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AN ITERATIVE METHOD FOR THE CAUCHY
PROBLEM FOR THE LAPLACE EQUATION
IN THREE-DIMENSIONAL DOMAINS

I. V. BORACHOK

PE3IOME. Mwu po3srisimaemo itepartiiiamii y3arajabHeHuit meton JlammBebepa
nns 3amadgi Komri murst pisasians Jlammaca y 1BO3B’I3HUX TPUBUMIPHUX 00.1acC-
Tax. Leil MeTom € peryIsspu3yiod0io IPOIe Iy POIO /IS OTPUMAHHS CTa01IbHOTO
po3p’a3ky. Ha koxuOMY Kpori irepariiioro meTomy moTpibHO pO3B’si3aTh
OBl KOpeKTHI mpaMmi 3azadi g piBHgHHA Jlanmmaca. Koxna mpama 3agaga
BUPINIYETHCA METOIOM T'DAHUYHUX IHTErPAJIbHUX PIBHAHD i3 3aCTOCYBAHHSIM
IpoeKITitHoro MeToay lanmbopkina s auckperusarii. Hampukinmi naBemeni
JedKi 9ucesbHI Pe3yIbTaTH.

ABsSTRACT. We consider an iterative generalized Landweber method for the
Cauchy problem for the Laplace equation in doubly connected 3-dimensional
domains. This method is a regularizing procedure for obtaining a stable so-
lution to the Cauchy problem, and consists of solving two well-posed direct
problems for the Laplace equation at each iteration step. Each direct problem
is solved by a boundary integral equations method with a projection Galerkin
method for the discretisation. Some numerical results are given and discussed
as well at the end.

1. INTRODUCTION

The Cauchy problem for the Laplace equation has important applications.
For example, it occurs in electrostatics, non-destructive testing, cardiology,
leak identification, etc. This problem belongs to the class of ill-posed linear
inverse problems, since it is unstable with respect to input data [7] (a small
remark here, the input Cauchy data should be compatible [6]). We focus on
the numerical solution of this Cauchy problem in three-dimensional doubly
connected domains.

The Cauchy problem can be solved numerically in a stable way by com-
bining direct methods, such as for example the boundary integral equations
method [4,10-12,15] or the method of fundamental solutions [14] etc, with some
regularization strategy, for example, Tikhonov regularization with an appropri-
ate way of selecting the regularization parameter like the Morozov discrepancy
principle or the L-curve method [4,12,15|. Another approach for numerically
solving the Cauchy problem is to use iterative methods, where the choice of the
termination of the iterations is part of the regularization. Numerical examples
show that iterative methods give good results in the case of noisy data, namely,

Key words. Laplace equation, Cauchy problem, Landweber method, Robin boundary
problem, boundary integral equations, projection Galerkin method, Wienert’s method, R?
domains.
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we can calculate an approximation with an error being equal to the noise level
or even smaller, by selecting a good strategy for the numerical implementa-
tion of the iterative approach. Commonly used methods are the alternating
method [5,8,12] and the Landweber procedure [12]| in combination with the
boundary integral equations method for solving the direct problems needed in
both these iterative algorithms.

In this paper, we apply one recent approach being a generalized Landweber
method proposed in [2], for 3-dimensional doubly connected domains. The main
difference from the standard Landweber method is that we do not need to use
any adjoint operator, that is we do not need to involve any adjoint differential
equation.

We then describe more on the problem formulation. Let Dy C R3, Dy C R3
be simply connected smooth bounded domains with boundary surfaces I'y and
'y, respectively, that satisfy: D; C Ds. Let D = Dy \ D; be the solution
domain and v = (vq,v9,v3)! the outward unit normal to the boundary of D;
this boundary is denoted by 0D =T'1 UTs.

The Cauchy problem is then as follows. We need to find a classical solution
u € C?(D) N CY(D) of the Laplace equation:

Au=0 inD (1)

that satisfies the boundary conditions:
0
u=f and 8—1::9 on Is. (2)

It is not the full solution in D that is of prime interest, it is instead to find

(reconstruct) the corresponding Cauchy data {u, gZ} on the interior boundary
surface I'y.

As mentioned, for the numerical solution of the above problem, we apply
one adjoint-free Landweber method [2] being a regularizing procedure for ob-
taining a stable numerical solution [2]. At each step of the iterative procedure,
we need to solve the Dirichlet respectively the Robin direct problems for the
Laplace equation. We use the boundary integral equations method for solving
the required direct problems in the iterative method, and this choice is based
on good numerical results for domains in R?, see [11,12] as well as for domains
in R3 [4,5], together with advantages such as reduction of the dimension of the
problem and the flexibility in terms of the form of the boundary surfaces. As
a stopping rule for the iterations, the Morozov discrepancy principle is used.

The solution of each direct problem is represented as a combination of poten-
tials [4,9,12]. Based on this representation, we obtain a system of linear integral
equations for finding the unknown densities by requiring that the given Cauchy
data should be satisfied. For discretization Wienert’s method is applied; it is
a Galerkin discrete projection method, where the unknown densities are rep-
resented as a linear combination of spherical harmonics [1] and the boundary
integrals are rewritten over the unit sphere, and to those obtained integrals
certain cubature rules are then applied [13,16].
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An outline of this work is: in Section 2, we consider the iterative algorithm,
the boundary integral equations method for one of the direct problems in the
procedure (having boundary conditions of Robin type) is given in Section 3 and
in Section 4 some numerical results are shown and discussed.

2. THE ITERATIVE ALGORITHM
We consider one of the iterative methods proposed in [2], in three-dimensional
doubly connected domains. At each iteration step, we need to solve one Dirich-
let and one Robin boundary value problem for the Laplace equation. The
algorithm is as follows:

— The first approximation wug of the solution w is calculated by solving the
Dirichlet boundary value problem:

Aug=0 1in D, (3)
up=noonIly and wy=jf on Dy, (4)
where 79 is an arbitrary initial starting approximation on the boundary
I.
— Then the element vy is obtained by solving the Robin boundary value
problem:
Avg=0 in D, (5)
0 0 0
%4—&@0:00111“1 and %—Fm}o:g—% on I's. (6)

— Having obtained ug_1 and vi_1, the approximation uy is obtained from
the Dirichlet boundary value problem:

Aup =0 in D, (7)
up=nronly and wup=f onTy, (8)

where
Mk = Me—1+ Yok—1lp,, 7> 0. (9)

— Then the solution vy is obtained by solving the following Robin boundary
value problem:

Avi, =0 in D, (10)
vy, B Ovg _ Oug
B + kv =0o0nT7 and B + kv =g B on I's. (11)

The iterative procedure then continues by iterating in the last two steps. The
stopping rule is the Morozov discrepancy principle. The initial approximation
is arbitrary for linear problems, and we select it as the zero-function.

The parameter x in the Robin boundary condition is positive: k > 0. The
parameter v > 0 in the iterative procedure is a relaxation parameter, which is
needed for convergence of the algorithm [2].

The Dirichlet and Robin boundary value problems are well-posed in L?(D)
for boundary data from L?(I';) and L?*(T3). Moreover, given f,g € L*(T)
one can show that kh_}ngo |u — ug|lp2(py = 0, where uy is the k-th approxima-

tion generated from the above algorithm and w is the solution of the Cauchy
problem (1)—(2). Furthermore, for noisy data {f‘57g6}, with § > 0, we have
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‘ fé _ Ui’ T <79, for 7 > 1, where ui is the k-th approximation obtained
2

from the iterative algorithm using the noisy data. For further information and

details on these estimates, see [2].

3. NUMERICAL SOLUTION OF THE BOUNDARY VALUE PROBLEMS

To solve each of the boundary value problems used in the iterative procedure,
we use the boundary integral equations method. In the introduction, we men-
tioned some advantages of this approach such as reducing the dimension of the
problem compared with the dimension of the solution domain, the flexibility of
applying it for domains of different shapes or even to unbounded domains, its
super-algebraic convergence for analytical data etc.

In [3], it is demonstrated how to solve the Dirichlet boundary value problem
using a single-layer representation of the solution. The similar ideas can be
applied to the Dirichlet boundary value problem by instead using a combina-
tion of single- and double-layer potentials to represent the solution, thereby
obtaining an integral equation of the second kind to solve [9].

We then turn to the Robin boundary value problem:

Au=0 in D, (12)
Gu +rku=honTl d Ou + KU =w r (13)
B =honli] an B Ku = on I'g,

where k > 0, h € Ly(I'1), w € Lyo(I'2) are given.
To obtain an integral equation of the second kind, we represent the solution
of (12)—(13) as a sum of two single-layer potentials:

Z/g@l (x,y)ds(y), =z €D, (14)
=1

where ®(z,y) = is a fundamental solution of the Laplace equation in

1
Am|z — y|
R? and ¢; € C(I), | = 1,2, are unknown densities.

From the representation of the solution (14) requiring the boundary condi-
tions (13) to be satisfied, invoking properties of single-layer potentials [9], we
obtain a system of linear integral equations for finding the unknown densities:

1
——p1 + K11 + Ki2p2 + 6 (St11 + Si2¢2) = h, on Ty,

2 (15)
1
3Pzt K101 + Ka202 + £ (S21901 + S22¢p2) = w,  on D'y,
where we used the following boundary integral operators for I,r = 1,2:
(Sp)(x /w (xz,y)ds(y), z € Ty, v € C(T)), (16)
0P(x,y
)@ = [v0) L asty) weTivecwy.  am
ov(x)
r,
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Notice here that for the Robin boundary problem the approximation of the
solution on the internal boundary surface I'y needed in the above generalized
Landweber algorithm, can be obtained as

u(z) = (Sup1)(@) + (Siap2)(x), 2 €T (18)

We assume that the two boundary surfaces can be smoothly mapped one-

to-one to the unit sphere S? = {z e R3 : |Z| = 1}. In that case there exist

one-to-one mappings q : ST Ty, 1=1,2, having smoothly varying Jacobian

Jg» 1 = 1,2. Therefore, based on (16) and (17), we can rewrite the system of
integral equations (15) over the unit sphere:

1 . - _ _ -

—§<Z51 + K101 + Ki2¢2 + K <S11¢1 + S12¢2) =h, onS?
1 ~ _ - - i

56252 + Ko1¢91 + Kooga + K (521¢1 + 522¢2) =w, onS?

where ¢1(2) = @i(@(@)), | = 1,2, h(@) = (@1 (%)), B(Z) = w(q2(%)) for T € S
and the parametrised integral operators are for [,r = 1,2:

()@ /ﬁ @) L@ 9 ds(y), (@) € C(?), TS, (20)

(19)

and
(Rut) (@ /¢ )M (3,9) ds(y), (@) € C(S2), 7e 82, (21)
with
Jo D) (@(@), 0. @), L#T,
Lu(@9) ={ R37) o
FE -
(@@ - @) val@) .
IVRTE B |
e Rl(§7 /y\) l=r
F—gl /
where -7
r—1Y ~ ~
O T
Tul@) =7
and
(@@ - a@)" v(a(@)) -
~ a@) - 4w GF el
o ~ 3 3
FlE0) = R0 23 ¢ @@ - 3 4 @n@)
= 7j=1 ~ —~
272 (7) ey

From this representation, it can be seen that the integral operators Sy and
Ky, 1 =1,2, each have a weak singularity.
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For the numerical approximation of the integrals in (20) and (21), we next
use the following cubature rules for n" > 0, see [13,16]:

— cubature for integrals with a continuous integrand:

on' 410 +1

JEGIEOED S S R (oo (22)
S2

p'=0 s'=1

— cubature for integrals with a weak singularity in the integrand:
~ 2nl+1 TL/+1
/ f@)
7 -
S2

/y\| dS(g//\) [ Z Z ﬁp/ bs/f(TaAjilg//\s/p/)' (23)
In the cubature rules (22)-(23), we use the following cubature points:

p'=0 §'=1

@\S/p/ = (Sin 0 cos <pp/,sin03/ sing,, cos 95’)?

!/

with Py = n'LJ—TF 0, = arccoszy, where zs are the zeros of the Legendre
polynomials P/, [1]. The weights of the cubature rules are: ﬁp/ = n/i T
2(1 —22) - "
as = y = , b =ay P(z). Following [13], we use an or-
s ((n +1)Pn/(2’s/))2 s s ; 1(z4) g [13]

thogonal transformation 7% to move the weak singularity in the integrands to
appear at the north pole of the sphere; it is present in (23). The transformation
T% is defined as follows:

T; = Dr(¢)Dr(0)Dp(—¢), =z €S’
with
cos(v) —sin(v) cos(¢p) 0 —sin(v))

0
Drw) | sin() cos@) o |, praw)[ o 1 0
0 0 1 sin(¢p) 0 cos(v)

The cubatures (22)-(23) have exponential convergence for a sufficiently smooth
integrand f, see [16].

For discretisation of the system (19), we use a Galerkin projection method.
The unknown densities ¢;, [ = 1,2, are first approximated by a linear combi-
nation of real-valued spherical harmonics:

n k
Oy~ Q= Z Z (bic,myk]?m’ =12, (24)

k=0m=—k
where d)fg ., are the unknown coefficients, and the real-valued spherical harmon-

ics are:

km —

R ImYk’|m|, 0<m<k,
ReYk,‘m‘, —k <m<0

with Y} ,, the spherical harmonics [1].
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We consider the following discrete inner product, defined from the cubature
rule (22):
2n+1n+1
d) = Z Zupasv(/y\sp)d(/y\sp)v v, de 0(82)7 (25)
p=0 s=1
where the weights and points are generated from (22) for the parameter n > 0.
After approximating the unknown densities in (19) by (24), and by applying
(n + 1)? times the inner product (25) to (19) with Y, km, E=0,....,n,m=
—k, ..., k, taking into account the representation of the integral operators (20)
and (21), we obtain a linear system of equations for finding the unknown coef-
ficients in the representation (24):

n k
BE et )
2n+1n+1 R~
= Szl HpQs (wsp)Yk7m(xsp)a
n k A22 B (26)
2n+1n+1
pZO 521 HpQsW (%p)Yk]?m(@p)7

for K =0,....,n,m = —k,....,k,n=0,1,..., with coefficients for I,r = 1,2
given by:

[\

Jr
Alr K

kk'mm/ (SUSP) X

i M+
H M+

2

+

Z

p:0 s s=1
xsp,ysp +/€Rl($5p,y5p )], l=r

1y
y ( Ir wspvy”)+’QLlr(wspay”)>7 l7é7"
X i) (7
0, l#7r

_|_
() ¥ @), t=r )
where 7s)/ = ngigs,p,

Calculation of the coefficients Agk,mm/ requires many operations. We can
reduce the number of operations by using sequential calculation of smaller ad-
ditional matrices [4,5]. Employing this strategy, we can reduce the number of
operations from O(n®) to O(n®). The coefficients AZk/mm, of the system (26)
need only to be calculated once, and can then be used at each step of the gen-
eralized Landweber iterative algorithm. In fact, we only need to calculate the
right-hand side of the system (26) at each step for different functions h and .

After finding the unknown coefficients (f)ﬁwm [ =1,2, from (26), we can find
an approximation of the unknown densities ¢;, [ = 1,2, from (24).

The solution of the Robin boundary value problem (12)-(13) on the interior
surface I' is given by (18); using the approximation of the densities (24), the
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cubature rule (22) and the representation of the integral operator (16), an
approximation of the solution on I'y is then given by:

n 120 41
~ >~ ~ 7 1~ ~ el
2230 2 (b T T )R T )+

=1 p/:0
gl 620y, 2@ g,)), FETY.

4. NUMERICAL EXPERIMENTS
In this section, we give some numerical examples. The main example is
the numerical solution of the Cauchy problem (1)-(2) by using the iterative
generalized Landweber algorithm with exact and noisy data. However, we first
start by giving results for the Robin boundary value problem (12)-(13) needed
in the iterative algorithm, to see how our proposed boundary integral equations
method and discretisation perform for this direct problem.

= T
1+ Q
,\\ \
0.5+ l \
& 0+ Ll
JeT
0.5 W 2
14 )
\N ‘EE_.
~~\\“'€‘\-=””
-1.5 =l \Q;‘" _ l,
2

T2 Al

FiGg. 1. The solution domain D in Ex. 1

Example 1 (Robin problem (12)—(13)). Let the doubly connected do-
main D (see Fig. 1) be bounded by the two surfaces:

Iy ={x(0,9) =1r1(0,¢) (sinf cos ¢, 2sinfsin g, cos ) , 6 € [0, 7], ¢ € [0,27]},

where radial function 7y is:

r1(0, ) = \/cos 20) 2 — sin?(26),
21+ 2
and
= {z(0,¢) = (sinfcosp, 1.5sinfsinp,1.5¢cos6), 6 € (0,7, ¢ € [0,2n]}.

10
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TABL. 1. Lg-errors for the Robin boundary value problem in Ex. 1

, ter — UnHLz(F1)

[tea ||L2(F1)
2 5.13-E01
4 1.27-E02
6 6.56-E04
8 2.81-E05
10 1.91-E06
12 1.50-E07

The boundary data needed in the Robin boundary problem are generated

from the exact solution: ue,(r) = x5 — 23 + 21, = (21, 72, 73), thus we get:

0
a—Z(aj) + ku(x) = v1(x) + 2z9v2(x) — 2x303(2)+
+r(xd —ad+x), zely, 1=1,2.

Values of the relative Lo-errors for the Robin boundary value problem (12)—
(13) are presented in Table 1. As we can see from this table, super-algebraic
convergence is present. In Fig. 2 are the exact and the numerical approximation
for the function values on the internal boundary surface I'1, obtained with the
discretisation parameters being n = n' = 12.

a). exact solution b). approximate solution

Fia. 2. Exact and numerical approximation for the function values
on the internal boundary I'; for the solution of the Robin boundary
problem in Ex. 1

Example 2 (Cauchy problem (1)—(2)). Let the domain D (see Fig. 3)
be bounded by the two surfaces:

Iy = {x(0,¢) = ri(6, ¢) (sinf cos ¢, sinfsin p, cos ),
00, pel0,2n]}, 1=1,2,

11
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a). exact solution b). approximate solution

FiG. 4. Reconstruction of the solution on the boundary I'y in Ex. 2
(exact data)

where the radial functions are as follows:

ri(0,9) = 0.2 (0.6 + \/1.25 + 2cos(30) )

and

r9(6, ) = /0.8 + 0.2 (cos(2p) — 1) (cos(46) — 1).

We take a harmonic function uey(x) = €*cosz; — e" sinxg as an exact
solution of the Cauchy problem (1)-(2). The necessary data for the Cauchy
problem are generated from the exact solution wu., on the external boundary
T', as in Example 1.

12
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b). approximate solution

a). exact solution

F1G. 5. Reconstruction of the solution on the boundary I'; in Ex. 2
(3% noise)

°
&
([T P
°
&

[t = el oy

0.2
0.1 L 0.1
0

0 100 200 300 400 500 600 700
k

a). exact data b). 3% noisy data

0 50 100 150 200 250
k

FiG. 6. Ls-errors in Ex. 2

The results of the numerical reconstruction of the function w., by the gen-
eralized Landweber algorithm on the boundary I';, for the cases of exact and
noisy data, are shown in Figs. 4-5. Values of the relative Lo-errors at each
iteration are presented in Fig. 6. In the case of exact data, after 700 iterations,

we get

[tex — wroollLo(ry) 0.0078
||uex||L2(F1)

and for noisy data after 88 iterations (noise is 3%) we obtain

Uer — U
|tex — uss|l Lo (ry) = 0.0283,
”Uex”L2(F1)

in both cases the discretisation parameters for the direct boundary value prob-
lems are n’ = n = 10. The relaxation parameter v for the generalized Landwe-
ber method is selected as 0.5 (both for exact and noisy data).

13
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5. CONCLUSION

We employed a generalized iterative Landweber algorithm, which can be ap-
plied to obtain a stable solution to the Cauchy problem, in particular it was
used to find a stable approximation of the function values of the solution on
the interior boundary surface of doubly connected three-dimensional domains.
At each iteration step of the algorithm, we need to solve one Dirichlet and one
Robin boundary value problem. Fach of these direct boundary problems is
solved by an indirect integral equations method in conjunction with a Galerkin
method for the discretisation. Applicability of proposed algorithm and discreti-
sation are highlighted by some numerical examples both for direct problems as
well as for the Cauchy problem.
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ON A BOUNDARY INTEGRAL EQUATION METHOD
FOR ELASTOSTATIC CAUCHY PROBLEMS
IN ANNULAR PLANAR DOMAINS

R.S. CHAPKO, B. T. JOHANSSON, M. V. SHKOLYK

PE3IOME. Posrnaayro 3amaay Komri pekoncrpykmil moss 3cyBy (mepemimen-
H#) IUIAHAPHOIO KiAbUenoaiGHOro JiHIKHOrO HPY2KHOrO Tija, KOJIH BiJOMO
BEKTOD IIepeMilleHHs Ta HAIPYyKeHb Ha 30BHiMHIN rpanuni. [llykane 3Haven-
Hsl IPEeACTaBJIeHE Y BUIJISl €JaCTOCTATUYIHOIO MOTEHIHa/y MIPOCTOrO IIapy
10 BOX T'PAHMUIAX TiIa, IO MICTUTH Bl HeBimoMmi ryctuan. BukopucroByioun
3aJaHi TPAaHUYHI YMOBH, OTPHUMAHO CHUCTEMY iHTerpajIbHUX DIBHAHD IJId 3HA-
XO/IZKEHHS TUX I'yCTUH. JJ0CIiI7KeHO BJIaCTUBOCTI CHCTEMU, 3IIHCHEHO TUCKPe-
Tu3anio 3a cxemoio Hucrtroma ta perynsipusarnio Tixonosa. Haseneni uncemnn-
Hi pe3y/JIbTATU NOKA3YIOTh, IO IepeMillleHHd Ta BiAIIOBigHE IOJIe HAIPYyKeHb
Ha TPAHUI, € He 3aJaHO0 IOYATKOBUX 3HAYEHb, MOXKHA JIOCTATHHO TOYHO
PEKOHCTPYIOBATH #K /ISt TOYHUX BX/AIHUX JAHUX, TaK 1 /I JaHUX 3 [IOXUOKOIO.
ABsTRACT. The Cauchy problem of reconstructing the displacement field of a
planar annular linear elastic body from knowledge of the displacement vector
and normal stress (traction) on the outer boundary is considered. The sought
field is represented in terms of a single-layer elastic potential over the two
boundary curves of the body involving two unknown densities. These densities
are found by imposing the given boundary conditions, rendering a system of
two boundary integrals to be solved for the densities. Properties of this system
is investigated, and discretisation is done via a Nystrom scheme together with
Tikhonov regularization. Numerical results are included showing that the
displacement can be accurately reconstructed in a stably way both for exact
and noisy data together with the corresponding stress field on the boundary
part where no information is initially given.

1. INTRODUCTION

Let D C R? be an annular planar domain with sufficiently smooth boundaries
I'y and I's. Each boundary part is a simple closed curve, and I'; is contained
in the bounded interior of I'y. The domain D is then the bounded region in-
between I'y and I'e as illustrated in Fig. 1. We consider D to be a representative
for a planar linear isotropic elastic body.

In some applications it is not possible to take measurements throughout the
boundary of D. There can be a hostile environment or the body can be partly
buried making only a part of the boundary accessible for measurements.

We assume that the external boundary I's is accessible for measurements
but not I'y. Our aim is to reconstruct the missing data on I'y. We work in
the setting of elastostatics (static elastic deformation), and, as mentioned, D is

Key words. Elastostatics, Cauchy problem, boundary integral equation method, trigono-
metrical quadrature method.
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considered as a planar linear isotropic material. The displacement vector u =
(u1,u2) € C*(D)NCY(D) describes the deformation of D. Under the standard
assumptions of elastostatics (in particular small deformations of an isotropic
and homogeneous linear elastic material) the displacement field satisfies the
Navier equation

pAu+ (A + p)grad divu =0 in D, (1)

with the constants g and A (u > 0,\ > —pu) being the Lamé coefficients
characterizing physical properties of the body.

We assume that the displacement and normal stress (the traction field) can
be measured on I'y, giving respectively the Dirichlet boundary condition

u=f on Iy (2)
and Neumann boundary condition
Tu=g on Ts. (3)

The vector functions f and g are given, and are commonly termed as Cauchy
data. The element T'u is the stress tensor (due to molecular interactions from
the deformation) in the outward unit normal direction to the boundary and is
denoted as the traction. The traction can be expressed as

Tu= Mivuv + 2u(v - grad)u + pdiv(Qu)Qv,

where v is the outward unit normal vector to the boundary, and the matrix Q)

01
-1 0
way to express the last term in the right-hand side in the definition of T'u in
the planar case, which otherwise has to be written in terms of a projection of
a rotational field.

The Cauchy problem in elastostatics is then to solve (1)-(3), and in particu-
lar to find the displacement and traction on the boundary part I';. Uniqueness
is clear from standard results of elliptic equations such as the Holmgren the-
orem. However, the solution will not in general depend continuously on the
data, that is the Cauchy problem is ill-posed. We tactically assume that the
data are compatibly such that there exists a displacement field u.

In [3], an overview is given of a regularizing method based on a single-layer
approach for the stable numerical solution to the corresponding classical Cauchy
problem for the Laplace equation (for both two and three dimensional regions).
The method surveyed builds on ideas given in [6] and [1]. We continue the work
of [3], by extending the single-layer approach to the above Cauchy problem in
elastostatics.

The Cauchy problem for elliptic equations is classical, and it is not possible
in this work to give adequate overview and references. To at least guide the
reader to some works, see the introduction in [2]. It is stationary heat trans-
fer problems that make up the majority of the works on numerical methods
for Cauchy problems, the corresponding results for elasticity is more limited.
However, the first and third author of the work [8] have been active on inverse
problems in elasticity, see for example [8,9] and references therein (there are

is given by Q) = ( . The introduction of the matrix () makes for an easy

17



R.S.CHAPKO, B. T. JOHANSSON, M. V. SHKOLYK

plenty more from these authors). However, the numerics is via the boundary
element method or the method of fundamental solutions for simply connected
domains. In [4] an iterative regularizing method is developed for the Cauchy
problem of elastostatics in a half-plane containing a bounded inclusion.

For the outline of the work, in Section 2, we recall the fundamental solution
to the Navier equation and discuss some classical integral formulations. In
Section 3, the Cauchy problem is reduced to a system of boundary integral
equations by representing the solution in terms of a single-layer solution over
the boundary curves giving two unknown densities to determine. Furthermore,
by parameterising the boundary curves, a parameterised system of integral
equations is obtained. Properties of system is stated, see Theorem 1. Then,
in Section 4, the parameterised system is discretised using a Nystrom scheme.
The discrete linear system obtained is ill-conditioned due to the ill-posedness of
the Cauchy problem, hence Tikhonov regularization is invoked for its solution.
In Section 5, numerical examples are presented for two different planar regions,
showing that accurate and stable numerical results can be obtained both for
the displacement and traction on the boundary part I';. Some conclusions are
given in the final section, Section 6.

x2

Iy

Fic. 1. Example of an annular planar domain D with boundary
parts I'; and T's

2. REDUCTION TO INTEGRAL EQUATIONS BY BETTI’'S FORMULA

Reduction of the Cauchy problem (1)-(3) to a system of integral equations
involves the use of the fundamental solution to the equation (1). In this section,
we recall that fundamental solution, and for the sake of completeness, we state
some direct representation formulas for the solution of (1)—(3). However, these
representation formulas will not be further used, instead, in the next section,
we introduce an alternative single-layer approach.
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It is known [7] that the fundamental solution of the Navier equation (1) is
given by

O Cy
where
A+ 3p A+ p
Cr=—F—-- 2= o
(A + 2p) (A + 2p)
and )
U(z,y) =In , Ty eR® xz#y.
[z -y
Here, I is identity matrix (of size 2 x 2), J is defined by the formula
T
ww 9\ (=

An analogue of the Green’s formula for the Laplace equation is the so-called
Betti’s formula for the Navier equation; details and derivation of this formula

can be found in for example [7|. Using Betti’s formula, we seek the solution of
(1)-(3) in the form

u(w) = [ B2 0] 01(y) ~ B y)valy) dsy) + B@), we D, (5)
I

where

B() = [ 2@ 0)9(w) - 1,0 0)]" £0)ds(v).

I

The unknown vector-densities ¥; and 1o represent the sought values (Cauchy
data) on the inner inaccessible boundary I'1, that is

Y1(z) =u(x) and to(x) =Tu(z), =€l

The representation (5) is then matched against the Cauchy data, that is
against the displacement u(x) respectively traction Tu(x) on I's. Using classical
jump relations for the potentials in (5), we obtain the following system of
integral equations of the second kind,

301 = [ I )] ) dsty) + [ @ y)iaty) dsty) = B,

T I'a
3020~ To [ [1,8(00))T a(0) ds(o)+ ©
I't
+ / 02, y)bs(y) ds(y) = TB(x),
I'a

where z € T';.

The described method of reducing the problem (1)—(3) to the above system
of integral equations (IE) is naturally denoted the direct integral equation ap-
proach. We do not employ this but consider a related alternative strategy based
on single-layer potentials.
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3. REDUCTION TO INTEGRAL EQUATIONS BY POTENTIAL THEORY
To reduce the Cauchy problem (1)—(3) to a the system of integral equations,
we apply what is termed as an indirect integral equations approach based on
potential theory.
We seek the solution of (1)-(3) as a single-layer elastic potential

u(z) = / B (2, )1 (y) ds(y) + / (e, y)pr(y)ds(y), z€D  (7)
I Iy

with unknown vector-densities 1 and ¢2. We have the following result.

Proposition 1. The single-layer potential (7) is the solution of the Cauchy
problem (1)—(3) provided that the densities 1 and a2 are solutions of the fol-
lowing system of integral equations

/‘P(fr,y)sm(y) dS(y)+/<1>(w7y)s02(y) ds(y) = f(z), =z €Ty,

T 1)
/Tx‘b(x,y)sol(y) ds(y) + %wz(ﬂf)Jr 8)
Iy
+ [ Tblay)ea) dsty) = g(a), @€ T
1)

A proof of the proposition is obtained by matching the representation against
the given Cauchy data involving classical jump relations for elastic single-layer
potentials (for formulas, see [5,7]).

There are singularities present in kernels in the above system. It is advan-
tageous, both for theoretical and numerical investigations, to parameterise the
system and make the singularities explicit. For the parameterisation, assume
that the boundary curves I'y and I'y each have a parametric representation

I = {xz(t) = (:cil(t),xig(t)) 1t e [0,271’]}, 1=1,2,

where x;; and x;2 are both 2n—periodic and twice continuously differentiable.
Using the representation of the boundary curves, we obtain from (8) the
parameterised system of integral equations,

L zf’TKm(t, P (r)dr + zer?Q(t,T)ug(r) dr = (1)
)

2 2
3= [ Noy(t, m)pa(7) dr + 3 mt + 57 [ Naao(t, m)pa(r) dr = g(t),
0 0

2 [z (t)

where
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M2 (t,7) = — (xi(fliztfj_(;)j)(}ﬁf;(t) CsI + Oy (wilt), z5(7)) |,

t %17 when =y},
J(i(t), mj(r)) = J(2i(t) — ;(7)), t#7 when i=j,
and
7 ) )"
J(zi(t), zi(t)) = TEOP
We have used the notation
f(t) = flxa(t), g(t) = g(x2(t), pilr) = @i(wi(7))|23(7)], i=1,2,
and defined

2u 4N+ p)
C3 = — d Cp=——7—.
5T T hta2n MMOMET N
The kernels Koo and Noo (to be precise the component Mj,) have singu-

larities that can be written in an additive way using special weight functions.
Put

~ C 4 t—
Kii(t,7) = Ki(t,7) — Al g2 I, i=1,2, (10)
2 e 2
where
Kii(t,7)+%ln{451n2u}l t#£T,

Ki(t,7) =

%ln PFAC )‘QI—i— CQJ(ZU@( ), xi(t)), t=rT.

Similar manipulations can be done for the kernels N1; and Noo. Denote by

t—T1

C
MA(t,7) = M3(t,7) + = cot

5 5@ i=12
Then,
Mili(taT) -Gt 5RQ,  t#T,
M3(t,7) =
6123 Z |2 Q, t =T.
As a result of these expressions, we obtaln
~ 03 t—T
N;i(t, 7) = N;(t t 1 =1,2 11
ll( )T) Z( 7T)+ 2|x;(t)’C0 2 Q) 1 <~ ( )
where
Cs t—r1
Nii(t,T) 2|:c 6] cot - Q, t 75 T,

Ni(t,’r) =
M){M?’(t t) + MA(t, t)} t=r.

Using for example L’Hopital’s rule, it is straightforward to verify that the
components MZ% are at least continuous across t = 7:
(1) - Q1)

2 _
Mt === o

[031 + O T (24(t), xi(t))} L i=1,2.
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Introduce the integral operators:

2m -
(Siipi)(t) = % [Kl‘(tﬂ') — %ln {% sin? &5 T}I} wi(r)dr, i=1,2,
0
2
(Siju)(t) = 5= [ Kij(t,7)pj (1) dr, 4,5 =1,2, i # ],
0
2m -
(Lii/li)(t) = % J [Ni(tﬂ') + 22 (D] ( )] cot 55T TQ} Mz( )d 1=1,2,
2

(Lijp)(t) = 5= Of Nij(t, T)py(T)dr, 0,5 =1,2, i#j.

Taking into account the above expressions for the singularities in the kernels,
the system of integral equations (9) can be written in operator form:

{ (S2111) () + (S22p12) (t) = f(2), (12)
(Loypn)(t) + ((31 + Lo2) p2) (t) = g(t).

It can then be shown that for the operator corresponding to this system, the
following holds.

Theorem 1. The operator M : Lo[0,27] x L9[0,27] — L2|0,27] X L2|0, 27]

defined as
So1 So2
M =
(L21 I+ L22>

15 injective and has a dense range.

This follows in the same way as for the corresponding theorem for the Laplace
operator; for details in the case of the Laplace operator, see [3].

4. FULL DISCRETIZATION AND TIKHONOV REGULARIZATION

For the discretization of the system (12) of integral equations, we use quadra-
tures rules that are based on trigonometric interpolation. The quadrature rules
presume introducing an equidistant mesh of nodal points,

tj:%j’ j=0,2n—-1, neN. (13)

The operator Sag in (12) contains a logarithmic singularity. We therefore use
the quadrature
2n—1

1 4
27T/ln{esm } )dr ~ Z R;(t) (14)

where R;(t) is a weight function given by

1 Q — 1.
e sl )
k=
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For a singularity of the kind contained in the operator Lgs in (12), we apply
instead the quadrature formula

1 27 ¢ 2n—1
27T/cot 5 f(r),dr =~ Z T;(t) f(L5), (15)
0 =0

with a weight function

n—1

1 1
Ty(t) == —— > sink(t —t;) - 5 sinn(t —t;).
k=1

Since we work with 27-periodic functions, it natural to use the trapezoidal rule

2n—1

2
;[mmw;zym. (16)
0 J=

Derivation of the quadrature formulas (14)-(16), and proof of their order of
convergence can be found in [5].

For a partial discretization of the system of integral equations (12), we apply
the quadrature formulas (14)-(16) on the equidistant nodal points (13). After
then also collocating at these points, we obtain a system of linear equations
) 2n—1 2n—1 1~ c
b ZO Kor(ti, t)pj + ZO [%Kﬂtmfj) - %Rj(ti)f] poj = f(ti),

- j=

J
2n—1

o ZO Noi (ti, t) paj+ (17)
]:

2n—1
- o~
{2wél(ti)1 T J;O {ﬁ]\@(thta’) - W&NTJ‘(WQ} } p2; = g(ti),

where i = 0,2n — 1, and
g = pe(t;), k=1,2, j=0,2n—1.
In a matrix-vector form, the system (17) can be written as
Aji=F. (18)

As noted earlier, the problem (1)-(3) is ill-posed (there is no continuous
dependence with respect to the input data). Hence, the system (12) is also
ill-posed. A consequence of this is that the discrete linear system (17) is ill-
conditioned, since it is obtained from (12). In order to obtain a stable numerical
solution to (12), a regularizing method is needed. One such method is, for
example, the classical Tikhonov regularization.

Tikhonov regularization for a linear system Ax = b is based on minimizing
the functional

min | Az — B[ + afl«|3,

where the number a > 0 is the regularization parameter to be appropriately
chosen.
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The minimization problem is reduced to the approximation of z, from the
equality
(ol + A*A)zy = A™D,
where A* is adjoint operator of A.
In the case of a discrete system as (17), the usual transposed matrix AT acts
as an adjoint operator to the matrix A. Therefore, the regularization for (17)
consists in finding ji, from the system

(ol + ATA)ji, = A'F, (19)

where the matrix A and vector F are determined in accordance with (17).

Taking into account the representation (7) of the solution to the Cauchy
problem (1)—(3) and classical properties of the single-layer potential, the dis-
placement vector v and traction Tu can be constructed on the inner boundary
Ty by the formulas

u(z) = (S1p1)(w) + (S122)(z), =€l

T () a) @ . s

We generate an approximation to the quantities in discrete form by the formulas

2n—1 1 C 2n—1
1
wor(t) ~ 3 | et = SR st 5 3 Kialtinty
=0 =0 (20)
i=02n—1
and
2n—1 C
.~
Tu(z1(t:)) ~ + Z [ Ni(ti,t;) MTJ(E)Q] P+
7= o 21
1 2n—1 ( )
7n Z N12(ti7tj)u2j7 ’LZO,QTL—I,
=0

where 5 is the solution of the regularized system (19).

5. NUMERICAL EXPERIMENTS
We shall present numerical results for two different configurations.
Example 1. Consider the annular domain of Fig. 2 having boundary curves

I, = {xl(t) = (1.2 cost, 1.61/0.4sin2¢ + cos?tsint): t € [0,271]},

Iy = {:L‘z(t) = (3 cost, 4v/0.45in2 t + cos? tsin t): telo, 277]} .
As the exact solution to compare our numerical reconstructions with, we take
Uez () = P1(x,y"), x €D,
where @1 is the first column of the matrix constituting the fundamental solution

® in (4), and y* is an arbitrary point which does not belong to the domain D.
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Then boundary values of the solution u., can be calculated exactly by the

FiG. 2. Domain in Example 1

formulas
fem_i(ac) =®y(x,y*) and gm_i(m) =T (x,y"), xely i=1,2.
(4) (B)

« 6=0 « 6 =0.03 6 =0.05
E-10 | 3.94E4 E-2| 3.97E-2 4.18E-2
E-11 9.37E-5 E-3 2.81E-2 4.92E-2
E-12 2.92E-5 E-4| 3.65E—-3 | 5.36E — 3
E-13 | 2.59E - 5 E-5| 7.39E-3 8.56E-3
E-14 1.49E-4 E-6 1.02E-2 1.76E-2
E-15 1.33E-3 E-7 3.32E-2 5.33E-2

TABL. 1. Error in the reconstructed element fi; compared with
the exact solution, for different parameters « in the case of (A)
exact and (B) noisy data with noise level §

Let the Cauchy data (2) and (3) be generated as f = fez 2 and g = gex 2,
respectively. Concerning parameters, we use y* = (0,0), the Lamé coefficients
are A = 2, u =1, and the discretization parameter n = 32 in (13).
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Fi1G. 3. Approximated (——) and exact (- --) solutions of fi;

(left) and fi2 (right) for noise level §

Due to the ill-posedness of the Cauchy problem, we apply Tikhonov regu-
larization as mentioned in the previous section. The regularizing parameter «
is chosen by trial and error. The optimal regularization parameter used is as
given in Table 1 for exact data and for noisy data having 3% and 5% random
pointwise error added into the data, respectively.
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(c) 6 =0.05

Fia. 4. Approximated ( ) and exact (- - -) solutions of g11
(left) and g12 (right) for noise level &

The number in bold is the value chosen for a.
To be more precise about noisy data, we point out that noisy data gs is

generated from the exact value g as follows

g5 =9+62n—1)9llr,»
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with noise level § and a random value n € (0,1).

The approximation of the displacement fi = (fi1, fi2) and traction g1 =
(911, 912) on the inner boundary I'1, are calculated according to the formu-
las (20) and (21). The obtained results are shown in the Fig. 3 and Fig. 4.

As expected, the displacement vector is more accurately reconstructed than
the traction. However, it is pleasing to see that also with noisy data, the
reconstructions of the traction components follow the exact values. When more
noise is added, the accuracy decreases but in a stable manner meaning that the
results still resembles the exact values.

To convince the reader that the results presented are not optimised but are
of the form to be expected for other configurations and data, we present results
for a different domain and set of Cauchy data.

Example 2. In this example, we consider the doubly connected planar
domain shown in Fig. 5. The boundary curves have parametric representation
given by:

Iy = {z1(t) = (0.7cost,0.72sint + 0.6 cos’t) : t €0, 2m)},
Ty = {22(t) = (1.8 cost, 1.68sint + 1.4cos’t) : ¢ € [0,27]}

) 'D\/' g T

Fic. 5. Domain in Example 2

To have some data to compare against, we generate the Cauchy data artifi-
cially. This means that we first solve a Dirichlet boundary value problem, with
values on the boundary curves as

. [ x1+t 2 . . .
fi(z) = <5$1 - 952) , = (xr1,me) €Ty, =12

Let the Lamé parameters be A = 2, u = 2, and the discretization parameter is
set to n = 32 in (13).
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(4) (B)

a 5=0 a | §=0.03 | §=0.05
E-7 | 6.47E-5 E-1| 1.52E-1 2.11E-1
E-8 | 1.42E-5 E-2 | 245E-1 2.97E-1
E-9 | 4.27E-6 E-3 | 3.78E-2 5.66E-2
E-10 | 1.22E - 6 E-4 | 2.55E —2 | 3.13E — 2
E-11 | 2.61E-6 E-5| 8.57E-2 8.01E-2
E-12 | 2.59E-5 E-6 | 1.71E-1 2.08E-1

TABL. 2. Error in the reconstructed element fio compared with
the exact solution, for different parameters « in the case of (a)
exact and (b) noisy data with noise level ¢

Let the solution of the above Dirichlet problem be given as a single-layer
elastic potential (7). After performing the similar manipulations that have
been described for the Cauchy problem (that is parameterisation of the obtained
system, making singularities explicit and then discretize), we obtain a system
of linear equations
2n—1 C 2n—1

=~ 1
> [%Km(tivtj) - 2Rj(ti>I] pmjt o > Kty t) g = fm(wm(ti)),
Jj=0 J=0
i=0,2n—1,

m=1,2, [=3—m.

Solving for pi,;, we can then calculate the Neumann boundary values by the
formula

Im(Tm(ti)) =
2n—1

L i ~ Cs ~
~ (1) + [N (tit)) — ————Ti(t:)Q| pimj+
2 |zt ()] ; on” "V ol ()] " (22)
1 2n—1
+%2le(ti,tj)mj, i=0,2n—1, m=12 [=3—m.
j=0

The Cauchy data in (2) and (3) is then generated as f = fo and g = g¢o.

As in the previous example, we have to choose a regularization parameter a.
The values used are given in bold in Table 2.

The numerical approximation of the Cauchy data on the inner boundary
I'1 is found via the formulas (20) and (21). The results obtained are shown in
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Fig. 6 and Fig. 7. It should be noted that in this example what is denoted as the
exact Neumann data in the Cauchy problem is in fact an approximation since
it is generated via solving the Dirichlet problem as explained above. But since
the direct Dirichlet problem is well-posed and the discretization parameter is
sufficiently large (n = 32), a high-order accuracy of the data generated by (22)

is expected.
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Fi1G. 7. Generated (- - -) and approximated ( ) solutions of

g11 (left) and g1 (right) for noise level §

The obtained results are similar to those found in the previous example.
The traction vector is also here reconstructed with less accuracy than the

placement as expected but follows the exact solution.

6. CONCLUSION
A regularizing method based on the elastic single-layer potential was derived
for the Cauchy problem in elastostatics. The Cauchy data in the form of the
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displacement and traction is given on the outer boundary curve of a planar an-
nular and linear isotropic body. From the single-layer representation, a system
of boundary integrals to be solve for two unknown densities were obtained by
matching against the data. It was shown that the system has at most one solu-
tion, and that there exists a solution for a dense set of square integrable data.
Discretisation was done via a Nystrom scheme in conjunction with Tikhonov
regularization. Special care was taken to handle the various singularities in
the kernels. The suggested approach performs well as verified by two numeri-
cal examples. The reconstructions corroborated well both for the displacement
vector and traction with the sought solutions, also in the case of noisy data.
The traction vector is naturally found with less accuracy. Overall, the outlined
approach is a lightweight and flexible method for elastostatic Cauchy prob-
lems, and generalizes naturally earlier work [3] on a single-layer approach for
the Cauchy problem for the Laplace equation.
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HETEROGENEOUS MODEL OF THE PROCESS OF
THERMAL CONDUCTIVITY IN A MULTILAYERED
MEDIUM WITH THIN LAYERS

L. M. DIAKONIUK, YA. H.SAvULA

PE3IOME. Mu po3risigaeMo HOYaTKOBO KPAHOBY 3a[a<dy TEIIONPOBIIHOCTI
B 6araTomapoBOMy CepeoBHIIl 3 MajmMu ToBImHAME miapis. IlobGymosamo
KOMIT' IOTEPHY MO/Ie/b, M0 A03BOJIsI€E BPAXOBYBATH MaJii TOBIIWHU MIAPIB Ta
VHUKATU TPYAHOLIIB, sIKi II0B’A3aHi 3 YNCEIbHOIO peasiizamieio 3aga4i. loseme-
HO TeOpeMy NPO HeIePEePBHICTh Ta eINTHIHICTD OimiHiitHnx popm Bapiariitnmx
piBHsHB. s 9HCEIHPHOTO TOCTIKEHHS PO3B’ 3Ky BUKOPHUCTAHO HAITIBAHAII-
TUYHMI MeTO/ CKIHYEHHUX eJIEMEHTIB.

ABsTRACT. We consider initially the boundary value problem of thermal con-
ductivity in a multilayered medium with small layer thicknesses. A computer
model has been constructed, which allows to take into account the small thick-
nesses of the layers and avoid the difficulties associated with the numerical
implementation of the problem. The theorem on the continuity and ellipticity
of bilinear forms of variational equations is proved. The semi-analytic finite
elements method used for numerical investigation of the solution.

1. INTRODUCTION

Modern materials and constructions, that are used in an instrument making,
often have a difficult, heterogeneous structure. Natural environments physical
processes areinvestigated in that, too in swingeing majority is heterogenous. It
is known that at the mathematical design of problems in such environments
there are two going neartaking into account of them difficult structure. The
first approach envisages the use of process of homogenization, and second — in
development of multiscale strategy. At development of the second approach,
that allows more exactly to take into account the features of structure of en-
vironment, often there are the difficulties, constrained with the use of numeral
methods( in particular, at application of Finite Elements Method) in areas
that contain the thin including. In such cases build various-scale mathematical
models to development of that the devoted works of many authors, in particu-
tar [1], [3], [4], [5] [7]

In this work we numerically construct a heterogeneous mathematical model
of the process of heat and mass transfer in multilayer environments, where the
thicknesses of layers are much smaller than other characteristic sizes.

Key words. Heat equation, heterogeneous model, finite elements method.
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2. FORMULATION OF PROBLEM

Let’s consider the problem of heat conductivity for a multilayered medium
of complex shape, which occupies an area

V=UVek=1nVi(Vi=0,i#]

with different thermal characteristics of the material of each layer. Boundary
V}. of each regions consists of the lateral surface Sy and front surfaces S, and
S;" and is considered Lipschitz (Fig.1).

FiG. 1. The domain with thin layer

We denote Jy the set of indexes of the regions Vi corresponding to "thin"
layers whose thickness is small in comparison with other characteristic sizes.
We will denote J3 the set of indices of other areas. We associate each of the
regions with some curvilinear coordinate systems related to the median surface
of the area. The Lame coefficients of these regions are given by the relations

Hij = Ay(L+ kijod), Hyj = Agj(L+ kyjod), Hyj = 1.

Here A}, A} are the Lame coefficients of median surface, ki, kJ, are coefficient of
curvature of the median surface. Let’s consider the process of heat conduction
in the described region, assuming that on the outer boundary there is a heat
exchange according to Newton’s law, and on the interfaces there is an ideal
contact [2].

3. TRANSFORMATION THE THREE-DIMENSIONAL HEAT TRANSFER PROBLEM
TO TWO-DIMENSIONAL IN A THIN LAYER

Consider a thin layer, where thickness is small compared with other char-
acteristic of its size, occupying the area V;. Let us itroduce the curvilinear

coordinate system (a{,ag,ag) associated with the median surface €2; of the
region with the boundary I';. The coordinate lines of this surface are the lines
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of major curvature. This

S o Iy  h
Vi = {O‘{vaéva‘é : (04]1,04%) € Qj7 ) < a% < EJL

where )5 is a two-dimensional region with a Lipschitz boundary on the median
surface of the layer, h; is the thlckness of the layer. We will assume that on
the facial surfaces ag,, = %] and ozg = — the heat fluxes ¢} and g, are given
respectively, and on the lateral surface there is a heat exchange according to

Newton’s law

0T}
X515 = (T; - To), (1)

where A; is the coefficient of thermal conductivity, n is the external normal
to the surface, Tj is the temperature function of the layer, T, is the ambient
temperature. At the initial moment of time, the temperature distribution is
given by the ratio

Tj(O&{,O&%,O&%,O) :TS(O‘JDO‘%»O‘%)' (2)

The process of thermal conductivity in the orthogonal coordinate system asso-
ciated with the median surface of the layer can be described with the following
equation:

oT; 1 0 Hq;Hy; OT;
ijjiaj =2 g . GaN ]f[ Jia L) + quj, (3)
T 2 Oog i 0o

where c¢; is a coeflicient of specific heat capacity, p; is a coefficient of density, g,;
is the density of internal heat sources, 7 is the time parameter. Considering that
the thickness of the layer is small, we assume that the distribution of the desired
function of temperature over the thickness of the layer is according to the linear
law. In accordance with this assumption, we will supply the temperature in
the region in the form

S o 20 o
T, (o o ) ) = ta(ad )+ 2 2o 7). ()
J

We substitute (4) into (3) and orthogonalize the non-relation of the Bubnov-
Galerkin equation to functions vi(a?, ) and odva(ad, od), wheare vi (o, o),
va(af, ad) € W3(9).

We select and calculate the integral over the variable aé in the interval
%, 7]

5,— 5] At the same time, let’s take into account that the element of
the volume and we use development in the Macrolena series of quantities
1/AJ (1+ kl)ad, 1/AJ (1 + kJ)ad. Having neglected the magnitude O((h;k?)2),

i = 1,2 and taking into account the fact that vi(ad,ad), va(al, od) are arbi-
trary functions, we obtain the following key equations with the respect to the
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unknown functions ¢}, ¢ :

ot R s by A3 ot]
i + ey U k) E Z( {4700 AT oad”

h? o9 Aj " . 5
172 7 - ]

i o
s h
+(1 - k{é)(l - k:%—]

2 2 J
hi @ A ot)
:Z( AJJAJ da J()\‘ AJ (ké Z_k]) Otj>+
9 (A-A?H 0t D (L4 k0 kg :
34745 007 Al 9ol 12 27 n

(1= k)0 = kg5, + 5

— —q2 =0.
hj a2
We use the following notation

o
21}

—A; ——q:{ foroz%:
8a3

qu(1+ k’l%)(l + k’20‘3)d0‘37

t w‘? w‘us' Mg?

qo(1+ K o) (1 + K)ol oddad,

h;

5

By performing similar transformations to the boundary condition on the lateral
cylindrical surface, we obtain boundary conditions for functions ¢} t% in the
form

_(Ajhj ot 1\h3

j oty Jy Wi e
Aj P 6 AJ (k?,—i kz)@aq )ni = a(hjt] krtz —11),
1 ' (7)
1ARS ol hj A\ Ot h2 . o
j A Oy Mg g e
(6 A] L (K, — k] )804 3 4 ao/f)m = of G kit] 3 t, — t5)

h;

3
f:/h. c(1 kr%)da:«zv

ol & m‘h

h] (14 K ag)a3da3,

2

k). = k/n? + kjn3, (n1,n2) are the coordinates of the unit normal vector to I
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Here the element of the surface area
ds = A 1+ kFad)d
where A}, = AJn? + An3.
In the same way from equation (6)—(7) we also obtain the initial conditions

L . h2
h;t] (o, o, 0) + Fj(k] + k])t] (ozl,oz2,0) = t(l),

h2 L I o
%2 (k] + k)] (o 0, 0) + Bto(ad, o, 0) = 8,

where

0 L:

tm:/h J(1+ kjod)(1 + kjad)dad,

J

2

/ TJ 1+k] )(1—|—kjoz3)a3doz3

Thus, for a thin layer it is poss1ble to reduce the dimensionality of the problem
to two-dimensional relative curvilinear coordinates on the median surface. As a
result, we obtain a mathematical model of the process of thermal conductivity
in a thin layer, consisting of equations (5), (6), boundary conditions (7) and
initial conditions (8).

4. DESCRIPTION OF THE PROCESS OF THERMAL CONDUCTIVITY
IN A MULTILAYER AREA
Considering the results obtained in the previous section, the heterogeneous
mathematical model of the heat conduction process in a multilayered medium,
can be presented as the following system of differential equations of different
measurements in spatial coordinate

3
8T] 1 0 )\.HleQj%

Cipi—2L = i
o7 =1 Hlezj aai J Hlj oy

)+ aujs J € Vi, (9)

cjpihi—— 8 +¢ipj
2

h2 . . 0t(j)
) ()9 _
Lk + )2
) A(]) at(])
(= )+

h.
+ ) (—1~ (N —=
; Agj)Agj) 80&53) AEJ) (9042(])

oo AD, ). oty (10)

8—i ) ()
6A(>Aoaaau>“M_A@>(k&% ) o)t

u+kmh>u+km2)gw+
h yhis G-
-k =0,

+(1— kY
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h2 otV ( j) h at( )

2 2 ( ) (4)
h? o AV ) Ot

— 6A§J)Agj) aa(J)( J A(J) ( 3—i i aa(j)

hy o A, oY (11)

T340 400 500 O 40 80@”
) (])++

h;j h;
+L R+ R

h h; 4N
1— gDy k(]) G- 122 _ o —0.
+( 15 )( 5 L)g,)) T + , P
On the boundary with the external environment, the desired functions must
satisfy the relation

oT.
(_)‘jaij - a(TJ - TCk))‘Sj =0, (12)
) .
_Z Aj h 8t1j 1 )\jhj (kz(sj)' B k(j)) 8tg]) i =
D 9o 64D TN ga) (13)
oM G
= a(h;ty” + ]Tkrj t5” — 1),
2 . ;
Z(u 3 o) _k(j))atgjl) LA oty -
6 A() i i 8a§j) 3 Az(‘]) 8a§j) 14
(2)
1 N h' .
= a(Gh3k 1Y) + =ty —15)
and initial conditions
Tj(a{,ag,aé,O) T](al,aQ,ag) for j € J3, (15)
. h2 . N
hit (a1, 02,0) + -2 (Y + kY (0, 02,0) =49, for j € Jo,  (16)

6

hQ. B s
- LD + BN (0, 09, 0) + é(tgﬁ(al,%m =10, forje Jo.  (17)

For a complete description of the mathematical model, it is necessary to intro-
duce the conjugation conditions, which describe the equality of the functions
of temperature distribution and heat fluxes on the boundary of the collisions
of the regions:

T1j1 |Sj - T1j2’ (18)
oT; oT;
)\jl aél |Sj = j2 87‘;2 * (19)

If the contact layer is thin, it should be taken into account that the temperature
on the upper face surface is given by the ratio
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and on the bottom, respectively
Tj, = 72 — 45,

Taking into account all the described relations, we obtained a closed system
of differential equations of the second order for the determination of unknown
unknown temperature functions.

9. VARIATIONAL FORMULATION
According to the Bubnov-Galerkin method, we construct the variational
equations of the problem (9)-(19). For the transformation of the integrals
we use the following formula, derived from the Green’s formula:

—/ div()\Vu)vdV:/ AVuVodV — /)\UdS (20)
v v

Consider the variational problem of thermal conductivity in a multilayered
medium with subtle inclusions, that is to find functions u, which satisfy the

equation
ZAk(Tk,uk)—i— Zaj(tj,u ij th,u?)

keJs jEJ2 jeEJ2

keJs J€J2

(21)

Mk(Tk,uk):/ & pE T dv,
Vi

oT,
Ak(Tk,uk):/ )\kgradugradidv—/ AR kg s+
Vi Sk v

+911/ aTckude5+912/ aTxuds,
S+ 5-

aj(tj,uj):/

Q;
h

1—|—k‘1§

77 Au d) + / /" Gu? dT +
Ly

ho . : .

+g21 )(1+ k2§)(tjl+ + ) (u] "+ ud")dO+
h = N

+9g22 (1- k1§)<1 - k2§)(t1 —ty J(up —uy )dQ,

|«

Qjt

.
mj(tj,uj):/ th,MujA{A%daldag, (22)

Q;

o ot

or’ or”’

6t1 8751 8t2 8t2 T T 8U1 0u1 6“2 8’&2 T

)

tT - (t17t2)7 UT - (u17u2)7 t/T =

th=(

3a1 ’ 8&2, 80&1 ’ 6042 80&1 ’ 80&2’ 60&17 80&2
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N hi 0 Aj(hﬂ'ﬁék%—k{) 0
T 0 N i 0 N (hj)zék%—k{)
— /\j(hj)i(ik%*kjl’) 0 | | AJ% 0 )
0 /\j(hj)26(k%—k{) 0 )\j%j
- ( e I W)k ki))
WK K e )
a— ah? a2 kr
— .2 ’
a—(hé) kr a}g
g1, =0, g2, =1,
g1, = 07 92, = 17
if the layer containing the outer surface,
g1, = 17922' =0
otherwise, conjugation condition
Ty, = Tk,, (23)

the initial condition,

Z M(k)(Tk _ T£7u(k)) + Z m(j)(tj _ té,u(j)) =0,7=0 (24)
keds jes

for arbitrary functions u* € Up(Q), ul, u € U;(£2;), where, those that imple-
ment the main junction conditions. Let us prove the following lemma.

Lemma 1. The bilinear forms associated with the operator of the problem (20)—
(23) are symmetric under the homogeneous boundary condition of the third kind.

Proof. Let us prove that for bilinear forms a’(u,v), m’(u,v) the following
statements hold true:

1) the domain of the operator of the problem is a dense set.

2) a9 (u,v) = a9 (v, u);m0) (u,v) = m (v,u).

3)The first statement is executed because C§°(V) C D.

Obviously, the implementation of the second equality for bilinear forms
a(u,v), m(u,v) provided by the symmetry of the matrices A and M The lemma
is proved. The following theorem holds true.

Theorem 1. Let the condition holds true:

Then the bilinear forms of the problem (20)-(23) are continuous and elliptic,
assuming uniform third-order boundary condition.
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Proof. First we prove, that the theorem holds true in the case j =1, j € Jo;
k=1, k € J3. Then the indices can be neglected.

The proof of the ellipticity and continuity of bilinear forms A(u,v), M (u,v)
is is described in [6]. In order to show that the bilinear forms a(u,v), m(u,v)
have the property of ellipticity, one must prove that the inequalities are true

m(u,u) > c1||lull, a(u,u) > ca||ul|, where ¢; > 0,c > 0.

We show that the matrices A andM are positively defined. Let’s find eigen
values of matrices M, which are the roots of the algebraic equation. They are

cipih; h2 (k] + k)2
m’2:ﬂ’§](2¢\/1+] )

From the fact that c(a{, ag, 0), c(a{, a%, 0)-positive functions
hilkl| < V/3,i=1,2, (26)

that the eigen values 11,72 are positive. Then for a quadratic form m(u,u) the
following estimation is valid

/uTAudQ >
B | Q (27)
. (%(2 - \/1 N h2 mmg(fl + k2)2))2 /Q(u% +u3)dQ = 97 |[ull £y ()
where
O min (7= i (o)
#=L2- \/1 + 2 max”ikl Rl

Thus, m(u,v) is elliptic in space L2(€2) To prove continuity we use the Cauchy-
Bunyakovskii inequality.

_ 1
|m(t,u)| = \/ tI MudQ| = ]/ cphtiuid§) +/ gcp(kl + ko) B touy dQ+
Q Q Q

1 1
—I—/ *Cp(/ﬁ + kz)h2t1UQdQ —|—/ *CpthUQdQ‘ <
0 6 03

_ 15— —
< ephlltylvlluillv + gcphzlkl + kall[t2lv [lu1|lv+

1, 1
+660h2|/€1 + Kot |lv [luzllv + gCPthHVHuzllv <

< Ci(Itllvilullv + lltallv lluellv + ft2llvlfuillv + llt2llv luzllv) =
= Ci(Itallv + llt2llv) (lurllv + l[uzllv) = CHIIE]full,
hiki + ko
£ = max|el. 7 = max o], 07 = pmax(n, "Iy

k= mgx|k:1|,k:72 = mgx|k:2|,
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[ell = llullwz(o)-
To prove the ellipticity of the bilinear form a(u,v), we use the inequality (25).
We first find the eigenvalues of a matrix of bilinear form

1 Ah
Q&) = AE® + h* (ks s — ki)en + —Z-n’, (28)
solving the equation for this u¥) € Uy, ugj),uéj) € U; We obtain the following
eigen values

2 1 h2(ks—; — k;)?
=Mt/ (14+ —MW—). 2
Y12 =3 3 \/ (1+ 1 ) (29)
Referencing 25,the eigen values are positive. So,
2 1 h2(k3_; — k;)?
Qe > - Tfa e PRy @
Similarly, after finding the eigenvalues of a matrix of bilinear form
k h
N(&,n) = ahe® + ah® <60 + az’ (31)

we obtain the inequality

N > a1+ iy ) (32

Taking into account (25), (30), (32) and the Frledrlchs inequality, we obtain

6u1
a(u,u) > N%/gz((aai)2+
3’&2

G20+ [ @+ dan i [ (o +ad)ar >

ou ou
> 33| (G + G2r)in+ [ @ +ad)an) =3l

— /2 1 h? maxq(ks—; — k;)?
2 7 7
=M= —=4/1
H1 (3 3\/ + 4 )
2 —/3)?
,u%:max{ggl,gQQ} 7( 4 ) )
2 1 h2 maxq(k2)
2 _ T
- _\/1 72 maxo (k)
Hs =d (3 sVt 4 )
A= min (\), a= min (a)
(a1,a2)€EQ (a1,a2)€l

72 _ min{:u%wu%}v 2 7& 0,
2 = .
min{zui, suiui}, p2 =0
and p? is a constant obtained from Friedrichs’s inequality.
The continuity of the bilinear form follows from the following inequality

t
alt u\<y/ AudQ|+|/tTGudF|<al|/ alguldQH
Qg
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8758 8158
ol [ 220040y [ O

+03|/ 8t2 au2d§2|+a4|/t2quQ|
o Oy 0oy Q

+G5|/t1u1dQ|—|—06]/t2u1dQ—|—06|/tlquQ|—|—U5|/t2quQ|+
Q Q Q Q

+U7‘/t1u1dr‘-l-Ug‘/tQuldF‘—i—Jg‘/tl’UJng‘—i—Jﬂ/tQ’U,QdF‘ <
r r r r

< Co(ltallv llurllv + [fEallv luzllv + ([t2llv llutllv + llt2llv lluzllv) < Collt][|[wl],
where

2
o1 = max\AQy Ugi—éméix]x%(kg_i—k,)\,
1 1
o = gl ou eI
B h ah2k2A

o5 = mgx(l +k1k21), 0 = — mgx(k:l + ko), 07 = mlgxah,ag = mlgmx\

2 6 :
We have proved the properties of the bilinear forms for any thin and ordinary
layer. However, these propositions hold true for the operator of a problem for a
multilayered medium, since they are executed for a single term, which derives
that they will be executed for the sum in the formula. Note that the inequality
(25) can be considered as a criterion for the thin layer. The theorem is proved.

6. APPROXIMATION OF THE SOLUTION
To solve the beforementioned variational problem, we discretize the solution
in spatial variables. In this case, for sampling functions T}(a}, o, ad, ) we
apply the approximations of the semi-analytic finite elements method and for
functions tg )(ajl,a%,T),tgj)(a{,a%,T) are the approximations of the finite el-
ements method. According to these methods, we choose the approximation

spaces {V},} from space V so that
dimVy, — oo, h — 0,
U Vi-tightly enclosed in V.

We will present the unknown functions in the

Ti(od, o, 0, 7) = ZZTJ‘; V() di(ad, ad), (33)
k=1 i1=1

t" (o, 0, 7) Zt T)éi(od, o), (34)

(o], 0, 7) Zt T)icd, of), (35)

where 9, q?i(a{, ag) are basic functlons, Tki, t{i, tjzi—— are unknown coefficients.
To approximate the desired solution for the third spatial coordinate, we use
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the expansion of the desired function in a series of functions-"bubbles". These
functions on the interval [-1,1] are given by the relations

RO =25 GO =150 Bi6) = a(€)i=31.

i — 13
By 1(€) = /> . L /_ Pt (36)

Here P;(t) are known Legendre polynomials. It is convenient to use the recur-
rence formula for calculations

;(8) =

1
V2(2j - 1)
The property of the orthogonality of the Legendre polynomial follows an im-
portant property of internal forms

Pi(=1) =;i(-1) =0, i =3,4,... (38)
External forms allow to calculate solutions at the borders. It is essentially
used for convenient and easy implementation of junction conditions with other
areas. In addition, this system of functions has favorable properties in terms

of numerical stability. In order to approximate the time-domain solution, we
propose to use the well-known Crank-Nicholson difference scheme [6].

(P; () = Pj-2(£)). (37)

7. NUMERICAL EXAMPLE

Based on the constructed heterogeneous mathematical model and the pro-
posed numerical approximations, a program complex was created in the lan-
guage C# that implements this approach. A series of computational experi-
ments was conducted using it.

Let us consider the problem of stationary heat conductivity in an axisym-
metric infinite hollow cylinder with a thin outer coating. The problem is to
find the distribution of the function of temperature, if it is known that on the
outer and inner parts of the cylinder surface there is a heat exchange accord-
ing to Newton’s law with different values of the temperature of the medium.
Coefficients of thermal conductivity of the coating are Ay = const, massive
part — Ao = const. For the analysis of stationary heat conductivity in a cylin-
der, a stationary analogue of the proposed mathematical model is used. Since
boundary conditions and geometry do not depend on spatial coordinates the
solution of the problem will depend only on one coordinate. This allows us to
get rid of the dependence on the relationship between the parameters of the
finite-element grid along two coordinate axes, to carry out only the P-adaptive
refinement in the radial direction and to investigate its influence on the result-
ing solution. The mathematical model of the described problem is a system of
ordinary differential equations. To analyze its numerical solution, we first find
the analytic solution of the classical mathematical model without taking into
account the small thickness of the layer.

_ maxy |T; — Tyn|

100.
maxy |Tan| (39)
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This solution is used to compare the results calculated using the algorithm
proposed in the work. In the computational experiment, the effect of the con-
tent of a different number of members in the sum (33) was investigated to
approximate the solution in thickness. Experiment results are shown in Fig.2.

The "Analytical solution" curve of this figure corresponds to the analytical
solution, and the curve "Numerical solution" shows results, obtained with the
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TaABL. 1. The dependence of the relative error on the content
of a different number of basic functions over the thickness of the
layer

Number of polynomials Relative error
3,1931
0,3321
0,0333
0,0034
0,0040
0,0001

~N O U W N

algorithm using 2 members of the expansion for the thickness of the lower layer
of the cylinder. In a numerical experiment, the solution of the model was also
studied in the case of preserving 3, ..., 7 members of the decomposition. The
graphs of the obtained solutions in the current scale almost coincide. As it
should be expected, with increasing order of approximation, the graph of the
numerical solution goes to the analytic solution, which confirms the theoretical
conclusion about the convergence of the proposed algorithm. To confirm this,
as a criterion for the analysis of approximate solutions (Fig. 3), the relative
error rate is used

Here T4, is the analytical solution of the problem, T; is the numerical solu-
tion. Table 1 it shows its decline, depending on the increase in the members of
the schedule.

8. CONCLUSION

The sugested heterogeneous model allows to effectively analyze the process of
thermal conductivity in multilayer environments, since it avoids the difficulties
associated with the application of numerical methods.
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ON THE APPLICATION OF THE ONE HP-ADAPTIVE
FINITE ELEMENT STRATEGY FOR NONSYMMETRIC
CONVECTION-DIFFUSION-REACTION PROBLEMS

R.G.DREBOTIY, H. A. SHYNKARENKO

PE3IOME. Mu posrasggaemMo 3acTocyBaHHs OmHi€l hp-aganTuBHOI cTparterii
METO/Iy CKIHYEHHUX €JIEMEHTIB /10 PO3B’si3yBaHHS HECHUMETPUYHUX KPAROBUX
3a7a4 KOHBeKIIiI-mudys3ii-peakriii. B ocHoBi po3rasayBanoi cTpareril J1eXuTh
IporteIypa BUOOPY HA KOKHOMY CKIHIHHOMY €JIEMEHTI MiK 301/1bIreHHaM H0ro
MOPSIIKY |M TIO1JTOM, 10 0a3y€eThCsl Ha MOPIBHAHHI HOPM HAOIMKEHDb 10 IT0-
XUOKU 71 PO3IJISAYBAHUX CIIOCODIB mepely/10Br CKiHIeHHOTO eaeMenTa. Mwu
PO3IJISIAEMO AJICOPUTM AJANTYBAHHS Ta HABOAUMO OOT'DyHTYBaHHY imel ajro-
PUTMYy y BUMQJKy CUMETPUYIHOI KpaiioBoi 3a7a4i. 3aCTOCOBHICTH AJTOPUTMY
10 HECUMETPUYIHUX 33129 MU aHATI3YEMO MLISAXOM POy PE3yAbTATIB IUC-
JIOBUX €KCIIEDUMEHTIB, & TAKOXK [IOIIOBHIOEMO HABE/IEHI PE3yJIbTaTh TeOPEeTUt-
HUM aHaJIi30M MOXKJ/IMBOCTI 3BeJEHHS BUXITHOI BapialliifHoi 3a/ad4l 0 CUMeT-
puaHOi dpopmu. Mu HABOAMMO 1B IPOITEyPH, MO JAIOTH 3MOTY ITePEeNTH BifT
HECUMEeTPUYHOL 3a/1a49l 10 eKBIBAJIEHTHOI CHMeTPUYHOI, abo 10 IOC/II0BHOCTI
CHMETPUYIHUX 3324, ITOCIJOBHICTh PO3B’sI3KiB AKNX 30ira€ThCst 10 PO3B’A3KY
BuxizHol HecuMerpudnol 3ama4i. OTpumanwmii pe3yabraT BpemTi Moxe Oyru
BUKODUCTAHUU /1 100y10BH KOMOIHOBAHUX JITOPUTMIB Ha OCHOBI ommiel i3
cxeM cuMeTpu3ariil Ta aaropurmy hp-aJanTyBaHHS.

ABsTrRACT. We consider application of certain hp-adaptive strategy for fi-
nite element method for solving nonsymmetric convection-diffusion-reaction
boundary value problems. In the base of described strategy lies refinement
selection procedure which is used to choose on each finite element between
degree increase or bisection. It uses special comparative criteria for norms of
approximation to local errors on different refinement patterns. We present the
adaptation algorithm itself and proof of idea behind it for symmetric prob-
lems. For the case when problem is nonsymmetric we provide corresponding
analysis of numerical experiments and also we add pure theoretical analysis
of the possibility of bringing given variational problem to symmetric form,
taking into account that the algorithm is naturally applicable in the latter
case. We describe two approaches that can provide transition from nonsym-
metric variational problem to directly equivalent symmetric problem in the
first approach or to sequence of symmetric problems, solutions of which forms
sequence of functions that is convergent to the solution of initial nonsymmet-
ric problem in the second approach. Obtained result can be used to build
algorithms, based on a combination of one of the described symmetrization
methods with hp-adaptive scheme.

Key words. Convection-diffusion-reaction problem, finite element method, a posteriori er-
ror estimator, adaptive strategy, hp-adaptivity, nonsymmetric problem.
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1. INTRODUCTION

Space mesh adaptivity today is the major technique which is used to opti-
mize the process of finding the approximate solution by finite element method
in various free and commercial engineering simulation tools. Using it also is
crucial, since in most cases the nature of considered boundary problem is char-
acterized by highly nonuniform distribution of local errors in the case of uniform
mesh. In the context of modeling of convection-diffusion-reaction phenomena,
the reason of such error distribution lies in relatively large values of Péclet and
Strouhal numbers for the given problem.

Special and natural attention is on so-called hp-adaptive methods [2,4,5,
8-10], since they provide most wide approximation capabilities by using both
space mesh adaptivity (h-) and element polynomial degree adaptivity (p-). De-
spite that there are reasonable facts to believe that such algorithms (hp-) can be
considered "exotic" in some sense, investigation in that field is still important,
since it is proved [8] that there is possibility to obtain exponentially convergent
sequence of approximations by using hp-refined meshes.

In this paper we study the possibility of application of hp-adaptive strat-
egy, introduced in [5], to nonsymmetric variational problems. The fact is that
the nature of introduced algorithm can be explained only for problems with
self-adjoint operators. Despite this, in practice, it can be seen, that algorithm
still can be used for nonsymmetric problems which is shown in provided nu-
merical example. The goal is of this example is to demonstrate that algorithm
can provide solid results, regardless of the used a posteriori error estimators or
adaptation criteria. The second part of this work is the pure theoretical investi-
gation of the possible methods of symmetrization of nonsyminetric variational
problems.

The paper structure is the following: in section 2 we define model problem,;
in section 3 we construct variational formulation; in section 4 we present hp-
adaptation algorithm and discuss the main idea behind it; in section 5 we
extend algorithm with some specific error estimator; in section 6 we review
adaptation criteria which we will use in numerical experiment; in section 7
we provide numerical results for direct application of described algorithm and
in section 8 we study two methods of symmetrization of variational problem.
Final conclusions are given in section 9.

2. MODEL BOUNDARY VALUE PROBLEM
Let us consider the following boundary value problem:
Find function u = u(x) such that

- (Mu/)/+ﬂul +ou=fin Q= (0,L)
(p')],_y = @[u(0) — tig], —(uu)|,_, =~[u(L) — L],
where
o,y >0, p=p(x)>p >0, 5(0) <0, B(L) >0, 0 =0c(z) >0,

o(z) — B'(z)/2 > o¢ > 0 almost everywhere in (0, L), (2)
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w, 3,0 € L=(0,L), f € L*0,L).

Considered problem is used in analysis of ecologic phenomena, semiconduc-
tors, biology etc. Many real problems of such kind are singularly perturbed |3].
In the terms of differential equation parameters it means that coefficients near
highest order derivatives are relatively small in comparison to others. So in
this case a second order equation is almost degenerated to first order one. In
combination with standard boundary conditions it causes existence of layers
near domain’s boundary with high solution gradient. Those boundary layers
are making the solving of problem by using well-known uniform-mesh-based
FEM quite difficult. Such conditions leads to large Péclet and Strouhal criteria
and to nonuniform local error distribution.

3. VARIATIONAL FORMULATION

Using standard approach [1], we can simply define variational problem cor-
responding to (1): find solution u € V| such that

a(u,v) = (l,v) Yv eV, (3)

where

L
a(u,v) := /[,uu/v/ + Bu'v + ouv] dx + au(0)v(0) + yu(L)v(L),
\ (4)
(lv) == /fv dx + atigv(0) + yurv(L), Yu,v € V := H'(0,L).
0

Under conditions (2) problem data satisfies (for details see [6]) conditions of
Lax-Milgram theorem [1] and therefore this variational problem is well-posed.

For further needs, let us define energy norm ||v|| g = \/a(v,v).

To discretize obtained variational problem we use general finite element
method with high-order polynomial basis functions. In other words, we de-
fine some space V;, C V,dimV}, < 400, of piecewise-polynomial functions and
find finite element approximation up € Vj as a solution of variational equation:

a(uh,vh) = <l,Uh> Yo € Vp,. (5)

Now if we construct finite basis {¢;}_; of space V}, then by expanding uj, =
Yo, qipi, where ¢; € R,i = 1,n we can clearly see, that (5) is equal to the
following system of algebraic linear equations for ¢;,2 = 1, n:

> gialei ) = (le;) j=Tn. (6)
i=1
For general reference see [2,9,10].
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4. hp—ADAPTATION ALGORITHM
In this section we briefly present discussion and review of algorithm from [5].
Let us consider finite element mesh 7, = {K = (z4_1,21)}}_, where 0 =
9 <z < -+ <xp = L. Let us define global error approximation space in the

form:
Ey, = @ Eiffa (7)
Kery,

where space of functions EX = {v € V|suppv C K} and dim EX < +00. Let
us define the following variational problem for error approximation:

find ey, € Ej, such that

8
alep,vp) = / Rlup|vopdx Yy, € Ep, (8)
Q

where R is the residual:

Rlup) == f — (uuh')/ — Buy — ouy,. (9)

It is not hard to see that problem (8) can be decomposed per elements. For
each element we have to solve a problem:

find ef € EF such that

10
a(ehK,Uf):/KR[uh]vffdx Vol € EF (10)

and then ep, = ) e, ek.
Consider now the case 8 = 0, i.e. the problem has symmetric bilinear form.
Then the following well-known equality holds:

2 2 2
lu—un | = llull — lunll - (11)

Since error estimation problem has the same bilinear form as the original,
then for finite element error approximation e the equality above also holds:

2 2 2
le —enllz = llellz = lleallz - (12)

From this equality we see that if energy norm of error approximation increases
than also increases accuracy of this approximation. Denote the finite element
solution on the current mesh as uwp € Vj, and corresponding error e = uw — up,.
Then (12) we can rewrite as

2 2 2
[ = (un + en)llp = llu = unlz = llenlls - (13)

Let us find finite element solution 4y, in space Vi, = Vi, + Ej, C V, where Ej,
is the error approximation space, defined in (7). For symmetric case we have
well-known optimality inequality:

lu—tnlg < llu—0nllp, Yon € Vi (14)
Using now (13), and the fact that uj + e, € V), we have:

~ 2 2 2
lu = anllp < llu = unlz = llenlls - (15)
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Decomposing the second term in the right part we obtain inequality:

lu—nl3 < lu—unll = 3 [lel[l%- (16)
Ker,

Consider now decomposition of approximation space V}, into local approxima-
tion spaces VhK , K € 1. Spaces VhK + E,If are considered as refined local finite
element spaces according to transition from current mesh to mesh defined by
space V4. In the case when E,[f consists of piecewise-polynomial functions it
directly defines some refinement pattern on element K. For each element K we
can consider now several different choices of space E,If : Eq,...,Eg and taking
into account (16) we see, that it is optimal to use refinement pattern defined
by the space EX = Es, ., sk € {1,...,5} which gives a maximum to a value
of HefHE in the right part of (16).

So, now we can review the entire algorithm, which consists of two phases:

Initialization:

Compute:
Ho = Igféfi] (),
/
0= min fow) - 21 (1)

C =2 [min {po, o0}]/?.
Set 73, to some initial finite element mesh.

For each finite element K = (zy_1,x%) € 75, we define quadratic bubble

function
wr(x) = (zp — x)(x — Tp_1). (18)

TOL is acceptable relative error level in percent.

Pmagz 18 the maximum supported degree of polynomial basis function on finite
element.

0 € (0,1) is fixed value.

Iteration:
Step 1: Find FEM solution uy on the current mesh 7. Define u{f as restriction
of uy, to the element K and pk := deg(ul).
Step 2: For all elements K € 7, compute

C
Nk = ———— VWi Rlu]|| : (19)
rr (P + 1) L2 (k)

Define 1 := /> ¢ n%.
Then if —L— x 100% < TOL we stop the algorithm, else:

lunllg
Step 3: Choose elements for refinement.

Compute Npax = Max N .

We will change those elements K, for which ng > (1 — 0)nmax. The set of all
selected elements we name as Ag.

Step 4: Mesh modification. For all selected elements K = (xp_1,x) € Ay
choose between bisection and increasing of polynomial degree on it by 1.
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Step 4a: If px = Pmax then we divide element into two with orders (px, px),
otherwise:
Step 4b: Define XP(a,b) as a space of all polynomials of order p on closed
interval [a, b].

Define spaces:

Vip(K) = {v € C(K)Jv € XPX (241, (xh—1 + 71)/2),
v GXpK((SIZk_l—I—JZk)/Q,xk),U|8K:0} (20)
Vin(K) = {v € XPKFY(K)| v]y = 0}

Now we solve problem (10) for EX := Vhlp(K) and EE = Vth(K). Let us
denote obtained solutions as e}L and e% respectively.

Compute rp, = ||ef| p, m=1,2
Step 5: Consider the difference A = r9 — r1.

If A > § where § is predefined value, then we increase element degree by 1,
otherwise we bisect it into two elements with approximation polynomial degrees
(PK, PK)-

Step 6: Go to Step 1.

Idea of described algorithm is clear for symmetric problems. Some numerical
experiments are available in [5,6]. Technically we can run algorithm on nonsym-
metric problems too, without having any theoretical background in that case.
We will try to perform some numerical experiments to show how described algo-
rithm will work in practice for nonsymmetric problem. We describe additional
error estimator in next section 5 and additional adaptation criteria in section
6. Using those we will provide corresponding comparative numerical results
in section 7 to show that algorithm can provide solid results despite of which
combination of estimator and adaptation criteria we use.

5. ERROR ESTIMATOR BASED ON FUNDAMENTAL SOLUTION
For error indicator ng, introduced by (19) in section 4, instead of using
explicit formula we can use implicit indicator in the form of problem (10) but
with special approximation space E}f( = span{px }, where:

crip11(z) + crapr2(x) on x € [Tp_1,Tp_1/2],
o1(zr-1) = 0, 01(TR—1/2) = 1,

or(x) = (21)
c21921(x) + caopaa(x) On T € [$k71/2, ],

P2(xp_1/2) = 1, p2(xx) = 0,
and {p1;(z)}, {p2(z)} are the sets of fundamental solutions for equations
— (') + B + 6w =0, i =1,2 (22)
with constant coefficients (selected as mean values of corresponding functions)
on corresponding intervals [xx1,Zy_1/2] and [z_; /2, 7%]. Then we solve (10)

and use the energy norm of obtained approximation as an error indicator 7.
To find fundamental solutions we solve corresponding quadratic equations

— N+ Bidhi+6,=0,i=T1,2. (23)
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Here for each of two equations we have three cases possible:
it A AP e R AW £ AP then
en(@) = ep(1), pun(z) = exp(APr):
i if A A e r AW = )\E)then

s>:\

p(A '2), pin(x) = zexp(\Ma);

pir () = exp(\{!
iii. if A ),)\E) C\R, MY = o + Bi, Ay = o — Bi then
pi1(x) = exp(ax) sin(Bz), piz(x) = exp(azx) cos(Bz).

6. ELEMENT SELECTION CRITERIA
In addition to adding new estimator in previous section, we also will try
to run algorithm with different adaptation criteria, used in step 3 to choose
elements for refinement procedure. So we will have two criteria:

i. ("mazimum" criteria) element K is refined if
nK > (1 - e)nmaxv (24)
where Mpae = mMax 1) and 6 € (0,1) is fixed value;

ii. ("average" criteria) element K is refined if

\/NUK
Vlunl3 + e,

where € is is acceptable tolerance in % for average error level over finite
element, IV is element count.

100% > ¢, (25)

7. NUMERICAL EXAMPLE
We consider boundary value problem (1) with the following data

p=10.01,5 = 100.896(x — 1)3,0 = 84(2 — (z — 1)?), f = 200, (26)
a=vy=10" 14 =a;,=0,L =2.

Algorithm parameters are: TOL = 5%, pmaz = 3,0 = —150,6 = 0.6, = 20.

Fig. 1 demonstrates approximation obtained by introduced algorithm using
fundamental solution error indicator "maximum" adaptation criteria. Taking
into account boundary conditions we can clearly see that we have two bound-
ary layers in the both ends of interval (which we don’t see directly in the plot
according to very large gradient of approximation near those two points). In
tables 1 and 2 we present convergence history for different combinations of
introduced error estimators from sections 5 and 4 in combination with "max-
imum" criteria (24) and "average" criteria (25). Average convergence rate is
found using least squares method.

In general we can see from provided numerical examples that:

i. the better choice in according to count of elements, iterations and d.o.f.
reached is a combination of the explicit indicator and "maximum" crite-
ria;

ii. there is no large difference between "maximum" and "average" selection
criteria;
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iii. if we need to have almost monotonic relative error decreasing we need to
choose explicit indicator from 4.

08

086

04

02

0 02 04 06 08 1 12 14 16 18 2

Fia. 1. Approximation to solution of problem with data (26)
using implicit error indicator based on fundamental solution ba-
sis which was introduced in section 5 combined with the "max-
imum" criteria (24)

1 |
1 L]

0s } ) \ 0 ‘

35 4 45 5 55 35 4 45 5 55 4 45 5 55 4 45 5 55

In N,

e
R

FiGg. 2. Dependency between absolute error indicator €, and
number of degrees of freedom N SZ} in log-log scale for previous

results: a) for algorithm with explicit error indicator from sec-
tion 4 and "maximum" criteria (24); b) for algorithm with indi-
cator based on fundamental solution described in section 5 and
"maximum" criteria (24); c) for algorithm with explicit error
indicator from section 4 and "average" criteria (25); d) for algo-
rithm with indicator based on fundamental solution described
in section 5 and "average" criteria (25)
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TABL. 1. Convergence history for problem with data (26) for
the "maximum" criteria (24): n is an iteration number, N el-

(n)

ement count, N dof count of degrees of freedom, €, = n ab-
solute error indicator, r, = nlluyl|z' x 100% relative error,
Pn = — (ln €n — In 6n—l) X (hl Nc(l;l])‘ —In thgf_l)> ' rate of con-
vergence
Explicit indicator Fundamental solution indicator
n| N Né:} €n n Pnlln| N N(EZ} €n Tn DPn
0] 50 51 | 74.00 | 73.85 0| 50 5l | 84.41 | 84.25
1] 72 751 56.51 1 50.94 | 0.69 (| 1| 69 75| 79.52 | 67.86 | 0.15
2106 | 109 ]40.08|32.25| 091 2]102| 118]62.69 |52.61 | 0.52
31136 143 122.26|21.22 | 2.16 | 3| 124 | 145 |56.07 | 49.96 | 0.54
41144 | 165|11.39 | 15.61 | 4.68| 4| 130 | 151 |33.69 | 33.22 | 12.56
5144 | 177 | 5.14 | 1790 | 11.33 || 5| 142 | 175|22.55 | 37.16 | 2.72
6144 | 181 | 2.90| 839 2548 | 6| 142 | 182 | 15.10 | 43.72 | 10.21
7146 | 187 | 1.24| 457 |26.08 || 7|143 | 187 | 6.24 | 19.58 | 32.59
8|145| 193 | 2.88|11.29|24.49
91146 | 196 | 1.12| 4.72|61.11
average rate of convergence 2.66 average rate of convergence 2.38
TABL. 2. Convergence history for problem with data (26) for
the "average" criteria (25).
Explicit indicator Fundamental solution indicator
n| N|N ng} €n n pnlln| N|N é:} €n Tn Pn
0] 50 51 | 74.00 | 73.85 0| 50 51 | 84.41 | 84.25
1] 72 81152935215 | 072 1| 72 85| 72.67 | 71.90 | 0.29
2106 | 125]38.34|3255| 0.74] 2]106 | 135]60.36 | 50.78 | 0.40
3134 167221212143 | 1.89 3|136| 189 50.07 | 48.36 | 0.55
411421 195|11.33 |15.90 | 431 | 4| 144 | 227 |24.87|35.20| 3.81
51142 | 211 | 5.11|18.80 | 10.08 || 5| 144 | 252 | 19.63 | 70.70 | 2.26
6142 | 219 | 2.84| 8.02|15.76| 6| 144 | 266 | 7.52|21.09|17.73
7146 | 231 | 1.24| 4571556 || 7150 | 284 | 3.84 | 14.18 | 10.26
8152 | 290 | 1.13| 4.75| 58.56
average rate of convergence 2.32 average rate of convergence 1.86

Also, taking into account, that during preparation of this paper the algorithm
was tested on several other problems, we can conclude from solid numerical
results that the algorithm is applicable in practice in the case of nonsymmetric
problems too, despite of which indicators or element selection criteria we use
(without any theoretical background). In the next section we provide some
pure theoretical analysis in that case.
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8. SYMMETRIZATION METHODS

Instead of trying to generalize somehow (11) to nonsymmetric problems to
bring similar argument as in remark in section 4, it is natural to try to construct
equivalent (in some sense) to (3) but symmetric variational problem.

Here we present two pure theoretical results which can not be used in practice
directly but can be considered as a starting point in further investigation in
described direction.

8.1. Equivalent symmetric problem approach. Let us recall variational
equation (1) in expanded form:

L
/[,uu’v’ + pu'v + ouv] dx + au(0)v(0) + yu(L)v(L) =
. (27)
= /fv dx + augv(0) +yurv(L), YveV.
0

We are free to choose arbitrary function v in (27) in the form: v = zw, where
both functions z and w are arbitrary, but z is fixed. After substitution into
(27) and small algebra we obtain equivalend equation:

L
/[uzu’w’ + (p2' + B2) v'w + ozuw] de+

0

+ az(0)u(0)w(0) + yz(L)u(L)w(L) = (28)

L
= /fzw dx 4+ atpz(0)w(0) + yurz(L)w(L), Ywe V.
0

Lets choose z as a solution of the ordinary differential equation pz’ + 8z = 0.
It is not hard to find partial solution:

G
z(x) =expq — [ —=dE » . (29)
0/ (&)
Substituting (29) into (28) lead us to:

L
/[uzu'w/ + ozuw| dx + au(0)w(0) + yz(L)u(L)w(L) =
" (30)

= /fzw dx + atgw(0) + varz(L)w(L), YweV.
0
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It is not hard to see that (3) and (30) are equivalent and furthermore the
bilinear form

L
b(u,v) := /[uzu’w’ + ozuw] dz + au(0)w(0) + vz (L)u(L)w(L), (31)
0

in the left part of (30), is symmetric. Corresponding to (30) boundary value
problem is:

find function v = u(x), such that
- (,uzu')/ +ozu= fzon Q= (0,L) (32)
(nzu')|,_y = a[u(0) — o, —(uzu')|,_, = v2(L)[w(L) — a].

Visual simplicity of obtained symmetrization procedure and the problem (32),
in practice lead us to problem which is technically hard to solve. The reason is
in function z (29). Fraction % is almost proportional to Péclet number for the
given problem and in the latter is singular perturbed multiplier z will be the ex-
ponent with large negative power. In such conditions it is very problematically
to calculate integrals from (30) when we use standard Galerkin discretization
according to very large quadrature round-off errors. We investigated numeri-
cally the following approaches:

i. trapezoidal rule;
ii. interpolation-type quadrature based on L-splines;
iii. asymptotic formula at Pe — 400;
iv. tanh — sinh quadratures;
v. adaptive quadratures using previous methods;
vi. implementation of adaptation algorithm using Wolfram Mathematica.

Those approaches even with combination with element-wise scaling of function
z does not provide successful practical result.

8.2. Iterative approach. The second approach does not provide directly equi-
valent symmetric problem. Let us suppose that the bilinear form a and linear
functional [ from (1) satisfy conditions of Lax-Milgram theorem, i.e. a and [
are bounded and moreover bilinear form a is V-elliptical. So, there are two

positive constants M > 0 and « > 0 such that:
a(u,v) < Mllullv[lollv,  Vu,v eV, 23
a(u,u) > allul|?, Yu e V. (33)

By the way, where the conditions from (1) guarantees existence of such con-
stants M and a.

Let us construct sequence {uk}zozo € V. We select arbitrary u® € V, uF,
k > 0 we find from the following symmetric variational problem:

{ﬁnd function u* € V, such that

a(u®,v) + a(v,uf) = (1, v) + a(v,u* 1), Vo eV. (34)
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Under previous conditions for a and [ it is not hard to conclude that the se-
quence is well-defined, i.e. the solution of (34) exists on each step.

Theorem 1. If M < 2o, than u* P in V', where u is the solution of (3),
moreover o

M k
=ty < (52 ) =l (35)

Proof. Let us define e¥ = ¥ — u. Then substitute u* = u + ¥ into equation
from (34). We get:
alu+ e v) +a(v,u+e*) = (1,v) + a(v,u+ 1), (36)

or after simplification:

k) 4 a(v,e) = a(v, ). (37)

a(e
Taking v = ¥ and using (33) we obtain the following inequality chain:
2al|e"|[} < 2a(e”, ) = a(e®, &) < M|y eIy (38)

If there exist ko : e = 0y than it is obvious that u* = u,Vk > ko, i.e. we
have convergent sequence and the inequality from theorem statement holds. In
other case Vk € N we can divide (38) by ||e*||1; # 0 and we obtain:

M -
¥l < o lle v (39)
By combining the last recurrent formula we simply get the final estimate (35):
M\ F
et < (5 ) 1elv, (40)

and convergence if M < 2a.

9. CONCLUSION

In this paper we studied application of certain hp-adaptive algorithm to
nonsymmetric problems. We combined this algorithm with different a posteri-
ori error estimators and adaptation criteria to show by numerical experiment
that algorithm can be directly applied to nonsymmetric problems. Also we
construct several methods of symmetrization of given variational problem and
provide corresponding theoretical analysis of those procedures. Two approaches
are described. First can be used to build equivalent symmetric problem. In
the second approach we built iterative procedure, where by solving symmetric
variational problem on each step we can obtain sequence of elements that is
convergent in the space of test functions to the solution of the original nonsym-
metric problem. We still are working on the problem of theorem applicability
to singular perturbed problems and schemes of combining this theorem with
adaptive finite element algorithms. Also we are working on practical imple-
mentation of both symmetrization schemes which in practice involve building
some ad hoc numerical quadratures.
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CONVERGENCE ANALYSIS OF A TWO-STEP
MODIFICATION OF THE GAUSS-NEWTON
METHOD AND ITS APPLICATIONS

R.P.IAKYMCHUK, S. M. SHAKHNO, H. P. YARMOLA

PE3IOME. Y po6oTi T0C/TiI2KeHO 301KHICTh BOKPOKOBOT MOAm(piKaIlii METOLY
laycca-Hprorona 3a ysarampreHux yMmoB Jlimmmwms mis moxXigHuX mepimoro i
Apyroro nopsaakis. BeranoBieHo nopamox i paaiyc 3612KHOCTI METOLY, a TAKOK
00J1aCTh €QUHOCTI PO3B’ 3Ky HeJIHINAHOIT 3a7a4i Tpo HalimeHmi kBaapaTu. IIpo-
BEJIEHO YHUCEJIbHI eKCIIEPUMEHTH Ha BIIOMHUX TECTOBHMX 3aJadax.

ABSTRACT. We investigate the convergence of a two-step modification of
the Gauss-Newton method applying the generalized Lipschitz condition for
the first- and second-order derivatives. The convergence order as well as the
convergence radius of the method are studied and the uniqueness ball of the
solution of the nonlinear least squares problem is examined. Finally, we carry
out numerical experiments on a set of well-known test problems.

1. INTRODUCTION
Let us consider the nonlinear least squares problem [6]:

1
min f(z) := §F($)TF(~%’), (1)
where F' is a Fréchet differentiable operator defined on IR"™ with its values on
IR™, m > n. The best known method for finding an approximate solution of

the problem (1) is the Gauss-Newton method, which is defined as
Thi1 = 2 — [F (2p)TF (2)] 7 F (a3) " F(2x), k=0,1,2, ... (2)

The convergence analysis of the method (2) under various conditions was con-
ducted in [4,5]. In paper [11], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

For solving the problem (1), we consider a two-step modification of the Gauss-
Newton method [1,3]

{ Tl = Tp — [F/(Zl?k)TF/ (%k)]_lF/(%k)TF(ﬂfk)v (3)
Ykt1 = Tpt1 — [F (Zk)TF (Zk)]_lF (Zk)TF(;Ek+1), k=0,1,2,...,

Key words. Least squares problem, Gauss-Newton method, Lipschitz conditions with L
average, radius of convergence, uniqueness ball.
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where zp, = (xp+yk)/2; o and yo are given. In case when m = n, this method is
equivalent to the methods proposed by Bartish [2] and Werner [17]. On each it-
eration, the method (3) computes the inversion of the matrix [F (z)T F' (z;)] !
only once. Because of that, the computation cost of each iteration of the
method (3) is roughly the same as of the Gauss-Newton method (2): for calcu-
lating yg+1, it is only necessary to perform one backward substitution, which
requires O(n?) floating-point operations (Flops), since the LLT decomposi-
tion of the matrix F (z)TF (zx), which costs O(n?) (O(n®/3) to be precise)
Flops [6], is computed for zj.

The main goal of this paper is to analyze the local convergence of the
method (3). Bartish et al. [1] examined the local convergence of this method us-
ing the classical Lipschitz condition for derivatives of the second-order, but only
for the problem (1) with zero residuals. Instead, we study the convergence of
the above-mentioned method using the generalized Lipschitz conditions [15] for
derivatives of the first- and second-orders; such conditions employ an integrable
function L(u) instead of the Lipschitz constant L. The Lipschitz condition with
L average in the inscribe sphere makes us unify the convergence criteria con-
taining the Kantorovich theorem and the Smale a-theory [5,8,12,14,15]. We
prove the convergence of the method (3) for the problem (1) with zero as well
as non-zero residuals. Furthermore, we find both the order and the radius of
the convergence of the method (3) as well as the uniqueness ball of the solution
of the problem (1). We have published some of the results without proofs as
an extended abstract [7].

2. PRELIMINARIES

For our study, we present different definitions of the Lipschitz conditions.
Let us denote B(zy,7) = {z € D CIR" : ||x — x«|| <1} as an closed ball with
the radius r (r > 0) at z,.

Definition 1. The function F' : IR®™ — IR™ satisfies the classical Lipschitz
condition on B(z,r) if

|1F(z) — F(y)|| < Ll — yl],
where z,y € B(z«,r) and L is the Lipschitz constant.

In Definition 1 L may not necessary be a constant, but it also can be an
integrable function L(u).

Definition 2 ( [15]). The function F' : IR" — IR™ satisfies the Lipschitz
condition with L average on B(x,,r) if

llz—y|l
|F(z) - F)| < /0 L(u)du, Yz € B(w.,7),

where L(u) is a positive non-decreasing function.

Let R™*™ m > n, denote a set of all m x n matrices. Then, for a full
rank matrix A € IR™*", its Moore-Penrose pseudo-inverse [6] is defined as
AT = (AT A)71AT,
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Lemma 1 ( [13,16]). Let A, E € R™*". Assume that C = A+ E, || AT||| E| <
1, and rank(A) = rank(C). Then,

1AT]

ICH) < ~— iz

1 — || AT|[[|£]]
If rank(A) = rank(C) = min(m,n), we can obtain
V2| AT Bl
1|l AT[|E]
Lemma 2 ( [4]). Let A,E € R™ ™. Assume that C = A+ E, |[EAT|| < 1,
and rank(A) = n, then rank(C) = n.

It — AT <

1 t
Lemma 3 ( [15]). Let h(t) = t/ L(u)du, 0 <t <r, where L(u) is a positive
0

integrable function and monotonically non-decreasing on [0,7]. Then, h(t) is
monotonically non-decreasing with respect to t.

Lemma 4 ( [10]). Let g(t) /N )(t—u)?du, 0 <t <7, where N(u) is a

positive integrable function and monotonically non-decreasing on [0,7]. Then,
g(t) is monotonically non-decreasing with respect to t.

3. LocAL CONVERGENCE ANALYSIS OF METHOD (3)

In this section, we investigate the convergence and the radius of the conver-
gence ball of the method (3).

Theorem 1. Let F' : IR" — IR™, m > n, be a twice Fréchet differentiable
operator on a subset D C IR"™. Assume that the problem (1) has a solution
z, € D and a Fréchet deriative F' (x4) has full rank. Suppose that Fréchet
derivatives F'(z) and F"(z) on B(x«, R) = {x € D : ||z — .|| < R} satisfy the
Lipschitz conditions with L and N average:

, , o=yl

uFm—F@\sdé L(w)du, (@
) ) o=yl

HFMF@\s[; N(w)du, (5)

where L and N are positive non-decreasing functions on [0,3R/2].
Furthermore, assume function

ho(p) = (B8/8) / N(u)(p —u) du+ﬁp(/0(3/2)p[/(u)du+/OPL(u)du)+
44%@/me—p )

has a minimal zero v on [0, R|, which also satisfies

5/ wdu < 1. (")
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Then, for all xg,yo € B(xs,r) the sequences {x} and {yr}, which are gen-
erated by the method (3), are well defined, remain in B(x.,r) for all k > 0,
and converge to xs such that

plaren) < p(er)® +np(er)p(ye) + 0p(zk), (8)
plyrsr) < yplenn)® + (0/3)(plar) + plyr) + pleri1))p(Tri) +

+0p(zr), (9)

Tet1 = max{p(Tr+1), p(Yr+1)} < grp < -0 < ¢"*'ro, (10)

where p(x) = |lx — 2., ro = max{p(xo), p(yo)},
q = vplxo)? +9+n, (11)
,pr(xo (p(x0) — u)?du o V2032 fo plz0) du

T T Sy (1 —ﬁ S Lydu) otz (1 —ﬁfo i “)
(zo)+ (yo)/2
n o= B Jg T Lu)du (13)
(2p(0) + p(y0))/3 (1 -8 7= )d“>

o = [F@)l, B=F @) F ) Fla)]. (14)

Proof. Let choose arbitrary xo,yo € B(z«, 7). For z1,y; that are generated by
(3), we have

(12)

w1 — 2, = 20— 20— [F'(20)7F (20)] T F (20)T Flag) =
= [P F ()] F' (o) [F' o) o — 22) — Flao) + Fla)] +
+[F @) F (2.) U (@) TP — [F ()" F (z0)] CF ) Fla) =
= [P F ()] F (20)"x
x [(F (‘””0 + 5”) (w0 — 4) — F(zo) + F(a:*)> +

o+ (25 -o]

+ [F/(.CL‘*)TF/(LL’*)} F/(a:*)TF(x*) - [F/(ZQ)TF/(Z())} F/(zo)TF(a:*);

Yl — T = T1 — Tu — [Fl(zo)TF/(ZO)} - F (Zo)TF(xl) =
= [F ()" F (a0)] T )T [F ()1 — ) — Fla) + F(a)] +
+[F @) F (@) (@) TP — [F ()" F (z0)] T F )T F () =
= [F ) F ()] F (z0)"x
x KF (f’” ;:C) (21— 2.) — F(z1) + F(a:*)> +

(o (252 e
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/ / -1 / / / -1 /
4 [F )TF (a:*)} F (2T F(z.) — [F (20)TF (zo)} F (20) F ().
According to Lemma 1 from [17] with the value w = 1/2 we can write

’ x—i—y
2

(
:i/lu—t) [F (x;er;( y)>— (15)
(

(T )

By setting * = z, and y = g in the equation above, we receive

F(z) - F(y) - F T —y) =

—y)?dt.

/ mo—;—x* (x* B xo)

HF( ) - Flag) — F
Aol (255 )
(252t -]

By Uig—.|
/ 1—t)/ N (w)dul|zo — o |2dt =
4 0

)

_u ) , 1 [r) o
(1=t ) oo = [ Nt it

1 [rlxo)
= /O N(u

and also
, , . p(y0)/2
[ (o) -# (o) < [ s
0

Using (4) and (14), we obtain that

/ / / , , ()
|(F (@) F (2)) " F (@) || F () - F ()] < 8 / ™ Llw)du

According to Lemmas 1 and 2 and that F' () has full rank, for all z € B(x,,7),
the following inequalities hold

I ()" F () F ) < fpﬁ v (16)
I(F (@) F' (@) F (@)" - <F’<w*>TF’< )7 @) <
VR (a7

1 - fo du
By the monotonicity of L(u) and N(u) with Lemmas 3 and 4, functions

1 [ I
75/ L(u)du and t3/ N (u)(t — u)*du are non-decreasing by t. Hence, from
0 0
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(6) and (7) it follows that

) (3/2)ro

B[ N)(ro—uw)?du Bro [ L(u)du+v2a3? fOL(u)du
g< = |0 _ n 0 _ 0 <
"0ls (1 — ﬁfL(u)du) 1 -3 [ L(u)du
0 0
. (3/2)r \
) B[ Nu)(r—u)?du pBr [ Ludu +2a8?[L(u)du
<= |- +—2 - K <1

"8 <1 - ﬁfL(u)du) 1- 8 [Lwdu 1— 5[ Lu)du
0 0 0

Thus, by Lemmas 1-4, conditions (4) and (5), and the afore-derived estimates,
we obtain

[F (o) TF (z0)] " F(20)7

<F’ ( > ) (w0 = ) = F (o) + W*’) i

+ (FI(ZO) —F <x0—;$*>> (zo — @)
+ H [F’(x*)TF’ (g:*)] P (@) F(z) — [F’(zo)TF'(zO)} T ()T F ()

< Bplo)® J§ N (u)(p(x) — u)*du
8p $03(1 5]‘9(20)[/ )
 Beleo)olu) J§ Lwydu - V2afp(z0) J; Lw)du

p(yo) (1 — B [y L(U)dU) p(z ( ﬂf”(zo )
<p(z0)® 4+ np(xo)p(yo) + 9p(20) <qro<r.

lr — || < x

X

_|_

—_

<

Similarly,

’ / -1 ’
lon = @all = ||[F (20)TF (20)] F'(20)7]

(252

(o (2520
+ H [F'(az*)TF' (:c*)] CF (@) F(x) — [F’(ZO)TF’(,ZO)} T F (20) T F ()
< Bple)® J7) N(w)(p(ar) — u)’du
8p(z1)3 (1— fp(ZO)L )du)
Bolan)p(p) J0 Liwdu  V3aBp(z0) [ L(w)du
(1B E o] e (1~ 5T )

X

+

—

<
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< p(x1)? + (n/3)p(1)(p(x0) + p(yo) + p(x1)) + Op(20) <
< yp(wo)? + (n/3)p(z0)(2p(m0) + p(y0)) + Op(20) < qro <,

where p(z5) = (p(xo) + p(yo) + p(x1))/2. Therefore, 1,91 € B(zs,r) and both
(8) and (9) follow for k = 0. Also, (10) is satisfied

r1 = max{||x1 — x|, [|[y1 — ||} < gro.

Using mathematical induction, assume that xg,yr € B(x.,r) and (8)—(10)
hold for & > 0. Then, from (3) for £+ 1 we obtain that

Bp(ax)* 7 N(u)(p(m) — u)2du
8p(xy)3 (1 - ﬁfp ) du)

ﬁp(ﬂﬂk p(yk) [ W2 1, (u )du V2a82p(2) [ ) 1 (u)du
"ot (1- 9 15 du) o) (1 ﬁfp(z’“ u)du)
_ Bee)® i P N (u (p(fco) — u)*du
T 8p(@o)® (1= %) L(w)du) (18)
+ﬁp<xk> plye) J7@ L ()du+ V2a820(z) J§' L(u)
(Yo (1—/3fp(Z°)L ) p(z0) (1—ﬁfo = U)dU) -
< p(ar)® +nplar)plyr) + 0p(2k) < gry <7

lorsr — ]l <

and
Bolwrn) Jy ™) N () (plaan) — u)du
8p(wpi1)3 (1 -6y Z’“)L )du)
Bp(xri1)p z;g fop(z’“) (wydu — V2a8%p(z) [ (2) u)du
+ . + 2 =
p(z) (1= [y du) o) (1= B J7 du)
 Bolawsn)? 57 NG plao) = P (19)
8p(z0)3 (1 — ﬁfp(zo) L( u)du)
Boleri1)p(z,) fop(z(/))L (uydu V2082 p(z2) 7 L(u
+ p(20) (20)
oz (1—ﬁf0 >du) plzo) (1= J750 L du)

< yp(x1) + (1/3)(p(xr) + p(yr) + p(ari1))p(Tr41) + Op(21) <
<qri <r.

Hyk+1 - $*H <

where p(z,) = (p(z1) + p(yr) + p(zr11))/2. According to (11) and both in-
equalities (8) and (9), we receive

rerr = max{||zrgn — ol lgpi — 2} < gre < @Pren <0 < Mg
Thus, Tgt+1,Ye+1 € B(zs,7) and (8)—(10) hold; and also hm Tr = x, and

k—o0

lim y = x«. This completes the induction and the proof of Theorem 1. (]

k—o0

In case of zero residual (o = ||F(z4)| = 0) the results of Theorem 1 are
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Corollary 1. Suppose that x. satisfies (1), F(x.) =0, F(x) is a twice Fréchet
differentiable operator in B(x, R), F'(x,) has full rank, and both F'(x) and
F"(x) satisfy the Lipschitz conditions with L and N average as in (4) and (5),
respectively, where L and N are positive non-decreasing functions on [0,3R/2].
Furthrmore, assume function Hy has a minimal zero r on [0, R], which also
satisfies:

ﬁ/o L(u)du < 1,

where

o) = (3/9) [ N —wau+ o [ M Lwyau + [ i) —»

Then, the Gauss-Newton type method (3) is convergent for all xo, yo €
B(xx,7) such that

plees) < yplar)® +nplen)p(yr),
p(rr1) < vp(@rsr)® + (0/3)(p(x) + plyr) + p(zrs1)) p(Trs),
rier = max{p(zpi1), p(We+1)} < qre < - < ¢" g,
where p(x) = ||z — 24|, ro = max{p(zo), p(y0)},
B JE N () (o) — u)Pdu
q=
8p(xo) (1 - ﬁfop(zo) L(u)du)
Bp(0) fop(l"o)-i-ﬂ(yo)/? L(u)du
(20(20) + p(0))/3 (1= B 5 L(w)du)
v,1n, 8 hold in (12)-(14).

Corollary 2. Convergence order of the iterative method (3) in case of zero
residual is equal to 1+ /2.

<1,

Proof. Assume that ar = p(zk),bx = p(yx),k = 0,1,2,... Since the residual is
equal to zero, i.e. a = |[|[F(z4)|| =0, so # = 0. From the inequalities (18) and
(19), we have

apy1 < ar(vai +nby), (20)
ber1 < apg1 haiﬂ +1/3(ag + apg1 + bi)] <
< apgr [(var +2n/3)ag + nby /3] < (21)
< agrrax [yr 4] = agrrakdr.

From (20) and (21) for large enough k, it follows
ap1 < ag(vag +nbg) < ap(vaj + néraxag—1) < agag—1(y + nd1) = azag—1¢s.
From this inequality, we obtain an equation [17]

PP —2p—1=0.

The positive root of the latter, which is p, = 14++/2, is the order of convergence
of the iterative method (3). O
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Theorem 2. (The uniqueness of solution) Suppose x. satisfies (1) and
F(x) has a continuous derivative F' (x) in the ball B(x,,r). Moreover, F'(x)
has full rank and F'(x) satisfies the Lipschitz condition with L average (4). Let

r > 0 satisfy
ﬁ/ (r—u) du—i—ﬁo/ L(u)du <1, (22)
0

r

where a and § are defined in (14) and By = ||[F' (z:)TF (z)] 7. Then, x, is
a unique solution of the problem (1) in B(x., ).

The proof of this theorem is analogous to the one in [4].

4. APPLICATIONS
In this section, we apply the obtained results to special cases, when, for
instance, L is a Lipschitz constant. Then, we immediately receive results of the
convergence analysis of the method (3).

Theorem 3. Let F' : IR" — IR™, m > n, be a twice Fréchet differentiable
operator in D C R"™. Assume that (1) has a solution . € D and a Fréchet
derivative F' (x,) has full rank. Suppose that Fréchet derivatives F'(x) and
F'(x) on B(x.,r) = {2 € D : ||z — 2| < r} satisfy the Lipschitz conditions:

[F (x) = F () < Lllz—yll, (23)

[ (x) = F (y) < Nlz—uyl (24)
where z,y € B(x.,r) and both L and N are positive numbers. Also, the radius
r > 0 is a root of the equation

BN72 + 608Lr + 24v2a3*L — 24 = 0. (25)

Then, for all zo,yo € B(z«,r) the sequences {xy} and {y}, which are gen-
erated by the method (8), are well defined, remain in B(x.,r) for all k > 0,
and converge to x4 such that

(8/24)N p(=r)” + BLp(xk) p(yr) /2 + f@ﬁQLP(Zk)

p(Try1) < 1— BLp(z) (26)
p(ghst) < (B/24)Np(zp11)* + BLfl’(ikgz)p((z(:)kH) + (k) + p(yk))/2 n
V2o Lp(z1)
1—BLp(z) &)
repr = max{p(zps1), p(Wks1)} < qre < - < ¢F g, (28)
where p(r) = ||z — 2., ro = max{p(wo), p(yo)},
0<q = (8/24)Np(x0)? + BL(p(x0) + p(y0)/2) + V2052 L <1, (29)

1 — BLp(20)
2z = (xk + yr)/2 and both o and 3 are defined in (14).
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Proof. Let choose arbitrary xo,yo € B(xs,r). According to Lemma 1 from [17]
and the proof of Theorem 1, by setting * = z, and y = z¢ in (15), we receive

o T + Tk
HF(Q;*)—F(Q;O)—F OT (24 — 0)

_ /01(1—t) [Fu <xo+x*+t(x*_x0)) _

4 2 2

" * t
- F <x0—;—m + 5(% - :U*)>:| (x4 — $0)2dt’

1
/ H1 — )N o — 2 |Pdt = - Np(ao)?,
. 24

|7 (452) - (25| o

Using (23) and (14), we obtain that
I(F (@) F (@)™ F (@) ||| F (2) = F'(2.)|| < BLp().

According to that F'(z) has full rank, for all z € B(z.,r), the following in-
equalities hold

<

and also

/ ’ _ ’ /6
|(F ()" F () ' F ($)T”§m7
’ ’ _ ’ ’ ’ _ ’ \@ﬁ2Lp(x)

Hence, from (25) it follows that

(8/24)N plao)? + 35L(plwo) + plyo)/2) + V0L _
1 —BLp(20)
B/24)Nr? + 3B8Lr/2 +\/2a3%L -
1—GLr -
Thus, by Lemmas 1-4, conditions (23) and (24), and the derived estimates in
the proof of Theorem 1, we obtain

(8/24)N p(wo)® + BLp(w0)p(y0)/2 + v2a32Lp(20)
1 — BLp(z0)

O0<qg=

<( 1.

|21 — 2| < < qro <.

Similarly,

(8/24)Np(x1)*
1 — BLp(z0)
L BLp(1)(p(x1) + pl0) + p(0))/2 + V2032 Lp(z0) _
1 — BLp(2o) B
(8/24)Np(0)* + BLp(0)(20(w0) + p(y0))/2 + v23° Lp(20)
1 —BLp(z0)
Therefore, x1,y1 € B(z«,7) and both (26) and (27) follow for &k = 0. Also, (28)
is satisfied

lyr — .|| <

< < qrg <.

r1 = max{||z1 — x|, [Jy1 — x|} < gqro.
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Using mathematical induction, assume that g, yx € B(z«,7) and (28) holds
for k > 0. Then, for £+ 1 from (3) we obtain that

(8/24)Np(zx,)* + BLp(xk)p(yr)/2 + V23> Lp(z)

[Th41 — 24| < <

1 — BLp(z)
_ (B/24)Np(0)* + BLp(yo) /2 + V2aB*L)ry .
B 1 — BLp(20) —

and

(8/24)Np(11)* + BLp(x11) (p(zhy1) + p(xr) + p(yr))/2

[Yrt1 — @] < 2 1= BLp(z) +
\m <qri <.
According to (29) and both inequalities (26) and (27), we receive
et = max{|[zps1 — Tl Y1 — 2} < @ < Premr < -0 < @M.
Thus, Tg11,Yk+1 € B(xy,r) as well as (26), (27), and (28) hold. O

From (25) it follows that the convergence radius of the method (3) is
4(1 — V2a3%L)
50L + 1—12\/ (608L)2 + 968N (1 — /2a32L)

r =

For zero residual, Theorem 3 can be formulated as

Corollary 3. Suppose that x. satisfies (1), F(z,) =0, F(z) is a twice Fréchet
differentiable operator in B(zy,r), F () has full rank, and both F'(x) and
F"(x) satisfy the classic Lipschitz conditions as in (23) and (24), respectively.
Moreover, the radius v > 0 is o unique positive root of the following equation

BN7T2 4+ 608Lr — 24 = 0.

Then, the Gauss-Newton type method (3) is convergent for all xo, yo €
B(xx,7) such that

(8/24)Np(zx)* + BLp(xk)p(yr)/2

p(xr1) < I~ BLp(a) ,
oyrt) < (8/24)N p(x11)* + BLp(xr11) (p(ry1) + p(xr) + p(yr))/2
B 1 — BLp(2k) ’
rer = max{p(zps1), pye1)} < qre < -+ < ¢,

where p(z) = |z — .||, ro = max{p(z0), p(y0)},

0 < o= BN (o + BL(o(wo) +p(w)/2 _

1 — BLp(z0)
2k = (2 +yk)/2 and (B is defined in (14).
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From Corollary 3, the convergence radius is
4 2
"= 580+ L \/(GOBL) + 963N  5BL
12

that corresponds to the previously received results in [10] for nonlinear equa-
tions (m = n).

Under the classic Lipschitz condition Theorem 2 for the uniqueness of the
solution can be written as follow

Theorem 4. Suppose x. satisfies (1) and F(x) has a continuous derivative
F'(z) in B(x,,7). Moreover, F' (1) has full rank and F' () satisfies the classic
Lipschitz condition as in (23). Let r > 0 satisfy

L
%—i—aﬂoL <1.

Then, . is a unique solution of the problem (1) in B(x.,7).

5. NUMERICAL EXPERIMENTS
We carried out a set of experiments on widely used test problems and com-
pared the number of iterations under which the Gauss-Newton method (2), the
Secant method [11], and the method (3) converge to the solution. We used the
same initial points for all methods and the following stopping criteria:

o — il < and AL Flo)] <e.

where

o Ajp1 = F'(xp41) for the Gauss-Newton method (2);

e Ajy1 = F'(2p41) for the method (3);

o Ay = F(xgy1, k) for the Secant method, F'(xp41,xk) is the divided
difference of the first order of F' [11].

TABL. 1. The number of iterations to the solution with the
accuracy € = 10712

Example Gauss-Newton Secant M-d (3)
Rosenbrock func. (n =m = 4)

2o = (—1.2,1,-1.2,1) 5 4 4
Box-3D func. (n =3, m = 10)

20 = (0, 10, 20) 7 9 6
Gnedenko-Veibull dist. (n =2, m = 8)

2o = (1,1) 7 - 6
Freidenstein-Ross func. (n =m = 2)

2o = (0.5, —2) 43 18 10
Wood func. (n =4, m = 6)

2o = (—3,—1,-3,~1) 52 75 50
Bard func. (n =3, m = 15)

2o = (1,1,1) 10 - 9
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In Table 1 we present the amount of iterations spent by each methods to
compute an approximation to the solution of the examples from [9,11] with
the accuracy ¢ = 107'2. The additional initial point yo we calculated in the
following way: yo = x¢9+0.01. The symbol ‘- indicates that the Secant method
does not converge to the solution with the desired accuracy, however the method
converges for the lower accuracy (¢ = 1078).

6. CONCLUSIONS

We studied the local convergence of the Gauss-Newton type method (3)
under the generalized and classic Lipschitz conditions for the first- and second-
order derivatives. We determined the convergence order and the radius of the
method (3) as well as proved the uniqueness ball of the solution of the nonlinear
least squares problem (1). The method (3) is not only more efficient than the
Gauss-Newton and Secant methods in terms of the convergence order, but also
in terms of the amount of iterations to the solution on a variety of test problems.
Furthermore, the method (3) has promising characteristics for parallelization,
which we plan to utilize for constructing and developing new parallel methods
for solving the problem (1).
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APPLICATION OF FINITE ELEMENTS METHOD
FOR SOLVING VARIATIONAL PROBLEMS
OF CHANNEL FLOWS

Y. V.Kokovska, M. M. PRYyTULA, P.S. VENHERSKYI

PE3IOME. DBuBemeno piBHAHHS DyXy PYC/IOBOTO HOTOKY B IICEBIOTIPU3Ma-
TUIHOMY pycii. IToOymoBaHO MOYATKOBO-KPAMOBY 3aaty PYCJIOBOTO TIOTOKY
B rigpommuamivHoMy HabmmxkenHi. CdopMmynpoBaHo BapiarfiiiHy HOCTAHOBKY
3aa4i, Jijid KOl Py AUCKPEeTU3allii 3a IMPOCTOPOBOIO 3MIHHOIO BUKOPHUCTAHO
MeTOJ CKIHYE€HHUX eJIEMEeHTIB 3 6a3uCHNMI JHHITHIMY 1 KBQApATHIHIMU (DyH-
KIIIIMH Ta IPU JUCKPETU3AI] 33 4aCOM — OJHOKPOKOBY PeKypeHTHY cxemy. B
YMOBaX PIBHOBAru CHUJI OIIOPY 1 CHJIM 3€MHOTO TSKiHHS MOOYI0BAHO PIBHIHHS
KiHEMaTHUYIHOI XBUJIi, 3 BPaXyBaHHAM MOJAHKY i3 uncaoMm PeitrHomanaca Ta apy-
roI0 IOXiTHOIO 32 IPOCTOPOBOIO 3MiHHOI. Ha TecToBOMYy mpuKIami MOKa3aHO
MOPIBHSHHS IAX ABOX IIIXOIB 3 BPaxXyBaHHAM 3MIHU I'DAJIIE€HTIB JIiHII cepei-
HBOTO JIHA PYCJIA.

ABSTRACT. The equation of motion of the channel flow in the pseudo pris-
matic channel is derived. The initial-boundary value problem of the channel
flow in the hydrodynamic approximation is constructed. The variational prob-
lem was formulated and solved by method of finite elements with basic linear
and quadratic functions for the spatial variable, and at time discretization
one step recurrent scheme was constructed. In the conditions of the balance
of the forces of resistance and the forces of gravity, the equation of the kine-
matic wave was derived, taking into account the addition with the number of
Reynolds and the second derivative of the spatial variable. The test example
shows a comparison of these two approaches, taking into account the change
of the gradients of the line of the middle bottom of the channel.

1. INTRODUCTION

The transformation of the natural environment and global climate change are
causing changes in hydrological systems. The estimation of such changes can
be made on the basis of experimental data by comparing the hydrological char-
acteristics before and after anthropogenic impact. However, the possibilities
for such estimations are very limited, as the hydro meteorological conditions
vary greatly. The main perspectives for the development of research methods
and predictions of the behavior of natural hydrological systems are currently
solved with the help of their mathematical modeling [1, 13].

In the general study of such an entire system, taking into account all the
factors of influence, is a complex and not always appropriate task for study,
therefore, only a some part of the region is investigated. The object of research
can be the territory of the watershed of the river, which is characterized by

Key words. Variational problem, initial-boundary value problem, Galerkin approximations,
channel flow, kinematic and hydrodynamic approximations.
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similar climatic conditions and is under the influence of similar factors affecting
the movement of fluid. For the description of water streams [2, 5, 10, 11], two
approaches are most often used.

One of them is so-called hydrodynamic approach |2, 4, 9], in which the
general laws of conservation of momentum, energy, mass are used to describe
the processes. In this case, a complicated system of equations is used, usually
non-linear, and in many cases, this task is cumbersome to estimate the amount
of water.

The second approach is based on the equation of the kinematic wave [3],
which are formed in the direction of the flow and occur under conditions of
equilibrium of the forces of resistance and forces of gravity. These waves, which
mainly affect the formation of the channel flow, which, unlike other types of
waves, are formed in different directions and therefore quickly disappear.

In this paper, the flow of water is considered on one of the main elements of
the watershed, namely in the inflows and in the main rivers, and these channels
will be called pseudoprizmatic. Such channels are formed by moving a curve
along a middle bottom line, while it is assumed that the depth of flow is very
small compared with the radius of the curvature of the bottom line and the
middle line of the free surface is horizontal in any normal section of the flow.

This mathematical model depends on many factors that can change fast
enough, so this model must be stable to external and internal influences that
significantly modify the solution of the problem. For approximation of the
solution linear basic functions were used.

Since the problem is nonlinear, the solution acquires (gets) large positive and
negative values, especially in the case of sharp changes of relief of the bottom
of the flow. Therefore, the order of approximations of the solution and was
shown the feasibility of this approach on different test examples [6].

2. EQUATION OF WATER FLOW IN PSEUDOPRISMATIC CHANNEL

Choose a coordinate system such that the axis x is directed on the tangent
straight to the middle bottom line, and the coordinate lines y and z are straight
lines lying in the normal to the bottom of the plane so that y is directed
horizontally (Fig. 1).

Fig. 1. Form of Fig. 2. Cross section
the channel flow. of the flow.
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The system of equations that characterize the motion of fluid:

ou Ov Ow
%nL@nyr%—O, (1)

@ n ouu n ouv n Juw X 10p 1 (074 n OTay n OTaz\ @)
ot Ox oy 0z pdxr  p\ Ox oy 0z )’

ov  Ovu Ovv Ovw 19p 1 (0T or, or,
N e Y — yzr vy Yz .
8t+8x+8y+ 0z p8y+p<8x + Oy * 82)’ (3)

8711} n owu n Owv n Jww 7 190p n 1 OT oz n 0Ty n 0T (4)
ot ox Oy 0z pdz  p\ Oz oy 0z )’

Equation (1) is the equation of continuity for incompressible fluid, and (2) —
(4) the Navier-Stokes equations in which u, v, w and X, Y, Z are projections
of the velocity vector v and the vector of acceleration Capacitive forces F' on
the axis x, y, 2.

We integrate the equation (1) with the area of the cross-section of the flow

(Fig. 2):
L T ew e o
u v w
F/dy/<é?:r+8y+8z>dz_0' (5)
b_ 20

We use the differentiation formula under the integral sign, and taking into
account the symmetry of the channel as to the XOZ plane, when all integrals
of F containing a% are equal zero, we obtain

L o o
U w
b_ 20

Since on the surface of the bottom of the flow z = 2y the vector of velocity is
zero, then u,—,, = 0.
We set the kinematic condition on a free surface:

w _on +u on (7)
=H ot =H oz
b+ H
and the fact that the value [ [udzdy = @ is the rate of flow, then equation
b_ 20
(6) is written as follows:
0Q O0H
— + —B=0.
o ot ®)

Let us turn to the equations of motion. It is obvious that for flow in the
gravity field X = gsind,Y = 0,Z = —gcosd = —g., where g-acceleration of
gravity, & — the sharp angle between the horizontal plane and the tangent to
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the line of the middle bottom. We integrate equation (4) for z and express the
value of pressure:

H H
p:p+(H—zo)g*—w2+gt/wdz+88x/wudz+
20 20
H

0 R 1[0 7 0
-l-ay/wvdf—i—p &C/szdz—i_ay/szdz_TZZ 5
20

20 20

(9)

We substitute this value of p into equation (2), and we integrate the result
by the area of the cross section F, we obtain:

9 br 2 9 by 2
- - 2 —
8t/dy/UdZ+8x/dy/Udz
b_ Zx b_ Zx
by

o=\ [T 1
=g (Siné_ ZO) //dZdy— /(sz)ZZZ dy“rg
Ox ) *
b_ zx

b

(10)

where € — additions that do not significantly affect the solution of the problem.
We use the expression defined in the hydraulics of turbulent flows
by
1 Q? U?

pgiF (sz)zzz* dy = K2 = ma (11)

where K = CFv/R — channel capacity; R — hydraulic radius; C — coefficient of
Chezy. Then equation (10) will be written as:

1 /oU n oaU a—1_0F . OH U? n (12)
| = - U |=i——— 55 +e

g \ Ot Ox F ot oxr C?R

If in (12) we neglect a addition €, we obtain an hydrodynamic equation of
one-dimensional unstable, slowly changing motion.

3. INITIAL-BOUNDARY PROBLEM OF THE CHANNEL FLOW
IN HYDRODYNAMIC APPROXIMATION
If @ = UF, then from (8) follows that equation will be written as:
OUF 0OH
(UF) +B— =0
ox ot

From where:
OUF) oOF
ox + ot
In equation (12) we neglect by addition €, then equation will be written:
10U o O0U «o—-1UOF 10F U*
ot "y oz g Fot "Box CR

0; (13)

i, (14)
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where U - flow velocity and F — cross-sectional area; g — 9,8 m/s? — acceler-

ation of gravity; C—const— coefficient of Chezy; i — sind, where § — the angle

of the midline of the channel bottom to the x-axis; B = by — b_ — width of the

channel; R=const — hydraulic radius; a— parameter adjustments of movement.
Complement these equations by initial

U li=0 = uwo(x), F'|1=0 = fo(z) on [0, L] (15)
and boundary conditions
U(t,0) =0, F(t,0) = 0. (16)

obtain initial-boundary problem of the unknown — the flow velocity U and
cross-sectional area F.

So, system of equations (13)-(16) describe initial-boundary problem of fluid
flow in open pseudoprizmatic channel.

3.1. Variational problem. Choose spaces of allowable functions H := L? (1),
V= H'(Q), where Q = [0, L].
To construct the variational problem multiply equation (13) an arbitrary
function ¢ € V', and the (14) — ¢ € V and integrate the results by region (2.
Input such bilinear form:

_ [, 0f . _ . _ [ou .
CL(U,f, 90) —/Uaxapdﬂs, b(uvso) —/U(,Od{l}, C(%SO) _/axwdxv

Q Q Q

d(u, f,p) = [ ufedr;
/

and linear functional

l(p) = Q/icpdx.

Then variational formulation of initial-boundary problem (13)-(16) can be
written as:

( Given:  wug, fo € H;
Find a pair . (u, f) € L*(0,T;V x V) such that
a(u(t), f(t), ) + a(f(t),u(t), ©) +b(f'(t), ) = 0;
Lh(ud (), ) + Cau(t), u(t), ¥)+
+5e(f(t),¥) + gagd(u(t), u(t), ¥)—
—atd(w(t), f'(1),¥) = (L), Yt e (0, 1Y,
b(u(0) — uo, ) = 0,b(f(0) — fo,) =0, Vo, ¥ € V.

(17)

The solution to this problem will be search using the finite elements method.
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4. DISCRETIZATION VARIATION PROBLEM IN TIME VARIABLE
Divide the length of time [0,T| in N7 + 1 equal parts [tj,t;41] with length
At = tjy1 —tj, 7 = 0,...,Ny. On each interval [t;,t;11] looking solutions
of (5). Solutionsu(x,t), f(z,t) € L?(0,T;V) to this problem approximate by
polynomials form

upng(z,t) = {1 —w(t)}uw/ (2) + wt)w T (z);
far(z,t) = {1 —w(®)} f(z) +w(t) 7 (x); (18)

) t—t;
t e [t]'vti-‘rl]?] = O) 17 °")NT - ]"w(t]’t) = At]

with unknown functions u/(z), f7(x) € Vj.
For functional [(x,t) € V;! in problem (17) will use the following approxima-
tion

Int(w,t) = Lig17o = Utj11/2, 7). (19)

Then recurrent scheme [12, 14] will be written as:

Given : At,w(t) = const >0, v/, fI €V x V.

Find : v/t fi771 € V x V,such that :

b (fj-i-l/Q7 SD) + Atya (uj, fj+1/2’ gp) +

+Atvya (uj+1/2, 17, go) + Atvya (fjH/Q, u’, LP) +

At (P02, ) ——a (£, ) — a (.0 0):

%b (W12, 4) + SAtS [a (W, w2, 9) + a (W2l )] +
LAtBe (f7112,9) + 2R Atfd (v, w12, y) —
oL, it1/2 ) =

() — B0 (,0,0) e (71, 6) — chpd (0,19,0)
Wt =yl 4 A2, il = f] + Atfit1/2,

(20)

The scheme provides that the initial solution (u?, f°) defined by initial condi-
tions (16).

5. DISCRETIZATION OF VARIATION PROBLEM FOR SPATIAL VARIABLES

Choose a sequence of finite spaces approximations V}, of the space V with
properties dim V}, ﬁ 0o. Then (up,vp) — semi discrete approximation of
solution (u,f).

The interval [0, L] divide using sequence equally spaced units: z; =i-h,i =
0,....,N,h= % on N finite segments [z, zj+1],7 =0,1,..., N — 1.

Choose a base {cpj}évzl, {wi}?il in space approximations Vh.'

Define functions uj () = valU]gol( ), fh( z) = N Flp; (x) a sched-
ule of for the basis functions {gol}l 1) {ZZJ@} —, and unknown coefficients U =

{U}z 17F_ {Fl}i:1'
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Continuous piecewise defined basis functions {¢;(z) }i\il of the space V}, cho-
sen as linear polynomials, and {wl(x)}f\i 1- in the form of quadratic functions.
Functions {gpl(:v)}fil and {wl(m)}f\il denote as:

0, 0<e <z,
=] i, GLEeEm
T2 T < < Tita,
0, , <x<L.
0, 0<ax <z,
2(9[:—:1%-_2)2(96—3?1'—1)7 zi—g <z <y,
vil) =g e e <o <,
W’ i < v < Xiq,
0, Tit1 <x < L.

Overlaid matrices we obtain recurrent scheme as follows|7, §|:

Given : At,v,3 = const >0; v/, fI € R".

Find : w1, fitl ¢ R™,

such that :

[B1+ AtyAL (/) + Aty A2 (w)] fI+1/24

+[AtyA3 (f7) + Aty Ad (f7) Ju T2 =

= —APL (&, f7) — AP2 (f7,u7) [FALBC + 4L D2(w?)] f71/24
+5 B2+ 2AL (A5 () + A6 (u))+

+ AR 2AtBD1 (W )u T2 =

= Lj172 — SAP3(w,w!) — 5OP(f7) — g DP(u,u7)

Wt = + At Y2 I = fT 4 AL fITL2,

(21)

In this system, the values of the parameters of recurrent equations v and 8 we
choose from the conditions of their stability and provide the desired accuracy.

6. EQUATION OF MOTION OF WATER IN THE CHANNEL
IN THE APPROACH OF THE KINEMATIC WAVE

So, the simplified equations of water in the form of equations of the kinematic
wave 3]

OF 3 _, —0F 1 0°F

where F =F(z,t) — cross-sectional area; B = by (x,y)—b_(z,y) = const — width
of the channel; w - side inflow; Re — Reynolds number; ¢ — slope of the bottom.
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Initial and boundary conditions:
Fi—o = Fo,
(_ﬁ%"'(l_ﬁ)F)‘x:o:Ov (23)
(0% + A= F)|,_, =0, 7%.B8>0.

Enter the denotation

(h, ) = /hapdw, c(h,p):= /Vh-V(pd:r,
Q Q

(24)
b(€:ih ) = / " ha - Vipds,
Q
(I, o) := [ Redx — | Gedx, V&, h,p €V (25)
[

Taking into account the designation (24), (25), variational formulation of the
problem will look like:

( Given: h% € V and X € (0,1];
Find: H*2 €V,
(H"2,0) + AN (mb(h*; H¥* 3, 0) + Joc(HM 2 ) = (26)
= (lpr1/2:0) = b(WF; B, @) — e(hF, 0) Vo eV,
RE+HL — pE 4 AtH*3, k =0,..., Ny

The constructed variational problem of channel flow in kinematic approxima-
tion (26) makes it possible to find the depth of the flow in any point of time.

1.2 ~
1 -
0.8 1
0.6 1
0.4 4
0.2 4
0 -
0 013 027 04 053 067 028 0.93

F1G. 3. Form of the bottom of the channel

7. ANALYSIS OF NUMERICAL EXPERIMENTS
We will test the obtained models on the test examples. The first example
shows an effective use of quadratic approximations to eliminate the oscillation
of solutions of hydrodynamic problem. The second example shows finding a
solution of the problem of kinematic approximation, taking into account the
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(373
L

Fi1a. 4. Cross-sectional area and velocity (linear approximation
1000FE)

S -

Fia. 5. Cross-sectional area and velocity (quadratic approxi-
mation 500FE)

addition with the second derivative. But the line of the middle bottom in
examples 1 and 2 is the same.

z ™ |
| mog ]
; |I|i o0
T Illllh 1 Ing || I
 —1 1L e — e —
e . i
:_.F_na. .,,.-‘ - .«,‘ = ; B I e § s i e T 1
; i o !
el 2 -man |
= i -romn !
EX | =300 |

Fi1G. 6. Cross-sectional area and velocity (kinematic wave ﬁ =0)

Example 1. Input data: a=1, 0 <z < 1,0 <t <1, At =0.0001, B=8,
g=9.8, C=60, R=1, Fy = 2%
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[ 1|
og
o4 P I

Fia. 7. Cross-sectional area and velocity (kinematic wave Re = 20)

Example 2. Input data: a=1,0 <z <1,0<¢ <1, At =0.0001, B=20,
9=9.8, C=60, R=0, 1/Re=0 and Re = 20, F(0,t) =0 , 2£| _ =0, F; =22,
U=CVVF.

8. CONCLUSIONS

In this paper, a model of fluid motion in open pseudo prismatic channel in
the hydrodynamic approximation, which is described by a system of equations
with unknown variables of velocity and area cross-section of the flow, was con-
structed. In conditions of balance of the forces of resistance and gravity for this
model the equation of the kinematic wave was written. In it the addition with
the number of Reynolds and with the second derivative for spatial variable was
taking into account. The initial-boundary problem was set for both approaches
and its variational formulation was written. The variational problem was solv-
ing using the finite elements method. The choice of linear and quadratic basis
functions was investigated in discretization a problem for a spatial variable and
in application one-time recurrent integration scheme in time.

The obtained solutions of the problem are tested on examples with a complex
relief of the bottom of the channel. In the model of hydrodynamic approxima-
tion, the expediency of increasing the order of approximation schemes for a
spatial variable in approximations of velocity of flow and in the kinematic wave
model the use of a regularized multiplier are shown. The test example shows
a comparison of the two approaches, taking into account the change of the
gradients of the line of the middle bottom of the channel.
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APPLICATION OF (G'/G) — EXPANSION
METHOD TO TWO KORTEWEG — DE VRIES
TYPE DYNAMIC SYSTEMS

[.S. MYKHAILIUK, M. M. PRYTULA

PE3iOME. Metox G'/G possunerns [12] 3acTocoBaHO 70 ABOX HeiHiHHEX
muHamivaMx cureMm triy Kopresera — ne @piza [20]. dis 06ox cucrem mobyno-
BAHO PO3B’s13KU THUILY OiKy4nx XBU/Ib ¥ (popMi rimepbosiaHnx, parnioHaaIbHuX i
TpuroHoMerpudHux GyHKIii. OTpuMaHni pe3y/bTaTi MOPIBHAHO 3 PEe3y/IbTaTa-
MU, orpumaHuMu tanh- Meromom [4] 1 rpadiuno npoananizoBaHo.

ABsTrACT. The (G'/G) - expansion method [15] is applied to two Korteweg
— de Vries type nonlinear dynamic systems [1]. For both systems the traveling
wave solutions in the form of hyperbolic, rational and trigonometric functions
are constructed. The obtained results are compared to ones derived by means
of the tanh — method [6] and graphically analyzed.

1. INTRODUCTION

Solutions to nonlinear evolution equations (NEE) play a crucial role in math-
ematical physics, therefore more and more scientists from all over the world
dedicate their studies to investigate such equations. Nonlinear wave phenom-
ena appear in various scientific and engineering fields, such as fluid mechanics,
plasma physics, optical fibers, biology, solidstate physics, chemical kinematics,
chemical physics and geochemistry.

With the advent of computers many effective numeric methods for finding
approximate solutions to partial differential equations (PDEs) appeared. On
the other hand, the creation of modern powerful computer algebra systems,
such as MATLAB, MATHEMATICA and MAPLE, simplified the analytical
investigation of NEEs, assisting mathematicians in their tiny computations.
Hence during the past five decades a wide variety of analytical methods for
finding exact solutions to NEEs was developed.

Recently, the (G'/G) - expansion method, firstly introduced by Wang et
al. [15], has become widely used for many PDEs. It turned out that the method
just mentioned provides solutions in a more general form compared to other
analytical methods (e.g. the tanh — method [6]). What is more, with a certain
choice of arbitrary parameters in the (G'/G) — expansion method some well-
known solutions to PDEs can be rediscovered.

In paper [14], the authors constructed soliton solutions for two Korteweg—
de Vries (KdV) type nonlinear dynamic systems [1,3] by means of the tanh —

Key words. (G’ /G) — expansion method, Korteweg — de Vries type dynamic system, soliton
solution.
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method [6]. In this work, we investigate these systems using the (G'/G) — ex-
pansion method and construct solutions in more general form. The rest of the
paper is organized as follows. In Section 2, we describe the (G'/G) — expansion
method [15] for finding traveling wave solutions to nonlinear evolution equa-
tions. In Section 3, we provide a brief overview of the main generalizations of
the method being discussed. In Sections 4 and 5, we apply the method to two
nonlinear KdV type dynamic systems [1,3], and analyze the obtained solutions.
Finally, in Section 6, we summarize our results.

/
2. DESCRIPTION OF THE (%) — EXPANSION METHOD

Suppose that a nonlinear equation, say in two independent variables z and
t, is given by
P(U, Ut,UI,Utt,uxx,uxt,...) = 07 (1)

where u = u (x,t) is an unknown function, P is a polynomial in v = u (x,t)
and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved. In the following we give the main steps of the
(G'/G) — expansion method [15].

Step 1. Combining independent variables x and ¢ into one variable

E=x—Vt, (2)

we suppose that u(z,t) = u (). Traveling wave variable (2) permits us to
reduce Eq. (1) to an ordinary differential equation (ODE) for u (x,t) = u (&)

P (u, Vil VRS -Vl ) = 0. (3)

Step 2. Suppose that the solution to ODE (3) can be expressed by a poly-
nomial in (G'/QG) as follows:

u(§) = iai <g> (4)

=0
where G = G (£) satisfies the second order linear ODE in the form of
G"+ )G+ uG =0, (5)

; (z = W) , A, it are constants to be determined later, o, # 0. The positive
integer m can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in ODE (3).

Step 3. By substituting (4) into Eq. (3) and using the second order LODE
(5), collecting all terms with the same order of (G'/G) together, the left-hand
side of Eq. (3) is converted into another polynomial in (G'/G). Equating
each coefficient of this polynomial to zero yields a set of algebraic equations for
o; (i =0,m),\ and p.

Step 4. Assuming that the constants a; (i = 0,m), A, and V' can be ob-
tained by solving the algebraic equations in Step 3, since the general solutions
to the second order linear ODE (5) have been well known for us, then substi-
tuting o; (i = 0,m), A, 1,V and the general solutions to Eq. (5) into (4) we
obtain traveling wave solutions to the original nonlinear evolution equation (1).
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As it was already mentioned, the solution to Eq. (5) is well-known for us
and can be easily derived by the Euler method:

(Al sinh 57“\22_4“ + As cosh §v>\22—4u) e*%)‘f,
if A2 —4u >0,
G (&) = (A1 + A) e 2, if X —dpu=0, (6)
( Aysin VI L4 cos ﬁwg—v) b
if N2 —4u<0.

3. MAIN GENERALIZATIONS OF THE (G’/G) — EXPANSION METHOD
Since 2008, when the (G'/G) — expansion method was introduced by Wang
et al. [15], many modifications and generalizations of the algorithm have been
developed, each of which concerned different aspect of the method. Therefore,
it is worth classifying them by that aspect.

3.1. Homogeneous balance value. The classical method [15] assumed that
the homogeneous balance value, which determines a degree of polynomial (4),
is a positive integer. In paper [4] the authors used a transform to handle the
equations with negative or fractional homogeneous balance value. Let m be a
value of balance for a certain equation. If m = % is a fraction in the lowest

terms, then we set the solution

D
u(§) =vi(§),
and when m is a negative integer, then we set
u (&) =v"(E),

then substitute the new expression for u (£) into (3) and recompute the balance
value for a new equation, which is now guaranteed to be a positive integer [4].

3.2. Representation of the solution to NEE. Another way to modify the
original method is to replace the polynomial in (%,) with a more general

structure.
In works [2] and [16] the solution was suggested to be found in the following

form:
u(§)=a +Zn: a; (Gl)ier <G/>Zl o 1+1(G/>2
0 v ‘G WS 1 G )

and, moreover, the function G = G (§) was found as a solution to simplified
equation

G" 4+ uG =0,

where p is a constant to be determined.
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Yet another form of the solution representation was introduced in papers [21],
[17] and [13], namely the solution was supposed to have the following form:

n G/ 7,
i=—n
i. e. the expansion included the terms with negative degrees.

As it is shown in the corresponding works, both mentioned representations of
function u = u (§) yield more general solutions to certain NEEs [2,13,16,17,21].

3.3. Auxiliary equation for function G = G (§). Other modifications of
the method affected the form of the auxiliary equation, which in the classical

<%l) — expansion method is of the form (5). One of the most frequently used

equations was the nonlinear one of the following form:
GG" = AG? + BGG' + C (G')?,

where the prime denotes the derivative with respect to &; A, B, C are all real
parameters.

This improvement of the method was firstly introduced by Liu et al. in [5]
to obtain more general solutions to NEEs in comparison with the classical
method. It was successfully applied to some well-known equations of mathe-
matical physics, among other, in works [5,7-12].

3.4. Coefficient of the polynomial in (%) One more generalization of

the original method was the idea to find a solution to NEEs as a polynomial in
(%) with variable coefficients [20], namely

u(e) = Za ) (£) +arn),

where a; = o; (X) (i =0,n),¢{ = £(X) are functions to be determined. As
in the classical method, function G = G (§) satisfies Eq. (5). The rest of the
algorithm remains the same, except that at the third step one need to solve a
system of ordinary differential equations rather than algebraic ones.

The described idea was successfully used to solve some NEEs in papers [18—
20].

4. APPLICATION: EXAMPLE 1
Consider the following Korteweg — de Vries (KdV) type nonlinear dynamic
system |1, 3]
Ut = Uggzxr — Vg,
(7)

UV = —2Vppr — UU.

Let us solve system (7) by use of the (G'/G) — expansion method.
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Step 1. Introducing traveling wave variable £ = z — V¢, we reduce system
(7) to a system of ODE for v = u (§) and v = v (§)

V! =" — v/)

(8)

Vo' = -20" —uv'.

Suppose that the solution to system (8) can be expressed by polynomials in
(G'/@Q) as follows:

v = (2. v©=3 5 (&) )

=0

Considering the homogeneous balance between v and v/, v"" and uwv’ in the
first and the second equations of system (8) correspondingly, we obtain a simple
system of algebraic equations

m+3=n+1,
(10)
n+3=m+n+1,

from which it can be eagily found that m = 2 and n = 4.
Step 2. Considering (9) and (10), we find the solution to system (8) in the
following form:

u(§) = as (%)2 + ay (%/) + ap,
v@)=/ﬁ(%ﬂ4+¢%(%Q3+¢ﬁ(%)2+61G%)+6m

where function G = G (§) satisfies the second order linear ODE (5), A, i, V, oy
(i =0,2), B; (j =0,4) are all constants to be determined later, ag # 0, B4 # 0.
Step 3. Substituting (11) into system (8) and collecting all terms with

(11)

the same power of (%) together, the left-hand sides of equations (8) are

converted into another polynomials in (%) Equating each coefficient of

these polynomials to zero yields a set of simultaneous algebraic equations for
A, Voo (i =0,2),6; (7 =0,4) as follows:

— from the first equation in (8):

0: A2+ 6as u? + 2004 — B+ arpV =0

1: o A3 4 6092 + Sagp ()\2+2,u) + 8o Ay — B A — 20ou+
+V (1 A+ 2a2p) =0

2: lagA (/\2 + 2,u,) + 7o A% + 360\t 4 Saqpt — 2B\ — 3B3u—
01+ V (22X + 1) =0

31 8an (A2 4 2u) + 30a2A? + 1201\ + 24aap — 363 — 4Bsp—
—289 + 2a2V =0

4: BdagA+ 6 — 404N — 3083 =0

5: 24ap — 484 = 0;
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— from the second equation in (8):

—agfip — 200N 1 — 1200 Ap® — 120B3p% — 4Py + BV =0
—aofA = a1 —2a0apt = 2N — 286521 — T2 35 M1~
—1661 A\ — 4864 pi® — 320 + BIAV + 2BV =0

20 —a1 A — 2a002X — asBip — 201 Bap — 3o B3 — o — 16223 —
—11483X% 1 — 148122 — 21684 % — 10482\ — 120832 — 1651 ju+
F28oAV + 385V + A1V =0

— O

31 —aaA — 20152\ — a3\ — 202824 — 31 B30 — 4o Bapi—
—a1 31 — 20032 — 54533 — 296840211 — T6B20% — 33633\ 11—
—24B1\ — 3048412 — 80Fap + 30NV + ABapV + 23V = 0

4: 2902\ — 3183\ — dap B\ — 3Pz — 4o Bapn — B —

—2a1 39 — 3 B3 — 1288403 — 2223372 — 7848, A1 — 1085\ —
—22853# - 1261 + 464)\V + 3,83V =0

5: —3agfsA — 4oy BaX — dagfBap — 20032 — 3a1 B3 — o By — 4884 A% —
—28803\ — 496341 — 4802 + 46,V =0

6: —ag (484\ +383) — 41 By + 2 (—12084\ — 60 (384N + (33)) = 0

7 —40(2ﬂ4 - 240ﬁ4 = 0.

In addition to this, the highest order coefficients in (11) are supposed to be
nonzero:

(&%)} 7é O, ﬁ4 7é 0. (12)

Step 4. Solving the system of algebraic equations from the previous step
with conditions (12) with the aid of MATHEMATICA yields four sets of solu-
tions:

— Set 1.
V= >\2 - 4/") apg = _>‘2 - 56#7 a1 = —GOA, Qg = —605
Br=—120 (A3 +2Apn), [Bo=—240 (2A% + ), (13)
B3 = =720\, (4 = —360,
where A, p and [y are arbitrary constants.
— Set 2.
V=4p—X, ag=-3(3N2+8u), o =-60) ay=—60,
P =—720Au, B2 =360 (\* +2u), (14)
B3 = =720\, (4 = —360,

where A, p and By are arbitrary constants.
— Set 3.

V= )‘27 H = 07 apg = _AQ) a1 = _60A7 a9 — _60,

B = —120)3, By = —480)\2, (3= —T20)\, (4= —360, (15)
where A and 3y are arbitrary constants.
— Set 4.
_ )2 _ — _0)2 _ _
V==X u=0 «a IN*, o 60X, as 60, (16)

ﬁl = 07 /82 = _360)\27 /83 = _720)\7 ﬂ4 = _3607

where A and g are arbitrary constants.
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Finally, substituting solutions (13)-(16) with the general solution to linear
ODE (5) into representation (11) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (7) as follows.

Solutions set 1. Constants set (13) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions
u(§) =
v(§) =

B 15(A2-A2)o
Aj sinh %-&-AQ cosh %) 2
15(A2—A2)0?(4A2A; sinh £/5+2( A3+ A2) cosh £\/o+ A3 — A2) (17)
B inh £&/2 A +
2(A1 sinh >5=+A cosh T)

+80 + 1200 (A* — ),

_O"

where £ = x — ()\2 — 4u) t, 0 = N2 —4u, Ay, Ag, By are arbitrary con-

stants; in particular, setting A = :I:\/glkl], W= —%k%, A1 =0, By = aso,

we obtain exactly the soliton solution, found by means of the tanh —
method in [14];

E u(x-Vt.)H u v(x-V;ﬁ)' 0

Fia. 1. Hyperbolic functions solution (17) when A; = 1,
As =12 A=22 p=1, fo = —460.8

— when A2 — 44 = 0, we get the family of rational functions solutions

60A2
w(©) = —merans
360(u2(As€+ A1)~ AR) (18)
v () = (Az€+A1)% + Bo,

where £ =z, A1, As, By are arbitrary constants;
— when A2 —4p < 0, we get the family of trigonometric functions solutions

_ 15(A2+A3)0
v (5) o (A1 sin %JrAz cos # 2 to
v(€) = _15(A2{+Ag)g2(_4A2A1sin§ﬁ+2(A§—A§)cosg\/E+A§+A§)+ (19)

2<A1 sin %-‘,—AQ cos %)4
+060 + 120p (A* — ),
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-5

BU(X-VE) oo

BV(X-VE) o

Fia. 2. Rational functions solution (18) when A; =1, Ay =
1.2, =1, p=0.25, By =—22.5

u u(x—\.,;t..)’-'.{ ' u v(x—Vr’i:-)ﬂ

Fia. 3. Trigonometric functions solution (19) when A; = 1,
Ap=12, A =1, u=1, =0

where £ = x — ()\2 — 4,u) t, 0 =4u — N2, Ay, Ay, By are arbitrary con-
stants.

Solutions set 2. Constants set (14) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions

150 ( A3—A32)

v (5) - (A1 sinh #-{-Ag cosh %)2 — 9
45( A2— A3) 202 ) (20)
v(§) = + Bo + 360u2,

2(A1 sinh %4’142 cosh %)4

where £ = x + (>\2 — 4u) t, 0 = N2 —4u, Ay, Ay, By are arbitrary con-
stants;
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u u(x—th [ u v(x—Vt).' 0

] COA

Fia. 4. Hyperbolic functions solution (20) when A; = 1,
Ay =12, 2=22, p=1, By = —-360

— when A2 — 44 = 0, we get the family of rational functions solutions

60A2
w(€) = ey a1
360 (2 (Agé+A1)*—A2
v (5) = (li (E422§£—|-+A11))4 2) + fo,

where £ =z, Ajp, A, [y are arbitrary constants; note that solutions (21)
coincide with corresponding family (18) from the first set.
— when A2 —4p < 0, we get the family of trigonometric functions solutions

B —150(A2+A3)

u (f) - Aq sin %4-,42 cos #)2 + 907 (22)
2.1 42)2,2

o (6) = 45(A3+43)%0 —+ B+ 36002,

N 2(A1 sin %—i—Ag cos %)

where £ = x + ()\2 - 4u) t, 0 =4u — N2, Ay, Ay, By are arbitrary con-
stants.

Solutions set 3. Constants set (15) yields two families of solutions:

— when A > 0, we get the family of hyperbolic functions solutions

( _ 1522 (A3—A2) 9
v (6) o A1 sinh %—I—Ag cosh % 2 A ’
241 A2(A3—A3)(Bo+30A1) sinh €|\[+ A1 A2 (A3+A43) 8o sinh 2¢|\| n
2( A1 sinh %—i—Ag cosh %)4
—(A$—A3)(B0+30A*) cosh Aé—32 (A3 —A3)2(20A1— o)
2<A1 sinh %—I—Ag cosh %)4
% (A%+6A§A% +A%)ﬂ0 cosh 2X\¢
2(A1 sinh %M+A2 cosh %)4 ’

(23)
+

\

where € = x — A\?t, Ay, Ag, By are arbitrary constants;
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u u(x—V.f.)-'n""

Fia. 5. Trigonometric functions solution (22) when A; = 1,
Ay =12, A =1, p=1, By =360

Fia. 6. Hyperbolic functions solution (23) when A; = 1,
Ay =12, A=1, =0

— when A = 0, we get the family of rational functions solutions

_ 6043
_ 360A3 0
v(§) = fo- At AT

where £ =z, A1, A, [y are arbitrary constants; note that solutions (24)
coincide with corresponding family (18) from the first set.

Solutions set 4. Constants set (16) yields two families of solutions:
— when A > 0, we get the family of hyperbolic functions solutions

3X2(6A2A, sinh £|A|+A%(3 cosh Aé+7)+A3(3 cosh AE—7))

u (5) - 2( A1 sinh %-{—Az cosh %)2 ’
0(€) = o o BN 2
o 0 2(A1 sinh %—i—Ag cosh %)4’
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: U(X_Vt) e u v(x-Vt)

Fia. 7. Hyperbolic functions solution (25) when A; = 1,
As=12,A=1, By =0

where &€ = x4+ A%t, Aj, Ao, By are arbitrary constants;
— when A =0, we get the family of rational functions solutions

60A2
u(§) = _(A2£+j1)2a (26)
_ 360A%
U(é) - /60 - (AzE+A)T

where £ =z, Aj, Ag, [y are arbitrary constants; note that solutions (26)
coincide with corresponding family (18) from the first set.

5. APPLICATION: EXAMPLE 2
Consider the following Korteweg — de Vries (KdV) type nonlinear dynamic
system [1]
Ut = Uggg T Uy — VVg,
(27)
Vy = —2Uppp — UVg.
Let us solve system (27) by use of the (G'/G) — expansion method.

Step 1. Introducing traveling wave variable £ = z — V¢, we reduce system
(27) to a system of ODE for u = u (§) and v = v (§)

V' =u" 4+ uu — v/,
(28)
Vv = —-20" —uv'.

Suppose that the solution to system (28) can be expressed by polynomials in
(G'/@G) as follows:

o= (G) v0-3a(g) (29)

i=0
Considering the homogeneous balance between «” and vv’, v and wv’ in the
first and the second equations of system (28) correspondingly, we obtain a
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simple system of algebraic equations

m+3=2n-+1.
(30)
n+3=m+n+1,
from which it can be easily found that m = 2 and n = 2.
Step 2. Considering (29) and (30), we find the solution to system (28) in
the following form:

u(§) = az (%)2 + o (%) + ap,
v (§) = e (%)2 + 3 (%) + Do,

where function G = G (§) satisfies the second order linear ODE (5), A, i, V, oy
(i =0,2), 8; (j =0,2) are all constants to be determined later, ag # 0, B2 # 0.
Step 3. Substituting (31) into system (28) and collecting all terms with

(31)

the same power of (%) together, the left-hand sides of equations (28) are

converted into another polynomials in (%) Equating each coefficient of

these polynomials to zero yields a set of simultaneous algebraic equations for
A, Voo (i =0,2),6; (7 =0,2) as follows:
— from the first equation in (28):

0: a2+ 6aodp? + 20142 + aparp — Bobip + arpV =0

1: an A3 + 60X+ 8agp (A2 + 21) 4 8an A + ap (aq A + 2a0p) +
+aip — Bo (BiA+202p) — B+ V (1A + 200p) = 0

2: 8ag) ()\2 + 2u) + T A? + 360\ + a1 (g A + 2aou) +
+ap (209 + a1) + 8agpn + aragp — B (B1A + 282u) —
—B0 (202X + B1) — B1fBep + V (200X + 1) =0

3: 8ag (A?42u) + 300227 + g (an A + 2ap) + 1200 A+
+a1 (200X + ) + 24z + 20002 — B2 (B1A + 202p) —
=01 (202X + B1) — 2602 + 202V =0

4: bdao )+ ag (2@2)\ + Oél) + 2ana1 + 601 — Bo (2ﬁ2)\ + ﬂl) —
—2012 =0

5: 203+ 24as — 2032 =0;

— from the second equation in (28):

0: —aobip— 2600020 — 1282 Ap? — 4By 1% + BV =0
1 =2(B1A3 + 6682020 + 8Bap (A? + 2p) + 831 Ap) +
+V (1A +2B2p1) — o (B1A + 202p) + a1 1 (—p) =0
2: —a1 (LA +202p) — ag (262X + B1) + a1 (—p)—
—2 (882X (A2 +2p) + TB1A% + 3602 A + 8B11) +
+V (26N + 1) =0
3: —aa (BiA+202p) — a1 (202N + B1) — 200 P2 —
—2 (802 (A\* + 2u) + 3082X% + 1201\ + 2452) + 262V = 0
4: —ag (282X + B1) — 20132 — 2 (5482 X +661) =0
5 —2a2ﬁ2 - 48ﬁ2 = 0.
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In addition to this, the highest order coefficients in (31) are supposed to be
nonzero:

a2 7& 07 ﬁ? 7é 0. (32)

Step 4. Solving the system of algebraic equations from the previous step
with conditions (32) with the aid of MATHEMATICA yields four sets of solu-

tions:

— Set 1.
ag= 222 —16pu+V, o3 =-24\, ay= —24, (33)
Bo=V2 (=N =8u+2V), pi=-12v2)\ [=-12V2,
where A\, pu and V are arbitrary constants.
— Set 2.
ag= -2\ —16p+V, o3 =-24)\, ay=—24, (34)
Bo=V2(N+8u—2V), [i=12V2), [ =12V2,
where A, p and V are arbitrary constants.
— Set 3.
pu=0, ag=V -2\, a;=-24)\, ap=—24, (35)
fo=2V2V = V2N, B =-12V2) 2= -12V2,
where A and V' are arbitrary constants.
— Set 4.
— — T/ —9)\2 - _ [
"= 0, Qg = Vv 2 y (673] 24)\, (%) 24, (36)

Bo=V2X2 —2V2V, B =12V2), [y =12V2
where A and V are arbitrary constants.

Finally, substituting solutions (33)-(36) with the general solution to linear
ODE (5) into representation (31) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (27) as follows.

Solutions set 1. Constants set (33) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions
6(A2-A3)o

- —2X2 +8u+V,
(AISinh%-FAQCOSh%)Q +op+V,

u () =

37)
3v2(A3-A%)o (
= — -2 2v/2
v (5) (141 Sinh#-f—Ag c05h¥)2 \/>O' + \/>V>
where ¢ =x —Vit, 0 = A2 —4p, Ap, Ay, V are arbitrary constants;
— when A2 — 44 = 0, we get the family of rational functions solutions
AZ(£2V—24)+2A42 A1 EV+ATV
u (5) = 2 2 )

6A2
v(©) = 2v2(V - ety )

where £ =x — Vit, Aj, Ao,V are arbitrary constants;
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HV(X—Vt)n -

Fia. 8. Hyperbolic functions solution (37) when A; = 1,
Ay =12, A=25 pu=1, V=03

u u(x—\it) P » - v(x—Vt) oz

Fi1a. 9. Rational functions solution (38) when A; =1, Ay =
12,0=2, u=1, V=03

— when A2 —4p < 0, we get the family of trigonometric functions solutions
_ 60(A3+A3)
v (g) o (Al sin 542@—1—142 cos 52@)2
3v2(A3+A%)0

v (g) == — (Al sin§2@+‘42 cos EJQE)2 + \/§O' + 2\/5‘/7

— 222 +8u+V,

(39)

where ¢ =x — Vit, 0 =4u — N2, Ay, Ay, V are arbitrary constants.
Solutions set 2. Constants set (34) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions
6(A3-A2%)0

v (6) - (Al sinh %E—l—Ag cosh %E

3v2(A3-A3)o
= 20 — 22
[ (5) (Al Sinh%g-i-Ag cosh%‘?)Q + \/_O' \/_‘/7

E 222 4+ 8u+V,
(40)
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] u(x—Vt) S B : o v(x—Vt) oAl

1 10

F1a. 10. Trigonometric functions solution (39) when A; =1,
Ay =12 A=15, u=1, V=03

where £ = 2 — Vt, 0 = X2 —4u, Ay, Ay, V are arbitrary constants; in
particular, setting A1 =0, o = 4k?, V = ajg — 16k}, we obtain exactly
the soliton solution, found by means of the tanh — method in [14].
— when A2 — 44 = 0, we get the family of rational functions solutions
A3(£2V—24) 4242 A1 EV+ATV
’U,(ﬁ) = (A2EtA;)2 ,

0(©) = V2 (medne V)

where £ =z — Vt, A, Ao,V are arbitrary constants;
— when A2 —4p < 0, we get the family of trigonometric functions solutions
6(Af+43)o
(A1 sin 5‘F+A2 cos f)

3f(A2+A
v (5) - <A1 sin é‘F-i-A cos éf) \/—U N 2\/_V

(41)

— 222+ 8u+V,
(42)

where ¢ =x — Vit, 0 =4u — N2, Ay, Ay, V are arbitrary constants.
Solutions set 3. Constants set (35) yields two families of solutions:
— when A > 0, we get the family of hyperbolic functions solutions
(V—2X2) (24, Az sinh €|A|+(A3+A3) cosh A) — (AT —A43) (10A2+V)

Y (5) - 2<A1 sinh %—&-Ag cosh %) 2
v(€) = (2V=A?) (241 Az sinh §|A|+ (A7 +A3) cosh A¢) — (A7 —AZ) (5A%+2V) (43)
o \/§(A1 sinh %M-I—AQ cosh %) 2 ’
where £ =z — Vt, Aj, A2,V are arbitrary constants;
— when A = 0, we get the family of rational functions solutions
w () = AZ(£2V—24)+242 A1 EV+ ATV
- 2 )

v(§) = 2\/_< %)

where £ =z — Vit, Aj, As,V are arbitrary constants.
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u uEx—Vt)

g T g
i 10

Fia. 11. Hyperbolic functions solution (43) when A; = 1,
Ay =12, A=15, V =0.5

Fia. 12. Rational functions solution (44) when A; =1, Ay =
12,A=0, V=1

Solutions set 4. Constants set (36) yields two families of solutions:
— when A > 0, we get the family of hyperbolic functions solutions
(V—2X2) (241 Az sinh €|A|+(A3+A3) cosh A) — (A3 —A43) (10A2+V)

u (5) - 2(A1 sinh %ﬂ+A2 cosh %)2 ’
v (€) = (A2—2V) (241 Az sinh €|A|+(A3+A3) cosh A )+ (AT —A43) (5A2+2V) (45)

\/§(A1 sinh %-}-Ag cosh %) 2 ’

where £ =z — Vt, A, Ao,V are arbitrary constants;
— when A =0, we get the family of rational functions solutions

A2(£2V—24)+242 416V + ATV
u(§) = 2 (A21A1)2 —,

0@ = 22 gty — V),

where £ =z — Vt, Ay, As,V are arbitrary constants.
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6. CONCLUSION

The (G'/G) — expansion method was successfully used to derive exact trav-
eling wave solutions to two KdV type nonlinear dynamic systems |1, 3].

The method was implemented in computer system MATHEMATICA, with
the aid of which we obtained the solutions in the form of hyperbolic, rational
and trigonometric functions for both systems. Moreover, it is shown that with a
certain choice of arbitrary parameters in both systems it is possible to rediscover
the soliton solutions, found by means of the tanh — method in [14], and hence
the solutions obtained in the present paper are of more general forms.

The correctness of the obtained results was assured by putting them back into
the original systems with the aid of MATHEMATICA. Most of the obtained
solutions were graphically analyzed.

The main advantage of the method is that it provides solutions with relatively
many arbitrary parameters, and thus these solutions are often more general
compared to other analytical methods. As it was shown in Section 3, there
exist certain modifications of the method to provide solutions in more general

form in comparison with the classical (%) — expansion method [15], therefore

the authors plan to use them for further investigations.
Finally, the method is confirmed to be suitable for implementation in modern
computer algebra systems.
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DETERMINATION THE QUANTITY OF EIGENVALUE
FOR TWO-PARAMETER EIGENVALUE PROBLEMS
IN THE PRESCRIBED REGION

B. M. PODLEVSKYI

PE3IOME. 3anpornoHOBaHO aJrOpUTM 3HAXOKEHHS KIJIbKOCTI BJIACHHX 3HA-
9eHb ABOIIAPAMETPUYHUX CIEKTPAIbHUX 337a9 y JedKiil 3amamiit obsacti. B
OCHOBI QJITOPUTMY JIEKUTH MPUHITUI aPryMEHTa aHATITHIHOT (DyHKIHT ozHiel
3minHOI. HaBeneno uucesibHI pe3ysibTaTH IS HEJIHIMHOI JBOIApaMeTPUIHOL
3a/ad4l Ha BJIACHI 3HAYCHHS.

ABSTRACT. An algorithm for finding the number of eigenvalues of two-
parameter spectral problems in a given region is proposed. At the heart
of the algorithm lies the principle of the argument of the analytic function
of one variable. Numerical results for a nonlinear two-parameter eigenvalue
problems are given.

1. INTRODUCTION

The multiparameter eigenvalue problems T'(A)x = 0 with operator-valued
functions T'(A) : R™ — L(H) (L(H) — the set of linear bounded operators
operating in a finite-dimensional Hilbert spaceH ), which depends on several
spectral parameters A, have a classical analysis of their source. In particular,
they arise in solving boundary value problems for differential equations with
partial derivatives by separating the variables.

In abstract formulation, they are written in the form of a system of equations

m
T(Nu = <Ak — ZAinJ up =0, k=1,2,....,m, (1)
i=1

if the operator-function 7'(A) linearly depends on the spectral parameters \; €
R,i=1,2, ..., m, A, B, A, By; € L(H), k,ii=1,2, ..., m.

An algebraic two-parameter eigenvalue problem as a partial case of a spectral
problem (1) is written in the form of a system of two homogeneous linear
equations

Tl()\,,u) = (Al + AB; + ,uC’l)z =0, (2)
To(A, 1) = (A2 + AB2 + pC2)y = 0,

where A;, B;, C; are the square matrices of the nth order. We will define our
eigenvalue sets (in our case that are eigen pairs (A, p) ) such that the system
(2) has non-trivial solutions = # 0 and y # 0.

Key words. Two-parameter eigenvalue problem, number of eigenvalues, principle of
argument.
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It is obvious that own pairs are solutions of the system of two nonlinear
algebraic equations

FA, u) =det (A + ABy + uCh) = 0.

3
g(A, ) = det (A2 + ABg + pCs) = 0. )

In this work the problem of finding the number of real roots of the system (3),
which are in a certain region of the change of spectral parameters (\, u), is
considered.

2. PRELIMINARIES
An algorithm for finding the number of zeros of an analytic function in a
given region, as well as some approximations to each of them, which can then
be specified using iterative methods, in particular by the Newton method or
its two-way analogues (see, for example, [5, 9]), is based on the ratio, which
implies, in particular, the principle of the argument of the analytic function
(see, for example, [2]):

Integral ﬁf gp(/\)% dX is equal to the difference between the sum of values
r

that takes the function ©(\) in the zeros of the function f(\) lying in inside
the domain G, bounded by the curve I' and the sum of the values that takes the
same function p(X) in the poles of the function f(X\) that lying in inside of T,
that 1s,

1 f/ A m n

o [ e Z an =3 et - 3wl @)
271 fN) ; :

T 7j=1 7j=1
Here ¢()) is an analytic function in the domain G; f()) is analytic in G
everywhere, except for the finite number of poles 8; € G, 7 = 1, 2, ..., n,
and f(A) # 0 in G everywhere except for the finite number of zeros a; € G,
Jj=1,2, ..., m;v;and p; is the multiplicity of zero and the order of the pole,

respectively.
In particular, if we take ¢(\) = 1, then we get that

DOV < SR e

r J=1

that is, the integral is equal to the difference between the number of zeros
and the poles of function f(\) lying inside of T', taking into account their
multiplicities (the so-called principle of the argument).

If the analytic function f(\) does not have poles in G, then the principle of
argument (5) allows us to determine the number of all its zeros that lie in the
domain G. However, this does not allow you to localize each of them.

To locate the zeros we use again the relation (4). Taking now () = ¥,
k=1,2, ..., we get the following statement.

Suppose that the analytic function f(\) does not have poles in G, but has in
G, taking into account the multiplicity, the m zeros A1, s, ..., A and has no
zeros on the boundary U of the domain G, then the number m is determined in
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accordance with the principle of the argument

1Y

=5y = dX
0= 9] TN (6)
r
and the relationship is true
YD) =k, k=1, ..,m, (7)
j=1
where . O
=_— [ \F a, k=1,2, .. .
Sk o f()\) ) ) 4 (8)
r
The right-hand side of (7) is nothing but symmetrical functions of the roots
A1, A2, ooy Ay inside of T') from which, in principle, roots can be found, for
example:
If m =1 than A
1
= — dA.
T om \)
r
Ifm=2 AP
1
=M+ A=— dA
LEMT =00 TN
r
and 2103
1 A f(A
=M+ A= — d.
REMTAR=00 T
r

This will give us AiA2 = 3(A1 + A2)? — 1(A? + A3) and, consequently, we find
A1 and A2 by solving a square equation. This procedure can be continued in
an obvious way for m = k. Another approach, when the system (7) is solved
directly, it was considered in the work [6, 7.

For the functions of one variable or one-parameter spectral problems, the
principle of the argument (6) and the formulae of the principle of argument
(7) and (8) have been repeatedly used for solving various problems (see, for
example, [1, 3, 4, 6-8, 10]).

In this paper, based on the principle of the argument of the function of one
variable, the algorithm for finding the number of eigenvalues of a two-parameter
spectral problem in a given region of changing of the spectral parameters is
proposed.

3. NUMBER ROOTS OF A SYSTEM OF TWO REAL EQUATIONS
WITH TWO REAL VARIABLES
Let us consider a two-parameter spectral problem (2), whose eigenvalues A, p
we will seek as the roots of the system of nonlinear equations (3), where the
functions f(A, u) and g(A, 1) are real functions of real variables.
For this purpose we will construct the function u = f+1ig and we will require
that it be analytic and have no poles inside a certain region G. Then, as is
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known, the number m of roots v = A + ip of a function u in the region G,
which is bounded by a curve I', that is, common solutions (A, p) of equations
F(\, 1) =0, g(A, ) =0, follows from the principele of argument of the analytic
function (6), that is,
1 [d(v)
2w ) u(v)
r

Taking into account that

1 [d(v) 1 1
i dv = — [ dl =—/[d
2mi ) wu(v) g 2m’/ og u(v) 27r/ 2
r r

r

where

¢ = arglogu(v) = arctan% + 7, 9)

we obtaine

1
m = 27T/d(a]rctamfc + nm).
r

Consider the curve I' with its parametric representation A = A(t); u = wu(t);
0 <t < 1. From (9) we have

df — fd
dp =7 J; f il
2ty
If ¢ we replace the differentiation by ¢, we obtain
1 1 [do
o / do = o / Edt
r r

Moreover, if we consider our expression d¢ along the curve, we will have:

1
o (10)
r 0

U (dfax , df d dgdx | dgd
1 [ do 9(5% @7’5) *Nﬁﬁ*ﬁﬁ)
— [ —dt = dt
27 2+4°

Consequently, the number of eigenvalues m of the system of equations (3) is
calculated by formula (10), in which the integral is replaced by some quadrature
formula, for example, rectangles.

4. NUMERICAL EXAMPLE
Let us consider a nonlinear two-parameter spectral problem

2 _ 2

Tl()\,,u)x5</\ 1’“ })x:(), x € R?,
2\ 2 ()

TQ()‘,N)YE< 11 >y=0, y € R?,

and calculate the number of eigenvalues lying in different areas.
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As was noted above, the eigenvalues of the problem (11) are solutions of the
system of two nonlinear algebraic equations

FOp) =detTh(A, 1) = AQ_N2 —-1=0,

12
g\ ) =detTo(A, u) =2 u —2=0. (12)

It is easy to verify that the system (12) has two solutions:
(A )12 = (£1,272:0,786).

The number of solutions m of the system (12) was calculated by the formula
(10), in which the integral was replaced by the quadrature formula of rectangles,
and the circle with center (A", u*) and radius p* was chosen as the boundary
of I'. The value of the functions (determinant) f and ¢ and their derivatives
on the boundary of the region (circle) were calculated on the basis of the LU-
decomposition of the matrices T1 (A, ) and To(A, ) [6, 7].

Numerical calculations are carried out for different choices of the radius of
circle and its center. The results are presented in Table 1. The first column
of the table shows the coordinates of the center (\*,u*) of the circle, in the
second column is its radius p*, and in the third the number m of eigenvalues
lying in that circle.

TABL. 1. Number eigenvalues of the problem (4.1)

A ) | p* |m | (Apt) | pt|m
(0.0,0.0) | 1.0 | 0 | (0.0,1.0) [2.0] 2
(0.0,1.0) | 1.0 | 0 | (0.0,1.0) [2.0] 1
(1.0,1.0) | 1.0 | 1 | (-1.0,0.0) [ 2.0 | 1

5. CONCLUSION

In this paper, based on the principle of the argument of the analytic function
of one variable, an algorithm for finding the number of real eigenvalues of
the system of two determinantal equations, that is, the real eigenvalues of a
two-parameter spectral problem in a given region of changing of the spectral
parameters, is proposed.

The numerical experiments performed for various problems have shown the
effectiveness of the algorithm in the sense that for calculating the number of
eigenvalues in a given region, there is no need for great accuracy in the cal-
culation of the integral, and this does not require, in turn, a large partition
of the integration boundary. This significantly reduces the calculation time,
but, at the same time, it is sensitive to the choice of the boundary of the area.
The algorithm ceases to work when the eigenvalues (though one) falls on the
boundary that we preset. In this case, it is necessary to correct the boundary.
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CONSTRUCTION OF TWO-SIDED APPROXIMATIONS
TO POSITIVE SOLUTIONS OF BOUNDARY VALUE
PROBLEMS FOR SEMILINEAR ELLIPTIC SYSTEMS

M. V.SIDorOV

PE3IOME. Posrasnaerbca omHopizna 3agada ipixse jjs CHCTeMU HAINBJIi-
HIWHUX eJINTHYHAX piBHAHB. {15 mo0y1oBM ABOOIYHIX HAOIMKEHD 0 JOJAT-
HOTO PO3B’SI3KY IIi€l CHCTEMU BUKOPUCTOBYIOTHCS METO/IM TeOPil HAMIBY IO I-
KOBaHUX MPOCTOPIB, 30kpema, pedyiabratu B.I. Onoiinesa npo po3s’a3uicTb
OTIepATOPHUX PIBHAHB 3 T€TEPOTOHHUM OrepaTopoM. MoxkimBocTi i edexkTus-
HICTh PO3POOJIEHOr0 METO/a IIPOIEMOHCTPOBAHA OOYUCTIOBAILHUM €KCIIePH-
MeHTOM i cucremu Jlane-Empaena.

ABSTRACT. A homogeneous Dirichlet problem for a system of semilinear el-
liptic equations is considered. To construct two-sided approximations to a
positive solution of this system, methods of the theory of semiordered spaces,
in particular, the results of V.I. Opoicev on the solvability of operator equa-
tions with a heterotone operator are used. The possibilities and effectiveness
of the developed method is demonstrated by a numerical experiment for the
Lane-Emden system.

1. INTRODUCTION
Let us consider a homogeneous Dirichlet problem for a system of semilinear
elliptic equations:
—Au; = fi(x,ug, ..., up) in QCR™, (1)
uz‘agzo, 71:172,,71’ (2)
or in a vector form
—Au =f(x,u) in QCR™,

ufyg =0,
where x = (z1,...,2m), U = (U1,...,uy), —Au = (—Auq,...,—Auy,),
f=(f1,...,fn), 8 =1(0,...,0), A is the Laplace operator,

0? 0?

A= 8x%+"'+8x72n'
Let us assume that 2 C R™ is bounded domain with a piecewise smooth

boundary 0%, functions f;(x,u), i =1,2,...,n, are non negative and continu-
ous on the set of variables x, u, if x € Q, u; >0,1=1,2,...,n.

The problem (1), (2) is a mathematical model of many stationary processes
that are considered in chemical kinetics, biology, combustion theory etc. [12].
Many works [1,2,6,9,10,12,16, etc.] are devoted to the investigation of problem

Key words. Positive solution; semilinear elliptic systems; heterotone operator; two-sided
approach; Lane-Emden system.
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(1), (2). But the focus in these works was mainly on clarifying the conditions
of existence and uniqueness of the positive solution of the problem or on the
conditions of having a solution with radial symmetry for a case where 2 is a
unit sphere, and an effective algorithm for numerical finding the solution was
not proposed.

The purpose of this work is to develop the iterative methods for solving
the boundary value problem (1), (2), which have a two-sided nature of con-
vergence to the desired solution. Two-sided approximate methods of solving
the nonlinear operator equations based on the theory of nonlinear operators in
semiordered spaces were developed in [4,5,7,8,13,14]. This work continues the
research begun in |5| and distributes it to systems of nonlinear equations.

2. SOME INFORMATION FROM THE THEORY OF NONLINEAR OPERATORS
IN SPACES WITH CONES

Let us consider some concepts and facts from the theory of nonlinear opera-
tors in semiordered spaces that will be used further [7,13,14].

Let F be a real Banach space, and 6 is a zero element of space E. A closed
convex set K C F is called a cone, if from the fact that z € IC, © # 0, follows
ar € K with @ > 0 and —z ¢ K.

Any cone I C E allows to enter in space F a semiordering by rule: x < v,
if y—x € K. Elements x > 6 (i.e. x € K) are called positive. The set of
elements (y, z) of a semiordered space, which consists of those x € E for which
Yy < 2 < 2, is called a cone segment.

Normal cones are important class of cones for application of the theory of
semiordered spaces in computational mathematics. A cone I is called normal if
there exists a number N(K) > 0, that from 6 < z < y follows ||z]| < N(K) ||y||.
In this case, it is said that the norm is semimonotonic. If N(K) = 1, then the
cone is called acute and it is said that the norm is monotonous.

Let us consider the definitions of some classes of operators in spaces with
cone.

The operator T : E — FE is called positive if it leaves invariant the cone K,
ie. T(x) € K for anyone z € K.

The operator T' : E — E is called heterotone (or mixed monotone 3,13,
etc.]), if it allows a diagonal representation T'(z) = T'(x, x), where the compan-
ion operator T:ExE—E monotonically increases with respect to the first
argument and decreases with respect to the second one, i.e.

a) if y1 < yo, then T(y1,2) < T'(y2, 2) for all z € E;

b) if 21 < 22, then T(y, z1) = T(y, z9) for all y € E.

A cone segment (yo, z0) is called strongly invariant for a heterotone operator
T, if

?

T(y0,20) = Y0, T(20,%0) < 0.

Let us fixate some nonzero element uy € K and denote by K(ug) a set of
such elements x € IC, for which we can specify such a, 5 > 0, that

aup < x < Puop.
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A positive heterotone operator 7' is called pseudoconcave, if T(y, z) € K (ug)
for any y,z € K, y # 6, z # 0, and for any v,w € K(ug) i 7 € (0;1)

A

1 ~
T <7'v, w) > 7T (v,w),
T

and the sign of equality is impossible here.
A pseudoconcave operator T' is called ug-pseudoconcave, if for any v, w €
K (up) and 7 € (0;1) you can find such n(v,w,7) > 0, that

7 <m, j_w) > 71 + n(v, w, 1) T(v, w).

Properties and the problem of constructing approximate solutions of operator
equations with a heterotone operator have been considered in [3,4, 11,13, 14].
In particular, the following assertion holds [13,14]: if the cone K is normal,
the operator T is completely continuous, for T there is a strongly invariant
cone segment (1o, z0), and the system T'(y,z) = y, T(z,y) = z on (yo, z0) has
no solutions such that y # z, then the iterative process, which is formed by
the rule y,41 = T(yn,zn), Zntl = T(zn,yn), n =20,1,2,..., starting from the
point (yo, 20), two-sided converges to the unique on (yo, z9) fixed point z* of
the operator T":

YN < <Yn <. <2< <2z <. <21 < 20

It is known [13,14], that the system T'(y,2) =y, T(z,y) = z on (yo, 20) has
no solutions such that y # z, if T' — ug-pseudoconcave operator.

3. CONSTRUCTION OF TWO-SIDED APPROXIMATIONS
To analyze the problem (1), (2) and construct two-sided approximations to
its positive solution, we will use the methods of the theory of nonlinear operators
in semiordered spaces |7,13,14].

Let C*"(Q) = {u = (u1,...,un) : u; € C(Q), i = 1,...,n} be a Banach
space of continuous in 2 = QU vector-valued functions with a norm |ul|,, =
max{||lui|l,..., ||unll}, where ||u;|| = max |u;(x)|. Let us define in C"(£2) a cone

xeQ

Ky ={u=(ug,...,u,) €C"(Q):u(x) >0, x€Q, i=1,...,n}

of vector-valued functions with non negative coordinates. Notice that the cone

K4+ in C™(2) is normal (and even acute) [7,13,14].

Using cone IC4 in space C™(£2) we introduce a semiordering by the rule: for

u,veC'(Qu<v,ifv—uelky,ie
u < v, if u;(x) <wv(x) forall x € Q and for i = 1,...,n.

From the problem (1), (2) we go over to the system of integral equations of
Hammerstein

ui(x) = /G(X,&)fi(g,ul(ﬁ), oo un(€)dE, i=1,...,n, (3)
Q
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or in a vector form

u(x) = / G(x. )E(E, u(€))dé.
Q

where G(x,&) is Green’s function of the first boundary value problem for the
operator —A in the domain Q, x = (z1,...,2m), € = ({1, -, &m)-
The solution (generalized) of the problem (1), (2) will be called the vector-

valued function u* € C"(2), which is the solution of the system (3).

Let us introduce a nonlinear integral operator T acting in C™(2) by the rule
defined by the right-hand side of the system of equations (3):

T(w) = [ GeE)F(E u()e -
Q
- | [exanEun©. ...m@ne.... n
Q

/ G(%,€) ful€, 11 (£), .- un(€))dE
Q

Since fi(x,u1,...,u,) >0,ifx€Q,i=1,...,n, and G(x,&) > 0, x,£ € Q,
x # &, then the operator T is positive, that is, it leaves invariant a cone IC4:
T(]C+) C ’C_|_.

Let us assume that the vector-valued function f(x,u) allows a diagonal rep-
resentation f(x,u) = f(x,u,u), where continuous on the set of variables x,
v, w the functions fi(x, vV, W) = fi(x, Vly.v, Up, W, ..., Wy,) monotonically in-
creases with respect to all v; and monotonically decreases with respect to all
wi, @ = 1,...,n, for all x € Q. Then the operator T of the form (4) will be
heterotone with the companion operator

v, w) = / G(x. E)F(E, v(€), w(€))dE =
Q

— | [ 6 0hi€ 01 (. wr ) wnl€)d s

Q

/ G, ) ful€ 01 (E), - 0(€), wn(E). . . wn(£))dE
Q

Operators T and T are completely continuous [7,13,14].
In a cone IKC4 we will define a strongly invariant cone segment <V0, w0> by
conditions

TV, w?) >v? TWw’ v <w’,
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i.e.

G(x,€) fi(€, (&), ..., v5(&), w)(€), ..., wh(€))dE > v)(x) for all x € Q,

G(x, &) fi(& (&), ..., wd (&), v)(£),...,v5(€))dE < wl(x) for all x € Q,

D O

1=1,...,n.

If the boundary 02 of the domain {2 consists of a finite number of pieces
of lines 0;(x) = 0,7 =1,2,...,s, where each 0;(x) is an elementary function,
then using the R-functions method [15] one can construct in the form of a single
analytic expression an elementary function w(x) such that:

a) w(x) > 0in
b) w(x) =0 on 09
¢) |Vw(x)| # 0 on 09.

Then a strongly invariant cone segment can be searched in the form
(v, w?) == {aw(x), fw(x)),

where o = (a1,...,an), 8= (61,-..,0n), 0 < a; < B, satisfy the system of
inequalities

/ G, €) Ji(€, 1 (E), - ., nl(€), Bro(E), - .. Buo (€))dE > aiwo(x)
Q
for all x € Q,

/G(Xé)fi(ﬁ,ﬁw(i), s Baw(§), 1w (€), - .-, anw(€))dE < Piw(x)
Q

forallxeQ, i=1,...,n.
Let us create an iterative process according to the scheme

v — (v W)y D — W ®) vR)) k=012, .,
0) 0

=W,
i.e.
v (x) = / G(x, &) fi(&,vM(€),...,vP (&), (&), ..., w®) (&))de, (6)
Q
W () = / G, )6, 0™ (€),.. w® (€), oM (€),... v (€))de, (7)
[9]
k=0,1,2,...,
10x) =10(x), wx)=uwl(x), i=1,...,n. (8)

Given that the strong invariance of the constructed cone segment and het-
erotony of the operator T, for which operator T is an companion one, we can
conclude that the sequence {v(¥)(x)} does not decrease behind the cone K4,
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and the sequence {w*)(x)} does not increase behind the cone /. In addition,
from the normality of the cone K4+ and completely continuity of the operator
T implies the existence of limits v*(x) and w*(x) of these sequences. Thus,
the following inequalities hold:

vO:v(O)gv(l)g...gv("f)g...
<wh <. <wh g

The vector-valued functions v* = (v],...,v}) and w* = (wj,...,w}) are a
solution of the system of equations

A

vi=Tw* w*), w*=T(w"v"),

i.e. the systems

o (x) = / G(x, &) Fi(E, T (€), .. v (E), wi(E), ..., wi(€))d,
Q

w; (x) =/G(X,E)ﬁ(ﬁ,wf(é),~~-»W$§(£)’“T(€)~--wZ(&))dE, i=1,....n.
Q

If we have received that v* = w* = u*, then u* is the unique on the cone
segment <v0, W0> fixed point of the operator T, and hence, u* is the unique on
(v?, w") solution of the boundary value problem (1), (2).

Sufficient condition for the implementation of equality v* = w* is the con-
dition [3] of the existence of such a € (0;1), that

T(v,w) — T(W,V)H <allv—wl|, for all v,w € (v’,w?).
n

Let the functions f;(x,v1(X), ..., vp(X), w1 (X), ..., we(x)), i =1,...,n, for
all positive numbers vy, ..., vy, w1, ..., wy, and for all x € Q satisfy the inequal-
ity

fi(X,V,W) - fi(X,W,V)‘ < LZ maX{|U1 - w1| PR ‘vn - wn|}a (9)

1=1,...,n,

where L; > 0,i=1,...,n.
Then there will be an estimate

|2v.w) = Pw,v)| < LMy = wi,, (10)
n
where L = max{Ls,...,L,}, M = max [ G(x, &)dE.
zeQd O
In addition, on the basis of estimate (10) we obtain that

= <

n

T(W(k—l), V(k—l)) _ T(v(k—1)7 W(k—l))

< LMHW(k_l) _ =1

<...< (LM)kHWw) (Y

n n

Hence, the following theorem holds.
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Theorem 1. Let a heterotone operator T of the form (}) for which operator

T of the form (5) is an companion one, has a strongly invariant cone segment
<VO,W0> and the inequalities (9) are executed, moreover LM < 1. Then the

iteration process (6—(8) converges to the unique on <VO,WO> solution u* of the
boundary value problem (1), (2), and the following inequalities

V=v0O <y < <v® < <utg

.gw(k)g...gw(l)<w<0):w°

N

are satisfied and

(11)

HW(k) _(®

< (LM)kHW(O) —v©

n n

Another condition that ensures the uniqueness of the positive solution of the
boundary value problem (1), (2) is ugp-pseudoconcavity of the operator T of the
form (4) [13,14].

Suppose that for all positive numbers vy, ..., vy, wi,...,wy, and any 7 €
(0,1) the inequalities

~ 1 ~
fi <X,7’V, W) >T1filx,v,w), x€Q, i=1,...,n, (12)
T
are performed.
Let us denote up(x fG x,§)d€. Then [7,13,14] for any v,w € K there
are such a;(v,w) > 0, ﬁl(v,w) >0, a;(v,w) >0, Bi(v,w) >0,i=1,...,n,
that

s (v, W )io (x / G(x, ) f.€, v(€), w(€))dE < fi(v, wug(x), i =1,...,n,

G (v, W)uo (x /Gx&[fz<x7'v1 )—Tf,(wi)]d§<

< @(V,W)uo(x), i1=1,...,n

Hence we will have that

/ G(x,€)f; (x,fv, 1w> d& > (v, whup(x) + 7 / G(x, &) fix, v, w)dE >
QO Q

T(l—l—asz)/G &) fi(x,v,w)d€, i=1,...,n,

TBi(v, W)

1.e.

0 <Tv,i > > [l + n(v, w, )] T(v, w), (13)

ap(v,w) an (v, w)
T8 (v,w) " B (v, W)

Inequality (13) means ug-pseudoconcavity of the operator T.
Hence, the following theorem holds.

where n(v,w,7) = min{
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Theorem 2. Let a heterotone operator T of the form (4), for which the operator
T of the form (5) is an companion one, has a strongly invariant cone segment
(v0, wP) and the inequalities (12) are performed. Then the iteration process (6)
- (8) converges to the unique positive solution u* € <V0,W0> of the boundary
value problem (1), (2), and the following inequalities

Vv cv@ o ov® < curg
< <wh < <w® < w@ = w0

are satisfied.

Note that the advantage of constructed two-sided iterative processes is that
at each k iteration we have a convenient a posteriori estimation of the error for

1
an approximate solution u(® (x) = i(W(k) (x) + v¥ (x)):

o -] < ]

Then, if accuracy € > 0 is given, then the iterative process should be car-
ried out before the inequality max{mag((wgk) (x) — v%k) (x)),... ,mag((wﬁlk) (x) —
x€e€) xXEN

k) (x))} < 2e will be performed and with accuracy € it can be assumed that

u*(x) ~ u)(x).

Also, based on the inequality (11) we can obtain an estimate for the number
of iterations required to achieve the given accuracy. Indeed, from the inequali-
ties
<e

n

< (LM)kHW(m G

et
n 2

we find that to achieve accuracy ¢

< EHWUc) _(®)
n_ 2

Jw® - v
In+¥—"—""2

ko(e) = 2 +1
In—

LM

iterations must be done, where the square brackets denote an integer part of
the number.

4. NUMERICAL EXPERIMENT
The construction of the two-sided approximations to the positive solution of
the boundary value problem (1), (2) will be demonstrated on the system of two
Lane-Emden equations with a homogeneous Dirichlet condition:

—Au; =ub', —Aug=u;”* in Q, (14)

utlpg = u2lpq =0, (15)
where p; > 0, pa > 0.
The construction of two-sided approximations to the positive solution of the

Lane-Emden equation —Au = u? for p = 5 Was made in [5].
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The questions of the existence and uniqueness of the solution of problem
(14), (15) in the case when Q is a sphere of radius R, p1 > 0, p2 < 0 were
investigated in [2].

The functions f1(x,u1,u2) = ub', fo(x,u1,us) = u; ’* are positive and con-
tinuous on a set of variables, if u;,u2 > 0, and allow a diagonal representation
by using the functions

—p2

F1(x, 01, v, w1, w9) = V5, fa(x, 01, 02, Wi, wa) = wi 2. (16)

The problem (14), (15) is replaced by the equivalent system of Hammerstein
integral equations

- [ o @ weo= [Gxeued 0D
Q Q
With the system (17) we will associate a heterotone operator
T (uy, uz) /Gx§ d{/GX& (&)de |, (18)
for which the companion operator has the form
T (01,02, w1, ws) = /G x,&)vy" (§)dE, / (x,&)w, " (€)d€

Condition (12) for functions (16) leads to inequalities

~ 1 1 ~
fl (Xa TU1, TVU2, ;wl) Tw2> — (TUQ)pl > Tfl(xa U1, V2, W1, U)Q) — T’Ugla

. 11 1\ o
f2 XJ TU177U27 ;w17;w2 == ;wl > ng(x,'l)1,'l}2,w17w2) == Twl 9

whereof 77171 > 1, 77271 > 1 je. 0 <p; < 1,0 < py < 1.
For the operator (18) a strongly invariant cone segment will be search in the
form <v0,w0>, where

vP(x) = (1} (%), 03(x)) = (aw(x), azw(x)),
w'(x) = (w](x),w)(x)) = (Brw(x), Bow(x)),

0<a1 <B1, 0< g < fo,

and the function w(x) satisfies the conditions a) - ¢) of section 3.
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The system of inequalities for the determination «y, g, (1, B2 has the form:

o [ Gx. ()€ = arw(),
Q
p2 /G(x,&)wm(ﬁ)dﬁ > aw(x), (19)
Q
pl / G (x, £)w? (£)dE < Preo(x),

a; P /G wP2(€)d¢ < Bow(x) for all x € Q.

Hence, the following theorem holds.

Theorem 3. Let 0 < p1 < 1, 0 < p2 < 1 and the system (19) has a solution
(a1, a9, 01, B2) such that 0 < ay < (1, 0 < ag < B2. Then the iterative process

o) x / G, €)(v(€)" de, v (x / G, &) (€) " de,

W / G(x. &) (P (€)" de, iV (x) = / G(x,6) (0P (&) " de.
Q

k_0,1,2,...,

where v”(x) = a1w(x), 15" (x) = 0aw(x), w”(x) = fwx), vy’ (x) =

Paw(x), converges to the unique positive solution (uj(x),u5(x)) of system (14),
(15), and besides, for all x € Q the following inequalities

aw(x) = vgo) (x) < Uil)(x) <L <uj(x) << wgl)(x) < (x) = fLw(x),

(
1
asw(x) = v (x) < vl (x) < .. < uwi(x) < ... < wl (x) < wl? (%) = Bow(x)

are satisfied.

A computational experiment was carried out for the values p; = P2 3
if m=2and Q = {x = (z1,22) : |x| < 1} is unit circle. For this domain

1 1 r
we have w(x) == 5(1 — 2?2 —23), G(x,€) = %lnprxgl, where p = /&2 + &3,
3

X

points € and &' are symmetric with respect to the circle of the unit radius, ryg,

Txgr are distances between points x, § and x, ¢! accordingly. The solution of

the system of inequalities (19) is, for example, numbers a; = 0.332, ag = 0.959,

B1 = 0.418, o = 1.364. Accuracy € = 10~* was reached on the sixth iteration.
An obtained approximate solution

W00+l e 080+’ (x)
2 v 2

uf () =

has a radial symmetry.
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TABL. 1. The values of the error estimation of the approximate
solution

Egk) ggm
0.22-107T| 0.10-10°
0.88-1072]0.19-1071
0.19-107%2[0.72-1072
0.71-1073]0.16 - 1072
0.16-1073]0.61-1073
0.60-10"%*]0.13-1073
0.13-107%]0.51-107%

Number of iteration k

U =W N = O

TABL. 2. The values of the approximate solution at the points
x; = (0.254,0),i=0,1,2,3

x; = (0.25:,0) | (0,0) ] (0.25,0) | (0.5,0) | (0.75,0)
WD(x;)  [0.1946 | 0.1806 | 0.1397 | 0.0752
W(x)  [0.4960 | 0.4674 | 0.3781 | 0.2192

k k
1,00, oP(a1.,0) wf(@,0), " (21,0)

Fia. 1. Graphs of cross-sections of upper and lower approxima-
tions w§k)(x1,0), v%k)(wl,()) (a) and wék)(ml,()), vék)(:rl,O) (b),
k=0,2,4,6

Table 1 gives the data on how the estimate

1
5§k) = max — ‘wgk) (x) — vgk) (X)‘
x€eN
the norm of error Hu;‘ — uz(k)H of an approximate solution uz(»k) (x), i =1,2,is

changed, depending on the iteration number k, k = 0,1,...,6. Table 2 shows
(6)

the values, found with accuracy e = 10~ of the approximate solution uy (%),
‘ — 0.1946,

u(26) (x) at points located on the ray ¢ = 0. It was found that Hugﬁ)
Hug(” H — 0.4960.
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5 1.0

-1.0 -0.5 0.0 0.

(a) (B)

Fi1a. 3. Contour lines of approximate solutions ugﬁ) (x) (a) and
6
uf” () (b)

Fig.1 shows the graphs of the cross-sections of the upper wgk) (x), wék) (x)

and the lower v§k)(x), vék)(x) approximations at zo = 0 for & = 0,2,4,6.

Fig.2, 3 show the surfaces of the approximate solutions u§6) (x), uéﬁ) (x) and

their contour lines respectively.

5. CONCLUSIONS
The paper proposed a method of constructing the two-sided approximations
to a positive solution of the homogeneous Dirichlet problem for a system of
semilinear elliptic equations. The numerical experiment, conducted for the
Lane-Emden system, demonstrated the possibilities and effectiveness of the
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method. The proposed approach to numerical solution of semilinear systems
can be used in solving various applications, the mathematical models of which
is the problem (1), (2).

The limitation of using the proposed method may be due to the fact that
the Green’s function of the first boundary value problem for an operator —A
is known only for a certain number of classical domains. When considering the
problem (1), (2) in the domains of non classical geometry or in domains for
which the Green’s function is known, but has a complex analytic expression, to
construct the corresponding (1), (2) system of integral equations, can be used
an approach based on the corresponding Green’s quasi-function [15].
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SINC APPROXIMATION OF ALGEBRAICALLY
DECAYING FUNCTIONS

D.O.SYTNYK

PE3IOME. B po6ori 3a1ponoHoBaHO y3arajbHeHHs Sinc IHTEePHOIAUiiHOrO
MeToy, fIKe 103BoJiste HabmxkaTy Ha R ¢yukmil cnagaroqi anrebpaiumo. ITo-
Ai6Ho 10 KiacuuHOol Sinc imTepnonarii Mu (HOPMYJTIOEMO [ABA TUIU OMIHOK
noxubku. Ilepmuii cTocyeTbca 3araabHOro Kaacy MyHKIHH, 0 MAOTh aared-
paiunwmit nopsimok cnaganas Ha R. OiiHku nOXuOKM Apyroro THUILY € CIIpaBe-
JIMBAMHU [IJIS BUMQJKY KOJIM TOPSAOK CHamaHHs (GyHKmI Bimomuit y cmy3i
KOMILIEKCHOI IUIOIIMHY HABKOJIO AificHOl oci. Teopernyni Buk/a kM migkpir-
JIEH] YMCeIbHAMU eKCIIePUMEeHTaMHU.

ABSTRACT. An extension of sinc interpolation on R to the class of alge-
braically decaying functions is developed in the paper. Similar to the classical
sinc interpolation we establish two types of error estimates. First covers a
wider class of functions with the algebraic order of decay on R. The second
type of error estimates governs the case when the order of function’s decay
can be estimated everywhere in the horizontal strip of complex plane around
R. The numerical examples are provided.

1. INTRODUCTION
We begin by introducing some necessary notation. Let

sinc (z) = sm7rx’
T
. (T
S{k,h}(z) = sinc (E—k), h>0, keZ. (1)

By H'(Dy) in the paper we denote the class of functions f(z) analytic in the
horizontal strip Dy

Dyj={z=xz+iy x€(—o0,), |yl <d}, (2)
and such, that the quantity

Ni(f, Da) = /a 7@z,

is bounded. Next, for some given h > 0 and integer N > 0 we define a sinc
interpolation polynomial as

N

On{f.h} (@) = Y f(kh)STk,h}(2). (3)

k=—N

Key words. Sinc methods, sinc interpolation, algebraically decaying functions, Lambert-W
function, polynomial order of convergence, approximation on real-line.
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The following classical result characterize the accuracy of interpolation of f €
H'(Dy) by Cn{f,h}(x) for the case, when f(s) is exponentially decaying.
Theorem (Stenger [6, p.137]) Assume that the function f € HY(Dy) is
bounded by
|f(z)] < Le™@l vz e R, (4)
with some a, L > 0. Then the error of 2N + 1 term sinc interpolation of f(x)
by Cn{f, h}(x), satisfies the following estimate
sup [f(x) = On{f R} ()] < cEn,
xre

b}
En = N1/2e—\/7rdaN ( )

h = \/g. (6)

Here ¢ > 0 is some constant dependent on f,d,«a and independent on N. In
this paper we extend the results of the above theorem to a class of algebraically
decaying functions on R. All theoretical considerations are given in sections
1,2. Section 3 is devoted to numerical examples and discussion.

provided that

2. INTERPOLATION OF FUNCTIONS WITH
ALGEBRAIC DECAY ON REAL LINE
In this section we study the convergence of sinc interpolation for the class of
algebraically decaying functions. Specifically, we consider the situation when a
function f(z) satisfies

L
|f(z)] < W,

instead of inequality (4), convenient for the classical sinc methods [6].

Ve e R (7)

Theorem 1. Assume that the function f € H'(Dy) has an algebraic decay
defined by (7) with some o > 1, L > 0. Then the error of 2N + 1-term sinc
interpolation (3) satisfies the following estimate

sup |f(z) — Cn{f,h}(x)| < €N, VzeR,
z€R

_ao‘(N—l—l)l_a md (o —1 o a-1 “ (8)
e = o Dirad)e <W<a( d ) (N+1) )) ’

provided that h in (3) is chosen as

1 -1
wd wd fa—1\« a—1
h=—[W|— N+1)a .
a((a(wd)<+>>> )
Here WJ:| denotes a positive branch of the Lambert-W  function, ¢ =

caiN1(f, Dg) + 2L and ¢1 > 1 is the constant independent of N :
(ﬂ.d)Q(afl) (CM _ 1)2

(rd)2e=1) (0~ 1)2 — a2aW2a (= /el

c1 = (10)
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Proof. For any fixed h the error of sinc interpolation can be represented as
follows [6, equation (3.1.29)]

£ (@) = On {1} (@)] < |f (@) = Coo{ £, 1} @) + D [F(kR)].
|k|>N
Bound of the first term on the right-hand side of this formula was obtained in
Theorem 3.1.3 from [6]. For z € R this term satisfies
Nl(vad) ClNl(vad) —zd
—Cxdf,h < < e h, 11
(0) = Ol f Y] < 5 ey < 250 (1)

where ¢; > 1 is some constant to be determined later. For the second term we
get

) e}
> If(kR)| < <2L ) (kh)™ < 2L / (th)~“dt
|k|>N k=N+1 N+1 (12)
2L(N + 1)t~
(v — 1)he

The above sequence of inequalities is justified as long as f(z) satisfy (7) with
some a > 1. For such f(x), truncation error (12) decays algebraically as
N — 00. In order to balance it with exponentially decaying discretization error
(11) one needs to solve for h the equation

e (N4 1)t
c2  (a—1)he " (13)

Let s = %dh_l and assume that co > 0 is some fixed parameter. Then,
equation (13) takes the form

1
rd <a — 1(N—|— 1)0‘_1> - se’,

« (&)

which has a unique solution

s=W (fj <O‘C_2 1(N+1)°‘1>i> .

Next, we set co = wd and substitute back the expression for s in terms of h to
obtain (9). The proof of (8) is straightforward

(N+1)l
(a—Dhe =

1 (0%
a®(N +1)t—@ wd (o —1\« a-1
<e—m——-— | W[ — [ — N+1) a .
_C(a—l)(wd)a ( <a ( mwd ) (N+1) ))
Now, let us come back to the determination of ¢;. The smallest ¢; suitable for
(11) can be defined as follows

d
en _2md\ —1
1= Sup § ————7 :max(l—e h) .
Nezy | 2sinh 5* NeZy

|f(z) = CnAf, h} ()] < (et N1(f, Da) +2L)
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Its not hard to see that the maximum is attained at N = 0. Therefore, the

value of ¢1:
-1
d -1
1= (1 — exp <—2aW (W 1/ a )))
o wd

is clearly greater than one, for any a > 1, d > 0. To get (10) we apply the
identity exp (—W(x)) = W(x)/x to the above formula for ¢; and rearrange the
result accordingly

2«
a2 7d Ja—1
a=|1- (wd)2(@=1)(a — 1)2 (W <a V "rd ))

(Wd)Q(a_l)(Oé _ 1)2

(rd)2e1) (o — 1)2 — a2aW2e (= /el

The presence of W(x) in estimate (8) makes it harder to perceive the as-
ymptotic behavior of the interpolation error intuitively. To fix that we recall a
well-established result [5] on the asymptotic properties of W (x), valid for any
x> e:

In (Inz)
2Inz

eln (Inx)
(e—1)Inz

By using the above inequality along with the definition of W (z) and (13) we
transform (8) in the following way

Inz —In(lnz) +

<W(z)<Inz—In(lnz)+

f(2) = Cn{f, h} (@) < — <

eO{S

< (1) e [ () T oven)

whence it is clear that the error of sinc interpolation provided by Theorem 1 is
asymptotically equal to (N +1)1"*In*(N +1) as N — oco. To analyze the error
for small N we note that, in the view of (13), En is bounded by the exponent
with a strictly decreasing negative argument. Consequently, for any o > 1,
x € R, the error sup,cp | f(x) — Cn{f, h}(z)| lies within the interval [0, | and
decreases as N — oo.

One might conclude from the foregoing analysis that a simple asymptotic
formula W (z) ~ In(z) can be used to redefine h (9) in terms of logarithms,
which are computationally more favorable than the Lambert-W function. To
explore this possibility we set

h:%d <ln (7;? <O‘C_2 1>i (N+1)“§1>>1,

and study the corresponding error terms of the approximation. Discretization
error (11) is positive and monotonically decreasing in N for any c2 > 0, since
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l1—a
h is monotonic. The principal part % of truncation error (12) has one

global maximum at N = Ny:

1
a\ azg Q a—1\ (-1
No = (7) ~1.
0 md P <a—1>< c2 )

To guarantee a monotonous decrease of the truncation error for all N > 0 we
must require Nyg = 0, which yields ¢a = (v —1) (Z—Z)a. The aforementioned
formula for h is thereby reduced to

wd
= . 14
a+(a—1)In(N+1) (14)
For such h, the error of sinc interpolation will be bounded by (8) with
(N+ 1Dt a
En=——""3TF— —1)In(N+1 1
V= e @ @ D D). (15)

and ¢ = (a — 1) (Z—i)a]\fl(f, Dg) + 2L. The main concern with (15), is the
presence of additional summand o when compared to (8).

Remark 1. The definition of h from Theorem 1 can not be simplified by adopt-
ing W(x) = In(z), since such simplification, as described by (14), (15), would
make the approximation method ineffective for large a.

With an additional a-priory knowledge about f(z) we should be able to
improve the convergence properties of Cn{f, h}(z) described by Theorem 1.
The following improvement of (8) offers a more realistic balance of discretization
and truncation errors, presuming that both Ni(f, Dg) and L are known.

Corollary 4. Assume that the function f(x) satisfies the conditions of Theorem

1. If
1 —1
h:TZZ<W<Tj (Nl(f’l;fl)L(o‘_l)>“(N+1)%l>> . (16)

then the error of sinc interpolation fulfills estimate (8), with ¢ = (¢c1 +2)L and
EN given by

(N + 1)1704

A P

h™.

Formula (16) was obtained in the same way as (9), except this time we set
wdL

“@= Ni(f,Da)’

3. INTERPOLATION OF FUNCTIONS WITH
ALGEBRAIC DECAY IN THE STRIP
Corollary 4 is difficult to apply as it is, because the evaluation of Ny (f, Dg)
requires computation of the contour integral over 0Dy. In order to make this
result more applicable we note, that if f € H'(D,), for some r > 0, then
mgrinoof(ac + iy) = 0 uniformly with respect to y € [d,d], for all d € (0,7) [2,
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Proposition 6]. Hence, for any r > 0 there exist a nonempty subspace of
H(D,), such that its elements f satisfy

1f(2) Vz € Dy, (17)

| < —,
1+ |z|@
with some d € (0,7).

Theorem 2. Assume that the function f(z) is analytic in the horizontal strip
Dy, d > 0. If f(z) is bounded by (17) with some a > 1, L > 0, then the error
of sinc interpolation (3) satisfies the following estimate

sup [f(z) = Cn{f, R} ()] < cEn,

aa(N+ 1)l—a (18)

[0}

N = o D "

provided that

1 -1
h:%d (W <7;d (45(;';; 1))“ (N+1)C“a1>> , (19)

with f = min 1 (%)Q_IB(% -5, +%)} Here B(-,-) is the beta

sinc (a—1)? 272

function, ¢ =2 (c18+ 1) L and ¢ is the constant dependent on o, d.
Proof.

“+oo “+o00

+oo
Ldx dr
+id)|dz2 < | ———=2L | —————, 20
/‘f(x i)l x‘/lﬂwﬂdla /1+(:v2+d2)2 20
o 0

—00

“+o00 “+00

dzx dz oz (—x“, 1,04*1)
/ < / —— = lim =
1+ (22 + d2)0‘/2 14+2¢ z—o00 «
0

0

z P (—xo‘, 1, a_l)
Q

zP (—ZO‘, l,oz_l)
5 .

= lim
Rz—+o00

Fz—0

= lim
T——+00

Here Rz and Sz is real and imaginary part of z correspondingly. To evaluate
the last limit we employ Corollary 1 from [3]. It offers a convergent expansion of
Hurwitz-Lerch zeta function ®(z, s, a) when its second parameter s has integer
value
1 s X, zlmok
o(21,-) = ( Arg(al ; t—)— @

z (z a> 7 (sgn{Arg(aln(z))} i+ co " kz_ll/a_k' (21)
The expression on the right of (21) is bounded and uniformly convergent to
the left-hand side for any a > 1, |z] > 1, such that 2% ¢ (—o0, —1) U (1, 00).

Therefore
. z® (—z“, 1, a_l) T a1 = Zl—ok
lim = —4/1+cot ———Z lim ——,
Rz—~+00 o o « o Rz—+o00 1/0[ —k
Jz—0 k=1 Gz—0

129



D.O.SYTNYK

which leads us to the bound

+o00o
2rL 1
/ f(z +id)| dv < = |1+ cot? = = 2L sinc™? () (22)
a a a
For large d, the integral from (20) can be estimated as follows
" 1 b 1
de < | ————~=dx =
/ 1+ (ZUQ + d2)a/2 L= / (.’,5'2 + d2)a/2 X
0 0
_mdT ((a—1) /2)
B 2T (a/2) B
_ AT (=1 /)T ((e+1)/2) _
N 22727 (a) -

Jlg(e 1a+1 2\t
=92°\2 272 "2/ \4d '

To obtain the above estimate we used a well-known multiplication theorem [1, p.
4] for Gamma function I'(-). The next bound is a direct consequence of the
above formula and (20)

b 1 1\ /2\*!
/|f(x+id)|dx§2LB <‘;‘—2,2‘+2) <d>. (23)

By combining bounds (22), (23) and taking in to account the fact that the
expression on the right of (17) is invariant with respect to z — Z we arrive at
the following estimate

Ni(f, Dy) < AL mi 1 2a1_310‘ la 1
min{ ———, | = ———,—+=];.
s Hd) = sinc(é)7 d 2 272 2

To finalize the proof, we evaluate (16) assuming that the value of Ny(f, Dg) is
equal to its estimate provided by the previous formula. This will get us (19).

4. EXAMPLES AND DISCUSSION
In this section we consider several examples of the developed approximation
method. As measure of experimental error we use a discrete norm

err = max |f(x) = CN{f, h} ()|,

defined on a uniform grid X = {jh/Z ’ j =—2N, 2N}. With such choice of
X the specified discrete norm ought to capture the contribution from both
the descretization and truncation parts of the error. To experimentally check
the convergence of Cn{f,h}(x) we repeat the approximation procedure on a
sequence of grids determined by

N; € {1,2,4,8,16, 32,64, 128,256,512, 1024},

and the corresponding h; evaluated by one of the formulas (9), (16) or (19).
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Example 1. Let
4

f(z) = m,

where a > 2 is integer. Then, the largest possible value of d such that f(z)
remains analytic in Dy, is equal to */2sin . To simplify the computation of

Ni(f, Dg) we set d = ? sin T, a = 2, then N1(f, Dg) ~ 4.550125680, L =~ 4.5,

a = 4. The behaviour of an error err(z) = f(x) — Cs2{f, h}(x) for three
different values of h is depicted in Fig. 1.

0
12 10 15 20
x

-0.0001
-0.0002
-0.0003
-0.0004

-0.0005

Fic. 1. Graphs of err(z) = f(z) — Cs2{f, h}(x) from Example
1 for h calculated by (9) — left, (16) — center, (19) — right

Predictably the value of h calculated by (16) is superior to those calculated
by (19) and (9). Omne can see a discernible bump in the error function at
xg = Ngh =~ 12.3792. The values of err(z) on the left of zy corresponds to
the discretization error, whilst the values on the right of xy corresponds to
the truncation error. The magnitude of those errors are almost match. This
highlight the fact that the chosen h is really close to theoretically optimal value
(16).

Example 2. In this example we set f(x) € H'(D,) as

fz) =

6 cos 2x
(54 cos?z) (1+2%)’

and choose formula (9) for the evaluation of h. The function f(x) is meromor-
phic and bounded in Dy for any d smaller than the imaginary part of zeros
of (5 + cos? x) (1 + x4). The zeros of the polynomial part of this expression

lie closer to the real line than any zero of 5+ cos?z, so d < v/ —1 = ? ~
.707106781186550. Therefore it is safe to set d = 0.7. For given f(x) we can
also explicitly find the parameters of algebraic decay bound (7): L = f(0) =1,
a=4.

Note, that for a more general function f(z) the corresponding L, « can be
calculated numerically from a sequence of its values. For explicitly given f(x)
the possible values of d can be calculated numerically as well, for example using
Analytic routine from Maple [4].
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err(x)

)

0.0024
0.8

064 0.001

0.4 0 [\VVAVA TAWAWAY ‘/\V/\V/\V/\V/\V/\VI\V
V2 YVVY 8 10

x

0.2
-0.0014

0 ‘ ‘ ‘ ‘ ‘
4 6 8 10
. -0.002
-0.2 u

f(x) = Cs2{ f, h}(x) from

Fia. 2. Graphs of f(z) and err(x) =
Example 2

The graphs of the approximated function f(z) and the error of its interpo-
lation by Cso{ f, h}(z) are given in Fig. 2.

The precise values of err; for : = 1,...,11 are presented in Table 1. Here we
additionally supply the theoretical estimate £y, defined in Theorem 1 and the
value of ¢; = err;/En;,.

TABL. 1. Result of the numerical experiments for f(x) from
Example 2. The step size h is calculated by (9), the quantities

En and c are evaluated with help of (8)

1 Ni err; EN,L. C;

1 1 0.164468448 0.04709645766 | 3.49216175
2 2 0.06868780928 0.02952007611 | 2.326816808
3 4 0.05758701686 0.01520376206 | 3.787682064
4 8 0.03584624921 | 0.006430513883 | 5.574398852
5 | 16 0.0096295153 0.002280722496 | 4.222133695
6 | 32 0.00277964663 | 0.0006985817398 | 3.978985524
7| 64 | 0.001039781276 | 0.0001901179719 | 5.469137218
8 | 128 | 0.0001265620194 | 4.706647235E-05 | 2.689005848
9 | 256 | 6.005526369E-05 | 1.079496434E-05 | 5.563266519
10 | 512 | 5.048493593E-06 | 2.325942889E-06 | 2.170514855
11 | 1024 | 2.594213457E-06 | 4.758456168E-07 | 5.451796476

The data from in Table 1 demonstrates that the approximation method pre-
sented by Theorem 1 converges to f(z). The of observed approximation error is
consistent with the estimate provided by (8). Moreover the estimated value of ¢
from (8) remains bounded by 5.6 for all i = 1,6. All this prove the effectiveness
of the developed method.
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