute rm = ‖em
h ‖E , m = 1, 2

Step 5: Consider the di�erence ∆ = r2 − r1.
If ∆ > δ where δ is prede�ned value, then we increase element degree by 1,
otherwise we bisect it into two elements with approximation polynomial degrees
(pK , pK).
Step 6: Go to Step 1.

Idea of described algorithm is clear for symmetric problems. Some numerical
experiments are available in [5,6]. Technically we can run algorithm on nonsym-
metric problems too, without having any theoretical background in that case.
We will try to perform some numerical experiments to show how described algo-
rithm will work in practice for nonsymmetric problem. We describe additional
error estimator in next section 5 and additional adaptation criteria in section
6. Using those we will provide corresponding comparative numerical results
in section 7 to show that algorithm can provide solid results despite of which
combination of estimator and adaptation criteria we use.

5. Error estimator based on fundamental solution
For error indicator ηK , introduced by (19) in section 4, instead of using

explicit formula we can use implicit indicator in the form of problem (10) but
with special approximation space EK

h = span{ϕK}, where:

ϕK(x) =





c11ϕ11(x) + c12ϕ12(x) on x ∈ [xk−1, xk−1/2],

ϕ1(xk−1) = 0, ϕ1(xk−1/2) = 1,

c21ϕ21(x) + c22ϕ22(x) on x ∈ [xk−1/2, xk],

ϕ2(xk−1/2) = 1, ϕ2(xk) = 0,

(21)

and {ϕ1i(x)}, {ϕ2i(x)} are the sets of fundamental solutions for equations
− (

µ̃iw
′)′ + β̃iw

′ + σ̃iw = 0, i = 1, 2 (22)
with constant coe�cients (selected as mean values of corresponding functions)
on corresponding intervals [xk−1, xk−1/2] and [xk−1/2, xk]. Then we solve (10)
and use the energy norm of obtained approximation as an error indicator ηK .
To �nd fundamental solutions we solve corresponding quadratic equations

−µ̃iλ
2
i + β̃iλi + σ̃i = 0, i = 1, 2. (23)
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Here for each of two equations we have three cases possible:
i. if λ

(1)
i , λ

(2)
i ∈ R, λ

(1)
i 6= λ

(2)
i then

ϕi1(x) = exp(λ(1)
i x), ϕi2(x) = exp(λ(2)

i x);
ii. if λ

(1)
i , λ

(2)
i ∈ R, λ

(1)
i = λ

(2)
i then

ϕi1(x) = exp(λ(1)
i x), ϕi2(x) = x exp(λ(1)

i x);
iii. if λ

(1)
i , λ

(2)
i ∈ C\R, λ

(1)
i = α + βi, λ2 = α− βi then

ϕi1(x) = exp(αx) sin(βx), ϕi2(x) = exp(αx) cos(βx).

6. Element selection criteria
In addition to adding new estimator in previous section, we also will try

to run algorithm with di�erent adaptation criteria, used in step 3 to choose
elements for re�nement procedure. So we will have two criteria:

i. ("maximum" criteria) element K is re�ned if
ηK > (1− θ)ηmax, (24)

where ηmax = max
K

ηK and θ ∈ (0, 1) is �xed value;
ii. ("average" criteria) element K is re�ned if√

NηK√
‖uh‖2

E +
∑

K′ η2
K′

100% > ε, (25)

where ε is is acceptable tolerance in % for average error level over �nite
element, N is element count.

7. Numerical example
We consider boundary value problem (1) with the following data

µ = 0.01, β = 100.896(x− 1)3, σ = 84(2− (x− 1)2), f = 200,

α = γ = 1014, ū0 = ūL = 0, L = 2.
(26)

Algorithm parameters are: TOL = 5%, pmax = 3, δ = −150, θ = 0.6, ε = 20.
Fig. 1 demonstrates approximation obtained by introduced algorithm using

fundamental solution error indicator "maximum" adaptation criteria. Taking
into account boundary conditions we can clearly see that we have two bound-
ary layers in the both ends of interval (which we don't see directly in the plot
according to very large gradient of approximation near those two points). In
tables 1 and 2 we present convergence history for di�erent combinations of
introduced error estimators from sections 5 and 4 in combination with "max-
imum" criteria (24) and "average" criteria (25). Average convergence rate is
found using least squares method.

In general we can see from provided numerical examples that:
i. the better choice in according to count of elements, iterations and d.o.f.

reached is a combination of the explicit indicator and "maximum" crite-
ria;

ii. there is no large di�erence between "maximum" and "average" selection
criteria;
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iii. if we need to have almost monotonic relative error decreasing we need to
choose explicit indicator from 4.

Fig. 1. Approximation to solution of problem with data (26)
using implicit error indicator based on fundamental solution ba-
sis which was introduced in section 5 combined with the "max-
imum" criteria (24)

Fig. 2. Dependency between absolute error indicator εn and
number of degrees of freedom N

(n)
dof in log-log scale for previous

results: a) for algorithm with explicit error indicator from sec-
tion 4 and "maximum" criteria (24); b) for algorithm with indi-
cator based on fundamental solution described in section 5 and
"maximum" criteria (24); c) for algorithm with explicit error
indicator from section 4 and "average" criteria (25); d) for algo-
rithm with indicator based on fundamental solution described
in section 5 and "average" criteria (25)
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Tabl. 1. Convergence history for problem with data (26) for
the "maximum" criteria (24): n is an iteration number, N el-
ement count, N

(n)
dof count of degrees of freedom, εn = η ab-

solute error indicator, rn = η‖uh‖−1
E × 100% relative error,

pn = − (ln εn − ln εn−1) ×
(
lnN

(n)
dof − lnN

(n−1)
dof

)−1
rate of con-

vergence

Explicit indicator Fundamental solution indicator
n N N

(n)
dof εn rn pn n N N

(n)
dof εn rn pn

0 50 51 74.00 73.85 0 50 51 84.41 84.25
1 72 75 56.51 50.94 0.69 1 69 75 79.52 67.86 0.15
2 106 109 40.08 32.25 0.91 2 102 118 62.69 52.61 0.52
3 136 143 22.26 21.22 2.16 3 124 145 56.07 49.96 0.54
4 144 165 11.39 15.61 4.68 4 130 151 33.69 33.22 12.56
5 144 177 5.14 17.90 11.33 5 142 175 22.55 37.16 2.72
6 144 181 2.90 8.39 25.48 6 142 182 15.10 43.72 10.21
7 146 187 1.24 4.57 26.08 7 143 187 6.24 19.58 32.59

8 145 193 2.88 11.29 24.49
9 146 196 1.12 4.72 61.11

average rate of convergence 2.66 average rate of convergence 2.38

Tabl. 2. Convergence history for problem with data (26) for
the "average" criteria (25).

Explicit indicator Fundamental solution indicator
n N N

(n)
dof εn rn pn n N N

(n)
dof εn rn pn

0 50 51 74.00 73.85 0 50 51 84.41 84.25
1 72 81 52.93 52.15 0.72 1 72 85 72.67 71.90 0.29
2 106 125 38.34 32.55 0.74 2 106 135 60.36 50.78 0.40
3 134 167 22.12 21.43 1.89 3 136 189 50.07 48.36 0.55
4 142 195 11.33 15.90 4.31 4 144 227 24.87 35.20 3.81
5 142 211 5.11 18.80 10.08 5 144 252 19.63 70.70 2.26
6 142 219 2.84 8.02 15.76 6 144 266 7.52 21.09 17.73
7 146 231 1.24 4.57 15.56 7 150 284 3.84 14.18 10.26

8 152 290 1.13 4.75 58.56
average rate of convergence 2.32 average rate of convergence 1.86

Also, taking into account, that during preparation of this paper the algorithm
was tested on several other problems, we can conclude from solid numerical
results that the algorithm is applicable in practice in the case of nonsymmetric
problems too, despite of which indicators or element selection criteria we use
(without any theoretical background). In the next section we provide some
pure theoretical analysis in that case.
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8. Symmetrization methods
Instead of trying to generalize somehow (11) to nonsymmetric problems to

bring similar argument as in remark in section 4, it is natural to try to construct
equivalent (in some sense) to (3) but symmetric variational problem.

Here we present two pure theoretical results which can not be used in practice
directly but can be considered as a starting point in further investigation in
described direction.

8.1. Equivalent symmetric problem approach. Let us recall variational
equation (1) in expanded form:

L∫

0

[µu′v′ + βu′v + σuv] dx + αu(0)v(0) + γu(L)v(L) =

=

L∫

0

fv dx + αū0v(0) + γūLv(L), ∀v ∈ V.

(27)

We are free to choose arbitrary function v in (27) in the form: v = zw, where
both functions z and w are arbitrary, but z is �xed. After substitution into
(27) and small algebra we obtain equivalend equation:

L∫

0

[µzu′w′ + (µz′ + βz)︸ ︷︷ ︸u′w + σzuw] dx+

+ αz(0)u(0)w(0) + γz(L)u(L)w(L) =

=

L∫

0

fzw dx + αū0z(0)w(0) + γūLz(L)w(L), ∀w ∈ V.

(28)

Lets choose z as a solution of the ordinary di�erential equation µz′ + βz = 0.
It is not hard to �nd partial solution:

z(x) = exp



−

x∫

0

β(ξ)
µ(ξ)

dξ



 . (29)

Substituting (29) into (28) lead us to:

L∫

0

[µzu′w′ + σzuw] dx + αu(0)w(0) + γz(L)u(L)w(L) =

=

L∫

0

fzw dx + αū0w(0) + γūLz(L)w(L), ∀w ∈ V.

(30)
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It is not hard to see that (3) and (30) are equivalent and furthermore the
bilinear form

b(u, v) :=

L∫

0

[µzu′w′ + σzuw] dx + αu(0)w(0) + γz(L)u(L)w(L), (31)

in the left part of (30), is symmetric. Corresponding to (30) boundary value
problem is:





�nd function u = u(x), such that
− (

µzu′
)′ + σzu = fz on Ω = (0, L)

(µzu′)
∣∣
x=0

= α[u(0)− ū0], −(µzu′)
∣∣
x=L

= γz(L)[u(L)− ūL].

(32)

Visual simplicity of obtained symmetrization procedure and the problem (32),
in practice lead us to problem which is technically hard to solve. The reason is
in function z (29). Fraction β(ξ)

µ(ξ) is almost proportional to P�eclet number for the
given problem and in the latter is singular perturbed multiplier z will be the ex-
ponent with large negative power. In such conditions it is very problematically
to calculate integrals from (30) when we use standard Galerkin discretization
according to very large quadrature round-o� errors. We investigated numeri-
cally the following approaches:

i. trapezoidal rule;
ii. interpolation-type quadrature based on L-splines;
iii. asymptotic formula at Pe → +∞;
iv. tanh− sinh quadratures;
v. adaptive quadratures using previous methods;
vi. implementation of adaptation algorithm using Wolfram Mathematica.

Those approaches even with combination with element-wise scaling of function
z does not provide successful practical result.

8.2. Iterative approach. The second approach does not provide directly equi-
valent symmetric problem. Let us suppose that the bilinear form a and linear
functional l from (1) satisfy conditions of Lax-Milgram theorem, i.e. a and l
are bounded and moreover bilinear form a is V -elliptical. So, there are two
positive constants M > 0 and α > 0 such that:

a(u, v) ≤ M‖u‖V ‖v‖V , ∀u, v ∈ V,

a(u, u) ≥ α‖u‖2
V , ∀u ∈ V.

(33)

By the way, where the conditions from (1) guarantees existence of such con-
stants M and α.

Let us construct sequence {uk}∞k=0 ∈ V . We select arbitrary u0 ∈ V , uk,
k > 0 we �nd from the following symmetric variational problem:

{
�nd function uk ∈ V, such that
a(uk, v) + a(v, uk) = 〈l, v〉+ a(v, uk−1), ∀v ∈ V.

(34)
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Under previous conditions for a and l it is not hard to conclude that the se-
quence is well-de�ned, i.e. the solution of (34) exists on each step.

Theorem 1. If M < 2α, than uk −−−→
k→∞

u in V , where u is the solution of (3),
moreover

‖u− uk‖V ≤
(

M

2α

)k

‖u− u0‖V . (35)

Proof. Let us de�ne ek = uk − u. Then substitute uk = u + ek into equation
from (34). We get:

a(u + ek, v) + a(v, u + ek) = 〈l, v〉+ a(v, u + ek−1), (36)
or after simpli�cation:

a(ek, v) + a(v, ek) = a(v, ek−1). (37)
Taking v = ek and using (33) we obtain the following inequality chain:

2α‖ek‖2
V ≤ 2a(ek, ek) = a(ek, ek−1) ≤ M‖ek‖V ‖ek−1‖V . (38)

If there exist k0 : ek0 = 0V than it is obvious that uk = u,∀k ≥ k0, i.e. we
have convergent sequence and the inequality from theorem statement holds. In
other case ∀k ∈ N we can divide (38) by ‖ek‖V 6= 0 and we obtain:

‖ek‖V ≤ M

2α
‖ek−1‖V . (39)

By combining the last recurrent formula we simply get the �nal estimate (35):

‖ek‖V ≤
(

M

2α

)k

‖e0‖V , (40)

and convergence if M < 2α.

9. Conclusion
In this paper we studied application of certain hp-adaptive algorithm to

nonsymmetric problems. We combined this algorithm with di�erent a posteri-
ori error estimators and adaptation criteria to show by numerical experiment
that algorithm can be directly applied to nonsymmetric problems. Also we
construct several methods of symmetrization of given variational problem and
provide corresponding theoretical analysis of those procedures. Two approaches
are described. First can be used to build equivalent symmetric problem. In
the second approach we built iterative procedure, where by solving symmetric
variational problem on each step we can obtain sequence of elements that is
convergent in the space of test functions to the solution of the original nonsym-
metric problem. We still are working on the problem of theorem applicability
to singular perturbed problems and schemes of combining this theorem with
adaptive �nite element algorithms. Also we are working on practical imple-
mentation of both symmetrization schemes which in practice involve building
some ad hoc numerical quadratures.
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CONVERGENCE ANALYSIS OF A TWO-STEP
MODIFICATION OF THE GAUSS-NEWTON

METHOD AND ITS APPLICATIONS

R.P. Iakymchuk, S.M. Shakhno, H. P.Yarmola

Ðåçþìå. Ó ðîáîòi äîñëiäæåíî çáiæíiñòü äâîêðîêîâî¨ ìîäèôiêàöi¨ ìåòîäó
Ãàóññà-Íüþòîíà çà óçàãàëüíåíèõ óìîâ Ëiïøèöÿ äëÿ ïîõiäíèõ ïåðøîãî i
äðóãîãî ïîðÿäêiâ. Âñòàíîâëåíî ïîðÿäîê i ðàäióñ çáiæíîñòi ìåòîäó, à òàêîæ
îáëàñòü ¹äèíîñòi ðîçâ'ÿçêó íåëiíiéíî¨ çàäà÷i ïðî íàéìåíøi êâàäðàòè. Ïðî-
âåäåíî ÷èñåëüíi åêñïåðèìåíòè íà âiäîìèõ òåñòîâèõ çàäà÷àõ.
Abstract. We investigate the convergence of a two-step modi�cation of
the Gauss-Newton method applying the generalized Lipschitz condition for
the �rst- and second-order derivatives. The convergence order as well as the
convergence radius of the method are studied and the uniqueness ball of the
solution of the nonlinear least squares problem is examined. Finally, we carry
out numerical experiments on a set of well-known test problems.

1. Introduction
Let us consider the nonlinear least squares problem [6]:

min f(x) :=
1
2
F (x)T F (x), (1)

where F is a Fr�echet di�erentiable operator de�ned on IRn with its values on
IRm , m ≥ n. The best known method for �nding an approximate solution of
the problem (1) is the Gauss-Newton method, which is de�ned as

xk+1 = xk − [F
′
(xk)T F

′
(xk)]−1F

′
(xk)T F (xk), k = 0, 1, 2, .... (2)

The convergence analysis of the method (2) under various conditions was con-
ducted in [4, 5]. In paper [11], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

For solving the problem (1), we consider a two-step modi�cation of the Gauss-
Newton method [1,3]

{
xk+1 = xk − [F

′
(zk)T F

′
(zk)]−1F

′
(zk)T F (xk),

yk+1 = xk+1 − [F
′
(zk)T F

′
(zk)]−1F

′
(zk)T F (xk+1), k = 0, 1, 2, ...,

(3)

Key words. Least squares problem, Gauss-Newton method, Lipschitz conditions with L
average, radius of convergence, uniqueness ball.
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where zk = (xk+yk)/2; x0 and y0 are given. In case when m = n, this method is
equivalent to the methods proposed by Bartish [2] and Werner [17]. On each it-
eration, the method (3) computes the inversion of the matrix [F

′
(zk)T F

′
(zk)]−1

only once. Because of that, the computation cost of each iteration of the
method (3) is roughly the same as of the Gauss-Newton method (2): for calcu-
lating yk+1, it is only necessary to perform one backward substitution, which
requires O(n2) �oating-point operations (Flops), since the LLT decomposi-
tion of the matrix F

′
(zk)T F

′
(zk), which costs O(n3) (O(n3/3) to be precise)

Flops [6], is computed for xk+1.
The main goal of this paper is to analyze the local convergence of the

method (3). Bartish et al. [1] examined the local convergence of this method us-
ing the classical Lipschitz condition for derivatives of the second-order, but only
for the problem (1) with zero residuals. Instead, we study the convergence of
the above-mentioned method using the generalized Lipschitz conditions [15] for
derivatives of the �rst- and second-orders; such conditions employ an integrable
function L(u) instead of the Lipschitz constant L. The Lipschitz condition with
L average in the inscribe sphere makes us unify the convergence criteria con-
taining the Kantorovich theorem and the Smale α-theory [5, 8, 12, 14, 15]. We
prove the convergence of the method (3) for the problem (1) with zero as well
as non-zero residuals. Furthermore, we �nd both the order and the radius of
the convergence of the method (3) as well as the uniqueness ball of the solution
of the problem (1). We have published some of the results without proofs as
an extended abstract [7].

2. Preliminaries
For our study, we present di�erent de�nitions of the Lipschitz conditions.

Let us denote B(x∗, r) = {x ∈ D ⊆ IRn : ‖x − x∗‖ ≤ r} as an closed ball with
the radius r (r > 0) at x∗.
De�nition 1. The function F : IRn → IRm satis�es the classical Lipschitz
condition on B(x∗, r) if

‖F (x)− F (y)‖ ≤ L‖x− y‖,
where x, y ∈ B(x∗, r) and L is the Lipschitz constant.

In De�nition 1 L may not necessary be a constant, but it also can be an
integrable function L(u).
De�nition 2 ( [15]). The function F : IRn → IRm satis�es the Lipschitz
condition with L average on B(x∗, r) if

‖F (x)− F (y)‖ ≤
∫ ‖x−y‖

0
L(u)du, ∀x ∈ B(x∗, r),

where L(u) is a positive non-decreasing function.
Let IRm×n , m ≥ n, denote a set of all m × n matrices. Then, for a full

rank matrix A ∈ IRm×n , its Moore-Penrose pseudo-inverse [6] is de�ned as
A† = (AT A)−1AT .
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Lemma 1 ( [13,16]). Let A,E ∈ IRm×n . Assume that C = A+E, ‖A†‖‖E‖ <
1, and rank(A) = rank(C). Then,

‖C†‖ ≤ ‖A†‖
1− ‖A†‖‖E‖ .

If rank(A) = rank(C) = min(m,n), we can obtain

‖C† −A†‖ ≤
√

2‖A†‖2‖E‖
1− ‖A†‖‖E‖ .

Lemma 2 ( [4]). Let A,E ∈ IRm×n . Assume that C = A + E, ‖EA†‖ < 1,
and rank(A) = n, then rank(C) = n.

Lemma 3 ( [15]). Let h(t) =
1
t

∫ t

0
L(u)du, 0 ≤ t ≤ r, where L(u) is a positive

integrable function and monotonically non-decreasing on [0, r]. Then, h(t) is
monotonically non-decreasing with respect to t.

Lemma 4 ( [10]). Let g(t) =
1
t3

∫ t

0
N(u)(t−u)2du, 0 ≤ t ≤ r, where N(u) is a

positive integrable function and monotonically non-decreasing on [0, r]. Then,
g(t) is monotonically non-decreasing with respect to t.

3. Local Convergence Analysis of Method (3)
In this section, we investigate the convergence and the radius of the conver-

gence ball of the method (3).
Theorem 1. Let F : IRn → IRm , m ≥ n, be a twice Fr�echet di�erentiable
operator on a subset D ⊆ IRn . Assume that the problem (1) has a solution
x∗ ∈ D and a Fr�echet derivative F

′
(x∗) has full rank. Suppose that Fr�echet

derivatives F
′
(x) and F

′′
(x) on B(x∗, R) = {x ∈ D : ‖x−x∗‖ ≤ R} satisfy the

Lipschitz conditions with L and N average:

‖F ′
(x)− F

′
(y)‖ ≤

∫ ‖x−y‖

0
L(u)du, (4)

‖F ′′
(x)− F

′′
(y)‖ ≤

∫ ‖x−y‖

0
N(u)du, (5)

where L and N are positive non-decreasing functions on [0, 3R/2].
Furthermore, assume function

h0(p) = (β/8)
∫ p

0
N(u)(p− u)2du + βp

(∫ (3/2)p

0
L(u)du +

∫ p

0
L(u)du

)
+

+
√

2αβ2

∫ p

0
L(u)du− p (6)

has a minimal zero r on [0, R], which also satis�es

β

∫ r

0
L(u)du < 1. (7)
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Then, for all x0, y0 ∈ B(x∗, r) the sequences {xk} and {yk}, which are gen-
erated by the method (3), are well de�ned, remain in B(x∗, r) for all k ≥ 0,
and converge to x∗ such that

ρ(xk+1) ≤ γρ(xk)3 + ηρ(xk)ρ(yk) + θρ(zk), (8)
ρ(yk+1) ≤ γρ(xk+1)3 + (η/3)(ρ(xk) + ρ(yk) + ρ(xk+1))ρ(xk+1) +

+θρ(zk), (9)
rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0, (10)

where ρ(x) = ‖x− x∗‖, r0 = max{ρ(x0), ρ(y0)},
q = γρ(x0)2 + θ + η, (11)

γ =
β

∫ ρ(x0)
0 N(u)(ρ(x0)− u)2du

8ρ(x0)3
(
1− β

∫ ρ(z0)
0 L(u)du

) , θ =

√
2αβ2

∫ ρ(z0)
0 L(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0 L(u)du

) , (12)

η =
β

∫ ρ(x0)+ρ(y0)/2
0 L(u)du

(2ρ(x0) + ρ(y0))/3
(
1− β

∫ ρ(z0)
0 L(u)du

) , (13)

α = ‖F (x∗)‖, β = ‖(F ′(x∗)T F ′(x∗))−1F ′(x∗)T ‖. (14)

Proof. Let choose arbitrary x0, y0 ∈ B(x∗, r). For x1, y1 that are generated by
(3), we have

x1 − x∗ = x0 − x∗ −
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x0) =

=
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T

[
F
′
(z0)(x0 − x∗)− F (x0) + F (x∗)

]
+

+
[
F
′
(x∗)T F

′
(x∗)

]−1
F
′
(x∗)T F (x∗)−

[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x∗) =

=
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T×

×
[(

F
′
(

x0 + x∗
2

)
(x0 − x∗)− F (x0) + F (x∗)

)
+

+
(

F
′
(z0)− F

′
(

x0 + x∗
2

))
(x0 − x∗)

]
+

+
[
F
′
(x∗)T F

′
(x∗)

]−1
F
′
(x∗)T F (x∗)−

[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x∗);

y1 − x∗ = x1 − x∗ −
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x1) =

=
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T

[
F
′
(z0)(x1 − x∗)− F (x1) + F (x∗)

]
+

+
[
F
′
(x∗)T F

′
(x∗)

]−1
F
′
(x∗)T F (x∗)−

[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x∗) =

=
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T×

×
[(

F
′
(

x1 + x∗
2

)
(x1 − x∗)− F (x1) + F (x∗)

)
+

+
(

F
′
(z0)− F

′
(

x1 + x∗
2

))
(x1 − x∗)

]
+

64



CONVERGENCE ANALYSIS OF A TWO-STEP MODIFICATION ...

+
[
F
′
(x∗)T F

′
(x∗)

]−1
F
′
(x∗)T F (x∗)−

[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x∗).

According to Lemma 1 from [17] with the value ω = 1/2 we can write

F (x)− F (y)− F
′
(

x + y

2

)
(x− y) =

=
1
4

∫ 1

0
(1− t)

[
F
′′
(

x + y

2
+

t

2
(x− y)

)
−

−F
′′
(

x + y

2
+

t

2
(y − x)

)]
(x− y)2dt.

(15)

By setting x = x∗ and y = x0 in the equation above, we receive
∥∥∥∥F (x∗)− F (x0)− F

′
(

x0 + x∗
2

)
(x∗ − x0)

∥∥∥∥ =

=
1
4

∥∥∥∥
∫ 1

0
(1− t)

[
F
′′
(

x0 + x∗
2

+
t

2
(x∗ − x0)

)
−

− F
′′
(

x0 + x∗
2

+
t

2
(x0 − x∗)

)]
(x∗ − x0)2dt

∥∥∥∥ ≤

≤ 1
4

∫ 1

0
(1− t)

∫ t‖x0−x∗‖

0
N(u)du‖x0 − x∗‖2dt =

=
1
8

∫ ρ(x0)

0
N(u)

(
1− u

ρ(x0)

)2

duρ(x0)2 =
1
8

∫ ρ(x0)

0
N(u)(ρ(x0)− u)2du,

and also
∥∥∥∥F

′
(

x0 + y0

2

)
− F

′
(

x0 + x∗
2

)∥∥∥∥ ≤
∫ ρ(y0)/2

0
L(u)du.

Using (4) and (14), we obtain that

‖(F ′
(x∗)T F

′
(x∗))−1F

′
(x∗)T ‖‖F ′

(x)− F
′
(x∗)‖ ≤ β

∫ ρ(x)

0
L(u)du.

According to Lemmas 1 and 2 and that F
′
(x) has full rank, for all x ∈ B(x∗, r),

the following inequalities hold

‖(F ′
(x)T F

′
(x))−1F

′
(x)T ‖ ≤ β

1− β
∫ ρ(x)
0 L(u)du

; (16)

‖(F ′
(x)T F

′
(x))−1F

′
(x)T − (F

′
(x∗)T F

′
(x∗))−1F

′
(x∗)T ‖ ≤

≤
√

2β2
∫ ρ(x)
0 L(u)du

1− β
∫ ρ(x)
0 L(u)du

.
(17)

By the monotonicity of L(u) and N(u) with Lemmas 3 and 4, functions
1
t

∫ t

0
L(u)du and 1

t3

∫ t

0
N(u)(t − u)2du are non-decreasing by t. Hence, from
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(6) and (7) it follows that

q ≤ 1
r0




β
r0∫
0

N(u)(r0 − u)2du

8
(

1− β
r0∫
0

L(u)du

) +
βr0

(3/2)r0∫
0

L(u)du +
√

2αβ2
r0∫
0

L(u)du

1− β
r0∫
0

L(u)du




<

<
1
r




β
r∫
0

N(u)(r − u)2du

8
(

1− β
r∫
0

L(u)du

) +
βr

(3/2)r∫
0

L(u)du

1− β
r∫
0

L(u)du

+

√
2αβ2

r∫
0

L(u)du

1− β
r∫
0

L(u)du



≤ 1.

Thus, by Lemmas 1-4, conditions (4) and (5), and the afore-derived estimates,
we obtain

‖x1 − x∗‖ ≤
∥∥∥∥
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T

∥∥∥∥×

×
∥∥∥∥
(

F
′
(

x0 + x∗
2

)
(x0 − x∗)− F (x0) + F (x∗)

)
+

+
(

F
′
(z0)− F

′
(

x0 + x∗
2

))
(x0 − x∗)

∥∥∥∥ +

+
∥∥∥∥
[
F
′
(x∗)T F

′
(x∗)

]−1
F
′
(x∗)T F (x∗)−

[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x∗)

∥∥∥∥ ≤

≤ βρ(x0)3
∫ ρ(x0)
0 N(u)(ρ(x0)− u)2du

8ρ(x0)3
(
1− β

∫ ρ(z0)
0 L(u)du

) +

+
βρ(x0)ρ(y0)

∫ ρ(y0)/2
0 L(u)du

ρ(y0)
(
1− β

∫ ρ(z0)
0 L(u)du

) +

√
2αβ2ρ(z0)

∫ ρ(z0)
0 L(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0 L(u)du

) <

< γρ(x0)3 + ηρ(x0)ρ(y0) + θρ(z0) < qr0 < r.

Similarly,

‖y1 − x∗‖ =
∥∥∥∥
[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T

∥∥∥∥×

×
∥∥∥∥
(

F
′
(

x1 + x∗
2

)
(x1 − x∗)− F (x1) + F (x∗)

)
+

+
(

F
′
(z0)− F

′
(

x1 + x∗
2

))
(x1 − x∗)

∥∥∥∥ +

+
∥∥∥∥
[
F
′
(x∗)T F

′
(x∗)

]−1
F
′
(x∗)T F (x∗)−

[
F
′
(z0)T F

′
(z0)

]−1
F
′
(z0)T F (x∗)

∥∥∥∥ ≤

≤ βρ(x1)3
∫ ρ(x1)
0 N(u)(ρ(x1)− u)2du

8ρ(x1)3
(
1− β

∫ ρ(z0)
0 L(u)du

) +

+
βρ(x1)ρ(z

′
0)

∫ ρ(z
′
0)

0 L(u)du

ρ(z′0)
(
1− β

∫ ρ(z0)
0 L(u)du

) +

√
2αβ2ρ(z0)

∫ ρ(z0)
0 L(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0 L(u)du

) ≤

66



CONVERGENCE ANALYSIS OF A TWO-STEP MODIFICATION ...

≤ γρ(x1)3 + (η/3)ρ(x1)(ρ(x0) + ρ(y0) + ρ(x1)) + θρ(z0) <
< γρ(x0)3 + (η/3)ρ(x0)(2ρ(x0) + ρ(y0)) + θρ(z0) < qr0 < r,

where ρ(z
′
0) = (ρ(x0) + ρ(y0) + ρ(x1))/2. Therefore, x1, y1 ∈ B(x∗, r) and both

(8) and (9) follow for k = 0. Also, (10) is satis�ed
r1 = max{‖x1 − x∗‖, ‖y1 − x∗‖} ≤ qr0.

Using mathematical induction, assume that xk, yk ∈ B(x∗, r) and (8)�(10)
hold for k > 0. Then, from (3) for k + 1 we obtain that

‖xk+1 − x∗‖ ≤
βρ(xk)3

∫ ρ(xk)
0 N(u)(ρ(xk)− u)2du

8ρ(xk)3
(
1− β

∫ ρ(zk)
0 L(u)du

) +

+
βρ(xk)ρ(yk)

∫ ρ(yk)/2
0 L(u)du

ρ(yk)
(
1− β

∫ ρ(zk)
0 L(u)du

) +

√
2αβ2ρ(zk)

∫ ρ(zk)
0 L(u)du

ρ(zk)
(
1− β

∫ ρ(zk)
0 L(u)du

) ≤

≤ βρ(xk)3
∫ ρ(x0)
0 N(u)(ρ(x0)− u)2du

8ρ(x0)3
(
1− β

∫ ρ(z0)
0 L(u)du

) +

+
βρ(xk)ρ(yk)

∫ ρ(y0)/2
0 L(u)du

ρ(y0)
(
1− β

∫ ρ(z0)
0 L(u)du

) +

√
2αβ2ρ(zk)

∫ ρ(z0)
0 L(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0 L(u)du

) ≤

≤ γρ(xk)3 + ηρ(xk)ρ(yk) + θρ(zk) ≤ qrk < r.

(18)

and

‖yk+1 − x∗‖ ≤
βρ(xk+1)3

∫ ρ(xk+1)
0 N(u)(ρ(xk+1)− u)2du

8ρ(xk+1)3
(
1− β

∫ ρ(zk)
0 L(u)du

) +

+
βρ(xk+1)ρ(z

′
k)

∫ ρ(z
′
k)

0 L(u)du

ρ(z′k)
(
1− β

∫ ρ(zk)
0 L(u)du

) +

√
2αβ2ρ(zk)

∫ ρ(zk)
0 L(u)du

ρ(zk)
(
1− β

∫ ρ(zk)
0 L(u)du

) ≤

≤ βρ(xk+1)3
∫ ρ(x0)
0 N(u)(ρ(x0)− u)2du

8ρ(x0)3
(
1− β

∫ ρ(z0)
0 L(u)du

) +

+
βρ(xk+1)ρ(z

′
k)

∫ ρ(z
′
0)

0 L(u)du

ρ(z′0)
(
1− β

∫ ρ(z0)
0 L(u)du

) +

√
2αβ2ρ(zk)

∫ ρ(z0)
0 L(u)du

ρ(z0)
(
1− β

∫ ρ(z0)
0 L(u)du

) ≤

≤ γρ(xk+1)3 + (η/3)(ρ(xk) + ρ(yk) + ρ(xk+1))ρ(xk+1) + θρ(zk) ≤
≤ qrk < r.

(19)

where ρ(z
′
k) = (ρ(xk) + ρ(yk) + ρ(xk+1))/2. According to (11) and both in-

equalities (8) and (9), we receive
rk+1 = max{‖xk+1 − x∗‖, ‖yk+1 − x∗‖} ≤ qrk ≤ q2rk−1 ≤ · · · ≤ qk+1r0.

Thus, xk+1, yk+1 ∈ B(x∗, r) and (8)�(10) hold; and also lim
k→∞

xk = x∗ and
lim

k→∞
yk = x∗. This completes the induction and the proof of Theorem 1. ¤

In case of zero residual (α = ‖F (x∗)‖ = 0) the results of Theorem 1 are

67



R.P. IAKYMCHUK, S.M. SHAKHNO, H.P.YARMOLA

Corollary 1. Suppose that x∗ satis�es (1), F (x∗) = 0, F (x) is a twice Fr�echet
di�erentiable operator in B(x∗, R), F

′
(x∗) has full rank, and both F

′
(x) and

F
′′
(x) satisfy the Lipschitz conditions with L and N average as in (4) and (5),

respectively, where L and N are positive non-decreasing functions on [0, 3R/2].
Furthrmore, assume function H0 has a minimal zero r on [0, R], which also
satis�es:

β

∫ r

0
L(u)du < 1,

where

H0(p) = (β/8)
∫ p

0
N(u)(p− u)2du + βp

(∫ (3/2)p

0
L(u)du +

∫ p

0
L(u)du

)
− p.

Then, the Gauss-Newton type method (3) is convergent for all x0, y0 ∈
B(x∗, r) such that

ρ(xk+1) ≤ γρ(xk)3 + ηρ(xk)ρ(yk),
ρ(yk+1) ≤ γρ(xk+1)3 + (η/3)(ρ(xk) + ρ(yk) + ρ(xk+1))ρ(xk+1),

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0,

where ρ(x) = ‖x− x∗‖, r0 = max{ρ(x0), ρ(y0)},

q =
β

∫ ρ(x0)
0 N(u)(ρ(x0)− u)2du

8ρ(x0)
(
1− β

∫ ρ(z0)
0 L(u)du

)+

+
βρ(x0)

∫ ρ(x0)+ρ(y0)/2
0 L(u)du

(2ρ(x0) + ρ(y0))/3
(
1− β

∫ ρ(z0)
0 L(u)du

) < 1,

γ, η, β hold in (12)�(14).
Corollary 2. Convergence order of the iterative method (3) in case of zero
residual is equal to 1 +

√
2.

Proof. Assume that ak = ρ(xk), bk = ρ(yk), k = 0, 1, 2, ... Since the residual is
equal to zero, i.e. α = ‖F (x∗)‖ = 0, so θ = 0. From the inequalities (18) and
(19), we have

ak+1 ≤ ak(γa2
k + ηbk), (20)

bk+1 ≤ ak+1

[
γa2

k+1 + η/3(ak + ak+1 + bk)
] ≤

≤ ak+1 [(γak + 2η/3)ak + ηbk/3] ≤ (21)
≤ ak+1ak [γr + η] = ak+1akφ1.

From (20) and (21) for large enough k, it follows
ak+1 ≤ ak(γa2

k + ηbk) ≤ ak(γa2
k + ηφ1akak−1) ≤ a2

kak−1(γ + ηφ1) = a2
kak−1φ2.

From this inequality, we obtain an equation [17]
ρ2 − 2ρ− 1 = 0.

The positive root of the latter, which is ρ∗ = 1+
√

2, is the order of convergence
of the iterative method (3). ¤
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Theorem 2. (The uniqueness of solution) Suppose x∗ satis�es (1) and
F (x) has a continuous derivative F

′
(x) in the ball B(x∗, r). Moreover, F

′
(x∗)

has full rank and F
′
(x) satis�es the Lipschitz condition with L average (4). Let

r > 0 satisfy
β

r

∫ r

0
L(u)(r − u)du +

αβ0

r

∫ r

0
L(u)du ≤ 1, (22)

where α and β are de�ned in (14) and β0 = ‖[F ′
(x∗)T F

′
(x∗)]−1‖. Then, x∗ is

a unique solution of the problem (1) in B(x∗, r).

The proof of this theorem is analogous to the one in [4].

4. Applications
In this section, we apply the obtained results to special cases, when, for

instance, L is a Lipschitz constant. Then, we immediately receive results of the
convergence analysis of the method (3).

Theorem 3. Let F : IRn → IRm , m ≥ n, be a twice Fr�echet di�erentiable
operator in D ⊆ IRn . Assume that (1) has a solution x∗ ∈ D and a Fr�echet
derivative F

′
(x∗) has full rank. Suppose that Fr�echet derivatives F

′
(x) and

F
′′
(x) on B(x∗, r) = {x ∈ D : ‖x− x∗‖ ≤ r} satisfy the Lipschitz conditions:

‖F ′
(x)− F

′
(y)‖ ≤ L‖x− y‖, (23)

‖F ′′
(x)− F

′′
(y)‖ ≤ N‖x− y‖, (24)

where x, y ∈ B(x∗, r) and both L and N are positive numbers. Also, the radius
r > 0 is a root of the equation

βNr2 + 60βLr + 24
√

2αβ2L− 24 = 0. (25)

Then, for all x0, y0 ∈ B(x∗, r) the sequences {xk} and {yk}, which are gen-
erated by the method (3), are well de�ned, remain in B(x∗, r) for all k ≥ 0,
and converge to x∗ such that

ρ(xk+1) ≤ (β/24)Nρ(xk)3 + βLρ(xk)ρ(yk)/2 +
√

2αβ2Lρ(zk)
1− βLρ(zk)

, (26)

ρ(yk+1) ≤ (β/24)Nρ(xk+1)3 + βLρ(xk+1)(ρ(xk+1) + ρ(xk) + ρ(yk))/2
1− βLρ(zk)

+

+
√

2αβ2Lρ(zk)
1− βLρ(zk)

, (27)

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0, (28)

where ρ(x) = ‖x− x∗‖, r0 = max{ρ(x0), ρ(y0)},

0 < q =
(β/24)Nρ(x0)2 + βL(ρ(x0) + ρ(y0)/2) +

√
2αβ2L

1− βLρ(z0)
< 1, (29)

zk = (xk + yk)/2 and both α and β are de�ned in (14).
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Proof. Let choose arbitrary x0, y0 ∈ B(x∗, r). According to Lemma 1 from [17]
and the proof of Theorem 1, by setting x = x∗ and y = x0 in (15), we receive∥∥∥∥F (x∗)− F (x0)− F

′
(

x0 + x∗
2

)
(x∗ − x0)

∥∥∥∥ =

=
1
4

∥∥∥∥
∫ 1

0
(1− t)

[
F
′′
(

x0 + x∗
2

+
t

2
(x∗ − x0)

)
−

− F
′′
(

x0 + x∗
2

+
t

2
(x0 − x∗)

)]
(x∗ − x0)2dt

∥∥∥∥ ≤

≤ 1
4

∫ 1

0
t(1− t)N‖x0 − x∗‖3dt =

1
24

Nρ(x0)3,

and also ∥∥∥∥F
′
(

x0 + y0

2

)
− F

′
(

x0 + x∗
2

)∥∥∥∥ ≤ Lρ(y0)/2.

Using (23) and (14), we obtain that
‖(F ′

(x∗)T F
′
(x∗))−1F

′
(x∗)T ‖‖F ′

(x)− F
′
(x∗)‖ ≤ βLρ(x).

According to that F
′
(x) has full rank, for all x ∈ B(x∗, r), the following in-

equalities hold

‖(F ′
(x)T F

′
(x))−1F

′
(x)T ‖ ≤ β

1− βLρ(x)
,

‖(F ′
(x)T F

′
(x))−1F

′
(x)T − (F

′
(x∗)T F

′
(x∗))−1F

′
(x∗)T ‖ ≤

√
2β2Lρ(x)

1− βLρ(x)
.

Hence, from (25) it follows that

0 < q =
(β/24)Nρ(x0)2 + 3βL(ρ(x0) + ρ(y0)/2) +

√
2αβ2L

1− βLρ(z0)
<

<
(β/24)Nr2 + 3βLr/2 +

√
2αβ2L

1− βLr
≤ 1.

Thus, by Lemmas 1-4, conditions (23) and (24), and the derived estimates in
the proof of Theorem 1, we obtain

‖x1 − x∗‖ ≤ (β/24)Nρ(x0)3 + βLρ(x0)ρ(y0)/2 +
√

2αβ2Lρ(z0)
1− βLρ(z0)

< qr0 < r.

Similarly,

‖y1 − x∗‖ ≤ (β/24)Nρ(x1)3

1− βLρ(z0)
+

+
βLρ(x1)(ρ(x1) + ρ(x0) + ρ(y0))/2 +

√
2αβ2Lρ(z0)

1− βLρ(z0)
≤

≤ (β/24)Nρ(x0)3 + βLρ(x0)(2ρ(x0) + ρ(y0))/2 +
√

2αβ2Lρ(z0)
1− βLρ(z0)

< qr0 < r.

Therefore, x1, y1 ∈ B(x∗, r) and both (26) and (27) follow for k = 0. Also, (28)
is satis�ed

r1 = max{‖x1 − x∗‖, ‖y1 − x∗‖} ≤ qr0.
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Using mathematical induction, assume that xk, yk ∈ B(x∗, r) and (28) holds
for k > 0. Then, for k + 1 from (3) we obtain that

‖xk+1 − x∗‖ ≤ (β/24)Nρ(xk)3 + βLρ(xk)ρ(yk)/2 +
√

2αβ2Lρ(zk)
1− βLρ(zk)

≤

≤ ((β/24)Nρ(x0)2 + βLρ(y0)/2 +
√

2αβ2L)rk

1− βLρ(z0)
= qrk < r

and

‖yk+1 − x∗‖ ≤ (β/24)Nρ(xk+1)3 + βLρ(xk+1)(ρ(xk+1) + ρ(xk) + ρ(yk))/2
1− βLρ(zk)

+

+
√

2αβ2Lρ(zk)
1− βLρ(zk)

< qrk < r.

According to (29) and both inequalities (26) and (27), we receive

rk+1 = max{‖xk+1 − x∗‖, ‖yk+1 − x∗‖} ≤ qrk ≤ q2rk−1 ≤ · · · ≤ qk+1r0.

Thus, xk+1, yk+1 ∈ B(x∗, r) as well as (26), (27), and (28) hold. ¤

From (25) it follows that the convergence radius of the method (3) is

r =
4(1−√2αβ2L)

5βL + 1
12

√
(60βL)2 + 96βN(1−√2αβ2L)

.

For zero residual, Theorem 3 can be formulated as

Corollary 3. Suppose that x∗ satis�es (1), F (x∗) = 0, F (x) is a twice Fr�echet
di�erentiable operator in B(x∗, r), F

′
(x∗) has full rank, and both F

′
(x) and

F
′′
(x) satisfy the classic Lipschitz conditions as in (23) and (24), respectively.

Moreover, the radius r > 0 is a unique positive root of the following equation

βNr2 + 60βLr − 24 = 0.

Then, the Gauss-Newton type method (3) is convergent for all x0, y0 ∈
B(x∗, r) such that

ρ(xk+1) ≤ (β/24)Nρ(xk)3 + βLρ(xk)ρ(yk)/2
1− βLρ(zk)

,

ρ(yk+1) ≤ (β/24)Nρ(xk+1)3 + βLρ(xk+1)(ρ(xk+1) + ρ(xk) + ρ(yk))/2
1− βLρ(zk)

,

rk+1 = max{ρ(xk+1), ρ(yk+1)} ≤ qrk ≤ · · · ≤ qk+1r0,

where ρ(x) = ‖x− x∗‖, r0 = max{ρ(x0), ρ(y0)},

0 < q =
(β/24)Nρ(x0)2 + βL(ρ(x0) + ρ(y0)/2

1− βLρ(z0)
< 1,

zk = (xk + yk)/2 and β is de�ned in (14).
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From Corollary 3, the convergence radius is

r =
4

5βL + 1
12

√
(60βL)2 + 96βN

<
2

5βL

that corresponds to the previously received results in [10] for nonlinear equa-
tions (m = n).

Under the classic Lipschitz condition Theorem 2 for the uniqueness of the
solution can be written as follow
Theorem 4. Suppose x∗ satis�es (1) and F (x) has a continuous derivative
F
′
(x) in B(x∗, r). Moreover, F

′
(x∗) has full rank and F

′
(x) satis�es the classic

Lipschitz condition as in (23). Let r > 0 satisfy
βLr

2
+ αβ0L ≤ 1.

Then, x∗ is a unique solution of the problem (1) in B(x∗, r).

5. Numerical experiments
We carried out a set of experiments on widely used test problems and com-

pared the number of iterations under which the Gauss-Newton method (2), the
Secant method [11], and the method (3) converge to the solution. We used the
same initial points for all methods and the following stopping criteria:

‖xk+1 − xk‖ ≤ ε and ‖AT
k+1F (xk+1)‖ ≤ ε,

where
• Ak+1 = F

′
(xk+1) for the Gauss-Newton method (2);

• Ak+1 = F
′
(zk+1) for the method (3);

• Ak+1 = F (xk+1, xk) for the Secant method, F (xk+1, xk) is the divided
di�erence of the �rst order of F [11].

Tabl. 1. The number of iterations to the solution with the
accuracy ε = 10−12

Example Gauss-Newton Secant M-d (3)
Rosenbrock func. (n = m = 4)
x0 = (−1.2, 1,−1.2, 1) 5 4 4
Box-3D func. (n = 3, m = 10)
x0 = (0, 10, 20) 7 9 6
Gnedenko-Veibull dist. (n = 2, m = 8)
x0 = (1, 1) 7 � 6
Freidenstein-Ross func. (n = m = 2)
x0 = (0.5,−2) 43 18 10
Wood func. (n = 4, m = 6)
x0 = (−3,−1,−3,−1) 52 75 50
Bard func. (n = 3, m = 15)
x0 = (1, 1, 1) 10 � 9
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In Table 1 we present the amount of iterations spent by each methods to
compute an approximation to the solution of the examples from [9, 11] with
the accuracy ε = 10−12. The additional initial point y0 we calculated in the
following way: y0 = x0+0.01. The symbol `�' indicates that the Secant method
does not converge to the solution with the desired accuracy, however the method
converges for the lower accuracy (ε = 10−8).

6. Conclusions
We studied the local convergence of the Gauss-Newton type method (3)

under the generalized and classic Lipschitz conditions for the �rst- and second-
order derivatives. We determined the convergence order and the radius of the
method (3) as well as proved the uniqueness ball of the solution of the nonlinear
least squares problem (1). The method (3) is not only more e�cient than the
Gauss-Newton and Secant methods in terms of the convergence order, but also
in terms of the amount of iterations to the solution on a variety of test problems.
Furthermore, the method (3) has promising characteristics for parallelization,
which we plan to utilize for constructing and developing new parallel methods
for solving the problem (1).
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APPLICATION OF FINITE ELEMENTS METHOD
FOR SOLVING VARIATIONAL PROBLEMS

OF CHANNEL FLOWS

Y.V.Kokovska, M.M.Prytula, P. S.Venherskyi

Ðåçþìå. Âèâåäåíî ðiâíÿííÿ ðóõó ðóñëîâîãî ïîòîêó â ïñåâäîïðèçìà-
òè÷íîìó ðóñëi. Ïîáóäîâàíî ïî÷àòêîâî-êðàéîâó çàäà÷ó ðóñëîâîãî ïîòîêó
â ãiäðîäèíàìi÷íîìó íàáëèæåííi. Ñôîðìóëüîâàíî âàðiàöiéíó ïîñòàíîâêó
çàäà÷i, äëÿ ÿêî¨ ïðè äèñêðåòèçàöi¨ çà ïðîñòîðîâîþ çìiííîþ âèêîðèñòàíî
ìåòîä ñêií÷åííèõ åëåìåíòiâ ç áàçèñíèìè ëiíiéíèìè i êâàäðàòè÷íèìè ôóí-
êöiÿìè òà ïðè äèñêðåòèçàöi¨ çà ÷àñîì � îäíîêðîêîâó ðåêóðåíòíó ñõåìó. Â
óìîâàõ ðiâíîâàãè ñèë îïîðó i ñèëè çåìíîãî òÿæiííÿ ïîáóäîâàíî ðiâíÿííÿ
êiíåìàòè÷íî¨ õâèëi, ç âðàõóâàííÿì äîäàíêó iç ÷èñëîì Ðåéíîëüäñà òà äðó-
ãîþ ïîõiäíîþ çà ïðîñòîðîâîþ çìiííîþ. Íà òåñòîâîìó ïðèêëàäi ïîêàçàíî
ïîðiâíÿííÿ öèõ äâîõ ïiäõîäiâ ç âðàõóâàííÿì çìiíè ãðàäi¹íòiâ ëiíi¨ ñåðåä-
íüîãî äíà ðóñëà.
Abstract. The equation of motion of the channel �ow in the pseudo pris-
matic channel is derived. The initial-boundary value problem of the channel
�ow in the hydrodynamic approximation is constructed. The variational prob-
lem was formulated and solved by method of �nite elements with basic linear
and quadratic functions for the spatial variable, and at time discretization
one step recurrent scheme was constructed. In the conditions of the balance
of the forces of resistance and the forces of gravity, the equation of the kine-
matic wave was derived, taking into account the addition with the number of
Reynolds and the second derivative of the spatial variable. The test example
shows a comparison of these two approaches, taking into account the change
of the gradients of the line of the middle bottom of the channel.

1. Introduction
The transformation of the natural environment and global climate change are

causing changes in hydrological systems. The estimation of such changes can
be made on the basis of experimental data by comparing the hydrological char-
acteristics before and after anthropogenic impact. However, the possibilities
for such estimations are very limited, as the hydro meteorological conditions
vary greatly. The main perspectives for the development of research methods
and predictions of the behavior of natural hydrological systems are currently
solved with the help of their mathematical modeling [1, 13].

In the general study of such an entire system, taking into account all the
factors of in�uence, is a complex and not always appropriate task for study,
therefore, only a some part of the region is investigated. The object of research
can be the territory of the watershed of the river, which is characterized by

Key words. Variational problem, initial-boundary value problem, Galerkin approximations,
channel �ow, kinematic and hydrodynamic approximations.
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similar climatic conditions and is under the in�uence of similar factors a�ecting
the movement of �uid. For the description of water streams [2, 5, 10, 11], two
approaches are most often used.

One of them is so-called hydrodynamic approach [2, 4, 9], in which the
general laws of conservation of momentum, energy, mass are used to describe
the processes. In this case, a complicated system of equations is used, usually
non-linear, and in many cases, this task is cumbersome to estimate the amount
of water.

The second approach is based on the equation of the kinematic wave [3],
which are formed in the direction of the �ow and occur under conditions of
equilibrium of the forces of resistance and forces of gravity. These waves, which
mainly a�ect the formation of the channel �ow, which, unlike other types of
waves, are formed in di�erent directions and therefore quickly disappear.

In this paper, the �ow of water is considered on one of the main elements of
the watershed, namely in the in�ows and in the main rivers, and these channels
will be called pseudoprizmatic. Such channels are formed by moving a curve
along a middle bottom line, while it is assumed that the depth of �ow is very
small compared with the radius of the curvature of the bottom line and the
middle line of the free surface is horizontal in any normal section of the �ow.

This mathematical model depends on many factors that can change fast
enough, so this model must be stable to external and internal in�uences that
signi�cantly modify the solution of the problem. For approximation of the
solution linear basic functions were used.

Since the problem is nonlinear, the solution acquires (gets) large positive and
negative values, especially in the case of sharp changes of relief of the bottom
of the �ow. Therefore, the order of approximations of the solution and was
shown the feasibility of this approach on di�erent test examples [6].

2. Equation of water flow in pseudoprismatic channel
Choose a coordinate system such that the axis x is directed on the tangent

straight to the middle bottom line, and the coordinate lines y and z are straight
lines lying in the normal to the bottom of the plane so that y is directed
horizontally (Fig. 1).

Fig. 1. Form of
the channel �ow.

Fig. 2. Cross section
of the �ow.
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The system of equations that characterize the motion of �uid:
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0; (1)

∂u

∂t
+

∂uu

∂x
+

∂uv

∂y
+

∂uw

∂z
= X − 1

ρ

∂p

∂x
+

1
ρ

(
∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z

)
; (2)

∂v

∂t
+

∂vu

∂x
+

∂vv

∂y
+

∂vw

∂z
= Y − 1

ρ

∂p

∂y
+

1
ρ

(
∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z

)
; (3)

∂w

∂t
+

∂wu

∂x
+

∂wv

∂y
+

∂ww

∂z
= Z − 1

ρ

∂p

∂z
+

1
ρ

(
∂τzx

∂x
+

∂τzy

∂y
+

∂τzz

∂z

)
. (4)

Equation (1) is the equation of continuity for incompressible �uid, and (2) �
(4) the Navier-Stokes equations in which u, v, w and X, Y , Z are projections
of the velocity vector v and the vector of acceleration Capacitive forces F on
the axis x, y, z.

We integrate the equation (1) with the area of the cross-section of the �ow
(Fig. 2):

1
F

b+∫

b−

dy

H∫

z0

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
dz = 0. (5)

We use the di�erentiation formula under the integral sign, and taking into
account the symmetry of the channel as to the XOZ plane, when all integrals
of F containing ∂

∂y are equal zero, we obtain

1
F

b+∫

b−

dy

H∫

z0

(
∂u

∂x
+

∂w

∂z

)
dz = 0. (6)

Since on the surface of the bottom of the �ow z = z0 the vector of velocity is
zero, then uz=z0 = 0.

We set the kinematic condition on a free surface:

wz=H =
∂H

∂t
+ uz=H

∂H

∂x
(7)

and the fact that the value
b+∫
b−

H∫
z0

udzdy = Q is the rate of �ow, then equation

(6) is written as follows:
∂Q

∂x
+

∂H

∂t
B = 0. (8)

Let us turn to the equations of motion. It is obvious that for �ow in the
gravity �eld X = g sin δ, Y = 0, Z = −g cos δ = −g∗, where g-acceleration of
gravity, δ � the sharp angle between the horizontal plane and the tangent to
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the line of the middle bottom. We integrate equation (4) for z and express the
value of pressure:

p

ρ
=

pH

ρ
+ (H − z0)g∗ − w2 +

∂

∂t

H∫

z0

wdz +
∂

∂x

H∫

z0

wudz+

+
∂

∂y

H∫

z0

wvdξ +
1
ρ


 ∂

∂x

H∫

z0

τzxdz +
∂

∂y

H∫

z0

τzydz − τzz


 ,

(9)

We substitute this value of ð into equation (2), and we integrate the result
by the area of the cross section F, we obtain:

∂

∂t

b+∫

b−

dy

z0∫

z∗

udz +
∂

∂x

b+∫

b−

dy

z0∫

z∗

u2dz =

= g

(
sin δ − ∂z0

∂x

) b+∫

b−

z0∫

z∗

dzdy − 1
ρ

b+∫

b−

(τzx)z=z∗ dy + ε.

(10)

where ε � additions that do not signi�cantly a�ect the solution of the problem.
We use the expression de�ned in the hydraulics of turbulent �ows

1
ρgF

b+∫

b−

(τzx)z=z∗ dy =
Q2

K2
=

U2

C2R
, (11)

where K = CF
√

R � channel capacity; R � hydraulic radius; Ñ � coe�cient of
Chezy. Then equation (10) will be written as:

1
g

(
∂U

∂t
+ U

∂αU

∂x
− α− 1

F
U

∂F

∂t

)
= i− ∂H

∂x
− U2

C2R
+ ε. (12)

If in (12) we neglect a addition ε, we obtain an hydrodynamic equation of
one-dimensional unstable, slowly changing motion.

3. Initial-boundary problem of the channel flow
in hydrodynamic approximation

If Q = UF , then from (8) follows that equation will be written as:
∂(UF )

∂x
+ B

∂H

∂t
= 0

From where:
∂(UF )

∂x
+

∂F

∂t
= 0; (13)

In equation (12) we neglect by addition ε, then equation will be written:
1
g

∂U

∂t
+

α

g
U

∂U

∂x
− α− 1

g

U

F

∂F

∂t
+

1
B

∂F

∂x
+

U2

C2R
= i, (14)
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where U - �ow velocity and F � cross-sectional area; g = 9,8 m/s2 � acceler-
ation of gravity; C=const� coe�cient of Chezy; i = sin δ, where δ � the angle
of the midline of the channel bottom to the x-axis; B = b+− b− � width of the
channel; R=const � hydraulic radius; α� parameter adjustments of movement.

Complement these equations by initial

U |t=0 = u0(x), F |t=0 = f0(x) on [0, L] (15)

and boundary conditions

U(t, 0) = 0, F (t, 0) = 0. (16)

obtain initial-boundary problem of the unknown � the �ow velocity U and
cross-sectional area F.

So, system of equations (13)�(16) describe initial-boundary problem of �uid
�ow in open pseudoprizmatic channel.

3.1. Variational problem. Choose spaces of allowable functions H := L2 (Ω),
V := H1 (Ω) , where Ω = [0, L].

To construct the variational problem multiply equation (13) an arbitrary
function ϕ ∈ V , and the (14) � ψ ∈ V and integrate the results by region Ω.

Input such bilinear form:

a(u, f, ϕ) =
∫

Ω

u
∂f

∂x
ϕdx; b(u, ϕ) =

∫

Ω

uϕdx; c(u, ϕ) =
∫

Ω

∂u

∂x
ϕdx;

d(u, f, ϕ) =
∫

Ω

ufϕdx;

and linear functional
l(ϕ) =

∫

Ω

iϕdx.

Then variational formulation of initial-boundary problem (13)�(16) can be
written as:





Given : u0, f0 ∈ H;

Find a pair : (u, f) ∈ L2(0, T ; V × V ) such that

a(u(t), f(t), ϕ) + a(f(t), u(t), ϕ) + b(f ′(t), ϕ) = 0;
1
g b(u′(t), ψ) + α

g a(u(t), u(t), ψ)+

+ 1
B c(f(t), ψ) + 1

C2R
d(u(t), u(t), ψ)−

−α−1
g d(w(t), f ′(t), ψ) = 〈l, ψ〉 , ∀t ∈ (0, T ],

b(u(0)− u0, ϕ) = 0, b(f(0)− f0, ψ) = 0, ∀ϕ,ψ ∈ V.

(17)

The solution to this problem will be search using the �nite elements method.
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4. Discretization variation problem in time variable
Divide the length of time [0,T] in NT + 1 equal parts [tj , tj+1] with length

∆t = tj+1 − tj , j = 0, ..., NT . On each interval [tj , tj+1] looking solutions
of (5). Solutionsu(x, t), f(x, t) ∈ L2(0, T ; V ) to this problem approximate by
polynomials form





u∆t(x, t) = {1− ω(t)}uj(x) + ω(t)uj+1(x);

f∆t(x, t) = {1− ω(t)} f j(x) + ω(t)f j+1(x);

t ∈ [tj,ti+1], j = 0, 1, ..., NT − 1, ω(tj , t) = t−tj
∆t

(18)

with unknown functions uj(x), f j(x) ∈ Vh.
For functional l(x, t) ∈ V 1

h in problem (17) will use the following approxima-
tion

l∆t(x, t) = lj+1/2 = l(tj+1/2, x). (19)
Then recurrent scheme [12, 14] will be written as:




Given : ∆t, ω(t) = const > 0, uj , f j ∈ V × V.

F ind : uj+1, f j+1 ∈ V × V, such that :

b
(
f j+1/2, ϕ

)
+ ∆tγa

(
uj , f j+1/2, ϕ

)
+

+∆tγa
(
uj+1/2, f j , ϕ

)
+ ∆tγa

(
f j+1/2, uj , ϕ

)
+

+∆tγa
(
f j , uj+1/2, ϕ

)
=−a

(
uj , f j , ϕ

)− a
(
f j , uj , ϕ

)
;

1
g b

(
uj+1/2, ψ

)
+ α

g ∆tβ
[
a

(
uj , uj+1/2, ψ

)
+ a

(
uj+1/2, uj , ψ

)]
+

1
B ∆tβc

(
f j+1/2, ψ

)
+ 2

C2R
∆tβd

(
uj , uj+1/2, ψ

)−
−α−1

g d(wj , f j+1/2, ψ) =

=
〈
lj+1/2, ψ

〉− α
g a

(
uj , uj , ψ

)− 1
B c

(
f j , ψ

)− 1
C2R

d
(
uj , uj , ψ

)
;

uj+1 = uj + ∆tuj+1/2, f j+1 = f j + ∆tf j+1/2.

(20)

The scheme provides that the initial solution (u0, f0) de�ned by initial condi-
tions (16).

5. Discretization of variation problem for spatial variables
Choose a sequence of �nite spaces approximations Vh of the space V with

properties dimVh −−−→
h→0

∞. Then (uh, vh) � semi discrete approximation of
solution (u,f).

The interval [0, L] divide using sequence equally spaced units: xi = i · h, i =
0, ..., N, h = L

N on N �nite segments [xi, xi+1] , i = 0, 1, ..., N − 1.
Choose a base {ϕj}N

j=1, {ψi}M
i=1 in space approximations Vh.

De�ne functions uj
h(x) =

∑N
i=1 U j

i ϕi (x) , f j
h(x) =

∑N
i=1 F j

i ϕi (x) a sched-
ule of for the basis functions {ϕi}N

i=1, {ψi}M
i=1 and unknown coe�cients U =

{Ui}M
i=1 , F = {Fi}N

i=1 .
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Continuous piecewise de�ned basis functions {ϕi(x)}N
i=1 of the space Vh cho-

sen as linear polynomials, and {ψi(x)}M
i=1- in the form of quadratic functions.

Functions {ϕi(x)}N
i=1 and {ψi(x)}M

i=1 denote as:

ϕi (x) =





0, 0 ≤ x ≤ xi−1,
x−xi−1

h , xi−1 ≤ x ≤ xi,
xi+1−x

h , xi ≤ x ≤ xi+1,
0, xi ≤ x ≤ L.

ψi (x) =





0, 0 ≤ x ≤ xi−2,
2(x−xi−2)(x−xi−1)

h 2 , xi−2 ≤ x ≤ xi−1,
4(x−xi−1)(x−xi)

−h 2 , xi−1 ≤ x ≤ xi,
2(x−xi)(x−xi+1)

h 2 , xi ≤ x ≤ xi+1,
0, xi+1 ≤ x ≤ L.

Overlaid matrices we obtain recurrent scheme as follows[7, 8]:




Given : ∆t, γ, β = const > 0; uj , f j ∈ Rn.

F ind : uj+1, f j+1 ∈ Rn,

such that :
[
B1 + ∆tγA1

(
uj

)
+ ∆tγA2

(
uj

)]
f j+1/2+

+
[
∆tγA3

(
f j

)
+ ∆tγA4

(
f j

) ]
uj+1/2 =

= −AP1
(
uj , f j

)−AP2
(
f j , uj

)[
1
B ∆tβC + α−1

g D2(wj)
]
f j+1/2+

+1
gB2 + α

g ∆tβ
(
A5

(
uj

)
+ A6

(
uj

))
+

+ 1
C2R

2∆tβD1(uj)uj+1/2 =

= Lj+1/2 − α
g AP3(uj , uj)− 1

B CP (f j)− 1
C2R

DP (uj , uj)

uj+1 = uj + ∆tuj+1/2, f j+1 = f j + ∆tf j+1/2.

(21)

In this system, the values of the parameters of recurrent equations γ and β we
choose from the conditions of their stability and provide the desired accuracy.

6. Equation of motion of water in the channel
in the approach of the kinematic wave

So, the simpli�ed equations of water in the form of equations of the kinematic
wave [3]

∂F

∂t
+

3
2
C
√

UF
∂F

∂x
− 1

Re

∂2F

∂x2
= Bw, (22)

where F =F(x,t) � cross-sectional area; B = b+(x, y)−b−(x, y) = const � width
of the channel; w � side in�ow; Re � Reynolds number; i � slope of the bottom.
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Initial and boundary conditions:
Ft=0 = F0,(−β ∂F

∂x + (1− β) F
)∣∣

x=0
= 0,

(
γ ∂F

∂x + (1− γ) F
)∣∣

x=L
= 0, γ, β > 0.

(23)

Enter the denotation

(h, ϕ) :=
∫

Ω

hϕdx, c (h, ϕ) :=
∫

Ω

∇h · ∇ϕdx,

b (ξ; h, ϕ) :=
∫

Ω

ξm−1hα · ∇ϕdx,

(24)

〈l, ϕ〉 :=
∫

Ω

Rϕdx−
∫

p

q̂ϕdx, ∀ξ, h, ϕ ∈ V (25)

Taking into account the designation (24), (25)’ variational formulation of the
problem will look like:





Given : h0 ∈ V and λ ∈ (0, 1];

Find : Hk+ 1
2 ∈ V,

(Hk+ 1
2 , ϕ) + ∆tλ(mb(hk; Hk+ 1

2 , ϕ) + 1
Rec(H

k+ 1
2 , ϕ)) =

=
〈
lk+1/2, ϕ

〉− b(hk; hk, ϕ)− 1
Rec(h

k, ϕ) ∀ϕ ∈ V,

hk+1 = hk + ∆tHk+ 1
2 , k = 0, ..., NT .

(26)

The constructed variational problem of channel �ow in kinematic approxima-
tion (26) makes it possible to �nd the depth of the �ow in any point of time.

Fig. 3. Form of the bottom of the channel

7. Analysis of numerical experiments
We will test the obtained models on the test examples. The �rst example

shows an e�ective use of quadratic approximations to eliminate the oscillation
of solutions of hydrodynamic problem. The second example shows �nding a
solution of the problem of kinematic approximation, taking into account the

82



APPLICATION OF FINITE ELEMENTS METHOD FOR SOLVING ...

Fig. 4. Cross-sectional area and velocity (linear approximation
1000FE)

Fig. 5. Cross-sectional area and velocity (quadratic approxi-
mation 500FE)

addition with the second derivative. But the line of the middle bottom in
examples 1 and 2 is the same.

Fig. 6. Cross-sectional area and velocity (kinematic wave 1
Re = 0)

Example 1. Input data: α=1, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, ∆t = 0.0001, B=8,
g=9.8, C=60, R=1, F0 = x2.
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Fig. 7. Cross-sectional area and velocity (kinematic wave Re = 20)

Example 2. Input data: α=1, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, ∆t = 0.0001, B=20,
g=9.8, C=60, R=0, 1/Re=0 and Re = 20, F (0, t) = 0 , ∂F

∂x

∣∣
x=1

= 0, F0 = x2,
U = C

√
V F .

8. Conclusions
In this paper, a model of �uid motion in open pseudo prismatic channel in

the hydrodynamic approximation, which is described by a system of equations
with unknown variables of velocity and area cross-section of the �ow, was con-
structed. In conditions of balance of the forces of resistance and gravity for this
model the equation of the kinematic wave was written. In it the addition with
the number of Reynolds and with the second derivative for spatial variable was
taking into account. The initial-boundary problem was set for both approaches
and its variational formulation was written. The variational problem was solv-
ing using the �nite elements method. The choice of linear and quadratic basis
functions was investigated in discretization a problem for a spatial variable and
in application one-time recurrent integration scheme in time.

The obtained solutions of the problem are tested on examples with a complex
relief of the bottom of the channel. In the model of hydrodynamic approxima-
tion, the expediency of increasing the order of approximation schemes for a
spatial variable in approximations of velocity of �ow and in the kinematic wave
model the use of a regularized multiplier are shown. The test example shows
a comparison of the two approaches, taking into account the change of the
gradients of the line of the middle bottom of the channel.
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APPLICATION OF (G′/G) � EXPANSION
METHOD TO TWO KORTEWEG � DE VRIES

TYPE DYNAMIC SYSTEMS

I. S.Mykhailiuk, M.M.Prytula

Ðåçþìå. Ìåòîä G′/G ðîçâèíåííÿ [12] çàñòîñîâàíî äî äâîõ íåëiíiéíèõ
äèíàìi÷íèõ ñèòåì òèïó Êîðòåâåãà � äå Ôðiçà [20]. Äëÿ îáîõ ñèñòåì ïîáóäî-
âàíî ðîçâ'ÿçêè òèïó áiæó÷èõ õâèëü ó ôîðìi ãiïåðáîëi÷íèõ, ðàöiîíàëüíèõ i
òðèãîíîìåòðè÷íèõ ôóíêöié. Îòðèìàíi ðåçóëüòàòè ïîðiâíÿíî ç ðåçóëüòàòà-
ìè, îòðèìàíèìè tanh- ìåòîäîì [4] i ãðàôi÷íî ïðîàíàëiçîâàíî.
Abstract. The (G′/G) � expansion method [15] is applied to two Korteweg
� de Vries type nonlinear dynamic systems [1]. For both systems the traveling
wave solutions in the form of hyperbolic, rational and trigonometric functions
are constructed. The obtained results are compared to ones derived by means
of the tanh � method [6] and graphically analyzed.

1. Introduction
Solutions to nonlinear evolution equations (NEE) play a crucial role in math-

ematical physics, therefore more and more scientists from all over the world
dedicate their studies to investigate such equations. Nonlinear wave phenom-
ena appear in various scienti�c and engineering �elds, such as �uid mechanics,
plasma physics, optical �bers, biology, solidstate physics, chemical kinematics,
chemical physics and geochemistry.

With the advent of computers many e�ective numeric methods for �nding
approximate solutions to partial di�erential equations (PDEs) appeared. On
the other hand, the creation of modern powerful computer algebra systems,
such as MATLAB, MATHEMATICA and MAPLE, simpli�ed the analytical
investigation of NEEs, assisting mathematicians in their tiny computations.
Hence during the past �ve decades a wide variety of analytical methods for
�nding exact solutions to NEEs was developed.

Recently, the (G′/G) � expansion method, �rstly introduced by Wang et
al. [15], has become widely used for many PDEs. It turned out that the method
just mentioned provides solutions in a more general form compared to other
analytical methods (e.g. the tanh � method [6]). What is more, with a certain
choice of arbitrary parameters in the (G′/G) � expansion method some well-
known solutions to PDEs can be rediscovered.

In paper [14], the authors constructed soliton solutions for two Korteweg�
de Vries (KdV) type nonlinear dynamic systems [1, 3] by means of the tanh �

Key words. (G′/G) � expansion method, Korteweg � de Vries type dynamic system, soliton
solution.
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method [6]. In this work, we investigate these systems using the (G′/G) � ex-
pansion method and construct solutions in more general form. The rest of the
paper is organized as follows. In Section 2, we describe the (G′/G) � expansion
method [15] for �nding traveling wave solutions to nonlinear evolution equa-
tions. In Section 3, we provide a brief overview of the main generalizations of
the method being discussed. In Sections 4 and 5, we apply the method to two
nonlinear KdV type dynamic systems [1,3], and analyze the obtained solutions.
Finally, in Section 6, we summarize our results.

2. Description of the
(

G′
G

)
� expansion method

Suppose that a nonlinear equation, say in two independent variables x and
t, is given by

P (u, ut, ux, utt, uxx, uxt, ...) = 0, (1)
where u = u (x, t) is an unknown function, P is a polynomial in u = u (x, t)
and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved. In the following we give the main steps of the
(G′/G) � expansion method [15].
Step 1. Combining independent variables x and t into one variable

ξ = x− V t, (2)
we suppose that u (x, t) = u (ξ). Traveling wave variable (2) permits us to
reduce Eq. (1) to an ordinary di�erential equation (ODE) for u (x, t) = u (ξ)

P
(
u,−V u′, u′, V 2u′′,−V u′′, u′′, ...

)
= 0. (3)

Step 2. Suppose that the solution to ODE (3) can be expressed by a poly-
nomial in (G′/G) as follows:

u(ξ) =
m∑

i=0

αi

(
G′

G

)i

, (4)

where G = G (ξ) satis�es the second order linear ODE in the form of
G′′ + λG′ + µG = 0, (5)

αi

(
i = 0,m

)
, λ, µ are constants to be determined later, αm 6= 0. The positive

integer m can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in ODE (3).
Step 3. By substituting (4) into Eq. (3) and using the second order LODE

(5), collecting all terms with the same order of (G′/G) together, the left-hand
side of Eq. (3) is converted into another polynomial in (G′/G). Equating
each coe�cient of this polynomial to zero yields a set of algebraic equations for
αi

(
i = 0,m

)
, λ and µ.

Step 4. Assuming that the constants αi

(
i = 0,m

)
, λ, µ and V can be ob-

tained by solving the algebraic equations in Step 3, since the general solutions
to the second order linear ODE (5) have been well known for us, then substi-
tuting αi

(
i = 0,m

)
, λ, µ, V and the general solutions to Eq. (5) into (4) we

obtain traveling wave solutions to the original nonlinear evolution equation (1).
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As it was already mentioned, the solution to Eq. (5) is well-known for us
and can be easily derived by the Euler method:

G (ξ) =





(
A1 sinh ξ

√
λ2−4µ
2 + A2 cosh ξ

√
λ2−4µ
2

)
e−

1
2
λξ,

if λ2 − 4µ > 0,

(A1 + A2ξ) e−
1
2
λξ, if λ2 − 4µ = 0,

(
A1 sin ξ

√
4µ−λ2

2 + A2 cos ξ
√

4µ−λ2

2

)
e−

1
2
λξ,

if λ2 − 4µ < 0.

(6)

3. Main generalizations of the (G′/G) � expansion method
Since 2008, when the (G′/G) � expansion method was introduced by Wang

et al. [15], many modi�cations and generalizations of the algorithm have been
developed, each of which concerned di�erent aspect of the method. Therefore,
it is worth classifying them by that aspect.

3.1. Homogeneous balance value. The classical method [15] assumed that
the homogeneous balance value, which determines a degree of polynomial (4),
is a positive integer. In paper [4] the authors used a transform to handle the
equations with negative or fractional homogeneous balance value. Let m be a
value of balance for a certain equation. If m = p

q is a fraction in the lowest
terms, then we set the solution

u (ξ) = v
p
q (ξ) ,

and when m is a negative integer, then we set
u (ξ) = vm (ξ) ,

then substitute the new expression for u (ξ) into (3) and recompute the balance
value for a new equation, which is now guaranteed to be a positive integer [4].

3.2. Representation of the solution to NEE. Another way to modify the
original method is to replace the polynomial in

(
G′
G

)
with a more general

structure.
In works [2] and [16] the solution was suggested to be found in the following

form:

u (ξ) = a0 +
n∑

i=1


ai

(
G′

G

)i

+ bi

(
G′

G

)i−1

√√√√σ

(
1 +

1
µ

(
G′

G

)2
)

 ,

and, moreover, the function G = G (ξ) was found as a solution to simpli�ed
equation

G′′ + µG = 0,

where µ is a constant to be determined.
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Yet another form of the solution representation was introduced in papers [21],
[17] and [13], namely the solution was supposed to have the following form:

u (ξ) =
n∑

i=−n

αi

(
G′

G

)i

,

i. e. the expansion included the terms with negative degrees.
As it is shown in the corresponding works, both mentioned representations of

function u = u (ξ) yield more general solutions to certain NEEs [2,13,16,17,21].

3.3. Auxiliary equation for function G = G (ξ). Other modi�cations of
the method a�ected the form of the auxiliary equation, which in the classical(

G′
G

)
� expansion method is of the form (5). One of the most frequently used

equations was the nonlinear one of the following form:

GG′′ = AG2 + BGG′ + C
(
G′)2

,

where the prime denotes the derivative with respect to ξ; A,B, C are all real
parameters.

This improvement of the method was �rstly introduced by Liu et al. in [5]
to obtain more general solutions to NEEs in comparison with the classical
method. It was successfully applied to some well-known equations of mathe-
matical physics, among other, in works [5, 7�12].

3.4. Coe�cient of the polynomial in
(

G′
G

)
. One more generalization of

the original method was the idea to �nd a solution to NEEs as a polynomial in(
G′
G

)
with variable coe�cients [20], namely

u (ξ) =
n∑

i=1

αi (X)
(

G′

G

)i

+ α0 (X) ,

where αi = αi (X)
(
i = 0, n

)
, ξ = ξ (X) are functions to be determined. As

in the classical method, function G = G (ξ) satis�es Eq. (5). The rest of the
algorithm remains the same, except that at the third step one need to solve a
system of ordinary di�erential equations rather than algebraic ones.

The described idea was successfully used to solve some NEEs in papers [18�
20].

4. Application: Example 1
Consider the following Korteweg � de Vries (KdV) type nonlinear dynamic

system [1,3] 



ut = uxxx − vx,

vt = −2vxxx − uvx.
(7)

Let us solve system (7) by use of the (G′/G) � expansion method.
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Step 1. Introducing traveling wave variable ξ = x − V t, we reduce system
(7) to a system of ODE for u = u (ξ) and v = v (ξ)




−V u′ = u′′′ − v′,

−V v′ = −2v′′′ − uv′.
(8)

Suppose that the solution to system (8) can be expressed by polynomials in
(G′/G) as follows:

u (ξ) =
m∑

i=0

αi

(
G′

G

)i

, v (ξ) =
n∑

i=0

βi

(
G′

G

)i

. (9)

Considering the homogeneous balance between u′′′ and v′, v′′′ and uv′ in the
�rst and the second equations of system (8) correspondingly, we obtain a simple
system of algebraic equations





m + 3 = n + 1,

n + 3 = m + n + 1,
(10)

from which it can be easily found that m = 2 and n = 4.
Step 2. Considering (9) and (10), we �nd the solution to system (8) in the

following form:




u (ξ) = α2

(
G′
G

)2
+ α1

(
G′
G

)
+ α0,

v (ξ) = β4

(
G′
G

)4
+ β3

(
G′
G

)3
+ β2

(
G′
G

)2
+ β1

(
G′
G

)
+ β0,

(11)

where function G = G (ξ) satis�es the second order linear ODE (5), λ, µ, V , αi(
i = 0, 2

)
, βj

(
j = 0, 4

)
are all constants to be determined later, α2 6= 0, β4 6= 0.

Step 3. Substituting (11) into system (8) and collecting all terms with
the same power of

(
G′
G

)
together, the left-hand sides of equations (8) are

converted into another polynomials in
(

G′
G

)
. Equating each coe�cient of

these polynomials to zero yields a set of simultaneous algebraic equations for
λ, µ, V, αi

(
i = 0, 2

)
, βj

(
j = 0, 4

)
as follows:

� from the �rst equation in (8):

0 : α1λ
2µ + 6α2λµ2 + 2α1µ

2 − β1µ + α1µV = 0
1 : α1λ

3 + 6α2λ
2µ + 8α2µ

(
λ2 + 2µ

)
+ 8α1λµ− β1λ− 2β2µ+

+V (α1λ + 2α2µ) = 0
2 : 8α2λ

(
λ2 + 2µ

)
+ 7α1λ

2 + 36α2λµ + 8α1µ− 2β2λ− 3β3µ−
−β1 + V (2α2λ + α1) = 0

3 : 8α2

(
λ2 + 2µ

)
+ 30α2λ

2 + 12α1λ + 24α2µ− 3β3λ− 4β4µ−
−2β2 + 2α2V = 0

4 : 54α2λ + 6α1 − 4β4λ− 3β3 = 0
5 : 24α2 − 4β4 = 0;

90



APPLICATION OF (G′/G) � EXPANSION METHOD ...

� from the second equation in (8):
0 : −α0β1µ− 2β1λ

2µ− 12β2λµ2 − 12β3µ
3 − 4β1µ

2 + β1µV = 0
1 : −α0β1λ− α1β1µ− 2α0β2µ− 2β1λ

3 − 28β2λ
2µ− 72β3λµ2−

−16β1λµ− 48β4µ
3 − 32β2µ

2 + β1λV + 2β2µV = 0
2 : −α1β1λ− 2α0β2λ− α2β1µ− 2α1β2µ− 3α0β3µ− α0β1 − 16β2λ

3−
−114β3λ

2µ− 14β1λ
2 − 216β4λµ2 − 104β2λµ− 120β3µ

2 − 16β1µ+
+2β2λV + 3β3µV + β1V = 0

3 : −α2β1λ− 2α1β2λ− 3α0β3λ− 2α2β2µ− 3α1β3µ− 4α0β4µ−
−α1β1 − 2α0β2 − 54β3λ

3 − 296β4λ
2µ− 76β2λ

2 − 336β3λµ−
−24β1λ− 304β4µ

2 − 80β2µ + 3β3λV + 4β4µV + 2β2V = 0
4 : −2α2β2λ− 3α1β3λ− 4α0β4λ− 3α2β3µ− 4α1β4µ− α2β1−

−2α1β2 − 3α0β3 − 128β4λ
3 − 222β3λ

2 − 784β4λµ− 108β2λ−
−228β3µ− 12β1 + 4β4λV + 3β3V = 0

5 : −3α2β3λ− 4α1β4λ− 4α2β4µ− 2α2β2 − 3α1β3 − 4α0β4 − 488β4λ
2−

−288β3λ− 496β4µ− 48β2 + 4β4V = 0
6 : −α2 (4β4λ + 3β3)− 4α1β4 + 2 (−120β4λ− 60 (3β4λ + β3)) = 0
7 : −4α2β4 − 240β4 = 0.

In addition to this, the highest order coe�cients in (11) are supposed to be
nonzero:

α2 6= 0, β4 6= 0. (12)
Step 4. Solving the system of algebraic equations from the previous step

with conditions (12) with the aid of MATHEMATICA yields four sets of solu-
tions:

� Set 1.
V = λ2 − 4µ, α0 = −λ2 − 56µ, α1 = −60λ, α2 = −60,

β1 = −120
(
λ3 + 2λµ

)
, β2 = −240

(
2λ2 + µ

)
,

β3 = −720λ, β4 = −360,
(13)

where λ, µ and β0 are arbitrary constants.
� Set 2.

V = 4µ− λ2, α0 = −3
(
3λ2 + 8µ

)
, α1 = −60λ, α2 = −60,

β1 = −720λµ, β2 = −360
(
λ2 + 2µ

)
,

β3 = −720λ, β4 = −360,
(14)

where λ, µ and β0 are arbitrary constants.
� Set 3.

V = λ2, µ = 0, α0 = −λ2, α1 = −60λ, α2 = −60,
β1 = −120λ3, β2 = −480λ2, β3 = −720λ, β4 = −360,

(15)

where λ and β0 are arbitrary constants.
� Set 4.

V = −λ2, µ = 0, α0 = −9λ2, α1 = −60λ, α2 = −60,
β1 = 0, β2 = −360λ2, β3 = −720λ, β4 = −360,

(16)

where λ and β0 are arbitrary constants.
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Finally, substituting solutions (13)�(16) with the general solution to linear
ODE (5) into representation (11) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (7) as follows.
Solutions set 1. Constants set (13) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions




u (ξ) = − 15(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− σ,

v (ξ) = −15(A2
1−A2

2)σ2(4A2A1 sinh ξ
√

σ+2(A2
1+A2

2) cosh ξ
√

σ+A2
1−A2

2)
2
(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
4

+

+β0 + 120µ
(
λ2 − µ

)
,

(17)

where ξ = x − (
λ2 − 4µ

)
t, σ = λ2 − 4µ, A1, A2, β0 are arbitrary con-

stants; in particular, setting λ = ±
√

8
3 |k1|, µ = −1

3k2
1, A1 = 0, β0 = a20,

we obtain exactly the soliton solution, found by means of the tanh �
method in [14];

Fig. 1. Hyperbolic functions solution (17) when A1 = 1,
A2 = 1.2, λ = 2.2, µ = 1, β0 = −460.8

� when λ2 − 4µ = 0, we get the family of rational functions solutions




u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) =
360(µ2(A2ξ+A1)4−A4

2)
(A2ξ+A1)4

+ β0,
(18)

where ξ = x, A1, A2, β0 are arbitrary constants;
� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) = − 15(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2

+ σ,

v (ξ) = −15(A2
1+A2

2)σ2(−4A2A1 sin ξ
√

σ+2(A2
1−A2

2) cos ξ
√

σ+A2
1+A2

2)
2
(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
4

+

+β0 + 120µ
(
λ2 − µ

)
,

(19)
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Fig. 2. Rational functions solution (18) when A1 = 1, A2 =
1.2, λ = 1, µ = 0.25, β0 = −22.5

Fig. 3. Trigonometric functions solution (19) when A1 = 1,
A2 = 1.2, λ = 1, µ = 1, β0 = 0

where ξ = x − (
λ2 − 4µ

)
t, σ = 4µ − λ2, A1, A2, β0 are arbitrary con-

stants.
Solutions set 2. Constants set (14) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions





u (ξ) = − 15σ(A2
1−A2

2)(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− 9σ

v (ξ) = − 45(A2
1−A2

2)2σ2

2
(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
4

+ β0 + 360µ2,
(20)

where ξ = x +
(
λ2 − 4µ

)
t, σ = λ2 − 4µ, A1, A2, β0 are arbitrary con-

stants;
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Fig. 4. Hyperbolic functions solution (20) when A1 = 1,
A2 = 1.2, λ = 2.2, µ = 1, β0 = −360

� when λ2 − 4µ = 0, we get the family of rational functions solutions




u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) =
360(µ2(A2ξ+A1)4−A4

2)
(A2ξ+A1)4

+ β0,
(21)

where ξ = x, A1, A2, β0 are arbitrary constants; note that solutions (21)
coincide with corresponding family (18) from the �rst set.

� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) =
−15σ(A2

1+A2
2)(

A1 sin ξ
√

σ
2

+A2 cos ξ
√

σ
2

)
2

+ 9σ,

v (ξ) = − 45(A2
1+A2

2)2σ2

2
(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
4

+ β0 + 360µ2,
(22)

where ξ = x +
(
λ2 − 4µ

)
t, σ = 4µ − λ2, A1, A2, β0 are arbitrary con-

stants.
Solutions set 3. Constants set (15) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions




u (ξ) =
15λ2(A2

2−A2
1)(

A1 sinh
ξ|λ|
2

+A2 cosh λξ
2

)
2
− λ2,

v (ξ) =
2A1A2(A2

2−A2
1)(β0+30λ4) sinh ξ|λ|+A1A2(A2

1+A2
2)β0 sinh 2ξ|λ|

2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4

+

+
−(A4

1−A4
2)(β0+30λ4) cosh λξ− 3

4(A2
1−A2

2)2(20λ4−β0)
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4

+

+
1
4(A4

1+6A2
2A2

1+A4
2)β0 cosh 2λξ

2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4

,

(23)

where ξ = x− λ2t, A1, A2, β0 are arbitrary constants;
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Fig. 5. Trigonometric functions solution (22) when A1 = 1,
A2 = 1.2, λ = 1, µ = 1, β0 = 360

Fig. 6. Hyperbolic functions solution (23) when A1 = 1,
A2 = 1.2, λ = 1, β0 = 0

� when λ = 0, we get the family of rational functions solutions




u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) = β0 − 360A4
2

(A2ξ+A1)4
,
% (24)

where ξ = x, A1, A2, β0 are arbitrary constants; note that solutions (24)
coincide with corresponding family (18) from the �rst set.

Solutions set 4. Constants set (16) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions





u (ξ) = −3λ2(6A2A1 sinh ξ|λ|+A2
1(3 cosh λξ+7)+A2

2(3 cosh λξ−7))
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,

v (ξ) = β0 − 45(A2
1−A2

2)2λ4

2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4
,

(25)
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Fig. 7. Hyperbolic functions solution (25) when A1 = 1,
A2 = 1.2, λ = 1, β0 = 0

where ξ = x + λ2t, A1, A2, β0 are arbitrary constants;
� when λ = 0, we get the family of rational functions solutions





u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) = β0 − 360A4
2

(A2ξ+A1)4
,

(26)

where ξ = x, A1, A2, β0 are arbitrary constants; note that solutions (26)
coincide with corresponding family (18) from the �rst set.

5. Application: Example 2
Consider the following Korteweg � de Vries (KdV) type nonlinear dynamic

system [1] 



ut = uxxx + uux − vvx,

vt = −2vxxx − uvx.
(27)

Let us solve system (27) by use of the (G′/G) � expansion method.
Step 1. Introducing traveling wave variable ξ = x − V t, we reduce system

(27) to a system of ODE for u = u (ξ) and v = v (ξ)



−V u′ = u′′′ + uu′ − vv′,

−V v′ = −2v′′′ − uv′.
(28)

Suppose that the solution to system (28) can be expressed by polynomials in
(G′/G) as follows:

u (ξ) =
m∑

i=0

αi

(
G′

G

)i

, v (ξ) =
n∑

i=0

βi

(
G′

G

)i

. (29)

Considering the homogeneous balance between u′′′ and vv′, v′′′ and uv′ in the
�rst and the second equations of system (28) correspondingly, we obtain a

96



APPLICATION OF (G′/G) � EXPANSION METHOD ...

simple system of algebraic equations



m + 3 = 2n + 1.

n + 3 = m + n + 1,
(30)

from which it can be easily found that m = 2 and n = 2.
Step 2. Considering (29) and (30), we �nd the solution to system (28) in

the following form: 



u (ξ) = α2

(
G′
G

)2
+ α1

(
G′
G

)
+ α0,

v (ξ) = β2

(
G′
G

)2
+ β1

(
G′
G

)
+ β0,

(31)

where function G = G (ξ) satis�es the second order linear ODE (5), λ, µ, V , αi(
i = 0, 2

)
, βj

(
j = 0, 2

)
are all constants to be determined later, α2 6= 0, β2 6= 0.

Step 3. Substituting (31) into system (28) and collecting all terms with
the same power of

(
G′
G

)
together, the left-hand sides of equations (28) are

converted into another polynomials in
(

G′
G

)
. Equating each coe�cient of

these polynomials to zero yields a set of simultaneous algebraic equations for
λ, µ, V, αi

(
i = 0, 2

)
, βj

(
j = 0, 2

)
as follows:

� from the �rst equation in (28):
0 : α1λ

2µ + 6α2λµ2 + 2α1µ
2 + α0α1µ− β0β1µ + α1µV = 0

1 : α1λ
3 + 6α2λ

2µ + 8α2µ
(
λ2 + 2µ

)
+ 8α1λµ + α0 (α1λ + 2α2µ)+

+α2
1µ− β0 (β1λ + 2β2µ)− β2

1µ + V (α1λ + 2α2µ) = 0
2 : 8α2λ

(
λ2 + 2µ

)
+ 7α1λ

2 + 36α2λµ + α1 (α1λ + 2α2µ)+
+α0 (2α2λ + α1) + 8α1µ + α1α2µ− β1 (β1λ + 2β2µ)−
−β0 (2β2λ + β1)− β1β2µ + V (2α2λ + α1) = 0

3 : 8α2

(
λ2 + 2µ

)
+ 30α2λ

2 + α2 (α1λ + 2α2µ) + 12α1λ+
+α1 (2α2λ + α1) + 24α2µ + 2α0α2 − β2 (β1λ + 2β2µ)−
−β1 (2β2λ + β1)− 2β0β2 + 2α2V = 0

4 : 54α2λ + α2 (2α2λ + α1) + 2α2α1 + 6α1 − β2 (2β2λ + β1)−
−2β1β2 = 0

5 : 2α2
2 + 24α2 − 2β2

2 = 0;

� from the second equation in (28):
0 : −α0β1µ− 2β1λ

2µ− 12β2λµ2 − 4β1µ
2 + β1µV = 0

1 : −2
(
β1λ

3 + 6β2λ
2µ + 8β2µ

(
λ2 + 2µ

)
+ 8β1λµ

)
+

+V (β1λ + 2β2µ)− α0 (β1λ + 2β2µ) + α1β1(−µ) = 0
2 : −α1 (β1λ + 2β2µ)− α0 (2β2λ + β1) + α2β1(−µ)−

−2
(
8β2λ

(
λ2 + 2µ

)
+ 7β1λ

2 + 36β2λµ + 8β1µ
)
+

+V (2β2λ + β1) = 0
3 : −α2 (β1λ + 2β2µ)− α1 (2β2λ + β1)− 2α0β2−

−2
(
8β2

(
λ2 + 2µ

)
+ 30β2λ

2 + 12β1λ + 24β2µ
)

+ 2β2V = 0
4 : −α2 (2β2λ + β1)− 2α1β2 − 2 (54β2λ + 6β1) = 0
5 : −2α2β2 − 48β2 = 0.
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In addition to this, the highest order coe�cients in (31) are supposed to be
nonzero:

α2 6= 0, β2 6= 0. (32)
Step 4. Solving the system of algebraic equations from the previous step

with conditions (32) with the aid of MATHEMATICA yields four sets of solu-
tions:

� Set 1.
α0 = −2λ2 − 16µ + V, α1 = −24λ, α2 = −24,

β0 =
√

2
(−λ2 − 8µ + 2V

)
, β1 = −12

√
2λ, β2 = −12

√
2,

(33)

where λ, µ and V are arbitrary constants.
� Set 2.

α0 = −2λ2 − 16µ + V, α1 = −24λ, α2 = −24,
β0 =

√
2

(
λ2 + 8µ− 2V

)
, β1 = 12

√
2λ, β2 = 12

√
2,

(34)

where λ, µ and V are arbitrary constants.
� Set 3.

µ = 0, α0 = V − 2λ2, α1 = −24λ, α2 = −24,
β0 = 2

√
2V −√2λ2, β1 = −12

√
2λ, β2 = −12

√
2,

(35)

where λ and V are arbitrary constants.
� Set 4.

µ = 0, α0 = V − 2λ2, α1 = −24λ, α2 = −24,
β0 =

√
2λ2 − 2

√
2V, β1 = 12

√
2λ, β2 = 12

√
2

(36)

where λ and V are arbitrary constants.
Finally, substituting solutions (33)�(36) with the general solution to linear

ODE (5) into representation (31) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (27) as follows.
Solutions set 1. Constants set (33) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions





u (ξ) = − 6(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) = − 3
√

2(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
−√2σ + 2

√
2V,

(37)

where ξ = x− V t, σ = λ2 − 4µ, A1, A2, V are arbitrary constants;
� when λ2 − 4µ = 0, we get the family of rational functions solutions





u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(
V − 6A2

2
(A2ξ+A1)2

)
,

(38)

where ξ = x− V t, A1, A2, V are arbitrary constants;
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Fig. 8. Hyperbolic functions solution (37) when A1 = 1,
A2 = 1.2, λ = 2.5, µ = 1, V = 0.3

Fig. 9. Rational functions solution (38) when A1 = 1, A2 =
1.2, λ = 2, µ = 1, V = 0.3

� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) = − 6σ(A2
1+A2

2)(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) = − 3
√

2(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2

+
√

2σ + 2
√

2V,
(39)

where ξ = x− V t, σ = 4µ− λ2, A1, A2, V are arbitrary constants.
Solutions set 2. Constants set (34) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions





u (ξ) = − 6(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) =
3
√

2(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2

+
√

2σ − 2
√

2V,
(40)
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Fig. 10. Trigonometric functions solution (39) when A1 = 1,
A2 = 1.2, λ = 1.5, µ = 1, V = 0.3

where ξ = x − V t, σ = λ2 − 4µ, A1, A2, V are arbitrary constants; in
particular, setting A1 = 0, σ = 4k2

1, V = a10 − 16k2
1, we obtain exactly

the soliton solution, found by means of the tanh � method in [14].
� when λ2 − 4µ = 0, we get the family of rational functions solutions




u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(

6A2
2

(A2ξ+A1)2
− V

)
,

(41)

where ξ = x− V t, A1, A2, V are arbitrary constants;
� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) = − 6(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) =
3
√

2(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2
−√2σ − 2

√
2V,

(42)

where ξ = x− V t, σ = 4µ− λ2, A1, A2, V are arbitrary constants.
Solutions set 3. Constants set (35) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions



u (ξ) = (V−2λ2)(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)−(A2
1−A2

2)(10λ2+V )
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,

v (ξ) = (2V−λ2)(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)−(A2
1−A2

2)(5λ2+2V )√
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,
(43)

where ξ = x− V t, A1, A2, V are arbitrary constants;
� when λ = 0, we get the family of rational functions solutions




u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(
V − 6A2

2
(A2ξ+A1)2

)
,

(44)

where ξ = x− V t, A1, A2, V are arbitrary constants.
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Fig. 11. Hyperbolic functions solution (43) when A1 = 1,
A2 = 1.2, λ = 1.5, V = 0.5

Fig. 12. Rational functions solution (44) when A1 = 1, A2 =
1.2, λ = 0, V = −1

Solutions set 4. Constants set (36) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions



u (ξ) = (V−2λ2)(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)−(A2
1−A2

2)(10λ2+V )
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,

v (ξ) = (λ2−2V )(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)+(A2
1−A2

2)(5λ2+2V )√
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,
(45)

where ξ = x− V t, A1, A2, V are arbitrary constants;
� when λ = 0, we get the family of rational functions solutions




u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(

6A2
2

(A2ξ+A1)2
− V

)
,

(46)

where ξ = x− V t, A1, A2, V are arbitrary constants.
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6. Conclusion
The (G′/G) � expansion method was successfully used to derive exact trav-

eling wave solutions to two KdV type nonlinear dynamic systems [1, 3].
The method was implemented in computer system MATHEMATICA, with

the aid of which we obtained the solutions in the form of hyperbolic, rational
and trigonometric functions for both systems. Moreover, it is shown that with a
certain choice of arbitrary parameters in both systems it is possible to rediscover
the soliton solutions, found by means of the tanh � method in [14], and hence
the solutions obtained in the present paper are of more general forms.

The correctness of the obtained results was assured by putting them back into
the original systems with the aid of MATHEMATICA. Most of the obtained
solutions were graphically analyzed.

The main advantage of the method is that it provides solutions with relatively
many arbitrary parameters, and thus these solutions are often more general
compared to other analytical methods. As it was shown in Section 3, there
exist certain modi�cations of the method to provide solutions in more general
form in comparison with the classical

(
G′
G

)
� expansion method [15], therefore

the authors plan to use them for further investigations.
Finally, the method is con�rmed to be suitable for implementation in modern

computer algebra systems.
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DETERMINATION THE QUANTITY OF EIGENVALUE
FOR TWO-PARAMETER EIGENVALUE PROBLEMS

IN THE PRESCRIBED REGION

B.M.Podlevskyi

Ðåçþìå. Çàïðîïîíîâàíî àëãîðèòì çíàõîäæåííÿ êiëüêîñòi âëàñíèõ çíà-
÷åíü äâîïàðàìåòðè÷íèõ ñïåêòðàëüíèõ çàäà÷ ó äåÿêié çàäàíié îáëàñòi. Â
îñíîâi àëãîðèòìó ëåæèòü ïðèíöèï àðãóìåíòà àíàëiòè÷íî¨ ôóíêöi¨ îäíi¹¨
çìiííî¨. Íàâåäåíî ÷èñåëüíi ðåçóëüòàòè äëÿ íåëiíiéíî¨ äâîïàðàìåòðè÷íî¨
çàäà÷i íà âëàñíi çíà÷åííÿ.
Abstract. An algorithm for �nding the number of eigenvalues of two-
parameter spectral problems in a given region is proposed. At the heart
of the algorithm lies the principle of the argument of the analytic function
of one variable. Numerical results for a nonlinear two-parameter eigenvalue
problems are given.

1. Introduction
The multiparameter eigenvalue problems T (λ)x = 0 with operator-valued

functions T (λ) : Rm → L(H) (L(H) � the set of linear bounded operators
operating in a �nite-dimensional Hilbert spaceH), which depends on several
spectral parameters λ, have a classical analysis of their source. In particular,
they arise in solving boundary value problems for di�erential equations with
partial derivatives by separating the variables.

In abstract formulation, they are written in the form of a system of equations

T (λ)u ≡
(

Ak −
m∑

i=1

λiBki

)
uk = 0, k = 1, 2, ..., m, (1)

if the operator-function T (λ) linearly depends on the spectral parameters λi ∈
R, i = 1, 2, ... , m, A,Bi, Ak, Bki ∈ L(H), k, i = 1, 2, ... , m.

An algebraic two-parameter eigenvalue problem as a partial case of a spectral
problem (1) is written in the form of a system of two homogeneous linear
equations

T1(λ, µ) ≡ (A1 + λB1 + µC1)x = 0,

T2(λ, µ) ≡ (A2 + λB2 + µC2)y = 0,
(2)

where Ai, Bi, Ci are the square matrices of the nth order. We will de�ne our
eigenvalue sets (in our case that are eigen pairs (λ, µ) ) such that the system
(2) has non-trivial solutions x 6= 0 and y 6= 0.

Key words. Two-parameter eigenvalue problem, number of eigenvalues, principle of
argument.
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It is obvious that own pairs are solutions of the system of two nonlinear
algebraic equations

f(λ, µ) ≡ det (A1 + λB1 + µC1) = 0.

g(λ, µ) ≡ det (A2 + λB2 + µC2) = 0.
(3)

In this work the problem of �nding the number of real roots of the system (3),
which are in a certain region of the change of spectral parameters (λ, µ), is
considered.

2. Preliminaries
An algorithm for �nding the number of zeros of an analytic function in a

given region, as well as some approximations to each of them, which can then
be speci�ed using iterative methods, in particular by the Newton method or
its two-way analogues (see, for example, [5, 9]), is based on the ratio, which
implies, in particular, the principle of the argument of the analytic function
(see, for example, [2]):

Integral 1
2π i

∫
Γ

ϕ(λ)f ′(λ)
f(λ) dλ is equal to the di�erence between the sum of values

that takes the function ϕ(λ) in the zeros of the function f(λ) lying in inside
the domain G, bounded by the curve Γ and the sum of the values that takes the
same function ϕ(λ) in the poles of the function f(λ) that lying in inside of Γ,
that is,

1
2π i

∫

Γ

ϕ(λ)
f ′(λ)
f(λ)

dλ =
m∑

j=1

νjϕ(αj)−
n∑

j=1

µjϕ(βj). (4)

Here ϕ(λ) is an analytic function in the domain G; f(λ) is analytic in G
everywhere, except for the �nite number of poles βj ∈ G, j = 1, 2, ... , n,
and f(λ) 6= 0 in G everywhere except for the �nite number of zeros αj ∈ G,
j = 1, 2, ... , m; νj and µj is the multiplicity of zero and the order of the pole,
respectively.

In particular, if we take ϕ(λ) ≡ 1, then we get that

1
2π i

∫

Γ

f ′(λ)
f(λ)

dλ =
m∑

j=1

νj −
n∑

j=1

µj , (5)

that is, the integral is equal to the di�erence between the number of zeros
and the poles of function f(λ) lying inside of Γ, taking into account their
multiplicities (the so-called principle of the argument).

If the analytic function f(λ) does not have poles in G, then the principle of
argument (5) allows us to determine the number of all its zeros that lie in the
domain G. However, this does not allow you to localize each of them.

To locate the zeros we use again the relation (4). Taking now ϕ(λ) = λk,
k = 1, 2, ... , we get the following statement.

Suppose that the analytic function f(λ) does not have poles in G, but has in
G, taking into account the multiplicity, the m zeros λ1, λ2, ... , λm and has no
zeros on the boundary Γ of the domain G, then the number m is determined in
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accordance with the principle of the argument

m = s0 =
1

2π i

∫

Γ

f ′(λ)
f(λ)

dλ (6)

and the relationship is true
m∑

j=1

(λj)
k = sk , k = 1, ... , m, (7)

where
sk =

1
2π i

∫

Γ

λk f ′(λ)
f(λ)

dλ, k = 1, 2, ... . (8)

The right-hand side of (7) is nothing but symmetrical functions of the roots
λ1, λ2, ... , λm inside of Γ, from which, in principle, roots can be found, for
example:

If m = 1 than
λ1 =

1
2πi

∫

Γ

λf ′(λ)
f(λ)

dλ.

If m = 2

s1 ≡ λ1 + λ2 =
1

2πi

∫

Γ

λf ′(λ)
f(λ)

dλ

and
s2 ≡ λ2

1 + λ2
2 =

1
2πi

∫

Γ

λ2f ′(λ)
f(λ)

dλ.

This will give us λ1λ2 = 1
2(λ1 + λ2)2 − 1

2(λ2
1 + λ2

2) and, consequently, we �nd
λ1 and λ2 by solving a square equation. This procedure can be continued in
an obvious way for m = k. Another approach, when the system (7) is solved
directly, it was considered in the work [6, 7].

For the functions of one variable or one-parameter spectral problems, the
principle of the argument (6) and the formulae of the principle of argument
(7) and (8) have been repeatedly used for solving various problems (see, for
example, [1, 3, 4, 6-8, 10]).

In this paper, based on the principle of the argument of the function of one
variable, the algorithm for �nding the number of eigenvalues of a two-parameter
spectral problem in a given region of changing of the spectral parameters is
proposed.

3. Number roots of a system of two real equations
with two real variables

Let us consider a two-parameter spectral problem (2), whose eigenvalues λ, µ
we will seek as the roots of the system of nonlinear equations (3), where the
functions f(λ, µ) and g(λ, µ) are real functions of real variables.

For this purpose we will construct the function u = f +ig and we will require
that it be analytic and have no poles inside a certain region G. Then, as is
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known, the number m of roots ν = λ + iµ of a function u in the region G,
which is bounded by a curve Γ, that is, common solutions (λ, µ) of equations
f(λ, µ) = 0, g(λ, µ) = 0, follows from the principele of argument of the analytic
function (6), that is,

m =
1

2πi

∫

Γ

u′(ν)
u(ν)

dν.

Taking into account that
1

2πi

∫

Γ

u′(ν)
u(ν)

dν =
1

2πi

∫

Γ

d log u(ν) =
1
2π

∫

Γ

dφ,

where
φ = arg log u(ν) = arctan g

f
+ πn, (9)

we obtaine
m =

1
2π

∫

Γ

d( arctan g

f
+ nπ).

Consider the curve Γ with its parametric representation λ = λ(t); µ = µ(t);
0 6 t 6 1. From (9) we have

dφ =
gdf − fdg

f2 + g2

If φ we replace the di�erentiation by t, we obtain
1
2π

∫

Γ

dφ =
1
2π

∫

Γ

dφ

dt
dt

Moreover, if we consider our expression dφ along the curve, we will have:

1
2π

∫

Γ

dφ

dt
dt =

1∫

0

g
(

df
dλ

dλ
dt + df

dµ
dµ
dt

)
− f

(
dg
dλ

dλ
dt + dg

dµ
dµ
dt

)

f2 + g2
dt (10)

Consequently, the number of eigenvalues m of the system of equations (3) is
calculated by formula (10), in which the integral is replaced by some quadrature
formula, for example, rectangles.

4. Numerical example
Let us consider a nonlinear two-parameter spectral problem

T1(λ, µ)x ≡
(

λ2 − µ2 1
1 1

)
x = 0, x ∈ R2,

T2(λ, µ)y ≡
(

2λ 2
1 1

)
y = 0, y ∈ R2,

(11)

and calculate the number of eigenvalues lying in di�erent areas.
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As was noted above, the eigenvalues of the problem (11) are solutions of the
system of two nonlinear algebraic equations

f(λ, µ) = detT1(λ, µ) = λ2 − µ2 − 1 = 0,

g(λ, µ) = detT2(λ, µ) = 2λµ− 2 = 0.
(12)

It is easy to verify that the system (12) has two solutions:

(λ, µ)1,2 = (±1, 272; 0, 786).

The number of solutions m of the system (12) was calculated by the formula
(10), in which the integral was replaced by the quadrature formula of rectangles,
and the circle with center (λ∗, µ∗) and radius ρ∗ was chosen as the boundary
of Γ. The value of the functions (determinant) f and g and their derivatives
on the boundary of the region (circle) were calculated on the basis of the LU -
decomposition of the matrices T1(λ, µ) and T2(λ, µ) [6, 7].

Numerical calculations are carried out for di�erent choices of the radius of
circle and its center. The results are presented in Table 1. The �rst column
of the table shows the coordinates of the center (λ∗, µ∗) of the circle, in the
second column is its radius ρ∗, and in the third the number m of eigenvalues
lying in that circle.

Tabl. 1. Number eigenvalues of the problem (4.1)

(λ∗, µ∗) ρ∗ m (λ∗, µ∗) ρ∗ m

(0.0, 0.0) 1.0 0 (0.0, 1.0) 2.0 2
(0.0, 1.0) 1.0 0 (0.0, 1.0) 2.0 1
(1.0, 1.0) 1.0 1 (-1.0, 0.0) 2.0 1

5. Conclusion
In this paper, based on the principle of the argument of the analytic function

of one variable, an algorithm for �nding the number of real eigenvalues of
the system of two determinantal equations, that is, the real eigenvalues of a
two-parameter spectral problem in a given region of changing of the spectral
parameters, is proposed.

The numerical experiments performed for various problems have shown the
e�ectiveness of the algorithm in the sense that for calculating the number of
eigenvalues in a given region, there is no need for great accuracy in the cal-
culation of the integral, and this does not require, in turn, a large partition
of the integration boundary. This signi�cantly reduces the calculation time,
but, at the same time, it is sensitive to the choice of the boundary of the area.
The algorithm ceases to work when the eigenvalues (though one) falls on the
boundary that we preset. In this case, it is necessary to correct the boundary.
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CONSTRUCTION OF TWO-SIDED APPROXIMATIONS
TO POSITIVE SOLUTIONS OF BOUNDARY VALUE
PROBLEMS FOR SEMILINEAR ELLIPTIC SYSTEMS

M.V. Sidorov

Ðåçþìå. Ðîçãëÿäà¹òüñÿ îäíîðiäíà çàäà÷à Äiðiõëå äëÿ ñèñòåìè íàïiâëi-
íiéíèõ åëiïòè÷íèõ ðiâíÿíü. Äëÿ ïîáóäîâè äâîái÷íèõ íàáëèæåíü äî äîäàò-
íîãî ðîçâ'ÿçêó öi¹¨ ñèñòåìè âèêîðèñòîâóþòüñÿ ìåòîäè òåîði¨ íàïiâóïîðÿä-
êîâàíèõ ïðîñòîðiâ, çîêðåìà, ðåçóëüòàòè Â. I.Îïîéöåâà ïðî ðîçâ'ÿçíiñòü
îïåðàòîðíèõ ðiâíÿíü ç ãåòåðîòîííèì îïåðàòîðîì. Ìîæëèâîñòi i åôåêòèâ-
íiñòü ðîçðîáëåíîãî ìåòîäà ïðîäåìîíñòðîâàíà îá÷èñëþâàëüíèì åêñïåðè-
ìåíòîì äëÿ ñèñòåìè Ëàíå-Åìäåíà.
Abstract. A homogeneous Dirichlet problem for a system of semilinear el-
liptic equations is considered. To construct two-sided approximations to a
positive solution of this system, methods of the theory of semiordered spaces,
in particular, the results of V.I. Opo��cev on the solvability of operator equa-
tions with a heterotone operator are used. The possibilities and e�ectiveness
of the developed method is demonstrated by a numerical experiment for the
Lane-Emden system.

1. Introduction
Let us consider a homogeneous Dirichlet problem for a system of semilinear

elliptic equations:
−∆ui = fi(x, u1, . . . , un) in Ω ⊂ Rm, (1)

ui|∂Ω = 0, i = 1, 2, . . . , n, (2)
or in a vector form

−∆u = f(x,u) in Ω ⊂ Rm,

u|∂Ω = θ,

where x = (x1, . . . , xm), u = (u1, . . . , un), −∆u = (−∆u1, . . . ,−∆un),
f = (f1, . . . , fn), θ = (0, . . . , 0), ∆ is the Laplace operator,

∆ =
∂2

∂x2
1

+ . . . +
∂2

∂x2
m

.

Let us assume that Ω ⊂ Rm is bounded domain with a piecewise smooth
boundary ∂Ω, functions fi(x,u), i = 1, 2, . . . , n, are non negative and continu-
ous on the set of variables x, u, if x ∈ Ω, ui > 0, i = 1, 2, . . . , n.

The problem (1), (2) is a mathematical model of many stationary processes
that are considered in chemical kinetics, biology, combustion theory etc. [12].
Many works [1,2,6,9,10,12,16, etc.] are devoted to the investigation of problem

Key words. Positive solution; semilinear elliptic systems; heterotone operator; two-sided
approach; Lane-Emden system.
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(1), (2). But the focus in these works was mainly on clarifying the conditions
of existence and uniqueness of the positive solution of the problem or on the
conditions of having a solution with radial symmetry for a case where Ω is a
unit sphere, and an e�ective algorithm for numerical �nding the solution was
not proposed.

The purpose of this work is to develop the iterative methods for solving
the boundary value problem (1), (2), which have a two-sided nature of con-
vergence to the desired solution. Two-sided approximate methods of solving
the nonlinear operator equations based on the theory of nonlinear operators in
semiordered spaces were developed in [4,5,7,8,13,14]. This work continues the
research begun in [5] and distributes it to systems of nonlinear equations.

2. Some information from the theory of nonlinear operators
in spaces with cones

Let us consider some concepts and facts from the theory of nonlinear opera-
tors in semiordered spaces that will be used further [7, 13,14].

Let E be a real Banach space, and θ is a zero element of space E. A closed
convex set K ⊂ E is called a cone, if from the fact that x ∈ K, x 6= θ, follows
αx ∈ K with α ≥ 0 and −x /∈ K.

Any cone K ⊂ E allows to enter in space E a semiordering by rule: x 6 y,
if y − x ∈ K. Elements x > θ (i.e. x ∈ K) are called positive. The set of
elements 〈y, z〉 of a semiordered space, which consists of those x ∈ E for which
y 6 x 6 z, is called a cone segment.

Normal cones are important class of cones for application of the theory of
semiordered spaces in computational mathematics. A cone K is called normal if
there exists a number N(K) > 0, that from θ 6 x 6 y follows ‖x‖ ≤ N(K) ‖y‖.
In this case, it is said that the norm is semimonotonic. If N(K) = 1, then the
cone is called acute and it is said that the norm is monotonous.

Let us consider the de�nitions of some classes of operators in spaces with
cone.

The operator T : E → E is called positive if it leaves invariant the cone K,
i.e. T (x) ∈ K for anyone x ∈ K.

The operator T : E → E is called heterotone (or mixed monotone [3, 13,
etc.]), if it allows a diagonal representation T (x) ≡ T̂ (x, x), where the compan-
ion operator T̂ : E × E → E monotonically increases with respect to the �rst
argument and decreases with respect to the second one, i.e.

a) if y1 6 y2, then T̂ (y1, z) 6 T̂ (y2, z) for all z ∈ E;
b) if z1 6 z2, then T̂ (y, z1) > T̂ (y, z2) for all y ∈ E.
A cone segment 〈y0, z0〉 is called strongly invariant for a heterotone operator

T , if
T̂ (y0, z0) ≥ y0, T̂ (z0, y0) ≤ z0.

Let us �xate some nonzero element u0 ∈ K and denote by K(u0) a set of
such elements x ∈ K, for which we can specify such α, β > 0, that

αu0 6 x 6 βu0.
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A positive heterotone operator T is called pseudoconcave, if T̂ (y, z) ∈ K(u0)
for any y, z ∈ K, y 6= θ, z 6= θ, and for any v, w ∈ K(u0) i τ ∈ (0; 1)

T̂

(
τv,

1
τ
w

)
> τ T̂ (v, w),

and the sign of equality is impossible here.
A pseudoconcave operator T is called u0-pseudoconcave, if for any v, w ∈

K(u0) and τ ∈ (0; 1) you can �nd such η(v, w, τ) > 0, that

T̂

(
τv,

1
τ
w

)
> τ [1 + η(v, w, τ)]T̂ (v, w).

Properties and the problem of constructing approximate solutions of operator
equations with a heterotone operator have been considered in [3, 4, 11, 13, 14].
In particular, the following assertion holds [13, 14]: if the cone K is normal,
the operator T̂ is completely continuous, for T there is a strongly invariant
cone segment 〈y0, z0〉, and the system T̂ (y, z) = y, T̂ (z, y) = z on 〈y0, z0〉 has
no solutions such that y 6= z, then the iterative process, which is formed by
the rule yn+1 = T̂ (yn, zn), zn+1 = T̂ (zn, yn), n = 0, 1, 2, . . ., starting from the
point (y0, z0), two-sided converges to the unique on 〈y0, z0〉 �xed point x∗ of
the operator T :

y0 6 y1 6 . . . 6 yn 6 . . . 6 x∗ 6 . . . 6 zn 6 . . . 6 z1 6 z0.

It is known [13, 14], that the system T̂ (y, z) = y, T̂ (z, y) = z on 〈y0, z0〉 has
no solutions such that y 6= z, if T � u0-pseudoconcave operator.

3. Construction of two-sided approximations
To analyze the problem (1), (2) and construct two-sided approximations to

its positive solution, we will use the methods of the theory of nonlinear operators
in semiordered spaces [7, 13,14].

Let Cn(Ω̄) = {u = (u1, . . . , un) : ui ∈ C(Ω̄), i = 1, . . . , n} be a Banach
space of continuous in Ω̄ = Ω∪∂Ω vector-valued functions with a norm ‖u‖n =
max{‖u1‖ , . . . , ‖un‖}, where ‖ui‖ = max

x∈Ω̄
|ui(x)|. Let us de�ne in Cn(Ω̄) a cone

K+ = {u = (u1, . . . , un) ∈ Cn(Ω̄) : ui(x) ≥ 0, x ∈ Ω̄, i = 1, . . . , n}
of vector-valued functions with non negative coordinates. Notice that the cone
K+ in Cn(Ω̄) is normal (and even acute) [7, 13,14].

Using cone K+ in space Cn(Ω̄) we introduce a semiordering by the rule: for
u,v ∈ Cn(Ω̄) u 6 v, if v − u ∈ K+, i.e.

u 6 v, if ui(x) ≤ vi(x) for all x ∈ Ω̄ and for i = 1, . . . , n.

From the problem (1), (2) we go over to the system of integral equations of
Hammerstein

ui(x) =
∫

Ω

G(x, ξ)fi(ξ, u1(ξ), . . . , un(ξ))dξ, i = 1, . . . , n, (3)
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or in a vector form

u(x) =
∫

Ω

G(x, ξ)f(ξ,u(ξ))dξ,

where G(x, ξ) is Green's function of the �rst boundary value problem for the
operator −∆ in the domain Ω, x = (x1, . . . , xm), ξ = (ξ1, . . . , ξm).

The solution (generalized) of the problem (1), (2) will be called the vector-
valued function u∗ ∈ Cn(Ω̄), which is the solution of the system (3).

Let us introduce a nonlinear integral operator T acting in Cn(Ω̄) by the rule
de�ned by the right-hand side of the system of equations (3):

T(u) =
∫

Ω

G(x, ξ)f(ξ,u(ξ))dξ =

=




∫

Ω

G(x, ξ)f1(ξ, u1(ξ), . . . , un(ξ))dξ, . . . ,

∫

Ω

G(x, ξ)fn(ξ, u1(ξ), . . . , un(ξ))dξ


 .

(4)

Since fi(x, u1, . . . , un) ≥ 0, if x ∈ Ω, i = 1, . . . , n, and G(x, ξ) ≥ 0, x, ξ ∈ Ω,
x 6= ξ, then the operator T is positive, that is, it leaves invariant a cone K+:
T(K+) ⊂ K+.

Let us assume that the vector-valued function f(x,u) allows a diagonal rep-
resentation f(x,u) = f̂(x,u,u), where continuous on the set of variables x,
v, w the functions f̂i(x,v,w) = f̂i(x, v1, . . . , vn, w1, . . . , wn) monotonically in-
creases with respect to all vi and monotonically decreases with respect to all
wi, i = 1, . . . , n, for all x ∈ Ω. Then the operator T of the form (4) will be
heterotone with the companion operator

T̂(v,w) =
∫

Ω

G(x, ξ)f̂(ξ,v(ξ),w(ξ))dξ =

=




∫

Ω

G(x, ξ)f̂1(ξ, v1(ξ), . . . , vn(ξ), w1(ξ), . . . , wn(ξ))dξ, . . . ,

∫

Ω

G(x, ξ)f̂n(ξ, v1(ξ), . . . , vn(ξ), w1(ξ), . . . , wn(ξ))dξ


 .

(5)

Operators T and T̂ are completely continuous [7, 13,14].
In a cone K+ we will de�ne a strongly invariant cone segment

〈
v0,w0

〉
by

conditions

T̂(v0,w0) > v0, T̂(w0,v0) 6 w0,
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i.e.∫

Ω

G(x, ξ)f̂i(ξ, v0
1(ξ), . . . , v0

n(ξ), w0
1(ξ), . . . , w0

n(ξ))dξ ≥ v0
i (x) for all x ∈ Ω̄,

∫

Ω

G(x, ξ)f̂i(ξ, w0
1(ξ), . . . , w0

n(ξ), v0
1(ξ), . . . , v0

n(ξ))dξ ≤ w0
i (x) for all x ∈ Ω̄,

i = 1, . . . , n.

If the boundary ∂Ω of the domain Ω consists of a �nite number of pieces
of lines σi(x) = 0, i = 1, 2, . . . , s, where each σi(x) is an elementary function,
then using the R-functions method [15] one can construct in the form of a single
analytic expression an elementary function ω(x) such that:

a) ω(x) > 0 in Ω;
b) ω(x) = 0 on ∂Ω;
c) |∇ω(x)| 6= 0 on ∂Ω.
Then a strongly invariant cone segment can be searched in the form〈

v0,w0
〉

== 〈αω(x), βω(x)〉 ,
where α = (α1, . . . , αn), β = (β1, . . . , βn), 0 ≤ αi < βi, satisfy the system of
inequalities∫

Ω

G(x, ξ)f̂i(ξ, α1ω(ξ), . . . , αnω(ξ), β1ω(ξ), . . . , βnω(ξ))dξ ≥ αiω(x)

for all x ∈ Ω̄,∫

Ω

G(x, ξ)f̂i(ξ, β1ω(ξ), . . . , βnω(ξ), α1ω(ξ), . . . , αnω(ξ))dξ ≤ βiω(x)

for all x ∈ Ω̄, i = 1, . . . , n.

Let us create an iterative process according to the scheme
v(k+1) = T̂(v(k),w(k)), w(k+1) = T̂(w(k),v(k)), k = 0, 1, 2, . . . ,

v(0) = v0, w(0) = w0,

i.e.

v
(k+1)
i (x) =

∫

Ω

G(x, ξ)f̂i(ξ, v
(k)
1 (ξ), . . . , v(k)

n (ξ), w(k)
1 (ξ), . . . , w(k)

n (ξ))dξ, (6)

w
(k+1)
i (x) =

∫

Ω

G(x, ξ)f̂i(ξ, w
(k)
1 (ξ), . . . , w(k)

n (ξ), v(k)
1 (ξ), . . . , v(k)

n (ξ))dξ, (7)

k = 0, 1, 2, . . . ,

v
(0)
i (x) = v0

i (x), w
(0)
i (x) = w0

i (x), i = 1, . . . , n. (8)
Given that the strong invariance of the constructed cone segment and het-

erotony of the operator T, for which operator T̂ is an companion one, we can
conclude that the sequence {v(k)(x)} does not decrease behind the cone K+,
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and the sequence {w(k)(x)} does not increase behind the cone K+. In addition,
from the normality of the cone K+ and completely continuity of the operator
T̂ implies the existence of limits v∗(x) and w∗(x) of these sequences. Thus,
the following inequalities hold:

v0 = v(0) 6 v(1) 6 . . . 6 v(k) 6 . . . 6 v∗ 6
6 w∗ 6 . . . 6 w(k) 6 . . . 6 w(1) 6 w(0) = w0.

The vector-valued functions v∗ = (v∗1, . . . , v
∗
n) and w∗ = (w∗1, . . . , w

∗
n) are a

solution of the system of equations

v∗ = T̂(v∗,w∗), w∗ = T̂(w∗,v∗),

i.e. the systems

v∗i (x) =
∫

Ω

G(x, ξ)f̂i(ξ, v∗1(ξ), . . . , v∗n(ξ), w∗1(ξ), . . . , w∗n(ξ))dξ,

w∗i (x) =
∫

Ω

G(x, ξ)f̂i(ξ, w∗1(ξ), . . . , w∗n(ξ), v∗1(ξ), . . . , v∗n(ξ))dξ, i = 1, . . . , n.

If we have received that v∗ = w∗ = u∗, then u∗ is the unique on the cone
segment

〈
v0,w0

〉
�xed point of the operator T, and hence, u∗ is the unique on〈

v0,w0
〉
solution of the boundary value problem (1), (2).

Su�cient condition for the implementation of equality v∗ = w∗ is the con-
dition [3] of the existence of such α ∈ (0; 1), that

∥∥∥T̂(v,w)− T̂(w,v)
∥∥∥

n
≤ α‖v −w‖n for all v,w ∈ 〈

v0,w0
〉
.

Let the functions f̂i(x, v1(x), . . . , vn(x), w1(x), . . . , wn(x)), i = 1, . . . , n, for
all positive numbers v1, . . . , vn, w1, . . . , wn and for all x ∈ Ω satisfy the inequal-
ity ∣∣∣f̂i(x,v,w)− f̂i(x,w,v)

∣∣∣ ≤ Li max{|v1 − w1| , . . . , |vn − wn|},
i = 1, . . . , n,

(9)

where Li > 0, i = 1, . . . , n.
Then there will be an estimate∥∥∥T̂(v,w)− T̂(w,v)

∥∥∥
n
≤ LM‖v −w‖n, (10)

where L = max{L1, . . . , Ln}, M = max
x∈Ω̄

∫
Ω

G(x, ξ)dξ.

In addition, on the basis of estimate (10) we obtain that
∥∥∥w(k) − v(k)

∥∥∥
n

=
∥∥∥T̂(w(k−1),v(k−1))− T̂(v(k−1),w(k−1))

∥∥∥
n
≤

≤ LM
∥∥∥w(k−1) − v(k−1)

∥∥∥
n
≤ . . . ≤ (LM)k

∥∥∥w(0) − v(0)
∥∥∥

n
.

Hence, the following theorem holds.
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Theorem 1. Let a heterotone operator T of the form (4) for which operator
T̂ of the form (5) is an companion one, has a strongly invariant cone segment〈
v0,w0

〉
and the inequalities (9) are executed, moreover LM < 1. Then the

iteration process (6�(8) converges to the unique on
〈
v0,w0

〉
solution u∗ of the

boundary value problem (1), (2), and the following inequalities
v0 = v(0) 6 v(1) 6 . . . 6 v(k) 6 . . . 6 u∗ 6

6 . . . 6 w(k) 6 . . . 6 w(1) 6 w(0) = w0

are satis�ed and ∥∥∥w(k) − v(k)
∥∥∥

n
≤ (LM)k

∥∥∥w(0) − v(0)
∥∥∥

n
. (11)

Another condition that ensures the uniqueness of the positive solution of the
boundary value problem (1), (2) is u0-pseudoconcavity of the operator T of the
form (4) [13,14].

Suppose that for all positive numbers v1, . . . , vn, w1, . . . , wn and any τ ∈
(0, 1) the inequalities

f̂i

(
x, τv,

1
τ
w

)
> τf̂i(x,v,w), x ∈ Ω, i = 1, . . . , n, (12)

are performed.
Let us denote u0(x) =

∫
Ω

G(x, ξ)dξ. Then [7,13,14] for any v,w ∈ K+ there

are such αi(v,w) > 0, βi(v,w) > 0, α̃i(v,w) > 0, β̃i(v,w) > 0, i = 1, . . . , n,
that

αi(v,w)u0(x) ≤
∫

Ω

G(x, ξ)f̂iξ,v(ξ),w(ξ))dξ ≤ βi(v,w)u0(x), i = 1, . . . , n,

α̃i(v,w)u0(x) ≤
∫

Ω

G(x, ξ)
[
f̂i

(
x, τv,

1
τ
w

)
− τ f̂i(x,v,w)

]
dξ ≤

≤ β̃i(v,w)u0(x), i = 1, . . . , n.

Hence we will have that∫

Ω

G(x, ξ)f̂i

(
x, τv,

1
τ
w

)
dξ ≥ α̃i(v,w)u0(x) + τ

∫

Ω

G(x, ξ)f̂i(x,v,w)dξ ≥

≥ τ

(
1 +

α̃i(v,w)
τβi(v,w)

)∫

Ω

G(x, ξ)f̂i(x,v,w)dξ, i = 1, . . . , n,

i.e.
T̂

(
τv,

1
τ
w

)
≥ τ [1 + η(v,w, τ)]T̂(v,w), (13)

where η(v,w, τ) = min
{

α̃1(v,w)
τβ1(v,w)

, . . . ,
α̃n(v,w)
τβn(v,w)

}
.

Inequality (13) means u0-pseudoconcavity of the operator T.
Hence, the following theorem holds.
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Theorem 2. Let a heterotone operator T of the form (4), for which the operator
T̂ of the form (5) is an companion one, has a strongly invariant cone segment〈
v0,w0

〉
and the inequalities (12) are performed. Then the iteration process (6)

� (8) converges to the unique positive solution u∗ ∈ 〈
v0,w0

〉
of the boundary

value problem (1), (2), and the following inequalities
v0 = v(0) 6 v(1) 6 . . . 6 v(k) 6 . . . 6 u∗ 6

6 . . . 6 w(k) 6 . . . 6 w(1) 6 w(0) = w0

are satis�ed.
Note that the advantage of constructed two-sided iterative processes is that

at each k iteration we have a convenient a posteriori estimation of the error for
an approximate solution u(k)(x) =

1
2
(w(k)(x) + v(k)(x)):

∥∥∥u∗ − u(k)
∥∥∥

n
≤ 1

2

∥∥∥w(k) − v(k)
∥∥∥

n
.

Then, if accuracy ε > 0 is given, then the iterative process should be car-
ried out before the inequality max{max

x∈Ω̄
(w(k)

1 (x)− v
(k)
1 (x)), . . . ,max

x∈Ω̄
(w(k)

n (x)−
v

(k)
n (x))} < 2ε will be performed and with accuracy ε it can be assumed that

u∗(x) ≈ u(k)(x).
Also, based on the inequality (11) we can obtain an estimate for the number

of iterations required to achieve the given accuracy. Indeed, from the inequali-
ties

∥∥∥u∗ − u(k)
∥∥∥

n
≤ 1

2

∥∥∥w(k) − v(k)
∥∥∥

n
≤ (LM)k

2

∥∥∥w(0) − v(0)
∥∥∥

n
< ε

we �nd that to achieve accuracy ε

k0(ε) =




ln

∥∥w(0) − v(0)
∥∥

n

2ε

ln
1

LM


 + 1

iterations must be done, where the square brackets denote an integer part of
the number.

4. Numerical experiment
The construction of the two-sided approximations to the positive solution of

the boundary value problem (1), (2) will be demonstrated on the system of two
Lane-Emden equations with a homogeneous Dirichlet condition:

−∆u1 = up1
2 , −∆u2 = u−p2

1 in Ω, (14)
u1|∂Ω = u2|∂Ω = 0, (15)

where p1 > 0, p2 > 0.
The construction of two-sided approximations to the positive solution of the

Lane-Emden equation −∆u = up for p =
1
2
was made in [5].
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The questions of the existence and uniqueness of the solution of problem
(14), (15) in the case when Ω is a sphere of radius R, p1 > 0, p2 < 0 were
investigated in [2].

The functions f1(x, u1, u2) = up1
2 , f2(x, u1, u2) = u−p2

1 are positive and con-
tinuous on a set of variables, if u1, u2 > 0, and allow a diagonal representation
by using the functions

f̂1(x, v1, v2, w1, w2) = vp1
2 , f̂2(x, v1, v2, w1, w2) = w−p2

1 . (16)

The problem (14), (15) is replaced by the equivalent system of Hammerstein
integral equations

u1(x) =
∫

Ω

G(x, ξ)up1
2 (ξ)dξ, u2(x) =

∫

Ω

G(x, ξ)u−p2
1 (ξ)dξ. (17)

With the system (17) we will associate a heterotone operator

T(u1, u2) =




∫

Ω

G(x, ξ)up1
2 (ξ)dξ,

∫

Ω

G(x, ξ)u−p2
1 (ξ)dξ


 , (18)

for which the companion operator has the form

T̂(v1, v2, w1, w2) =




∫

Ω

G(x, ξ)vp1
2 (ξ)dξ,

∫

Ω

G(x, ξ)w−p2
1 (ξ)dξ


 .

Condition (12) for functions (16) leads to inequalities

f̂1

(
x, τv1, τv2,

1
τ
w1,

1
τ
w2

)
= (τv2)p1 > τf̂1(x, v1, v2, w1, w2) = τvp1

2 ,

f̂2

(
x, τv1, τv2,

1
τ
w1,

1
τ
w2

)
=

(
1
τ
w1

)−p2

> τf̂2(x, v1, v2, w1, w2) = τw−p2
1 ,

whereof τp1−1 > 1, τp2−1 > 1, i.e. 0 < p1 < 1, 0 < p2 < 1.
For the operator (18) a strongly invariant cone segment will be search in the

form
〈
v0,w0

〉
, where

v0(x) = (v0
1(x), v0

2(x)) = (α1ω(x), α2ω(x)),

w0(x) = (w0
1(x), w0

2(x)) = (β1ω(x), β2ω(x)),
0 ≤ α1 < β1, 0 ≤ α2 < β2,

and the function ω(x) satis�es the conditions a) - c) of section 3.
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The system of inequalities for the determination α1, α2, β1, β2 has the form:

αp1
2

∫

Ω

G(x, ξ)ωp1(ξ)dξ ≥ α1ω(x),

β−p2
1

∫

Ω

G(x, ξ)ω−p2(ξ)dξ ≥ α2ω(x), (19)

βp1
2

∫

Ω

G(x, ξ)ωp1(ξ)dξ ≤ β1ω(x),

α−p2
1

∫

Ω

G(x, ξ)ω−p2(ξ)dξ ≤ β2ω(x) for all x ∈ Ω.

Hence, the following theorem holds.

Theorem 3. Let 0 < p1 < 1, 0 < p2 < 1 and the system (19) has a solution
(α1, α2, β1, β2) such that 0 ≤ α1 < β1, 0 ≤ α2 < β2. Then the iterative process

v
(k+1)
1 (x) =

∫

Ω

G(x, ξ)(v(k)
2 (ξ))

p1
dξ, v

(k+1)
2 (x) =

∫

Ω

G(x, ξ)(w(k)
1 (ξ))

−p2
dξ,

w
(k+1)
1 (x) =

∫

Ω

G(x, ξ)(w(k)
2 (ξ))

p1
dξ, w

(k+1)
2 (x) =

∫

Ω

G(x, ξ)(v(k)
1 (ξ))

−p2
dξ,

k = 0, 1, 2, . . . ,

where v
(0)
1 (x) = α1ω(x), v

(0)
2 (x) = α2ω(x), w

(0)
1 (x) = β1ω(x), w

(0)
2 (x) =

β2ω(x), converges to the unique positive solution (u∗1(x), u∗2(x)) of system (14),
(15), and besides, for all x ∈ Ω̄ the following inequalities

α1ω(x) = v
(0)
1 (x) ≤ v

(1)
1 (x) ≤ . . . ≤ u∗1(x) ≤ . . . ≤ w

(1)
1 (x) ≤ w

(0)
1 (x) = β1ω(x),

α2ω(x) = v
(0)
2 (x) ≤ v

(1)
2 (x) ≤ . . . ≤ u∗2(x) ≤ . . . ≤ w

(1)
2 (x) ≤ w

(0)
2 (x) = β2ω(x)

are satis�ed.

A computational experiment was carried out for the values p1 =
1
4
, p2 =

1
3
,

if m = 2 and Ω = {x = (x1, x2) : |x| < 1} is unit circle. For this domain
we have ω(x) ==

1
2
(1− x2

1 − x2
2), G(x, ξ) =

1
2π

ln
ρrxξ1

rxξ
, where ρ =

√
ξ2
1 + ξ2

2 ,

points ξ and ξ1 are symmetric with respect to the circle of the unit radius, rxξ,
rxξ1 are distances between points x, ξ and x, ξ1 accordingly. The solution of
the system of inequalities (19) is, for example, numbers α1 = 0.332, α2 = 0.959,
β1 = 0.418, β2 = 1.364. Accuracy ε = 10−4 was reached on the sixth iteration.

An obtained approximate solution

u
(6)
1 (x) =

v
(6)
1 (x) + w

(6)
1 (x)

2
, u

(6)
2 (x) =

v
(6)
2 (x) + w

(6)
2 (x)

2
has a radial symmetry.
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Tabl. 1. The values of the error estimation of the approximate
solution

Number of iteration k ε
(k)
1 ε

(k)
2

0 0.22 · 10−1 0.10 · 100

1 0.88 · 10−2 0.19 · 10−1

2 0.19 · 10−2 0.72 · 10−2

3 0.71 · 10−3 0.16 · 10−2

4 0.16 · 10−3 0.61 · 10−3

5 0.60 · 10−4 0.13 · 10−3

6 0.13 · 10−4 0.51 · 10−4

Tabl. 2. The values of the approximate solution at the points
xi = (0.25i, 0), i = 0, 1, 2, 3

xi = (0.25i, 0) (0,0) (0.25,0) (0.5,0) (0.75,0)
u

(6)
1 (xi) 0.1946 0.1806 0.1397 0.0752

u
(6)
2 (xi) 0.4960 0.4674 0.3781 0.2192

(a) (b)

Fig. 1. Graphs of cross-sections of upper and lower approxima-
tions w

(k)
1 (x1, 0), v

(k)
1 (x1, 0) (a) and w

(k)
2 (x1, 0), v

(k)
2 (x1, 0) (b),

k = 0, 2, 4, 6

Table 1 gives the data on how the estimate

ε
(k)
i = max

x∈Ω̄

1
2

∣∣∣w(k)
i (x)− v

(k)
i (x)

∣∣∣

the norm of error
∥∥∥u∗i − u

(k)
i

∥∥∥ of an approximate solution u
(k)
i (x), i = 1, 2, is

changed, depending on the iteration number k, k = 0, 1, . . . , 6. Table 2 shows
the values, found with accuracy ε = 10−4 of the approximate solution u

(6)
1 (x),

u
(6)
2 (x) at points located on the ray ϕ = 0. It was found that

∥∥∥u
(6)
1

∥∥∥ = 0.1946,∥∥∥u
(6)
2

∥∥∥ = 0.4960.
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(a) (b)

Fig. 2. Surfaces of approximate solutions u
(6)
1 (x) (a) and u

(6)
2 (x) (b)

(a) (b)

Fig. 3. Contour lines of approximate solutions u
(6)
1 (x) (a) and

u
(6)
2 (x) (b)

Fig. 1 shows the graphs of the cross-sections of the upper w
(k)
1 (x), w

(k)
2 (x)

and the lower v
(k)
1 (x), v

(k)
2 (x) approximations at x2 = 0 for k = 0, 2, 4, 6.

Fig. 2, 3 show the surfaces of the approximate solutions u
(6)
1 (x), u

(6)
2 (x) and

their contour lines respectively.

5. Conclusions
The paper proposed a method of constructing the two-sided approximations

to a positive solution of the homogeneous Dirichlet problem for a system of
semilinear elliptic equations. The numerical experiment, conducted for the
Lane-Emden system, demonstrated the possibilities and e�ectiveness of the
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method. The proposed approach to numerical solution of semilinear systems
can be used in solving various applications, the mathematical models of which
is the problem (1), (2).

The limitation of using the proposed method may be due to the fact that
the Green's function of the �rst boundary value problem for an operator −∆
is known only for a certain number of classical domains. When considering the
problem (1), (2) in the domains of non classical geometry or in domains for
which the Green's function is known, but has a complex analytic expression, to
construct the corresponding (1), (2) system of integral equations, can be used
an approach based on the corresponding Green's quasi-function [15].
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SINC APPROXIMATION OF ALGEBRAICALLY
DECAYING FUNCTIONS

D.O. Sytnyk

Ðåçþìå. Â ðîáîòi çàïðîïîíîâàíî óçàãàëüíåííÿ Sinc iíòåðïîëÿöiéíîãî
ìåòîäó, ÿêå äîçâîëÿ¹ íàáëèæàòè íà R ôóíêöi¨ ñïàäàþ÷i àëãåáðà¨÷íî. Ïî-
äiáíî äî êëàñè÷íî¨ Sinc iíòåðïîëÿöi¨ ìè ôîðìóëþ¹ìî äâà òèïè îöiíîê
ïîõèáêè. Ïåðøèé ñòîñó¹òüñÿ çàãàëüíîãî êëàñó ôóíêöié, ùî ìàþòü àëãåá-
ðà¨÷íèé ïîðÿäîê ñïàäàííÿ íà R. Îöiíêè ïîõèáêè äðóãîãî òèïó ¹ ñïðàâåä-
ëèâèìè äëÿ âèïàäêó êîëè ïîðÿäîê ñïàäàííÿ ôóíêöi¨ âiäîìèé ó ñìóçi
êîìïëåêñíî¨ ïëîùèíè íàâêîëî äiéñíî¨ îñi. Òåîðåòè÷íi âèêëàäêè ïiäêðiï-
ëåíi ÷èñåëüíèìè åêñïåðèìåíòàìè.
Abstract. An extension of sinc interpolation on R to the class of alge-
braically decaying functions is developed in the paper. Similar to the classical
sinc interpolation we establish two types of error estimates. First covers a
wider class of functions with the algebraic order of decay on R. The second
type of error estimates governs the case when the order of function's decay
can be estimated everywhere in the horizontal strip of complex plane around
R. The numerical examples are provided.

1. Introduction
We begin by introducing some necessary notation. Let

sinc (x) =
sinπx

πx
,

S{k, h}(x) = sinc
(x

h
− k

)
, h > 0, k ∈ Z. (1)

By H1(Dd) in the paper we denote the class of functions f(x) analytic in the
horizontal strip Dd

Dd = {z = x + iy x ∈ (−∞,∞), |y| ≤ d} , (2)
and such, that the quantity

N1(f, Dd) ≡
∫

∂Dd

|f(z)|dz,

is bounded. Next, for some given h > 0 and integer N > 0 we de�ne a sinc
interpolation polynomial as

CN{f, h}(x) =
N∑

k=−N

f(kh)S{k, h}(x). (3)

Key words. Sinc methods, sinc interpolation, algebraically decaying functions, Lambert-W
function, polynomial order of convergence, approximation on real-line.
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The following classical result characterize the accuracy of interpolation of f ∈
H1(Dd) by CN{f, h}(x) for the case, when f(s) is exponentially decaying.
Theorem (Stenger [6, p. 137]) Assume that the function f ∈ H1(Dd) is

bounded by
|f(x)| ≤ Le−α|x|, ∀x ∈ R, (4)

with some α, L > 0. Then the error of 2N + 1 term sinc interpolation of f(x)
by CN{f, h}(x), satis�es the following estimate

sup
x∈R

|f(x)− CN{f, h}(x)| ≤ cEN ,

EN = N1/2e−
√

πdαN ,
(5)

provided that

h =

√
πd

αN
. (6)

Here c > 0 is some constant dependent on f, d, α and independent on N . In
this paper we extend the results of the above theorem to a class of algebraically
decaying functions on R. All theoretical considerations are given in sections
1,2. Section 3 is devoted to numerical examples and discussion.

2. Interpolation of functions with
algebraic decay on real line

In this section we study the convergence of sinc interpolation for the class of
algebraically decaying functions. Speci�cally, we consider the situation when a
function f(x) satis�es

|f(x)| ≤ L

1 + |x|α , ∀x ∈ R (7)

instead of inequality (4), convenient for the classical sinc methods [6].
Theorem 1. Assume that the function f ∈ H1(Dd) has an algebraic decay
de�ned by (7) with some α > 1, L > 0. Then the error of 2N + 1-term sinc
interpolation (3) satis�es the following estimate

sup
x∈R

|f(x)− CN{f, h}(x)| ≤ cEN , ∀x ∈ R,

EN =
αα(N + 1)1−α

(α− 1)(πd)α

(
W

(
πd

α

(
α− 1
πd

) 1
α

(N + 1)
α−1

α

))α

,
(8)

provided that h in (3) is chosen as

h =
πd

α

(
W

(
πd

α

(
α− 1
πd

) 1
α

(N + 1)
α−1

α

))−1

. (9)

Here W[·] denotes a positive branch of the Lambert-W function, c =
c1N1(f, Dd) + 2L and c1 > 1 is the constant independent of N :

c1 =
(πd)2(α−1)(α− 1)2

(πd)2(α−1)(α− 1)2 − α2αW2α
(

πd
α

α

√
α−1
πd

) . (10)
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Proof. For any �xed h the error of sinc interpolation can be represented as
follows [6, equation (3.1.29)]

|f(x)− CN{f, h}(x)| ≤ |f(x)− C∞{f, h}(x)|+
∑

|k|>N

|f(kh)| .

Bound of the �rst term on the right-hand side of this formula was obtained in
Theorem 3.1.3 from [6]. For x ∈ R this term satis�es

|f(x)− C∞{f, h}(x)| ≤ N1(f,Dd)
2πd sinh πd

h

≤ c1N1(f, Dd)
πd

e−
πd
h , (11)

where c1 > 1 is some constant to be determined later. For the second term we
get

∑

|k|>N

|f(kh)| ≤ ≤ 2L
∞∑

k=N+1

(kh)−α ≤ 2L

∞∫

N+1

(th)−αdt

≤ 2L(N + 1)1−α

(α− 1)hα
.

(12)

The above sequence of inequalities is justi�ed as long as f(x) satisfy (7) with
some α > 1. For such f(x), truncation error (12) decays algebraically as
N →∞. In order to balance it with exponentially decaying discretization error
(11) one needs to solve for h the equation

e−
πd
h

c2
=

(N + 1)1−α

(α− 1)hα
. (13)

Let s = πd
α h−1 and assume that c2 > 0 is some �xed parameter. Then,

equation (13) takes the form

πd

α

(
α− 1

c2
(N + 1)α−1

) 1
α

= ses,

which has a unique solution

s = W

(
πd

α

(
α− 1

c2
(N + 1)α−1

) 1
α

)
.

Next, we set c2 = πd and substitute back the expression for s in terms of h to
obtain (9). The proof of (8) is straightforward

|f(x)− CN{f, h}(x)| ≤ (c1N1(f, Dd) + 2L)
(N + 1)1−α

(α− 1)hα
≤

≤ c
αα(N + 1)1−α

(α− 1)(πd)α

(
W

(
πd

α

(
α− 1
πd

) 1
α

(N + 1)
α−1

α

))α

.

Now, let us come back to the determination of c1. The smallest c1 suitable for
(11) can be de�ned as follows

c1 = sup
N∈Z+

{
e

πd
h

2 sinh πd
h

}
= max

N∈Z+

(
1− e−

2πd
h

)−1
.
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Its not hard to see that the maximum is attained at N = 0. Therefore, the
value of c1:

c1 =

(
1− exp

(
−2αW

(
πd

α
α

√
α− 1
πd

)))−1

is clearly greater than one, for any α > 1, d > 0. To get (10) we apply the
identity exp (−W(x)) = W(x)/x to the above formula for c1 and rearrange the
result accordingly

c1 =


1− α2α

(πd)2(α−1)(α− 1)2

(
W

(
πd

α
α

√
α− 1
πd

))2α


−1

=
(πd)2(α−1)(α− 1)2

(πd)2(α−1)(α− 1)2 − α2αW2α
(

πd
α

α

√
α−1
πd

) .

The presence of W(x) in estimate (8) makes it harder to perceive the as-
ymptotic behavior of the interpolation error intuitively. To �x that we recall a
well-established result [5] on the asymptotic properties of W(x), valid for any
x > e:

ln x− ln (lnx) +
ln (ln x)
2 ln x

≤ W(x) ≤ ln x− ln (ln x) +
e ln (lnx)

(e− 1) lnx
.

By using the above inequality along with the de�nition of W(x) and (13) we
transform (8) in the following way

|f(x)− CN{f, h}(x)| ≤ c

eαs
≤ c




ln
(

πd
α

(
α−1
πd

) 1
α (N + 1)

α−1
α

)

πd
α

(
α−1
πd

) 1
α (N + 1)

α−1
α




α

≤

≤ c

(πd)α−1

(
N + 1
α− 1

)1−α

lnα

(
πd

(
α− 1
αα

) 1
α−1

(N + 1)

)
;

whence it is clear that the error of sinc interpolation provided by Theorem 1 is
asymptotically equal to (N +1)1−α lnα(N +1) as N →∞. To analyze the error
for small N we note that, in the view of (13), EN is bounded by the exponent
with a strictly decreasing negative argument. Consequently, for any α > 1,
x ∈ R, the error supx∈R |f(x)− CN{f, h}(x)| lies within the interval [0, c] and
decreases as N →∞.

One might conclude from the foregoing analysis that a simple asymptotic
formula W (x) ≈ ln(x) can be used to rede�ne h (9) in terms of logarithms,
which are computationally more favorable than the Lambert-W function. To
explore this possibility we set

h =
πd

α

(
ln

(
πd

α

(
α− 1

c2

) 1
α

(N + 1)
α−1

α

))−1

,

and study the corresponding error terms of the approximation. Discretization
error (11) is positive and monotonically decreasing in N for any c2 > 0, since
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h is monotonic. The principal part (N+1)1−α

(α−1)hα of truncation error (12) has one
global maximum at N = N0:

N0 =
( α

π d

) α
α−1 exp

(
α

α− 1

)(
α− 1

c2

)− 1
(α−1)

− 1.

To guarantee a monotonous decrease of the truncation error for all N ≥ 0 we
must require N0 = 0, which yields c2 = (α− 1)

(
πd
αe

)α
. The aforementioned

formula for h is thereby reduced to

h =
πd

α + (α− 1) ln (N + 1)
. (14)

For such h, the error of sinc interpolation will be bounded by (8) with

EN =
(N + 1)1−α

(α− 1)(πd)α
(α + (α− 1) ln (N + 1))α , (15)

and c = (α − 1)
(

πd
αe

)α
N1(f, Dd) + 2L. The main concern with (15), is the

presence of additional summand α when compared to (8).
Remark 1. The de�nition of h from Theorem 1 can not be simpli�ed by adopt-
ing W (x) ≈ ln(x), since such simpli�cation, as described by (14), (15), would
make the approximation method ine�ective for large α.

With an additional a-priory knowledge about f(x) we should be able to
improve the convergence properties of CN{f, h}(x) described by Theorem 1.
The following improvement of (8) o�ers a more realistic balance of discretization
and truncation errors, presuming that both N1(f,Dd) and L are known.
Corollary 4. Assume that the function f(x) satis�es the conditions of Theorem
1. If

h =
πd

α

(
W

(
πd

α

(
N1(f, Dd)(α− 1)

πdL

) 1
α

(N + 1)
α−1

α

))−1

, (16)

then the error of sinc interpolation ful�lls estimate (8), with c = (c1 + 2)L and
EN given by

EN =
(N + 1)1−α

(α− 1)
h−α.

Formula (16) was obtained in the same way as (9), except this time we set

c2 =
πdL

N1(f, Dd)
.

3. Interpolation of functions with
algebraic decay in the strip

Corollary 4 is di�cult to apply as it is, because the evaluation of N1(f, Dd)
requires computation of the contour integral over ∂Dd. In order to make this
result more applicable we note, that if f ∈ H1(Dr), for some r > 0, then
lim

x→±∞ f(x + iy) = 0 uniformly with respect to y ∈ [d, d], for all d ∈ (0, r) [2,
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Proposition 6]. Hence, for any r > 0 there exist a nonempty subspace of
H1(Dr), such that its elements f satisfy

|f(z)| ≤ L

1 + |z|α , ∀z ∈ Dd, (17)

with some d ∈ (0, r).
Theorem 2. Assume that the function f(z) is analytic in the horizontal strip
Dd, d > 0. If f(z) is bounded by (17) with some α > 1, L > 0, then the error
of sinc interpolation (3) satis�es the following estimate

sup
x∈R

|f(x)− CN{f, h}(x)| ≤ cEN ,

EN =
αα(N + 1)1−α

(α− 1)(πd)α
hα,

(18)

provided that

h =
πd

α

(
W

(
πd

α

(
4β(α− 1)

πd

) 1
α

(N + 1)
α−1

α

))−1

, (19)

with β = min
{

1
sinc (α−1)

,
(

2
d

)α−1
B

(
α
2 − 1

2 , α
2 + 1

2

)}
. Here B(·, ·) is the beta

function, c = 2 (c1β + 1)L and c1 is the constant dependent on α, d.
Proof.

+∞∫

−∞
|f(x + id)| dx ≤

+∞∫

−∞

Ldx

1 + |x + id|α = 2L

+∞∫

0

dx

1 + (x2 + d2)
α
2

, (20)

+∞∫

0

dx

1 + (x2 + d2)α/2
≤

+∞∫

0

dx

1 + xα
= lim

x→∞
x Φ

(−xα, 1, α−1
)

α
=

= lim
x→+∞

∣∣∣∣∣
x Φ

(−xα, 1, α−1
)

α

∣∣∣∣∣ = lim
<z→+∞
=z→0

∣∣∣∣∣
zΦ

(−zα, 1, α−1
)

α

∣∣∣∣∣ .

Here <z and =z is real and imaginary part of z correspondingly. To evaluate
the last limit we employ Corollary 1 from [3]. It o�ers a convergent expansion of
Hurwitz-Lerch zeta function Φ(z, s, a) when its second parameter s has integer
value

zΦ
(

zα, 1,
1
α

)
= π

(
sgn {Arg(α ln(z))} i + cot

π

α

)
−

∞∑

k=1

z1−αk

1/α− k
. (21)

The expression on the right of (21) is bounded and uniformly convergent to
the left-hand side for any α > 1, |z| > 1, such that zα /∈ (−∞,−1) ∪ (1,∞).
Therefore

lim
<z→+∞
=z→0

∣∣∣∣∣
zΦ

(−zα, 1, α−1
)

α

∣∣∣∣∣ =
π

α

√
1 + cot2

π

α
− 1

α

∞∑

k=1

lim
<z→+∞
=z→0

z1−αk

1/α− k
,
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which leads us to the bound
+∞∫

−∞
|f(x + id)| dx ≤ 2πL

α

√
1 + cot2

π

α
= 2L sinc−1

(
1
α

)
. (22)

For large d, the integral from (20) can be estimated as follows
+∞∫

0

1
1 + (x2 + d2)α/2

dx ≤
+∞∫

0

1
(x2 + d2)α/2

dx =

=
√

πd1−αΓ ((α− 1) /2)
2Γ (α/2)

=

=
d1−αΓ ((α− 1) /2) Γ ((α + 1) /2)

22−αΓ(α)
≤

≤ 1
2
B

(
α

2
− 1

2
,
α

2
+

1
2

)(
2
d

)α−1

.

To obtain the above estimate we used a well-known multiplication theorem [1, p.
4] for Gamma function Γ(·). The next bound is a direct consequence of the
above formula and (20)

+∞∫

−∞
|f(x + id)| dx ≤ 2LB

(
α

2
− 1

2
,
α

2
+

1
2

)(
2
d

)α−1

. (23)

By combining bounds (22), (23) and taking in to account the fact that the
expression on the right of (17) is invariant with respect to z → z̄ we arrive at
the following estimate

N1(f, Dd) ≤ 4Lmin

{
1

sinc
(

1
α

) ,

(
2
d

)α−1

B

(
α

2
− 1

2
,
α

2
+

1
2

)}
.

To �nalize the proof, we evaluate (16) assuming that the value of N1(f, Dd) is
equal to its estimate provided by the previous formula. This will get us (19).

4. Examples and discussion
In this section we consider several examples of the developed approximation

method. As measure of experimental error we use a discrete norm
err = max

∀x∈X
|f(x)− CN{f, h}(x)| ,

de�ned on a uniform grid X =
{
jh/2

∣∣ j = −2N, 2N
}
. With such choice of

X the speci�ed discrete norm ought to capture the contribution from both
the descretization and truncation parts of the error. To experimentally check
the convergence of CN{f, h}(x) we repeat the approximation procedure on a
sequence of grids determined by

Ni ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024},
and the corresponding hi evaluated by one of the formulas (9), (16) or (19).
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Example 1. Let
f(x) =

4
2 + x2a

,

where a ≥ 2 is integer. Then, the largest possible value of d such that f(x)
remains analytic in Dd, is equal to 2α

√
2 sin π

a . To simplify the computation of
N1(f,Dd) we set d =

2a√2
2 sin π

a , a = 2, then N1(f, Dd) ≈ 4.550125680, L ≈ 4.5,
α = 4. The behaviour of an error err(x) = f(x) − C32{f, h}(x) for three
di�erent values of h is depicted in Fig. 1.

Fig. 1. Graphs of err(x) = f(x)−C32{f, h}(x) from Example
1 for h calculated by (9) � left, (16) � center, (19) � right

Predictably the value of h calculated by (16) is superior to those calculated
by (19) and (9). One can see a discernible bump in the error function at
x0 = N6h ≈ 12.3792. The values of err(x) on the left of x0 corresponds to
the discretization error, whilst the values on the right of x0 corresponds to
the truncation error. The magnitude of those errors are almost match. This
highlight the fact that the chosen h is really close to theoretically optimal value
(16).

Example 2. In this example we set f(x) ∈ H1(Dd) as

f(x) =
6 cos 2x

(5 + cos2 x) (1 + x4)
,

and choose formula (9) for the evaluation of h. The function f(x) is meromor-
phic and bounded in Dd for any d smaller than the imaginary part of zeros
of

(
5 + cos2 x

) (
1 + x4

)
. The zeros of the polynomial part of this expression

lie closer to the real line than any zero of 5 + cos2 x, so d ≤ = 4
√−1 =

√
2

2 ≈
.707106781186550. Therefore it is safe to set d = 0.7. For given f(x) we can
also explicitly �nd the parameters of algebraic decay bound (7): L = f(0) = 1,
α = 4.

Note, that for a more general function f(x) the corresponding L,α can be
calculated numerically from a sequence of its values. For explicitly given f(x)
the possible values of d can be calculated numerically as well, for example using
Analytic routine from Maple [4].

131



D.O. SYTNYK

Fig. 2. Graphs of f(x) and err(x) = f(x)−C32{f, h}(x) from
Example 2

The graphs of the approximated function f(x) and the error of its interpo-
lation by C32{f, h}(x) are given in Fig. 2.

The precise values of erri for i = 1, . . . , 11 are presented in Table 1. Here we
additionally supply the theoretical estimate ENi de�ned in Theorem 1 and the
value of ci = erri/ENi .

Tabl. 1. Result of the numerical experiments for f(x) from
Example 2. The step size h is calculated by (9), the quantities
EN and c are evaluated with help of (8)

i Ni erri ENi ci

1 1 0.164468448 0.04709645766 3.49216175
2 2 0.06868780928 0.02952007611 2.326816808
3 4 0.05758701686 0.01520376206 3.787682064
4 8 0.03584624921 0.006430513883 5.574398852
5 16 0.0096295153 0.002280722496 4.222133695
6 32 0.00277964663 0.0006985817398 3.978985524
7 64 0.001039781276 0.0001901179719 5.469137218
8 128 0.0001265620194 4.706647235E-05 2.689005848
9 256 6.005526369E-05 1.079496434E-05 5.563266519
10 512 5.048493593E-06 2.325942889E-06 2.170514855
11 1024 2.594213457E-06 4.758456168E-07 5.451796476

The data from in Table 1 demonstrates that the approximation method pre-
sented by Theorem 1 converges to f(x). The of observed approximation error is
consistent with the estimate provided by (8). Moreover the estimated value of c
from (8) remains bounded by 5.6 for all i = 1, 6. All this prove the e�ectiveness
of the developed method.
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