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ACADEMICIAN V. L.MAKAROV IS 75 !

In 2016 the well-known Ukrainian scientist in the �eld of numerical mathe-
matics, Academician of National Academy of Science of Ukraine (NASU), Doc-
tor of Physical and Mathematical Sciences, Professor Volodymyr Leonidovych
Makarov turned 75.

In 1963 V. L.Makarov graduated from the Faculty Mechanics and Mathe-
matics of Kyiv State University. In 1967 he received a Ph.D. in Physics and
Mathematics from the Kyiv State University. In 1974 he received a degree
of a Doctor of Science in Physics, Mathematics and Computer Sciences and
became a Professor of Applied and Computational Mathematics. In the pe-
riod between 1981 and 1998 V. L.Makarov was the head of the Department of
Numerical Methods of Mathematical Physics at the Kyiv National University
of Ukraine. In October 1998 he became the head of Department of Numeri-
cal Mathematics at the Institute of Mathematics (NASU). During a long time
V. L.Makarov was also the head of the Department of Applied Mathematics at
the National Aviation University (Kyiv).

Numerous achievements of modern numerical mathematics are connected
with the name of Professor V. L.Makarov. He developed many algorithms
for solving di�erent problems in mathematical physics; many other ones were
developed and used for practical calculations under his supervision and with
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his direct participation. V. L.Makarov has also carried out a wide range of
theoretical investigations in numerical mathematics. His works span a vast
majority of problems in mathematical modeling including numerical simulation.
These works have opened new directions in the theory of di�erence schemes, in
automatic design of complex radio engineering systems etc. Professor Makarov
developed the base of common theory of polynomial interpolation of non-linear
operators in abstract spaces and recently obtained new important results in
constructive representation of the solution operators for di�erential equations
with operator coe�cients in Hilbert and Banach spaces. The latter ones allow
the construction of e�cient numerical algorithms without accuracy saturation
or exponential convergent algorithms for solving partial di�erential equations,
integral equations etc.

Professor Makarov published more than 370 papers, 13 monographs and 8
textbooks. Since 1963 until 1974 the main direction of V. L.Makarov's scien-
ti�c activities was the theory of di�erence schemes. In this period, he was
onethe �rst to introduce and study the new class of di�erence schemes � a
so-called di�erence scheme with exact and explicit spectrum. Studying the
mathematical apparatus of these schemes, special functions of discrete argu-
ment, V. L.Makarov achieved some important results in the theory of associated
orthogonal polynomials. Di�erence schemes with exact spectrums are widely
used in practice, especially when solving hyperbolic equations with non-smooth
solutions.

V. L.Makarov made an important contribution to the theory of exact and
truncated di�erences schemes, the base of which was established in 1959-1968 by
academicians A.M.Tikhonov and O.A. Samarskiy. These scientists and their
followers proved the existence and uniqueness theorems for exact di�erences
scheme for vectorial systems of ordinary di�erential equations of the second or-
der, of ordinary di�erential equations of the forth order, di�erential equations
with degeneration on the boundary and in unbounded domains. Su�cient con-
ditions for conservatism of di�erences scheme for the equations of gasdynamics
were pointed out.

In 1979-1980 in their common works, V. L.Makrov and academician O.A. Sa-
marskiy suggested a new direction in numerical mathematics, namely di�erence
schemes which rate of convergence is adjusted to the smoothness of the solu-
tion of the primary di�erential problem. These investigations were contin-
ued by V. L.Makarov and his followers. They derived and studied di�erences
scheme with adjusted convergencerate for quasi-linear problems of mathemati-
cal physics in Sobolev spaces. Now these models are widely used in mechanics,
elasticity theory, theory of operating systems with distributed parameters etc.

Since 1975 V. L.Makarov engaged in active research on the development
of theoretical base for automatic projection of complicated radio engineering
systems. This research, under his supervision and with his direct participation,
created the mathematical concept of systems of embedded models, methods of
veri�cation of mathematical models, the statistical approach to the problem
of veri�cation. Important attention was paid to the algorithmic realization
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of mathematical models, where the results by V. L.Makarov in the �eld of
numerical methods were used.

During the last years V. L.Makarov laid the foundation of the general theory
of the polynomial interpolation of the non-linear operators in abstract spaces.
His work proves the necessary and su�cient existence and uniqueness condi-
tions for polynomial interpolants in Hilbert and vector spaces and proposes
procedures to construct these polynomials. Professor Makarov also obtained
generalizations for the case of interpolation conditions containing Gato deriva-
tives in all directions.

In the last decade V. L.Makarov have proposed and futher develops a very ef-
�cient so called FD-method, which shows especially good results for eigenvalue
problems.

In 1990 Prof. Makarov, while working in an international team at the Uni-
versity of Leipzig, began a new line of research. Together with I. P.Gavrilyuk he
studied di�erential equations with operator coe�cients as meta-models of par-
tial di�erential equations, their solution operators and various operator equa-
tions in Hilbert and Banach spaces. A series of results of fundamental impor-
tance were obtained by Professor V. L.Makarov in this. These results were the
base for the new e�cient parallel approximations without accuracy saturation
or with an exponential convergence rate to solutions of various partial di�eren-
tial equations. The exponentially convergent methods for various mathematical
and applied problems remain to be the focus of Professor Makarovs research ac-
tivities of the last decade since they are the basis foralgorithms of optimal com-
plexity. A part of results on this was published in the Birkhauser Series "Fron-
tiers in Mathematics" (in co-authorship with I.Gavrilyuk and V.Vasylyk).

An important �eld of Professor Makarovs scienti�c activities is mathematical
modeling of sloshing of �uids in moving containers with various marine applica-
tions. These phenomena are described by complex systems of nonlinear partial
di�erential equations in domains with moving boundary. This investigations of
Professor Makarov were supported by the German Research Council (DFG) and
by the German Academic Council (DAAD). Professor V. L.Makarov has been
teaching for 35 years in the Taras Shevchenko National University of Kyiv.
He created a school of numerical mathematics which includes 48 candidates
(PhD) and 15 doctors (DS) of physical-mathematical sciences that have pre-
pared their theses under his supervision. Results published by V. L.Makarov
are widely known in the scienti�c world and make an important contribution to
mathematics. Long before the end of the Soviet Union V. L.Makarov has pre-
pared the �rst teaching complex of books on numerical methods in Ukrainian
(in co-authorship) including two theoretical parts, a practical part with algo-
rithms and programs as well as two books with a collection of exercises. At that
time such a complex was a novelty in teaching of numerical mathematics and
not only in Ukraine. A creative and fruitful relationship connects V. L.Makarov
with many other scientists including the famous mathematical schools of aca-
demicians A.M.Tikhonov, O.A. Samarskiy, and Kyiv and Leipzig schools of
numerical and applied mathematics.
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Under the guidance of Academician Makarov, a seminar on numerical math-
ematics takes place. V. L.Makarov is the editor ofthefollowing journals: "Dif-
ferential equations", "Ukrainian Mathematical Journal", "Nonlinear Oscilla-
tions", CMAM, AMI, and a deputy editor-in-chief of the Journal of Numeri-
cal and Applied Mathematics. Besides, he repeatedly belonged to specialized
boards of the doctoral and Ph.D. thesis defends. Academician Makarov was
invited speaker at a number of international conferences and schools of applied
mathematics. He is a member of the American Mathematical Society.

For the gained success in his work V. L.Makarov was awarded the order of the
Labor Red Flag (1984), M.M.Krylov's Prize from NASU (2007), M.M.Bogolu-
bov's Prize from NASU (2012) and State Prize of Ukraine in Science and Tech-
nology in 2012. In 2000 V. L.Makarov was elected as a Corresponding Member
of the NASU and in 2009 as an Academician of the NASU.

Volodymyr Leonidovych Makarov is full of new scienti�c ideas and concepts.
His active work promotes development of numerical mathematics in Ukraine
and recognition of the achievements of Ukrainian mathematicians by the inter-
national scienti�c society.

We cordially congratulate the celebrator of a jubilee and wish Volodymyr
Leonidovych creative successes and scienti�c longevity.

R.Chapko, I.Gavrilyuk, O.Khimich, V.Khlobystov, V.Korolyuk,
M.Kutniv, I. Lukovskyy, P.Matus, A. Samoilenko, G. Shynkarenko,

S. Solodkyy, O.Timokha, V.Vasylyk, M.Voitovich.
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ON THE NON-LINEAR INTEGRAL EQUATION
APPROACHES FOR THE BOUNDARY RECONSTRUCTION

IN DOUBLE-CONNECTED PLANAR DOMAINS

R. S.Chapko, O.M. Ivanyshyn Yaman, T. S.Kanafotskyi

Ðåçþìå. Ðîçãëÿäà¹òüñÿ çàäà÷à ðåêîíñòðóêöi¨ âíóòðiøíüî¨ êðèâî¨ çà çà-
äàíèìè äàíèìè Êîøi ãàðìîíiéíî¨ ôóíêöi¨ íà çîâíiøíié êðèâié ïëîñêî¨
îáëàñòi. Çà äîïîìîãîþ ôóíêöi¨ Ãðiíà i òåîði¨ ïîòåíöiàëó íåëiíiéíà îáåð-
íåíà çàäà÷à ðåäóêîâàíà äî ñèñòåìè íåëiíiéíèõ ãðàíè÷íèõ iíòåãðàëüíèõ
ðiâíÿíü. Ðîçðîáëåíî òðè iòåðàöiéíi àëãîðèòìè äëÿ ¨¨ ÷èñåëüíîãî ðîçâ'ÿçó-
âàííÿ. Çíàéäåíî ïîõiäíi Ôðåøå âiäïîâiäíèõ îïåðàòîðiâ i ïîêàçàíî ¹äè-
íiñòü ðîçâ'ÿçêó ëiíåàðèçîâàíèõ ñèñòåì. Ïîâíà äèñêðåòèçàöiÿ çäiéñíåíà
ìåòîäîì òðèãîíîìåòðè÷íèõ êâàäðàòóð. ×åðåç íåêîðåêòíiñòü âèõiäíî¨ çà-
äà÷i äî îòðèìàíèõ ñèñòåì ëiíiéíèõ ðiâíÿíü çàñòîñîâàíî ðåãóëÿðèçàöiþ
Òiõîíîâà. ×èñåëüíi ðåçóëüòàòè ïîêàçóþòü, ùî ïðîïîíîâàíi ìåòîäè äàþòü
äîñòàòíüî äîáðó òî÷íiñòü ðåêîíñòðóêöi¨ ïðè åêîíîìíèõ îá÷èñëþâàëüíèõ
çàòðàòàõ.
Abstract. We consider the reconstruction of an interior curve from the given
Cauchy data of a harmonic function on the exterior boundary of the planar
domain. With the help of Green's function and potential theory the non-
linear boundary reconstruction problem is reduced to the system of non-linear
boundary integral equations. The three iterative algorithms are developed for
its numerical solution. We �nd the Fr�echet derivatives for the corresponding
operators and show unique solviability of the linearized systems. Full dis-
cretization of the systems is realized by a trigonometric quadrature method.
Due to the inherited ill-possedness in the obtained system of linear equations
we apply the Tikhonov regularization.

The numerical results show that the proposed methods give a good ac-
curacy of reconstructions with an economical computational cost.

1. Introduction
The mathematical modeling of electrostatic or thermal imaging methods in

nondestructive testing and evaluation leads to inverse boundary value problems
for the Laplace equation. In principle, in these applications an unknown inclu-
sion within a conducting host medium with a constant conductivity is resolved
from the overdetermined Cauchy data on the accessible part of the boundary
of the medium.

The idea to reduce the problem of the boundary reconstruction to the system
of non-linear equations and to employ a regularized iterative procedure was
�rstly suggested in [11]. This approach was successfully extended in [1,3,6,11,

Key words. Double connected domains; boundary reconstruction; Green's function; single
layer potential; boundary integral equations; trigonometric quadrature method; Tikhonov
regularization.
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12] for the case of the Laplace equation and in [4,5,7�9,13�15] for the Helmholtz
equation.

As an alternative to the reciprocity gap approach based on Green's integral
theorem we propose iterative solution methods based on the Green's function.
Although the proposed methods are restricted to the class of domains for which
the Green's function can be easily found the methods have several advantages
over the reciprocity gap approach. In particular, the corresponding single layer
potential is bounded at in�nity and hence its modi�cation is not needed. More-
over, for the complicated boundary conditions such as generalized impedance
the proposed methods will be easier to adopt.

We assume that D is a doubly connected bounded domain in IR2 with the
boundary ∂D consisting of two disjoint closed C2 curves Γ and Λ such that Γ
is contained in the interior of Λ.

The corresponding direct problem is: Given a function f on Λ consider the
Dirichlet problem for u ∈ C2(D) ∩ C(D̄) satisfying the Laplace equation

∆u = 0 in D (1)
and the boundary conditions

u = 0 on Γ, (2)
u = f on Λ. (3)

The inverse problem we are concerned with is: Given the Dirichlet data f on
Λ with f 6= 0 and the Neumann data

g :=
∂u

∂ν
on Λ, (4)

determine the shape of the interior boundary Γ. Here, and in the sequel, by
ν we denote the outward unit normal to Γ or to Λ. We tacitly assume that
f has enough smoothness, for example f ∈ C1,α(Λ) for classical solutions or
f ∈ H1/2(Λ) for weak solutions, to ensure the existence of the normal derivative
on Λ. As opposed to the forward boundary value problem, the inverse problem
is nonlinear and ill-posed.

The issue of uniqueness, i.e., identi�ability of the unknown curve Γ from the
Cauchy data on Λ, is settled by the following theorem (see [10]).

Theorem 1. Let Γ and Γ̃ be two closed curves contained in the interior of Λ
and denote by u and ũ the solutions to the Dirichlet problem (1)�(3) for the
interior boundaries Γ and Γ̃, respectively. Assume that f 6= 0 and

∂u

∂ν
=

∂ũ

∂ν

on an open subset of Λ. Then Γ = Γ̃.
The plan of the paper is as follows. In Section 2 we reduce the inverse bound-

ary value problem (1)�(4) to two boundary integral equations using Green's
function. Section 3 contains three iterative schemes for the numerical solution
of the non-linear integral equations. We show the injectivity of the correspond-
ing linearized operators. The practical realization of suggested algorithms is
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discussed in Section 4. Section 5 concludes the paper with some numerical
examples illustrating the feasibility of the non-linear integral equation method
for approximate solution of the inverse boundary value problem.

2. Reduction to boundary integral equations
To this end, we denote the interior of Λ by B. Then, by G we denote the

Green's function for B, that is, G is de�ned for all x 6= y in B and of the form

G(x, y) =
1
2π

ln
1

|x− y| + G̃(x, y),

where, for a �xed y ∈ B, the function G̃ is harmonic in B with respect to x
such that G(· , y) = 0 on Λ. We note that for Λ a circle of radius R centered at
the origin G̃ is explicitly given by

G̃(x, y) =
1
4π

ln
R4 + |x|2|y|2 − 2R2 x · y

R2
.

The solution w to the Dirichlet problem in B with boundary values w = f on
Λ can be represented in the form

w(x) = −
∫

Λ

∂G(x, y)
∂ν(y)

f(y) ds(y), x ∈ B. (5)

In the case of Λ a circle the representation (5) reduces to the Poisson integral.
In a more abstract sense, we may interpret (5) as solution operator that maps
the boundary value f into the solution w of the Dirichlet problem in B. Seeking
the unique solution of (1)�(3) in the form

u(x) =
∫

Γ
G(x, y)ϕ(y) ds(y) + w(x), x ∈ D, (6)

now leads to the integral equation of the �rst kind∫

Γ
G(x, y)ϕ(y) ds(y) = −w(x), x ∈ Γ, (7)

for the unknown density ϕ. We name the integral equation (7) as a �eld equa-
tion. The given �ux g on Λ leads to the integral equation

∫

Γ

ϕ(y)
∂G(x, y)
∂ν(x)

ds(y) = g(x)− ∂w

∂ν
(x), x ∈ Λ, (8)

which is named a data equation.
Let introduce the single-layer potential

(Sϕ)(x) :=
∫

Γ
G(x, y)ϕ(y) ds(y), x ∈ Γ, (9)

and the operator

(Aϕ)(x) :=
∫

Γ

∂G(x, y)
∂ν(x)

ϕ(y) ds(y), x ∈ Λ, (10)

for the normal derivative of the single-layer potential on Λ.

9
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Theorem 2. The inverse boundary value problem (1)�(4) is equivalent to the
system of integral equations

Sϕ = −w on Γ, (11)

Aϕ = g − ∂w

∂ν
on Λ. (12)

Proof. Analogously to [11]. 2

Theorem 3. The operator S : H−1/2(Γ) → H1/2(Γ) is bijective and has boun-
ded inverse. The operator A : L2(Γ) → L2(Λ) is injective and has dense range.
Proof. The bijectivity of S is the classical result and can be found in [10]. The
injectivity of A is proved in [2]. 2

To describe the algorithms conveniently a parametrization of boundary cur-
ves is required. Let

λ(s) = {(x1(s), x2(s)) : s ∈ [0, 2π]}
is the parametrization for the exterior curve Λ. For simplicity we consider only
starlike interior curves, i.e., we choose a parametrization in polar coordinates
of the form

γr(s) = {r(s)c(s) : s ∈ [0, 2π]}, (13)
where c(s) = (cos s, sin s) and r : IR → (0,∞) is a 2π periodic function rep-
resenting the radial distance from the origin. However, we wish to emphasize
that the concepts described below, in principle, are not con�ned to starlike
boundaries only. We introduce the parametrized density as ϕ(t) := ϕ(γr(t)) or
φ(t) := ϕ(γr(t))|γ′r(t)|. We indicate the dependence on r by denoting the curve
with parametrization (13) by Γr. The corresponding operators de�ned through
(9) and (10) for Γ = Γr are given by

(Srφ)(t) =
1
2π

∫ 2π

0
φ(τ)G(γr(t), γr(τ))dτ,

(S̃rϕ)(t) =
1
2π

∫ 2π

0
ϕ(τ)G(γr(t), γr(τ))|γ′r(τ)|dτ,

(Arφ)(t) =
1
2π

∫ 2π

0
φ(τ)

∂G

∂ν(λ(t))
(λ(t), γr(τ))dτ

and
(Ãrϕ)(t) =

1
2π

∫ 2π

0
ϕ(τ)

∂G

∂ν(λ(t))
(λ(t), γr(τ))|γ′r(τ)|dτ.

3. Iterative schemes
Operators Sr, Ar and Ãr have the following Fre�echet derivatives with respect

to the radial function r

(S′[r, φ]q)(t) =
1
2π

∫ 2π

0
φ(τ)[q(τ)L(1)

r (t, τ) + q(t)L(2)
r (t, τ)]dτ,

(A′[r, φ]q)(t) =
1
2π

∫ 2π

0
φ(τ)q(τ)H(1)

r (t, τ)dτ.
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and

(Ã′[r, ϕ]q)(t) =
1
2π

∫ 2π

0
ϕ(τ)

[
q(τ)H(1)

r (t, τ)|γ′r(τ)|+

+
r(τ)q(τ) + r′(τ)q′(τ)

|γ′r(t)|
H(2)

r (t, τ)
]
dτ.

(14)

Here we introduced the kernels

L(1)
r (t, τ) := −r(τ)− r(t) cos(t− τ)

|γr(t)− γr(τ)|2 + gradγr(τ) G̃(γr(t), γr(τ)) · c(τ),

L(2)
r (t, τ) := −r(t)− r(τ) cos(t− τ)

|γr(t)− γr(τ)|2 + gradγr(t) G̃(γr(t), γr(τ)) · c(t),

H(1)
r (t, τ) := gradγr(τ)

∂G(λ(t), γr(τ))
∂ν(λ(t))

· c(τ)

and
H(2)

r (t, τ) :=
∂G(λ(t), γr(τ))

∂ν(λ(t))
.

Note that

lim
τ→t

(q(τ)L(1)
r (t, τ) + q(t)L(2)

r (t, τ)) =
r(t)q(t) + r′(t)q′(t)

|γ′r(t)|2
+

+ 2q(t) gradγr(t) G̃(γr(t), γr(t)) · c(t).
These representation were obtained by standard di�erentiation procedure in
(9) and (10). Also we will need the Fre�echet derivative for the function w

(w′[r]q)(t) = − 1
2π

∫ 2π

0
f(τ)q(τ)Wr(t, τ)dτ

with
Wr(t, τ) := |λ′(τ)| gradγr(t)

∂G(γr(t), λ(τ))
∂ν(λ(τ))

· c(t).
The linear operators S′[r, ϕ] and A′[r, ϕ] have the following properties.
Theorem 4. Let r be the radial function of the interior boundary Γr and let
φ be a solution to the integral equation (11), i.e. Srφ = −w on Γr. Assume
that q ∈ C2[0, 2π] and ψ ∈ L2[0, 2π] solve the homogeneous system

Srψ + S′[r, φ]q + w′[r]q = 0, (15)
Arψ + A′[r, φ]q = 0. (16)

Then q = 0 and ψ = 0.
Proof. As it is shown in [6], for su�ciently small q, the perturbed interior curve
as given in polar coordinates by

Γr+q = {(r(t) + q(t))c(t) : t ∈ [0, 2π]}
can be represented in the form

Γr+q = {r(t)c(t) + q̃(t)ν(t) : t ∈ [0, 2π]}

11
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in terms of the normal vector
ν(t) = r′(t)(− sin t, cos t)− r(t)(cos t, sin t)

to the unperturbed curve Γr and a function q̃. Now in the Fr�echet derivatives
S′, A′ and w′ we may replace the perturbation vector ζ(t) = q(t)c(t) by ζ̃ = q̃ ν.
We introduce the function

V (x) :=
∫ 2π

0
ψ(τ)G(x, γr(τ))dτ−

−
∫ 2π

0
gradx G(x, γr(τ)) · ζ̃(τ)φ(τ) dτ, x ∈ IR2 \ Γr.

Then (16) implies that ∂V
∂ν = 0 on Λ. The function V satis�es the Laplace

equation in the exterior of Λ, it decays at in�nity, therefore by the uniqueness
for the exterior Neumann problem we conclude that V ≡ 0 in the exterior of
Λ. By analyticity we obtain V ≡ 0 in the exterior of Γr. Approaching Γr from
the exterior by the jump relations we obtain

0 =
∫ 2π

0
ψ(τ)G(γr(t), γr(τ)dτ

−
∫ 2π

0
gradγr(t) G(γr(t), γr(τ)) · ζ̃(τ)φ(τ) dτ +

1
2
q̃(t)φ(t), t ∈ [0, 2π].

Employing the above equality and recalling the de�nition (6) of u we can rewrite
(15) as follows

ζ̃ · gradu ◦ γr = 0.

Due to the de�nition of u and the condition on ϕ we have u = 0 on Γr, which
is equivalent to

ζ̃ · ν ◦ γr

(
∂u

∂ν

)
◦ γr = 0.

Since by Holmgren's theorem ∂u
∂ν cannot vanish on open subsets of Γr we obtain

ζ̃ ·ν ◦γr = q̃ = 0 and hence q = 0. Analogously to [11] by continuity of a single-
layer potential and the uniqueness of the interior Dirichlet problem we obtain
V = 0 in IR2 and therefore the density ψ = 0. 2

Theorem 5. Let r be the radial function of the interior boundary Γr and let φ
be a solution to the integral equation (12), i.e. Arφ = g− ∂w

∂ν on Λ. Assume
that q ∈ C2[0, 2π] solves the homogeneous equation

S′[r, φ]q + w′[r]q = 0. (17)
Then q = 0.
Proof. Since φ is a solution to Arφ = g − ∂w

∂ν on Λ it also satis�es Srφ =
−w on Γr. We represent the perturbed interior curve again as

Γr+q = {r(t)c(t) + q̃(t)ν(t) : t ∈ [0, 2π]}
and introduce the function

V (x) :=
∫ 2π

0
φ(τ)G(x, γr(τ))dτ−

∫

Λ

∂G(x, y)
∂ν(y)

f(y) ds(y), x ∈ IR2 \ Γr.

12
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The function V is a solution to the interior Dirichlet boundary value problem
with the homogeneous condition. In view of the unique solution we obtain
V ≡ 0 in the interior of Γr and therefore ∂V

∂ν

∣∣∣∣
Γr

= 0, i.e.

0 = q̃(t)ν(t) · gradγr(t)

∫ 2π

0
G(γr(t), γr(τ))φ(τ) dτ +

1
2
q̃(t)φ(t)

−q̃(t)ν(t) · gradγr(t)

∫

Λ

∂G(γr(t), y)
∂ν(y)

f(y) ds(y), t ∈ [0, 2π].

From (17) we �nd

0 = −1
2
q̃(t)φ(t)−

∫ 2π

0
gradγr(t) G(γr(t), γr(τ)) · ζ̃(τ)φ(τ) dτ, t ∈ [0, 2π].

(18)
We de�ne a double layer potential

W (x) := −
∫ 2π

0
gradx G(x, γr(τ)) · ν(τ)q̃(τ)φ(τ) dτ, x ∈ IR2 \ Γr.

Since the function W is harmonic in the interior of Γr and satis�es the homo-
geneous Dirichlet boundary condition, (18), it implies W ≡ 0 in the interior of
Γr. One can show, similarly to [10, Theorem 6.21], that the operator −I + K
is injective, where

(Kψ)(t) =
∫ 2π

0
gradγr(t) G(γr(t), γr(τ)) · ν(τ)ψ(τ) dτ, t ∈ [0, 2π]

Hence from (18) we obtain
q̃(t)φ(t) = 0, t ∈ [0, 2π]

By the jump relations for the function V we have
1
|γ′r|

φ =
∂V −

∂ν

∣∣∣∣
Γr

− ∂V +

∂ν

∣∣∣∣
Γr

= − ∂V +

∂ν

∣∣∣∣
Γr

.

Since by Holmgren's theorem ∂V +

∂ν cannot vanish on open subsets of Γr and
|γr| 6= 0 we obtain q̃ = 0 and hence q = 0. 2

Remark (about the Algorithm 2).
If the interior boundary is a circle, then exists a nontrivial solution q = const
to the homogeneous equation A′[r, ϕ]q = 0. Indeed, introducing the function

V (x) = −q gradx

∫ 2π

0
G(x, γr(τ)) · ν(τ)ϕ(τ)dτ, x ∈ IR2 \ Γr

we obtain that V is a unique solution to the Neumann boundary value problem
with the homogeneous condition in the exterior of Λ, and hence V +|Γr = 0.
Since the null-space of the operator of the integral equation

1
2
ϕ(t)− gradx

∫ 2π

0
G(t, γr(τ)) · ν(τ)ϕ(τ)dτ = 0, t ∈ [0, 2π]

is not empty, one can �nd q 6= 0 which solves A′[r, ϕ]q = 0.

13
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In view of this remark we introduced the modi�ed version Ã′[r, ϕ], (14),
instead of the operator A′[r, ϕ].

Now we describe three iterative algorithms for the numerical solution of (11)-
(12).
Algorithm 1.

1. Choose some starting value r. Solve the well-posed integral equation

Srφ = −wr. (19)

2. For the given r and ϕ solve the system of linearized ill-posed integral
equations

Srψ + S′[r, φ]q + w′[r]q = −Srφ− wr, (20)

Arψ + A′[r, φ]q = g − ∂w

∂ν
−Arφ (21)

with respect to functions ψ and q.
3. Calculate new approximations for the radial function r = r + q and for

the density φ = φ + ψ.
4. Repeat steps 2-3 until some stopping criterion is satis�ed.

Algorithm 2.
1. Choose some starting value r.
2. Solve the well-posed integral equation

S̃rϕ = −wr. (22)

3. For the given r and ϕ solve the linearized ill-posed integral equation

Ã′[r, ϕ]q = g − ∂w

∂ν
− Ãrϕ (23)

with respect to function q.
4. Calculate new approximations for the radial function r = r + q.
5. Repeat steps 2-4 until some stopping criterion is satis�ed.

Algorithm 3.
1. Choose some starting value r.
2. Solve the ill-posed integral equation

Arφ = g − ∂w

∂ν
. (24)

3. For given r and ϕ solve the linearized ill-posed integral equation

S′[r, φ]q + w′[r]q = −Srφ− wr, (25)

with respect to function q.
4. Calculate new approximations for the radial function r = r + q.
5. Repeat steps 2-4 until some stopping criteria is satis�ed. Note here that

we need to use some regularization method in the case of ill-posed integral
equations. According to properties of the corresponding integral operators an
application of the Tikhonov regularization is justi�ed for the algorithms 1, 3.

14
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4. Implementation
Algorithm 1.

Step1. On the �rst step of this algorithm we need to solve the well posed
integral equation of the �rst kind (19) with a logarithmic singularity for a
current approximation of r. Since all functions in this equation are 2π periodic
we implement the trigonometric quadrature method. To do this we rewrite the
equation (19) in the following equivalent form

1
2π

∫ 2π

0
φ(τ)

[
−1

2
ln

4
e

sin2 t− τ

2
+ Kr(t, τ)

]
dτ = −wr(t), t ∈ [0, 2π],

where

Kr(t, τ) :=
1
2

ln
4
e sin2 t−τ

2

|γr(t)− γr(τ)|2 + G̃(γr(t), γr(τ)), t 6= τ

with the diagonal term

Kr(t, t) =
1
2

ln
1

e|γ′r(t)|2
+ G̃(γr(t), γr(t)).

The following trigonometric quadratures with equidistant points tj = jπ
n , j =

0, . . . , 2n− 1 are used

1
2π

∫ 2π

0
f(τ) ln

(
4
e

sin2 t− τ

2

)
dτ ≈

2n−1∑

k=0

Rk(t) f(tk) (26)

and
1
2π

∫ 2π

0
f(τ) dτ ≈ 1

2n

2n−1∑

k=0

f(tk) (27)

with explicit expressions for the weight functions given in [10]. It leads to the
following system of linear equations with respect to φni ≈ φ(ti)

2n−1∑

i=0

φni[−1
2
Ri(tk) +

1
2n

K(tk, ti)] = −w̃r(tk), k = 0, . . . , 2n− 1

with

w̃r(t) = − 1
2n

2n−1∑

i=0

f(ti)H(t, ti),

where
H(t, τ) :=

∂G(γr(t), λ(τ))
∂ν(λ(τ))

|λ′(t)|.

The convergence and error analysis for this method can be found in [10].
Step2. We search the unknown corrections in the system (20)-(21) as

ψn =
2n−1∑

i=0

ψnil
1
i , qm =

2m∑

i=0

qmil
2
i ,

15
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where l1i , i = 0, . . . , 2n− 1 are basic Lagrangian trigonometric polynomials and
l2i , i = 0, . . . , 2m are known basic functions. The quadrature method applied
to (20)-(21) give us the linear system

2n−1∑

i=0

ψniA(11)
ki +

2m∑

i=0

qmiA(12)
ki = b

(1)
k , k = 0, . . . , 2n− 1,

2n−1∑

i=0

ψniA(21)
ki +

2m∑

i=0

qmiA(22)
ki = b

(2)
k , k = 0, . . . , 2n− 1

with matrix coe�cients

A(11)
ki = −1

2
Ri(tk) +

1
2n

Kr(tk, ti), A(21)
ki =

1
2n

H(2)
r (tk, ti),

A(12)
ki =

1
2n

2n−1∑

j=0

{φnj [l2i (tj)L
(1)
r (tk, tj)+l2i (tk)L

(2)
r (tk, tj)]+l2i (tj)f(ti)Wr(tk, tj)},

A(22)
ki =

1
2n

2n−1∑

j=0

φnjl
2
i (tj)H

(1)
r (tk, tj)

and right hand side

b
(1)
k =

2n−1∑

i=0

φni[−1
2
Ri(tk)− 1

2n
Kr(tk, ti)]− w̃r(tk),

b
(2)
k = g(tk)− ∂w̃r

∂ν
(tk)− 1

2n

2n−1∑

i=0

φniH
(2)
r (tk, ti).

Here 2n ≥ 2m + 1.
Thus the received ill-posed linear system is overdetermined and therefore we
reduce it to the least-squares problem. The following cost functional needs to
be minimized

F (ψn0, . . . , ψn,2n−1, qm0, . . . , qm,2m) =

=
2n−1∑

i=0

∣∣∣∣∣∣

2n−1∑

j=0

ψnjA(11)
ij +

2m∑

j=0

qmjA(12)
ij − b

(1)
i

∣∣∣∣∣∣

2

+

2n−1∑

i=0

∣∣∣∣∣∣

2n−1∑

j=0

ψnjA(21)
ij +

2m∑

j=0

qmjA(22)
ij − b

(2)
i

∣∣∣∣∣∣

2

+

α
2n−1∑

j=0

ω1jψ
2
nj + β

2m∑

j=0

ω2jq
2
mj

16
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with the regularization parameters α > 0 and β > 0 and weight coe�cients ω1j

and ω2j . Clearly, the �nal linear system has the form

αω1iψni +
2n−1∑

j=0

ψnja
(11)
ij +

2m∑

j=0

qmja
(12)
ij = b(1)

i , i = 0, . . . , 2n− 1,

βω2iqmi +
2n−1∑

j=0

ψnja
(21)
ij +

2m∑

j=0

qmja
(22)
ij = b(2)

i , i = 0, . . . , 2m,

where

a(`p)
ij =

2n−1∑

k=0

A(`1)
ki A(p1)

kj +
2m∑

k=0

A(`2)
ki A(p2)

kj

and

b(`)
i =

2n−1∑

k=0

A(`1)
ki b

(1)
k +

2m∑

k=0

A(`2)
ki b

(2)
k .

Step 3. Now we can evaluate the new values for the radial function rm = rm+qm

and for the density φn = φn + ψn.
The following stopping criterion can be used

‖qm‖L2[0,2π]‖
‖rm‖L2[0,2π]

< ε

with su�ciently small ε > 0, or a discrepancy principle, as well.
Algorithm 2.
Step2. It is analogous to the Step 1 from the Algorithm 1.
Step3. To �nd the correction q from (23) we make the discretization by
the quadrature method and due to its ill-posednes we minimize the following
Tikhonov functional

F (qm0, . . . , qm,2m) =
2n−1∑

i=0

∣∣∣∣∣∣

2m∑

j=0

qmjA(22)
ij − b

(2)
i

∣∣∣∣∣∣

2

+ β
2m∑

j=0

ω2jq
2
mj , 2n ≥ 2m + 1.

The corresponding linear system has the form

βω2iqmi +
2m∑

j=0

qmjaij = bi, i = 0, . . . , 2m

with

aij =
2n−1∑

k=0

A(22)
ki A(22)

kj , bi =
2n−1∑

k=0

A(22)
ki b

(2)
k .

Algorithm 3.
Step2. The discretization in (24) and ill-posednes of the received linear system
lead to the minimization of the following Tikhonov functional

F (ψn0, . . . , ψn,2n−1) =
2n−1∑

i=0

∣∣∣∣∣∣

2n−1∑

j=0

ψnjA(21)
ij − b̃

(2)
i

∣∣∣∣∣∣

2

+ α
2n−1∑

j=0

ω1jψ
2
nj

17
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with
b̃
(2)
i = g(tk)− ∂w̃r

∂ν
(tk).

which is equivalent to solving the linear system

αω1iψni +
2n−1∑

j=0

ψnja
(1)
ij = b(1)

i , i = 0, . . . , 2n− 1,

where

a(1)
ij =

2n−1∑

k=0

A(21)
ki A(21)

kj , b(1)
i =

2n−1∑

k=0

A(21)
ki b̃

(2)
k .

Step3. To �nd the correction q from (25) we make the discretization by quad-
rature method and due to its ill-posednes we minimize the following Tikhonov
functional

F (qm0, . . . , qm,2m) =
2n−1∑

i=0

∣∣∣∣∣∣

2m∑

j=0

qmjA(12)
ij − b

(1)
i

∣∣∣∣∣∣

2

+ β
2m∑

j=0

ω2jq
2
mj , 2n ≥ 2m + 1.

Thus the corresponding linear system has the form

βω2iqmi +
2m∑

j=0

qmja
(2)
ij = b(2)

i , i = 0, . . . , 2m,

where

a(2)
ij =

2n−1∑

k=0

A(12)
ki A(12)

kj , b(2)
i =

2n−1∑

k=0

A(12)
ki b

(1)
k .

5. Numerical examples
We demonstrate the feasibility of the proposed methods for the inverse prob-

lem (1)-(4) with the following boundaries λ(t) = {Rc(t), t ∈ [0, 2π]} with R = 2,
and

γr(t) =
{√

cos2 t + 0.25 sin2 t c(t), t ∈ [0, 2π]
}

.

The Cauchy data on Λ were generated by solving the direct problem (1)-(3) for
f = 1 on Λ and calculating g as the normal derivative on Λ. The noisy data
were formed as

gδ = g + δ(2η − 1)‖g‖L2(Λ)

with the noise level δ and the random value η ∈ (0, 1). The results of the
numerical experiments for exact and noisy data with δ = 5% are re�ected on
Fig. 1. Here we used the following discretization parameters n = 16, m = 4
and ε = 0.0001. The values of regularization parameters, numbers of iterations
and L2-errors are given in Tabl. 1.
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δ It. E α β

Algorithm 1 0% 7 0.00561 10−13 10−5

5% 8 0.07367 10−10 10−3

Algorithm 2 0% 21 0.00614 10−2

5% 17 0.03843 10−1

Algorithm 3 0% 21 0.00322 10−14 10−7

5% 15 0.04714 10−5 10−1

Tabl. 1. Errors and regularization parameters

a). Reconstruction for the exact data b). Reconstruction for 5% noise in the data

Fig. 1. Reconstruction of the boundary Γ
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ON THE GENERALIZED SOLUTION OF THE
INITIAL-BOUNDARY VALUE PROBLEM WITH

NEUMANN CONDITION FOR THE WAVE EQUATION
BY THE USE OF THE RETARDED DOUBLE LAYER
POTENTIAL AND THE LAGUERRE TRANSFORM

S.V. Litynskyy, A.O.Muzychuk

Ðåçþìå. Îïèñàíî i îáãðóíòîâàíî ïiäõiä äî ðîçâ'ÿçóâàííÿ ìiøàíî¨ çàäà÷i
Íåéìàíà äëÿ îäíîðiäíîãî õâèëüîâîãî ðiâíÿííÿ, ÿêèé áàçó¹òüñÿ íà iíòåã-
ðàëüíîìó ïåðåòâîðåííi Ëàãåðà çà ÷àñîâîþ çìiííîþ i ãðàíè÷íèõ iíòåãðàëü-
íèõ ðiâíÿííÿõ. Äëÿ ïîäàííÿ óçàãàëüíåíîãî ðîçâ'ÿçêó òàêî¨ çàäà÷i âèêî-
ðèñòàíî çàïiçíþþ÷èé ïîòåíöiàë ïîäâiéíîãî øàðó, ãóñòèíó ÿêîãî øóêàþòü
ó âèãëÿäi ðÿäó Ôóð'¹-Ëàãåðà. Äëÿ êîåôiöi¹íòiâ ðîçâèíåííÿ îòðèìàíî
àíàëiòè÷íi ôîðìóëè. Â ðåçóëüòàòi âèõiäíó íåñòàöiîíàðíó çàäà÷ó çâåäåíî
äî åêâiâàëåíòíî¨ ïîñëiäîâíîñòi ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü.
Abstract. Approach for solving of the initial-boundary value problem for
the homogeneous wave equation with the Neumann condition is described
and proved. It is based on the Laguerre transform in the time domain and
the boundary integral equations. The retarded double layer potential is used
for representation of generalized solution of such problem in some weighted
Sobolev spaces. The density of retarded potential is expanded in Fourier-
Laguerre series, coe�cients of which have special convolution form. As a
result, the initial-boundary value problem is reduced to an equivalent sequence
of boundary integral equations.

1. Introduction
Retarded surface potentials are useful tools for the integral representation of

generalized solutions of initial-boundary value problems for the wave equation
with homogeneous initial conditions [1, 2, 6]. Their advantages in applications
are, �rst of all, caused by the generality of domain form. In addition, they allow
to reduce initial-boundary value problems to equivalent time-dependent bound-
ary integral equations (TDBIEs, also known as retarded potential boundary
integral equations), with unknown densities of potentials that are determined
at each moment of time only on the domain's boundary [7, 12, 17]. Further,
they implicitly impose radiation conditions at in�nity.

However, practical usage of retarded potentials has some computational com-
plexity, caused by the presence of dependency of potential density on the time
and the spatial coordinates (so-called delay, see for example [7]). To overcome

Key words. Boundary integral equation method; wave equation; Sobolev spaces; general-
ized solution; retarded surface potentials; Laguerre transform; time domain boundary integral
equations.
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such problems, the following approaches have been used: one of traditional
discretisations on spatial variables is applied to unknown values and auxiliary
problems are used for calculation of the time dependency. In particular, a con-
volution quadrature [17] method has been utilized in many applications. It
is based on the use of sustainable methods for ordinary di�erential equations.
Using this method in the time is more stable than using Galerkin or collocation
time approximations.

Another way to take account of dependence in the time domain is the Fourier-
Laplace integral transform over the time variable [1, 6, 7]. This method is well
suitable for theoretical investigations, however, it is complex (except for some
cases) to perform corresponding inverse transform in applications. In this re-
spect the Laguerre transform, for which the inverse transform is to �nd the
sum of corresponding Fourier-Laguerre series, proved to be more constructive.
In combination with the method of boundary integral equations (BIEs) such
transform was used in [3, 8, 10, 13, 15, 18, 21] for numerical solution of various
evolution problems.

In [16] we considered the generalized solution of the Dirichlet initial-boundary
value problem for the wave equation with homogeneous initial conditions. Its
representation was built by using the retarded single layer potential in some
weighted Sobolev spaces, in which the desired solution and the potential density
allow the Fourier-Laguerre expansion over the time. In this case the Fourier-
Laguerre coe�cients for the potential density are de�ned as solutions of the
BIEs. This work is concerned with applying the same method to the analogical
problem for the wave equation but with the Neumann boundary condition. In
this case we deal with the retarded double layer potential.

We begin in Section 2 with a brief description of the proposed method. Sec-
tion 3 contains the basic de�nitions of proper functional spaces, followed by a
formulation of the main theorem about conditions under which the generalized
solution of the problem belongs to the desired weighted Sobolev spaces and can
be obtained by the proposed method. In Section 4 we investigate the regularity
of the retarded double layer potential depending on the smoothness of its den-
sity. De�nitions of the Laguerre transform and a q-convolution of sequences are
introduced in Section 5, as well as the Fourier-Laguerre expansion is given for
the potential's density and the representation formula for the corresponding
Fourier-Laguerre coe�cients are obtained. In Section 6 we explain how this
approach leads to a sequence of BIE, solutions of which are Fourier-Laguerre
coe�cients of the unknown potential's density. At the end we prove a theorem
that has been referred to above.

2. Reduction of the Neumann problem to a sequence of BIE
Let Ω be a domain in R3 with Lipschitz boundary Γ, Ω+ := R3 \ Ω, R+ :=

(0,∞), Q := Ω× R+, Σ := Γ× R+, and ν(x) be a unit vector in the direction
of the outward normal to the surface Γ at a point x ∈ Γ.

Let us consider the initial-boundary value problem: �nd a function u(x, t),
(x, t) ∈ Q, that satis�es (in some sense) the homogeneous wave equation
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∂2u(x, t)
∂t2

−∆u(x, t) = 0, (x, t) ∈ Q, (1)
homogeneous initial conditions

u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, x ∈ Ω, (2)

and the Neumann boundary condition
∂ν(x)u(x, t) = g(x, t), (x, t) ∈ Σ. (3)

Here ∆ =
3∑

i=1
∂2/∂x2

i is the Laplace operator and ∂ν denotes the normal deriv-
ative operator. Note that for a su�ciently smooth function u and the surface
Γ operator ∂ν can be expressed as

∂ν(x)u(x, ·) = ν(x) · ∇xu(x, ·),
where ∇x is the gradient operator.

We use the retarded double layer potential to solve the problem (1)-(3)

(Dλ)(x, t) :=
1
4π

∫

Γ

ν(y) · ∇y

(
λ(z, t− |x− y|)

|x− y|
)∣∣∣∣

z=y

dΓy, (x, t) ∈ Q, (4)

where λ : Γ × R → R is a density. It is known (see, e.g., [1], [21]) that if an
arbitrary function λ(y, τ), (y, τ) ∈ Γ × R, is smooth enough and λ(y, τ) = 0
when y ∈ Γ, τ ≤ 0, then function

u(x, t) := (Dλ)(x, t), (x, t) ∈ Q, (5)
satis�es (in classic sense) the wave equation and initial conditions. In order
for the function u to satisfy the boundary conditions (3) we will consider the
following limit

(Wλ)(x, t) :=
1
4π

ν(x) · lim
x′→x

∇x′

∫

Γ

ν(y) · ∇y

(
λ(z, t− |x′ − y|)

|x′ − y|
)∣∣∣∣

z=y

dΓy, (6)

where x′ := x − εν(x) ∈ Ω, ε > 0 notes a point close to the points x ∈ Γ,
understanding approach of x′ → x by ε → 0. The function u satis�es the
boundary condition (3), if the function λ is a solution of the TDBIE

(Wλ)(x, t) = g(x, t), (x, t) ∈ Σ. (7)
To �nd the solution of the equation (7) we use the Laguerre transform,

namely the expansion of function in the Fourier-Laguerre series by Laguerre
polynomials {Lj(σ·)}j∈N0 , where N0 := N ∪ {0}, N is a set of natural numbers
and σ > 0 is a parameter. It is known (see, e.g., [11]) that the system of
Laguerre polynomials forms an orthogonal basis in the space L2

σ(R+) v : R+ →
R of functions such that

∫
R+

|v(τ)|2e−στdτ < ∞, therefore, v(τ) =
∞∑

j=0
vj Lj(στ),

τ ∈ R+, where vj := σ
∫
R+

v(τ) Lj(στ) e−στdτ (j ∈ N0) are the Laguerre-Fourier

coe�cients of function v.
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Therefore, the solution of the TDBIE (7) can be expressed as:

λ(y, τ) =





∞∑
j=0

λj(y) Lj(στ), y ∈ Γ, τ ∈ R+,

0, y ∈ Γ, τ ∈ R \ R+,
(8)

where λj (j ∈ N0) are the corresponding Laguerre-Fourier coe�cients of the
unknown function λ. In the case of the retarded argument with arbitrary value
a > 0 we have an expansion

λ(y, t− a) =
∞∑

j=0

λ̃j(y, a) Lj(σt), (9)

where coe�cients λ̃j(y, a) have the representation formula, that was obtained
in [16]

λ̃j(y, a) = e−σa
j∑

i=0

ζj−i(σa) λi(y), j ∈ N0, (10)

and where
ζ0(s) := 1, ζk(s) := Lk(s)− Lk−1(s), s ∈ R+ = [0,∞), k ∈ N. (11)

Then, taking into account (9) and (10), we will have

λ(y, t− |x− y|) =e−σ|x−y|
∞∑

j=0

( j∑

i=0

ζj−i(σ|x− y|) λi(y)
)

Lj(σt),

x, y ∈ Γ, t ∈ R+,

(12)

and then introducing notation similar to (6)

(Wkξ)(x) :=
1
4π

ν(x) · lim
x′→x

∇x′

∫

Γ

ξ(y)ν(y) · ∇yek(x′ − y)dΓy, (13)

where
ek(z) := (4π|z|)−1ζk(σ|z|)e−σ|z| at z ∈ R3 \ {0}, k ∈ N0, (14)

for the normal derivative of the retarded double layer potential (6) we obtain
an expansion

(Wλ)(x, t) =
∞∑

j=0

( j∑

i=0

(Wj−iλi)(x)
)

Lj(σt), x, y ∈ Γ, t ∈ R+. (15)

Now lets write the Fourier-Laguerre expansion of the function g

g(x, t) =
∞∑

j=0

gj(x)Lj(σt), (x, t) ∈ Σ, (16)

where gj(x) = σ
∫
R+

g(x, τ) Lj(στ) e−στdτ, x ∈ Γ, j ∈ N0. Taking into account

(15) and (16) along with (7) and equating expressions near the Laguerre poly-
nomials with the same indexes, we get an in�nite triangular system of BIE for
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�nding the Laguerre-Fourier coe�cients λ0, λ1, ..., λj , ... of the density λ

j∑

i=0

(Wj−iλi)(x) = gj(x), x ∈ Γ, j ∈ N0. (17)

It is easy to see that system (17) can be rewritten as a recursive sequence of
equations 




(W0λ0)(x) = g0(x),
(W0λ1)(x) = g̃1(x),

. . . . . . . . .
(W0λj)(x) = g̃j(x), j ∈ N, x ∈ Γ,

. . . . . . . . .

(18)

where

g̃j(x) := gj(x)−
j−1∑

i=0

(Wj−iλi)(x), j ∈ N. (19)

For every j ∈ N0 the corresponding j-th equation (18) is hypersingular equation
that has the form

(W0ξ)(x) = h(x), x ∈ Γ. (20)
It is known [4,9] that the equation (20) has a unique solution ξ for an arbitrary
function h within a fairly broad class. To �nd the solution of this equation one
can use numerical methods (see for example [24] and references there).

After �nding the solution λ0, λ1, ... of the BIE system (17) (same as a solution
of the sequence (18)), the generalized solution of the problem (1)-(3) can be
presented using (4), (5) and (12) as a sum of the series

u(x, t) =
1
4π

∞∑

j=0

( j∑

i=0

∫

Γ

λi(y) ν(y) · ∇yej−i(x− y)dΓy

)
Lj(t), (x, t) ∈ Q.

(21)
If we introduce a notation

(Dkξ)(x) :=
1
4π

∫

Γ

ξ(y)ν(y) · ∇yek(x′ − y)dΓy, (22)

the formula (21) can be rewritten as:

u(x, t) =
∞∑

j=0

( j∑

i=0

Dj−iλi(x)
)

Lj(σt), (x, t) ∈ Q. (23)

If there exists a sum of the series (23) we can consider its partial sum as
an approximate solution for the problem (1)-(3). In this case one can choose
(by some criteria) value N and �nd from the system (18) the �rst components
λ0, λ1, ..., λN of its solution. Then the approximate solution of the problem
(1)-(3) is the partial sum

ũN (x, t) =
N∑

j=0

( j∑

i=0

Dj−iλi(x)
)

Lj(σt), (x, t) ∈ Q. (24)

25



S.V. LITYNSKYY, A.O.MUZYCHUK

We can use the representation (24) for the numerical solution of the problem
(1)-(3).

3. Variational formulation of the problem (1)-(3)
First, we need to introduce some additional notations. Let L2(Ω) be the

Lebesgue space of square integrable functions v : Ω → R with inner product

(v, w)L2(Ω) :=
∫

Ω

vwdx, v, w ∈ L2(Ω),

and norm ‖v‖L2(Ω) :=
√

(v, v)L2(Ω), and H1(Ω) be the Sobolev space of func-
tions v ∈ L2(Ω), having generalized derivatives of vx1 , vx2 , vx3 in L2(Ω), with
inner product

(v, w)H1(Ω) :=
∫

Ω

(∇v∇w + vw) dx, v, w ∈ H1(Ω),

and norm ‖v‖H1(Ω) :=
√

(v, v)H1(Ω), v ∈ H1(Ω). Let us denote H1/2(Γ) a
space of traces of elements of H1(Ω) on the surface Γ, γ0 : H1(Ω) → H1/2(Γ)
a trace operator, H−1/2(Γ) :=

(
H1/2(Γ)

)′ a conjugate to H1/2(Γ) space, and
< ·, · >Γ a duality relation for H−1/2(Γ)×H1/2(Γ).

Also let H1
0 (Ω) be a closure of the space C∞

0 (Ω) with norm ‖·‖H1(Ω) and
H−1(Ω) := (H1

0 (Ω))′ be the conjugate to H1
0 (Ω) space. In the space H1(Ω)

we also consider a subspace H1(Ω, ∆) :=
{

v ∈ H1(Ω) |∆v ∈ L2(Ω)
}
with the

norm
‖v‖H1(Ω,∆) :=

(
‖v‖2

H1(Ω) + ‖∆v‖2
L2(Ω)

)1/2
.

Let X be a Hilbert space with inner product (·, ·)X and inducted norm ||·||X .
For some parameter σ > 0 we consider a weighted Lebesgue space L2

σ(R+; X) [5]
with weight ρσ(t) = e−σt, t ∈ R+, elements of which are measurable functions
v : R+ → X such that

∫
R+

||v(t)||2X e−σtdt < ∞. This space is equipped with

inner product

(v, w)L2
σ(R+;X) :=

∫

R+

(
v(t), w(t)

)
X

e−σtdt, v, w ∈ L2
σ(R+;X), (25)

and the norm

‖v‖L2
σ(R+;X) :=

√
(v, v)L2

σ(R+;X), v ∈ L2
σ(R+; X). (26)

Note that the space L2
σ(R+; X) is complete [22, section II.1]. We will assume

that the elements of space L2
σ(R+; X) are extended with zero for non-positive

arguments.
For any m ∈ N let us denote the weighted Sobolev space as

Hm
σ (R+; X) := { v ∈ L2

σ(R+; X) | v(k) ∈ L2
σ(R+; X), k = 1,m} (27)
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with norm

‖v‖Hm
σ (R+;X) :=

(
m∑

k=0

∥∥∥v(k)
∥∥∥

2

L2
σ(R+;X)

)1/2

. (28)

Here derivatives vk(k ∈ N) are understood in terms of the space D′(R+; X),
elements of which are distributions with values in the space X. Note that
H1

σ(R+;X) ⊂ C(R+; X) [5, theorem 7, section XVIII].
Let us also denote following spaces:
L2

loc(R+; X) := {v : R+ → X − measurable | ||v(·)||X ∈ L2(0, τ) ∀τ > 0},
H1

loc(R+; X) := {v ∈ L2
loc(R+; X)| v′ ∈ L2

loc(R+; X)}.
De�nition 1. Let g ∈ L2

loc(R+; H−1/2(Γ)). A generalized solution of the prob-
lem (1)-(3) is a function u ∈ H1

loc(R+; L2(Ω))∩L2
loc(R+;H1(Ω)), which satis�es

the �rst of the initial conditions (2) and the integral identity
∫∫

Q

(∇u∇v − u′v′
)
dxdt =

∫∫

Σ

gγ0vdΓdt (29)

for any v ∈ H1(R+; L2(Ω))∩L2(R+; H1(Ω)) such that supp v is a bounded set.

Note that there exists at most one generalized solution of the problem (1)-
(3) [19, Theorem 1, Ch. V, �2].

We introduce a couple more notations. As the sequence of elements of set
X we understand mapping V : N0 → X (denoted by bold letter) and write it
as a vector-column v := (v0, v1, ...)>. All possible sequences of elements of the
set X are denoted by X∞. It is clear that when X is a linear space, then X∞
is also a linear space. Recall that

l2 :=
{
v ∈ R∞ |

∞∑

j=0

|vj |2 < +∞}

with the inner product (v,w) =
∞∑

j=0
vjwj , v,w ∈ l2 and the norm || v||l2 :=

( ∞∑
j=0

|vj |2
)1/2

, v ∈ l2.

Let X be a Hilbert space with inner product (·, ·)X and inducted norm ||·||X .
We consider the Hilbert space

l2(X) :=
{
v ∈ X∞ |

∞∑

j=0

‖vj‖2
X < +∞}

with the inner product (v,w) =
∞∑

j=0
(vj , wj)X , v,w ∈ l2(X) and the norm

||v||l2(X) :=
( ∞∑

j=0
‖vj‖2

X

)1/2

, v ∈ l2(X). It is obvious that l2 = l2(R).
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De�nition 2 ( [14]). Let X, Y , Z be arbitrary sets and q : X × Y → Z be
some mapping. By a q-convolution of sequences u ∈ X∞ and v ∈ Y ∞ we
understand the sequence w := (w0, w1, ..., wj , ...)> ∈ Z∞, whose elements are
obtained by the rule

wj :=
j∑

i=0

q (uj−i, vi) ≡
j∑

i=0

q (ui, vj−i) , j ∈ N0; (30)

the q-convolution of u and v is shortly written in the form w = u ◦
q
v.

Let X = R and Y = Z be linear spaces and q(u, v) := uv, u ∈ R, v ∈ Y .
Then the components of q-convolution of arbitrary u ∈ R∞ and v ∈ Y ∞ will
be denoted as

wj =
j∑

i=0

uj−ivi, j ∈ N0, (31)

and the q-convolution would be denoted as w := u ◦
R×Y

v.
If X = H−1/2(Γ), Y = H1/2(Γ), Z = R and q(u, v) :=< u, v >Γ, u ∈

H−1/2(Γ), v ∈ H1/2(Γ), for components of the q-convolution of arbitrary se-
quences u ∈ (

H−1/2(Γ)
)∞ and v ∈ (

H1/2(Γ)
)∞ we will have

wj =
j∑

i=0

< uj−i, vi >Γ, j ∈ N0, (32)

and will write w := u ◦
Γ
v.

Another example concerns the q-convolutions of linear operators when X =
L(Y, Z) is the space of linear operators acting from the space Y into the space
Z and q(A, v) := Av, A ∈ L(Y, Z), v ∈ Y , for components of the q-convolution
of arbitrary sequences A ∈ (L(Y, Z)

)∞ and v ∈ Y ∞ we will have the following
formula

wj =
j∑

i=0

Aj−ivi, j ∈ N0, (33)

and will write w := A ◦
Z
v.

Based on the above, we de�ne the sequence
u(x) =

(
D ◦

H1(Ω)
λ

)
(x), x ∈ Ω, (34)

which is the q-convolution of the sequence D composed of operators Dk :
H1/2(Γ) → H1(Ω)), k ∈ N0, given by the formula (22), and the sequence λ
of Fourier-Laguerre coe�cients of the function λ. Similarly, BIE system (17)
can be rewritten as

W ◦
H−1/2(Γ)

λ = g in l2(H−1/2(Γ)), (35)

where W : l2(H1/2(Γ)) → l2(H−1/2(Γ)) is a boundary operator whose compo-
nents act in accordance with (13), and g is the sequence of Fourier-Laguerre
coe�cients of the function g.
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Now we can formulate the main result of this paper as the following state-
ment.

Theorem 1. Let g ∈ Hm+4
σ0

(R+; H−1/2(Γ)) for some σ0 > 0 and m ∈ N0. Then
there exists a unique generalized solution of the problem (1)-(3), it belongs to
the space Hm+1

σ0
(R+; H1(Ω)) and for any σ ≥ σ0 such an inequality holds
||u||Hm+1

σ (R+;H1(Ω)) ≤ C||g||Hm+4
σ (R+;H−1/2(Γ)), (36)

where C > 0 is a constant that is not dependent on g.
In addition, the generalized solution of the problem (1)-(3) can be represented

as the sum of a serie (23), that is convergent in the space L2
σ0

(R+; H1(Ω, ∆)),
where uj ∈ H1(Ω,∆) (j ∈ N0) are the corresponding components of the q-
convolution (34), and elements of the sequence λ ∈ l2(H1/2(Γ)) are solutions of
BIE system (35), in which g ∈ l2(H−1/2(Γ)) is the sequence of Laguerre-Fourier
coe�cients for the function g.

Proof of Theorem 1 will be presented further on.

4. Some properties of the retarded double layer potential
For examination of the generalized solution of the problem (1)-(3) we need

some results of the work [1].

Proposition 1 ( [1], Theorem 1). Let g ∈ H1
σ0

(R+; H−1/2(Γ)) for some σ0 > 0.
Then unique generalized solution of the problem space (1)-(3) exists, it belongs
to space

H1
σ0

(R+; L2(Ω)) ∩ L2
σ0

(R+; H1(Ω))

and the following inequality holds:
||u||L2

σ(R+;H1(Ω)) + ||u′||L2
σ(R+;L2(Ω)) ≤ C1||g||H1

σ(R+;H−1/2(Γ)) ∀σ ≥ σ0, (37)
where C1 > 0 is a constant.

In addition, the generalized solution of the problem (1)-(3) can be represented
as a retarded double layer potential Dλ with density λ ∈ L2

σ(R+; H1/2(Γ)),
||λ||L2

σ(R+;H1/2(Γ)) ≤ C2||g||H1
σ(R+;H−1/2(Γ)) ∀σ ≥ σ0, (38)

where C2 > 0 is a constant.

Let us outline the proof of the statement 1, received results will be exploited
further for the proof of 1.

First, consider some auxiliary spaces. Let X be arbitrary Banach space
with a norm || · ||X . By D′(R;X) we denote the space of distributions with
values in the space X and by D′+(R; X) we denote the space of so-called causal
distributions, consisting of distributions v ∈ D′(R; X), for which the condition
〈v, φ〉 = 0 holds for all test functions φ ∈ D(R) with suppφ ⊂ (−∞, 0). For
any σ0 > 0 let us de�ne a space

L′+,σ0(R; X) := { f ∈ D′+(R; X) | e−σ0·f(·) ∈ S ′+(R;X) },
where S ′+(R; X) denotes the space of slow casual distributions.
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Note that for slow casual distributions one can de�ne the Fourier transform
over the time variable (See, e.g., [5, section XVI, �2, de�nition 7])

F : S ′+(R; X) → S ′+(R; X). (39)
It is an isomorphic mapping from S ′+(R; X) onto S ′+(R;X) and enables us
to de�ne the Fourier-Laplace transform for any element f ∈ L′+,σ0(R;X) [5,
section XVI, �2, de�nition 8]:

F̂ (ω) := F(e−σ·f(·))(η), ω = η + iσ ∈ R× (σ0, +∞). (40)
In case of f ∈ L′+,σ0(R; X)∩L1

loc(R+; X) this transform has an integral repre-
sentation

f̂(ω) :=
∫

R
eiηte−σtf(t)dt =

∫

R
eiωtf(t)dt, ω = η + iσ ∈ R× (σ0, +∞). (41)

As we can see the Fourier-Laplace transform is applicable to the elements of
functional spaces that appear in the de�nition of the generalized solution u of
the problem (1)-(3). So with its help the initial-boundary value problem (1)-
(3) can be reduced to following boundary value problem regarding a function
û(·, ω) ∈ H1(Ω, ∆):

∆û + ω2û = 0 in Ω, (42)
γ1û = ĝ on Γ, (43)

where ĝ(·, ω) ∈ H−1/2(Γ) is a known function and ω ∈ R × (σ0,+∞) is a
parameter.

Solution of the problem (42), (43) can be represented as a double layer po-
tential

û(x, ω) =
(
D̂ωλ̂

)
(x) :=

1
4π

∫

Γ

λ̂(y, ω) ν(y) · ∇y
eiω|x−y|

|x− y| dΓy, x ∈ Ω, (44)

whose density λ̂(·, ω) ∈ H1/2(Γ) is a solution of BIE
Ŵωλ̂ = ĝ in H−1/2(Γ), (45)

where Ŵω := γ1 ◦ D̂ω. A boundary operator Ŵω is H1/2-elliptical on Γ, that
implies the existence and uniqueness of the solution for BIE(45).

The integral (44) exists because of λ̂(·, ω) ∈ H1/2(Γ) ⊂ L2(Γ) and eiω|x−y|
|x−y| is

an in�nitely di�erentiable function for an arbitrary �xed point x ∈ Ω. In addi-
tion, according to the [4, Theorem 1], the double layer potential and its normal
derivative are bounded operators, respectively, D̂ω : H1/2(Γ) → H1(Ω, ∆) and
Ŵω : H1/2(Γ) → H−1/2(Γ).

As we see, the boundary value problem (42), (43) and BIE (45) depend on
parameter ω, consequently, their solutions, accordingly, û(·, ω) and λ̂(·, ω), and
the double layer potential D̂ω and the boundary operator Ŵω can be consid-
ered as functions of parameter ω. They are proved to be holomorphic in half-
space R×(σ0, +∞) and satisfy following estimates [1, inequality (2.6),(2.7) and
(2.11)], [23, inequality (3.17) and (3.18)]:

||û(·, ω)||H1(Ω) ≤ C̃1|ω|||ĝ(·, ω)||H−1/2(Γ), (46)
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||λ̂(·, ω)||H1/2(Γ) ≤ C̃2|ω|||ĝ(·, ω)||H−1/2(Γ), (47)
||Ŵωλ̂||H−1/2(Γ) ≤ C̃3|ω|2 ||λ̂(·, ω)||H1/2(Γ), (48)
||D̂ωλ̂||H1(Ω) ≤ C̃4|ω|3/2 ||λ̂(·, ω)||H1/2(Γ), (49)
||D̂ωλ̂||H1(Ω,∆) ≤ C̃5|ω|5/2 ||λ̂(·, ω)||H1/2(Γ), (50)

where C̃i > 0 are some constants.
Proposition 2 ( [5], section XVI, �2, Theorem 1). Let X be a Banach space
over the �eld C of complex numbers with norm || · ||X , and ω 7→ f̂(ω) be a
function de�ned in C with values in the space X. For the function f̂(ω) to
be the Fourier-Laplace transform of the distribution f ∈ D′(R; X) with support
supp f ⊂ [α, +∞) it is necessary and su�cient that f̂(ω) is holomorphic in the
half-space R× (σ0, +∞) with values in X and satis�es inequality

||f̂(ω)||X ≤ e−σαPol(|ω|), ω = η + iσ ∈ R× (σ0,+∞), (51)
where Pol(|ω|) is a polynom of the variable |ω|.

By the statement 2 one can prove from inequalities (46)-(50) the existence
of distributions that match the generalized solution of the problem (1)-(3),
retarded double layer potential and its density. They are elements of spaces
L′+,σ0(R; X) with values in the appropriate space X (see e.g. [1, Theorem 1],
and [6, section 2]) such that

D̂λ = D̂ωλ̂ and Ŵλ = Ŵωλ̂.

Using inequalities (46)-(50) we can easily get estimates of the generalized
solution of the problem (1)-(3), and the retarded double layer potential. To
do this, let us consider in the set L′+,σ0(R;X) for arbitrary values σ ≥ σ0 and
p ∈ R a space

Hp
σ(R+; X) := { f ∈ L′+,σ0(R;X) |

∫

R+iσ

|ω|2p ||f̂(ω)||2Xdω < +∞} (52)

with the norm

||f ||Hp
σ(R+;X) :=

(
1
2π

∫

R+iσ

|ω|2p ||f̂(ω)||2Xdω

)1/2

. (53)

Proposition 3 ( [2], section 3.1). Let σ > 0, m ∈ N0. A function v belongs to
the space Hm

σ (R+; X) if and only if it belongs to the space Hm
σ/2(R+;X).

Note that statement 3 is the consequence of Parseval-Plancherel identity:∫

R

e−2σt
(
f(t), g(t)

)
X

dt =
1
2π

∫

R+iσ

(
f̂(ω), ĝ(ω)

)
X

dω. (54)

Lemma 1. Let σ > 0, m ∈ N0. If an arbitrary function λ is an element of
the space Hm+2

σ (R+; H1/2(Γ)), then Dλ ∈ Hm
σ (R+; H1(Ω)). If λ ∈ Hm+3

σ (R+;
H1/2(Γ)), then Dλ ∈ Hm

σ (R+; H1(Ω, ∆)) and Wλ ∈ Hm
σ (R+; H−1/2(Γ)).

31



S.V. LITYNSKYY, A.O.MUZYCHUK

Proof. Let us show that for any �xed values of p ∈ R and α > 0 the operator
D : Hp+3/2

α (R+; H1/2(Γ)) → Hp
α(R+;H1(Ω)) (55)

is bounded. To achieve this, for an arbitrary function λ ∈ Hp+3/2
α (R+; H1/2(Γ)),

α ≥ α0, taking into account norm de�nition (53) and inequality (49), following
estimate can be performed:

||Dλ||2Hp
α(R+;H1(Ω)) =

1
2π

∫

R+iα

|ω|2p||D̂λ||2H1(Ω)dω =

=
1
2π

∫

R+iα

|ω|2p||D̂(·, ω)λ̂(·, ω)||2H1(Ω)dω ≤

≤ C̃2
4

2π

∫

R+iα

|ω|2p+3||λ̂(·, ω)||2
H1/2(Γ)

dω =

= C̃2
4 ||λ||2Hp+3/2

α (R+;H1/2(Γ))
≤ C̃2

4 ||λ||2Hp+2
α (R+;H1/2(Γ))

.

(56)

Hence, the operator (55) is bounded, and, in particular, for the values p = m
and α = σ/2 the following operator is also bounded

D : Hm+2
σ (R+;H1/2(Γ)) → Hm

σ (R+;H1(Ω)). (57)
Similarly to the previous case, but using inequality (50), for arbitrary p ∈ R

and α > 0 it can be shown that the operator
D : Hp+5/2

α (R+; H1/2(Γ)) → Hp
α(R+; H1(Ω,∆)) (58)

is also bounded, and when p = m and α = σ/2 the same will apply to the
operator

D : Hm+3
σ (R+; H1/2(Γ)) → Hm

σ (R+; H1(Ω,∆)), m ∈ N0, (59)
which means Dλ ∈ Hm

σ (R+; H1(Ω, ∆)). It is known [4, theorem Lemma 3.2, 1]
that for elements of space H1(Ω,∆) we can de�ne linear continuous operator
of normal derivative γ1 : H1(Ω,∆) → H−1/2(Γ). Therefore, in this case it is
legitimate to de�ne the composition of operators γ1 ◦D =: W, for which for
any p ∈ R and α > 0 using inequality (48) following estimate can be applied:

||Wλ||2Hp
α(R+;H−1/2(Γ))

=
1
2π

∫

R+iα

|ω|2p||Ŵ (·, ω)λ̂(·, ω)||2
H−1/2(Γ)

dω ≤

≤ C̃2
3

2π

∫

R+iα

|ω|2p|ω|4||λ̂(·, ω)||2
H1/2(Γ)

dω = C̃2
3 ||λ||2Hp+2

α (R+;H1/2(Γ))
.

(60)

This means that the operator
W : Hp+2

α (R+;H1/2(Γ)) → Hp
α(R+; H−1/2(Γ)) (61)

is bounded, and when p = m and α = σ/2 following operator is also bounded:
W : Hm+2

σ (R+;H1/2(Γ)) → Hm
σ (R+;H−1/2(Γ)). (62)

2
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5. Application of the Laguerre transform
to retarded potentials

Now let us give the de�nition of the Laguerre transform and outline some
of its properties which we have obtained in [16]. Consider a mapping L :
L2

σ(R+; X) → X∞, where X is Hilbert space with inner product (·, ·)X and
inducted norm || · ||X , which operates according to the rule

fk := σ

∫

R+

f(t) Lk(σt) e−σtdt, k ∈ N0, (63)

where {Lk(σ·)}k∈N0 are Laguerre polynomials, which form orthogonal basis in
the space L2

σ(R+). We will also use the notation
Lkf ≡ (Lf)(k) := fk ∀k ∈ N0.

Note that since the function t 7→ ||f(t)||X |Lk(σt)|e−σt ∈ L1(R+), the Bochner
integral in formula (63) is convergent and its value is an element of space X.

Also consider the mapping L−1 : l2(X) → L2
σ(R+; X), which maps an arbi-

trary sequence h = (h0, h1, ..., hk, ... )> to a function

h(t) := (L−1h)(t) =
∞∑

k=0

hk Lk(σt), t ∈ R+. (64)

Proposition 4 ( [16], Theorem 2). The mapping L : L2
σ(R+; X) → X∞ that

maps the arbitrary function f to the sequence f = (f0, f1, ..., fk, ... )> according
to the formula (63), is injective and its image is the space l2(X), and

‖f‖2
L2

σ(R+;X) =
1
σ

∞∑

k=0

||fk||2X . (65)

In addition, for the arbitrary function f ∈ L2
σ(R+; X) we have an equality

L−1Lf = f, (66)
where the mapping L−1 : l2(X) → L2

σ(R+; X) is the inverse to L and maps the
arbitrary sequence h = (h0, h1, ..., hk, ... )> to the function h according to the
formula (64).
De�nition 3. Let σ > 0 and X be a Hilbert space. Mappings

L : L2
σ(R+;X) → l2(X) and L−1 : l2(X) → L2

σ(R+; X),

mentioned in theorem 4, are called, respectively, direct and inverse Laguerre
transforms, and the formula (65) is an analog of the Parseval equality.
Proposition 5 ( [16], Lemma 1). Let σ > 0, a > 0 and X be a Hilbert space
with inner product (·, ·)X and the norm || · ||X . Then for an arbitrary function
f ∈ L2

σ(R+;X) function f(· − a) belongs to space L2
σ(R+; X) too and the

following equalities hold:
||f(· − a)||L2

σ(R+;X) = e−
σa
2 ||f(·)||L2

σ(R+;X), (67)

f̃a = e−σaζ(σa) ◦
R×X

f , (68)
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f
( · −a

)
= e−σa

∞∑

j=0

( j∑

i=0

ζj−i(σa)fi

)
Lj(σ·) in L2

σ(R+;X), (69)

where f = Lf(·) and f̃a := Lf(· − a).
Using statements 4 and 5 we can outline conditions for the density λ of the

retarded double layer potential Dλ, which guarantees that the Fourier-Laguerre
expansions for this potential

(Dλ)(t) =
∞∑

j=0

uj Lj(σt), x ∈ Ω, t ∈ R+, (70)

and its normal derivative

(Wλ)(x, t) =
∞∑

j=0

ũj(x) Lj(σt), x ∈ Γ, t ∈ R+, (71)

where uj := (LjDλ) and ũj := (LjWλ), are convergent in the corresponding
Sobolev spaces.
Lemma 2. Let σ > 0 be an arbitrary constant.
(i) If an arbitrary function λ belongs to space H2

σ(R+; H1/2(Γ)), then expan-
sion (70) is convergent in the space L2

σ(R+; H1(Ω)). If λ ∈ H3
σ(R+; H1/2(Γ)),

then expansions (70) and (71) are convergent in spaces L2
σ(R+; H1(Ω, ∆)) and

L2
σ(R+; H−1/2(Γ)), correspondingly.

(ii) Coe�cients uj , ũj , j ∈ N0, are components of q-convolutions (34) and
ũ(x) = W ◦

H−1/2(Γ)
λ, x ∈ Γ, (72)

correspondingly, where λ = Lλ ∈ l2(H1/2(Γ)).
Proof. The �rst statement of this lemma follows from the fact that by

Lemma 1 the retarded double layer potential with a density that is an ele-
ment of the space H2

σ(R+;H1/2(Γ)), belongs to space L2
σ(R+;H1(Ω)). If λ ∈

H3
σ(R+;H1/2(Γ)), thenDλ ∈ L2

σ(R+; H1(Ω,∆)), andWλ ∈ L2
σ(R+; H−1/2(Γ)).

Then by Theorem 4 the Laguerre transform can be applied to both the poten-
tial and its normal derivative, and expansions (70) and (71) with obtained
coe�cients are convergent in the appropriate spaces.

Let us consider the retarded potential (4) with density λ ∈ H2
σ(R+;H1/2(Γ))

at an arbitrary point x ∈ Ω, and apply formula (63) to it as to an element of
the space L2

σ(R+; H1(Ω)):
uj(x) :=Lj Dλ(x) =

=
σ

4π

∫

R+

e−σtLj(σt)
∫

Γ

ν(y) · ∇y

(
λ(z, t− |x− y|)

|x− y|
)∣∣∣∣

z=y

dΓydt,

j ∈ N0.

(73)

As points x and y do not coincide (i.e. partial derivatives in inner integral are
bounded) and ||uj ||H1(Ω) < +∞, then we can change the order of integration
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according to the Fubini theorem

uj(x) =
1
4π

∫

Γ

∂~ν(y)

(
σ

|x− y|
∫

R+

λ(z, t− |x− y|)e−σtLj(σt)dt

)∣∣∣∣
z=y

dΓy,

x ∈ Ω.

(74)

Note that in the obtained expression, the inner integral is expressing the j-th
Fourier-Laguerre coe�cient of "retarded" function λ. Therefore, according to
Lemma 5 and formulas (68),(14) we can write the following:

uj(x) =
1
4π

∫

Γ

∂~ν(y)

(
e−σ|x−y|

|x− y|
j∑

i=0

ζj−i(x− y)λi(z)
)∣∣∣∣

z=y

dΓy =

=
j∑

i=0

∫

Γ

λi(y)∂~ν(y)ej−i(x− y) dΓy, j ∈ N0, x ∈ Ω,

(75)

where λj := Ljλ, j ∈ N0.
For an arbitrary �xed point x ∈ Ω all components of sequence e(x − ·) are

continuously di�erentiable functions on Γ. Since λj ∈ H1/2(Γ), j ∈ N0, then
for the Lipschitz surface Γ integrals in (75) can be interpreted as the inner
product of elements in L2(Γ) and can be extended to the duality relation on
H−1/2(Γ)×H1/2(Γ):

uj(x) =
j∑

i=0

〈
∂~ν(·)ej−i(x− ·), λi(·)

〉
Γ
, x ∈ Ω, j ∈ N0. (76)

So we received coe�cients of the q-convolution ( 34).
If λ ∈ H3

σ(R+; H1/2(Γ)) we have ||uj ||H1(Ω,∆) < +∞ and, obviously, for
any point x ∈ Ω previous considerations regarding functions in integrals in
formulas (73)-(76) hold. Therefore the form of coe�cients uj , j ∈ N0, is the
same. Besides, for these coe�cients as elements of the space H1(Ω, ∆), we can
de�ne linear continuous operator of normal derivative [4, Lemma 3.2, Theorem
1]. Let us show that ũj = γ1uj , j ∈ N0.

Consider an arbitrary point x ∈ Γ and apply the Laguerre transform toWλ:

ũj(x) := Lj Wλ(x) =
σ

4π

∫

R+

e−σtLj(σt)×

ν(x) · lim
x′→x

∇x′

∫

Γ

ν(y) · ∇y

(
λ(z, t− |x′ − y|)

|x′ − y|
)∣∣∣∣

z=y

dΓydt < +∞.

(77)

If we move di�erentiation by normal at the point x out of the integral over the
time variable, we receive ũj(x) = γ1uj(x). 2

Note that we do not move outer di�erentiation inside the integral over the
boundary Γ in order to avoid a high order of the singularity in a kernel. The
de�nition of normal derivative operator γ1 in case if u ∈ (H1(Ω, ∆))∞ was pre-
sented in [20]. In applications when calculating the respective singular integrals
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it is possible to replace normal derivatives with corresponding derivatives in the
tangent plane (See, e.g. [1, formula (2.16)]).

6. Finding a generalized solution of the problem (1)-(3)
Consider operator

G : H1
α(R+; H−1/2(Γ)) → H0

α(R+; H1(Ω)), α = σ0/2, (78)

which maps the boundary value g to the generalized solution u = Gg of the
problem (1)-(3) according to the proposition 1. Taking into account the obvious
inclusion

H1
σ(R+; H1(Ω)) ⊂ (

H1
σ(R+;L2(Ω)) ∩ L2

σ(R+; H1(Ω))
)
,

let us de�ne a restriction of the operator G on elements from weighted Sobolev
spaces.

Lemma 3. Let g ∈ Hm+2
σ0

(R+;H−1/2(Γ)) with some σ0 > 0 and m ∈ N0.
Then for arbitrary values σ ≥ σ0 operator

G : Hm+2
σ (R+;H−1/2(Γ)) → Hm

σ (R+; H1(Ω)) (79)

is bounded.

Proof. Let g be an arbitrary function from the space Hm+2
σ0

(R+; H−1/2(Γ)).
Considering it as an element of the space Hm+2

α (R+; H−1/2(Γ)) with α = σ0/2,
we will have the solution u = Gg. Let us estimate it using the inequality (46):

||u||2Hm
α (R+;H1(Ω)) =

1
2π

∫

R+iα

|ω|2m||û(·, ω)||2H1(Ω)dω ≤

≤ C̃2
1

2π

∫

R+iα

|ω|2m|ω|2||ĝ(·, ω)||2
H−1/2(Γ)

dω =

= C̃2
1 ||g||2Hm+2

α (R+;H−1/2(Γ))
< ∞.

(80)

Since u ∈ Hm
α (R+; H1(Ω)), we get u ∈ Hm

σ (R+; H1(Ω)). 2

Similarly, it is possible to examine the dependence of TDBIE solution on the
smoothness (7) of the function g.

Lemma 4. Let g ∈ Hm+1
σ0

(R+; H−1/2(Γ)) with some σ0 > 0 and m ∈ N0. Then
there exists a unique solution of TDBIE (7) in the space Hm

σ (R+; H1/2(Γ)), and
it satis�es the following condition with an arbitrary σ ≥ σ0:

||λ||Hm
σ (R+;H1/2(Γ)) ≤ C||g||Hm+1

σ (R+;H−1/2(Γ)), (81)

where C > 0 is a constant.

Proof. According to the proposition 1 consider operator

V−1 : H1
α(R+;H1/2(Γ)) → H0

α(R+; H−1/2(Γ))
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with the value α = σ0/2, that maps arbitrary function g to a unique solution
of TDBIE λ = V−1g. With respect to the inequality (47), we get the following
estimate for density λ:

||λ||2Hm
α (R+;H1/2(Γ))

=
1
2π

∫

R+iα

|ω|2m||λ̂(·, ω)||2
H1/2(Γ)

dω ≤

≤ C̃2
2

2π

∫

R+iα

|ω|2m|ω|2||ĝ(·, ω)||2
H−1/2(Γ)

dω =

= C̃2
2 ||g||2Hm+1

α (R+;H−1/2(Γ))
< ∞,

(82)

and inequality (81) implies here. 2

Thus, Lemmas 3 and 4 specify the conditions regarding the function g, that
cause the required smoothness of both the retarded potential density and the
generalized solution of the problem (1)-(3) in weighted Sobolev spaces.

Proof of Theorem 1. Let boundary data in the boundary condition (3) be
de�ned with function g ∈ Hm+3

σ0
(R+; H−1/2(Γ)) for some σ0 > 0 and m ∈ N0.

Then, based on proposition 1, there exists a unique generalized solution of
the problem (1)-(3) as element of the space H1

σ0
(R+; L2(Ω))∩L2

σ0
(R+; H1(Ω)).

In addition, we can conclude according with Lemma 3 that with boundary
data speci�ed below this solution belongs to the space Hm+2

σ0
(R+; H1(Ω)) ⊂

Hm+1
σ0

(R+; H1(Ω)) , and for arbitrary σ ≥ σ0 following inequality holds:

||u||Hm+2
σ (R+;H1(Ω)) ≤ C||g||Hm+3

σ (R+;H−1/2(Γ)), (83)

where C > 0 is a constant that does not depend on g. Obviously, in that case
estimate (36) is correct.

Consider now the TDBIE (7), having g ∈ Hm+3
σ0

(R+; H−1/2(Γ)). Then by
Lemma 4 its solution λ belongs to space Hm+2

σ (R+; H−1/2(Γ)). Based on this,
the Laguerre transform is applicable to density λ (by Theorem 4) and λ :=
Lλ ∈ l2(H1/2(Γ)). Furthermore, with such density the potential Dλ belongs to
the space of solutions of the problem (1)-(3), because Dλ ∈ Hm+1

σ (R+; H1(Ω))
by Lemma 1.

If g ∈ Hm+4
σ0

(R+; H−1/2(Γ)), then, according to Lemma 4 the density λ has to
be element of the space Hm+3

σ (R+;H−1/2(Γ)) and, by Lemma 1, we have Dλ ∈
Hm

σ (R+;H1(Ω, ∆)) and Wλ ∈ Hm
σ (R+; H−1/2(Γ)). This means (by Lemma

4) that beginning from m = 0 the expansions (70) and (71) are convergent
in spaces L2

σ(R+; H1(Ω, ∆)) and L2
σ(R+; H−1/2(Γ)), correspondingly, and the

coe�cients of these expansions have form of (34) and (72), correspondingly.
Let us build a sequence g := Lg ∈ l2(H−1/2(Γ)) and substitute the Fourier-

Laguerre expansion of the boundary function g in the right hand side of TDBIE
(7). If we substitute the expansion (71) in its left hand side, we can equated
the expressions beside Laguerre polynomials with the same index. As a result,
we get an in�nite triangular system of BIEs (35). It is known [20], that this
system has a unique solution λ. 2
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Consequently, the proposed method enables us to �nd the generalized solu-
tion of the Neumann problem for the homogeneous wave equation with homo-
geneous initial conditions using the Fourier-Laguerre expansion of the retarded
double layer potential. Note that this approach can be adapted for �nding
the Cauchy datum of generalized solution using a Kirchho� formula instead of
retarded potential.
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ON THE BOUNDARY ELEMENT METHOD FOR
BOUNDARY VALUE PROBLEMS FOR CONVOLUTIONAL

SYSTEMS OF ELLIPTIC EQUATIONS

Y.A.Muzychuk

Ðåçþìå. Äëÿ ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ êðàéîâèõ çàäà÷ äëÿ íåñêií÷åí-
íèõ ñèñòåì çi çãîðòêîâîþ ñòðóêòóðîþ, ÿêi ñêëàäàþòüñÿ ç åëiïòè÷íèõ ðiâ-
íÿíü äðóãîãî ïîðÿäêó, çàïðîïîíîâàíî ìåòîä ãðàíè÷íèõ åëåìåíòiâ. Ðîçâ'ÿ-
çîê ïîäàíî çà äîïîìîãîþ ïîñëiäîâíîñòi ïîòåíöiàëiâ ïðîñòîãî øàðó. Äëÿ
àïðîêñèìàöi¨ íåâiäîìèõ ãóñòèí ïîòåíöiàëiâ âèêîðèñòàíî áàçèñ, ÿêèé ñêëà-
äà¹òüñÿ ç êóñêîâî-ñòàëèõ áàçèñíèõ ôóíêöié, ïîáóäîâàíèõ íà òðèêóòíèõ
ãðàíè÷íèõ åëåìåíòàõ. Äîñëiäæåíî àïðiîðíi ïîõèáêè. Íàâåäåíî ðåçóëüòà-
òè ñåði¨ îá÷èñëþâàëüíèõ åêñïåðèìåíòiâ.
Abstract. For the numerical solution of boundary value problems for in�nite
systems with convolutional structure that consist of the second order elliptic
equations, a boundary elements method is suggested. The solution is given as
a sequence of single layer potentials. For the approximation of the unknown
densities of the potentials a basis that consists of piece-wise constant functions
built on triangular boundary elements is used. A priory error estimates are
obtained. Results of a series of computational experiments are given.

1. Introduction
Boundary value problems for in�nite systems that consist of elliptic partial

di�erential equations (PDEs) can be found while investigating solutions of lin-
ear evolution problems for instance in the following works [3, 6, 10, 15, 16, 21].
Note that in [14] the well-posedness of such problems has been proven by tran-
sitioning to the corresponding variational formulations. Integral representa-
tions of the solutions of these boundary value problems that lead to equivalent
boundary integral equations (BIEs) have been obtained. Properties of the BIEs
method for exterior problems have been studied by the author in [17].

The main goal of the current article is such transformation of the obtained
system of BIE that allows to e�ciently apply the Bubnov-Galerkin method to
it and prove its convergence. We also develop an algorithm for its solution by
the boundary elements method (BEM) and investigate the approximation error
of the obtained solution.

The paper is organized as follows. In Section 2 we formulate a Dirichlet BVP
for an in�nite triangular system of elliptic PDEs. We consider this problem in
appropriate Sobolev spaces and introduce a notion of sequences and a new
operation on them � q-convolution. In this section we also give an integral

Key words. Boundary value problems; boundary integral equations; elliptic equation; in�-
nite system; boundary element method; convolutional system.
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representation of the solution of the BVP by a combination of some surface
potentials which reduces the problem to a system of BIEs.

In Section 3 we transform the system of BIEs into such sequence of BIEs all
equations of which have the same boundary integral operator in the left hand
side. It allows us to justify the application of the Bubnov-Galerkin method
for �nding the unknown functions � densities of the potentials. Afterwards,
the main properties of the BEM and a priory error estimate of the numerical
solution are obtained. In Section 4 some computational aspects of the systems
of linear equations that appear as a result of the discretization of the BIEs are
considered. Results of a series of computational experiments for the numerical
solution of some model problems are given in Section 5. In this section an
example of the application of the suggested approach for the solution of an
initial-boundary value problem for the wave equation with homogeneous initial
conditions is given. In the last section conclusions about the introduced method
are given.

2. Formulation of the convolutional systems of PDE and BIE
Let Ω ⊂ R3 be a bounded and simply connected domain with a Lipschitz

boundary Γ and Ω+ := R3 \ Ω be an exterior domain. We consider an in�nite
system in Ω+





c0u0 −∆u0 = 0,
c1u0 + c0u1 −∆u1 = 0,
c2u0 + c1u1 + c0u2 −∆u2 = 0,

. . . . . . . . . . .
cku0 + ck−1u1 + ... + c0uk −∆uk = 0,

. . . . . . . . . . . . .

(1)

where u0, u1, ..., uk, ... are unknown functions, c0, c1, ..., ck, ... are some
given constants and c0 > 0. We investigate BVPs for system (1) that consist
in �nding its solutions that satisfy the Dirichlet condition on the boundary Γ

uk|Γ = g̃k, k ∈ N0 := N ∪ {0}), (2)

where g̃i (i ∈ N0) are given functions on Γ. In other words, we will consider
the Dirichlet problem (1), (2).

Let X be an arbitrary linear space over the �eld of real numbers, Z � the set
of integers. By X∞ we denote a linear space of mappings u : Z→ X satisfying
u(k) = 0 when k < 0. For any element u ∈ X∞ we have uk ≡ (u)k := u(k), k ∈
Z, and will write it as u := (u0, u1, ..., uk, ...)>. Henceforth we will call elements
of X∞ sequences.

Let Ẽ(x, y) =
(
Ẽ0(x, y), Ẽ1(x, y), ...

)>
, x, y ∈ R3, be a fundamental so-

lution of the system (1) and sequence E(x, y) = (E0(x, y), E1(x, y), ...)> is
calculated by the formula

Ei(x, y) := Ẽi(x, y)− Ẽi−1(x, y), i ∈ N, E0(x, y) = Ẽ0(x, y), x, y ∈ R3. (3)
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Note that E0(x, y) = e−
√

c0|x−y|
4π|x−y| . As for the other components see, for example,

[17].
Consider a sequence of functions Vξ(x) = (V0ξ(x), V1ξ(x), ...)> with com-

ponents

Vjξ(x) :=
(
Vjξ

)
(x) =

∫

Γ

ξ(y)Ej(x, y)dΓy, j ∈ N0, x ∈ R3, (4)

where ξ is a square integrable on Γ function. It is known [17] that sequence
u(x) = (u0(x), u1(x), ...)> built for an arbitrary sequence µ = (µ0, µ1, ...)>

of square integrable on Γ functions by the rule

ui(x) =
i∑

j=0

Vjµi−j(x), i ∈ N0, x ∈ R3, (5)

will satisfy the system (1). Then in order for the sequence u to be a solution
of the Dirichlet problem for the given sequence g = (g0, g1, ...)> it is enough
to �nd such sequence µ that would satisfy on Γ the following equalities





V0µ0 = g0,
V1µ0 + V0µ1 = g1,
V2µ0 + V1µ1 + V0µ2 = g2,

. . . . . . . . . . .
Vkµ0 + Vk−1µ1 + ... + V0µk = gk,

. . . . . . . . . . . . .

(6)

Lets introduce some notations. We will use the Lebesgue space L2(Ω+) and
Sobolev spaces H1(Ω+) of real-valued scalar functions. Let γ+

0 : H1(Ω+) →
H1/2(Γ) be the trace operator, H−1/2(Γ) :=

(
H−1/2(Γ)

)′ and 〈·, ·〉Γ denote the
duality between H−1/2(Γ) and H1/2(Γ).

De�nition 4. Let g ∈ (H1/2(Γ))∞. Sequence u ∈ (H1(Ω+))∞ is called a
generalized solution of the Dirichlet problem if it satis�es the system (1) in the
sense of distributions and the boundary condition (2) in the sense of traces.

De�nition 5 ( [10]). Let X, Y and Z be arbitrary linear spaces and q :
X × Y → Z � some mapping. By a q-convolution of sequences u ∈ X∞ and
v ∈ Y ∞ we understand a sequence w ∈ Z∞ whose components are de�ned by
the following rule

wi :=
i∑

j=0

q (ui−j , vj) , i ∈ N0, (7)

and denote it w = u ◦
q
v.

In case when X = H−1/2(Γ), Y = H1/2(Γ), Z = R and q(u, v) :=< u, v >Γ,
u ∈ H−1/2(Γ), v ∈ H1/2(Γ), for the components of the q-convolution of arbi-
trary sequences u ∈ (

H−1/2(Γ)
)∞ and v ∈ (

H1/2(Γ)
)∞ we have the following
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formula

wj =
j∑

i=0

< uj−i, vi >Γ, j ∈ N0, (8)

and write w := u ◦
Γ
v.

Another example of q-convolution is related to linear operators, when X =
L(Y, Z) is a space of linear operators that act from Y into Z, and q(A, v) := Av,
A ∈ L(Y, Z), v ∈ Y . In this case for the components of the q-convolution of
arbitrary sequences A ∈ (L(Y, Z)

)∞ and v ∈ Y ∞ we obtain the formula

wj =
j∑

i=0

Aj−ivi, j ∈ N0, (9)

and write w := A ◦
Z
v.

De�nition 6 ( [14]). Let V :
(
H−1/2(Γ)

)∞ → (
H1/2(Γ)

)∞ be a sequence
of operators that act by the rule (4), where we consider the inner product in
L2(Γ) extended to the duality on H−1/2(Γ)×H1/2(Γ) and µ ∈ (

H−1/2(Γ)
)∞.

Sequence
V ◦

H1/2(Γ)
µ(x) := (V ◦

H1/2(Γ)
µ)(x), x ∈ R3, (10)

is called a single layer potential of the system (1) on the surface Γ.
Using the introduced notations, we can rewrite the system (6) as

V ◦
H1/2(Γ)

µ = g on Γ. (11)

We will call systems of type (11) that can be represented by a q-convolution
systems with a convolutional structure. It is easy to see that the system of PDEs
(1) also has a convolutional structure since the expressions in it's left had side
(that are not related to the Laplacian) are components of the q-convolution of
sequences c and u.
Proposition 6 ( [14]). For an arbitrary sequence g ∈ l2(H1/2(Γ)) there exists
a unique generalized solution of the Dirichlet problem u ∈ l2(H1(Ω)). It can be
represented as a single layer potential (10) whose density µ ∈ l2(H−1/2(Γ)) is
a solution of the BIE (11).

3. Boundary Elements Method for BIE System
Triangular shape of system (11) is a consequence of the convolutional struc-

ture of (1) and the application of the q-convolution in the single layer potential
de�nition. Lets use this property to build a step-by-step process of the numer-
ical solution of the BIE (11). This system can be represented as a sequence of
Fredholm BIEs of the �rst kind:

V0µk = g̃k â H1/2(Γ), k ∈ N0, (12)
where

g̃k := gk −
k−1∑

i=0

Vk−iµi. (13)
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As you can see, the system is reduced to a sequence of equations that have
the form

V0η = f â H1/2(Γ). (14)
They have two important properties. First, the left-hand side of the integral
equation with an arbitrary index k ∈ N is de�ned by the same boundary
operator V0 and the right-hand side depends on the boundary condition data
and on the solutions of the equations with previous indexes i = 0, k − 1. Taking
these considerations into account during the the implementation of the method
makes it possible to build e�cient algorithms for the numerical solution of the
obtained sequence of BIEs (12) as well as for the computation of the solutions
of the boundary problem.

Another feature of the obtained system is that the boundary integral operator
on left-hand side of the equations corresponds to the elliptic operator c0I −∆,
where I is the identity operator, and is well studied in the literature (see,
e.g., [2, 4, 5, 13]). In our case, it gives us the opportunity not only to prove
the existence and the uniqueness of the solutions of the obtained sequence of
BIEs, but also to get the corresponding numerical solutions using BEM, which
is considered as a representative of the Bubnov-Galerkin method family [8]. A
large number of publications (see, e.g., the literature review in [9,20]) con�rms
the e�ectiveness and the versatility of this method regarding the numerical
solution of boundary value problems for di�erent types of elliptic equations
and systems of elliptic equations of smaller dimension.

Investigation of the solutions of BIE (14) and the approximation by the
Bubnov-Galerkin scheme is based on the ellipticity and the boundedness of the
operator V0:
〈V0η, η〉Γ ≥ c1||η||2H−1/2(Γ))

, ||V0η||H1/2(Γ)) ≤ c2||η||H−1/2(Γ)), ∀η ∈ H−1/2(Γ)),

where c1 > 0 and c2 > 0 are constants.
Consider a sequence of �nite-dimensional subspaces XM ⊂ H−1/2(Γ), M ∈

N, that are linear spans of functions {φi}M
i=1 that form a basis in XM . According

to the Bubnov-Galerkin method, we seek a numerical solution of the equation
(14) in the form of a linear combination

ηM :=
M∑

i=1

ηiφi ∈ XM (15)

as a solution of such variational problem
〈V0η

M , η〉Γ = 〈f, η〉Γ, ∀η ∈ XM . (16)
In order to �nd the vector of the unknown coe�cients η[M ] := {ηi}M

i=1 ∈ RM

lets take the basis functions φj as the test ones. Then from the variational
equations we obtain a system of linear algebraic equations (SLAE) regarding
the unknown coe�cients ηi:

V
[M ]
0 η[M ] = f[M ], (17)

where V
[M ]
0 [j, i] := 〈V0φi, φj〉Γ, f

[M ]
j := 〈f, φj〉Γ, i, j = 1,M .
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Note that the matrix of the obtained system if symmetric. Moreover, as
a result of the H−1/2(Γ)-ellipticity of the operator V0, it is positive de�nite.
Therefore, with an arbitrary right-hand side the system (17) will have a unique
solution i.e. ∀M ∈ N by using the Bubnov-Galerkin method we will get an
approximate solution of the equation (14). By the Cea lemma (see, e.g., [20,
Theorem 8.1]) such approximate solution satis�es the inequality

||ηM ||H−1/2(Γ) ≤ c1||f ||H1/2(Γ)), (18)
and there exists an estimate for its error

||η − ηM ||H−1/2(Γ) ≤
c2

c1
inf

ξ∈XM
||η − ξ||H−1/2(Γ). (19)

Hence the convergence in H−1/2(Γ) of the approximate solution ηM → η ∈
H−1/2(Γ) when M → ∞, where η is the solution of the corresponding BIE
in the sequence (12). Note that convergence of the numerical solution follows
from the approximation property of the trial space XM .

Lets speci�cate the numerical scheme (17) using the boundary elements
method [8, 19, 20]. Let Γ

M̃
=

⋃M̃
l=1 τ l be some approximation of the surface

Γ built by triangular boundary elements {τl}M̃
l=1 with vertices {x[l1], x[l2], x[l3]}

and h := max
l=1,M̃

( ∫
τl

ds

)1/2

� parameter of the approximation. We assume that

vertices of all triangles have global numeration {xk}M∗
k=1.

Lets build a set of linearly-independent on Γ
M̃

piece-wise constant functions{
ϕ0

l

}M

l=1
, M = M̃ :

ϕ0
l (x) =

{
1, x ∈ τl,
0, x /∈ τl.

(20)

We will consider �nite-dimensional spaces of functions S0
h(Γ) := XM =

span {ϕs
l }M

l=1, dimS0
h(Γ) = M as approximating spaces for the numerical scheme

(17).
Let the operator equation (14) correspond to some k-th equation of the

sequence (12). Its approximate (numerical) solution µh
k can be represented as

a linear combination of piece-wise constant functions:

µh
k =

M∑

l=1

µh
k,lϕ

0
l ∈ S0

h(Γ), k ∈ N0. (21)

Here
{

µh
k,l

}M

l=1
=: µh

k ∈ RM is a vector of unknown coe�cients that can be
found from the following system of algebraic equations:

Vh
0µh

k = g̃h
k , k ∈ N0. (22)

Matrix Vh
0 is a concrete representation of the matrix of the system (17). Its

elements can be given as

V h
0 [i, l] =

∫

τi

∫

τl

E0(x− y)dsydsx, i, l = 1,M, (23)
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and the components of the right-hand side vector in (22) have the following
form

g̃h
k [i] =

∫

τi

{
gk(x)−

k−1∑

j=0

(
Vk−jµ

h
j

)
(x)

}
dsx, j = 1,M. (24)

Sequence µh :=
(
µh

0 , µh
1 , ...

)> can be treated as a numerical solution of the
system of BIEs (12). After �nding the consequent solution µh

k of the algebraic
system (22), we can approximate the corresponding density element using the
formula (21) and calculate the k-th component of the numerical solution of the
Dirichlet problem at an arbitrary point x ∈ Ω+:

uh
k(x) =

k∑

j=0

(
Vk−jµ

h
j

)
(x), x ∈ Ω+. (25)

The sequence uh :=
(
uh

0 , uh
1 , ...

)> can be treated as a numerical solution of the
Dirichlet problem.

Lets �nd an apriory estimate for the error of its components after introducing
some Sobolev spaces [9]. Let the boundary Γ be given as a union Γ =

⋃Ñ
i=1 Γi

of surfaces Γi (Γi ∩Γj = ® when i 6= j) each of which has a su�ciently smooth
parameterization

Γi :=
{
x ∈ R3 : x = χ̃i(ξ), ξ ∈ τ̃i ⊂ R2

}
.

By using a set of non-negative functions φi ∈ C∞
0 (R3) such that

Ñ∑

i=1

φi(x) = 1 ∀x ∈ Γ, φi(x) = 0 ∀x ∈ Γ \ Γi,

each function v given on the boundary Γ can be written in a form

v(x) =
Ñ∑

i=1

φi(x)v(x) =
Ñ∑

i=1

vi(x) ∀x ∈ Γ, (26)

where vi(x) := φi(x)v(x) ∀x ∈ Γi. We consider the Sobolev spaces Hm(τ̃i)
when m ∈ N0, elements of which are functions ṽi(ξ) := vi(χ̃i(ξ)) when ξ ∈ τ̃i,
with a norm and a half-norm

||ṽi||Hm(τ̃i) :=
( ∑

|α|≤m

||∂αṽi||2L2(τ̃i)

)1/2

, |ṽi|Hm(τ̃i) :=
( ∑

|α|=m

|∂αṽi|2L2(τ̃i)

)1/2

,

(27)
correspondingly. Here ∂α is a notation of the partial derivative with a multi-
index α = (α1, α2). Then for the functions, given on the whole surface Γ, we
will use the Sobolev spaces Hm(Γ) with a norm and a half-norm

||v||Hm(Γ) :=
( Ñ∑

i=1

||ṽi||2Hm(τ̃i)

)1/2

, |v|Hm(Γ) :=
( Ñ∑

i=1

|ṽi|2Hm(τ̃i)

)1/2

, (28)

correspondingly.
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For non-integer values of the indexes s = m + σ, m ∈ N0, σ ∈ (0, 1),
we will use Sobolev-Slobodetski spaces Hs(τ̃i) and Hs(Γ) with corresponding
half-norms and norms

|ṽi|Hs(τ̃i) :=
( ∑

|α|=m

∫

τ̃i

∫

τ̃i

|∂αṽi(ξ)− ∂αṽi(η)|2
|ξ − η|2+2σ

dsξdsη

)1/2

,

||ṽi||Hs(τ̃i) :=
(
||ṽi||2Hm(τ̃i)

+ |ṽi|2Hs(τ̃i)

)1/2

,

|v|Hs(Γ) :=
( Ñ∑

i=1

|ṽi|2Hs(τ̃i)

)1/2

, ||v||Hs(Γ) :=
(
||v||2Hm(Γ) + |v|2Hs(Γ)

)1/2

,

(29)

and also spaces of piece-wise smooth functions
Hs

pw(Γ) :=
{
v ∈ L2(Γ) : v|Γi ∈ Hs(Γi)

}
, (30)

for which

||v||Hs
pw(Γ) :=

( Ñ∑

i=1

||v|Γi
||2Hs(Γi)

)1/2

, |v|Hs
pw(Γ) :=

( Ñ∑

i=1

|v|Γi
|2Hs(Γi)

)1/2

. (31)

Lemma 1. Let µ ∈ (
Hs

pw(Γ)
)∞ be a solution of the system (12) for some

s ∈ (0, 1], that satis�es the inequality
∞∑

j=0

|µj |Hs
pw(Γ) < +∞. (32)

Then for the components of the numerical solutions of the system of BIEs (12)
and the Dirichlet problem (1), (2) obtained by BEM the following asymptotic
estimates hold ∥∥∥µk − µh

k

∥∥∥
H−1/2(Γ)

≤ ckh
s+1/2|µk|Hs

pw(Γ), k ∈ N0, (33)

|uk(x)− uh
k(x)| ≤ c̃kh

s+1/2
k∑

j=0

|µj |Hs
pw(Γ), x ∈ Ω+, k ∈ N0, (34)

where ck and c̃k are some values that do not depend on the parameter h.

Proof. Validity of the statement regarding (33) directly follows from a known
theorem ( [7], [20, Theorem 12.3]).

A priory error of the k-th component of the numerical solution of the Dirichlet
problem at an arbitrary point x ∈ Ω+ can be given as

|uk(x)− uh
k(x)| = |

k∑

i=0

Vk−i

(
µi − µh

i

)
(x)| = ∣∣

k∑

i=0

〈(µi − µh
i

)
, Ek−i(x− ·) 〉Γ

∣∣.

Note, that for an arbitrary �xed point x ∈ Ω+ all the functions Ej(x − ·) are
in�nitely-di�erentiable and bounded together with all their derivatives on Γ,
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i.e.
∥∥Ej(x − ·)

∥∥
H1/2(Γ)

≤ c∗j = const. Using the generalized Cauchy-Schwarz
inequality, we get

|uk(x)− uh
k(x)| ≤

k∑

i=0

∣∣〈(µi − µh
i

)
, Ek−i(x− ·) 〉Γ

∣∣ ≤

≤
k∑

i=0

∥∥µi − µh
i

∥∥
H−1/2(Γ)

∥∥Ek−i(x− ·)
∥∥

H1/2(Γ)
.

Then, taking into account the inequality (33), we obtain

|uk(x)− uh
k(x)| ≤ hs+1/2

k∑

i=0

c∗k−ici|µi|Hs
pw(Γ) ≤ c̃kh

s+1/2
k∑

i=0

|µi|Hs
pw(Γ),

where c̃k = max
0≤i≤k

{c∗k−ici} does not depend on the parameter h. 2

4. Computational aspects of the method
E�ectiveness of the numerical solution of the Dirichlet problem depends in

great length on the approaches for the calculation of the surface potential in the
domain and the trace on the boundary. In practice, it means a combination of
algorithms for numerical integration and analytic calculation of some singular
integrals over the boundary elements.

If the point, at which the trace of the potentials mentioned above is cal-
culated, is not located on the boundary element over which the integration
is performed, then the kernels of these potentials are in�nitely-di�erentiable
functions on the corresponding boundary element. Hence, the calculation of
the majority of the elements in corresponding SLAE and also the components
of the numerical solution of the problem at the observational points can be
performed using numerical integration and the Gauss quadrature in particular.

Lets consider the calculation of integrals over singular functions that can be
obtained during the construction of the matrix of the SLAE and correspond to
the boundary operator V0 (23):

V h
0 [k, l] =

1
4π

∫

τk

∫

τl

e−
√

c0|x−y|

|x− y| dsydsx, k, l = 1,M. (35)

If the boundary elements τk and τl coincide or are adjacent then the integrand
of the internal integral has a weak singularity when the points x ∈ τk and y ∈ τl

coincide. It can be explicitly eliminated if the element of the matrix is given as

V h
0 [k, l] =

1
4π

∫

τk

∫

τl

e−
√

c0|x−y| − 1
|x− y| dsydsx +

1
4π

∫

τk

Il(x)dsx, (36)

where
Il(x) =

∫

τl

1
|x− y|dsy. (37)

Integrand of the �rst integral in (36) allows continuous de�nition at x = y (it
can be veri�ed if the exponential function is expanded in a Maclaurin series over
the variable r = |x− y|), so the value of this integral can be found numerically
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using the Gauss quadrature rules. The integral (37) can be found analytically
as a function [11,18�20], parameterized by the geometric data of the boundary
element τl and the coordinates of the point x.

In the integrals

V h
j [k, l] =

∫

τk

∫

τl

Ej(x, y)dsydsx, k, l = 1,M, j ∈ N, (38)

that correspond to the boundary operator Vj , j ∈ N, and are found during
the construction of the right-hand side, the integrands are continuous for any
location of the boundary elements τk and τl. Hence these integrals can also be
found numerically using the Gauss quadratures.

Note, that all relations of the suggested approach can be applied to interior
BVP without any changes.

5. Results of the computational experiment
Lets demonstrate the usage of the suggested method to �nd numerical solu-

tions of some model Dirichlet problems. We assume that in (1) and (2) compo-
nents of the sequences c and g have the form ck = (k+1)κ and gk = vk, k ∈ N0,
correspondingly, where κ is some parameter and the sequence v consists of func-
tions

vk(x) =
e−κ(|x−x∗|−1)

(
Lk(κ(|x− x∗|)− Lk−1(κ(|x− x∗|))

|x− x∗| , k ∈ N,

v0(x) =
e−κ(|x−x∗|−1)

|x− x∗| ,

(39)

parameterized by some point x∗, Lk, k ∈ N0, are the Laguerre polynomials [1].
Up to a factor the sequence v coincides with the fundamental solution of the
system (1), so it will be used to build the analytical solution of the Dirichlet
problem. Note, that the variable x will denote points on the boundary Γ and
in the domain where the numerical solution is sought, and the parameter x∗ is
located in the complement of this domain to the whole space R3.

We consider the following domains in the model problem: a unit sphere,
its exterior in R3, a cube Ω := (−1, 1) × (−1, 1) × (−1, 1) and its exterior
Ω+ := R3 \ Ω.

Lets consider �rst the model boundary value problems for the �rst equation
of the system (1).
Example 1. Find a numerical solution uh

0 of the exterior (x∗ = (0, 0, 0)) and
interior (x∗ = (2, 0, 0)) Dirichlet problems in case of the cubic boundary when
g0 = v0.

Table 1 contains corresponding numerical solutions of the exterior problem
using the decomposition of the cube's boundary into M = 1200 boundary
elements. As we can see, with increasing value of κ the solutions are decreasing
rapidly when moving further from the boundary. Next, we examine the errors
of the numerical solutions of this problem with a �xed value of the parameter
κ, for example, take κ = 2.
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Tabl. 1. Numerical solutions uh
0(x) of the problem 1 for di�er-

ent values of κ

Value of the parameter κ
x1 0.5 1.0 2.0 4.0 8.0

1.2 7.48314 · 10−1 6.75199 · 10−1 5.49666 · 10−1 3.64214 · 10−1 1.59908 · 10−1

2.0 3.02031 · 10−1 1.82901 · 10−1 6.70731 · 10−2 9.01743 · 10−3 1.62947 · 10−4

3.0 1.22230 · 10−1 4.49190 · 10−2 6.06765 · 10−3 1.10698 · 10−4 3.68426 · 10−8

4.0 5.56144 · 10−2 1.23988 · 10−2 6.16492 · 10−4 1.52428 · 10−6 9.29979 · 10−12

Tabl. 2. Errors of the numerical solution uh
0(x) of the problem 1

Exterior problem Interior problem
M δh eoc εh(%) δh eoc εh(%)
300 0.01384 3.10 0.01324 2.99
588 0.00702 2.018 1.55 0.00673 2.012 1.50
768 0.00537 2.010 1.18 0.00515 2.005 1.14
972 0.00421 2.061 0.93 0.00404 2.058 0.90

1200 0.00340 2.030 0.75 0.00326 2.027 0.72
1728 0.00234 2.039 0.51 0.00225 2.037 0.50
2700 0.00149 2.033 0.33 0.00143 2.031 0.32

In order to �nd the dependency between the error of the numerical solution
and the parameter h that de�nes the triangulation of the boundary surface we
will consider the values δh := ||uh

0−u0||L2(a,b) and εh := δh

||u0||L2(a,b)
·100%, where

(a, b) is an inverval in space from which the points of observation x are taken.
We will also calculate the value of the estimated order of convergence [19]

eoc :=
ln δhj − ln δhj+1

ln hj − ln hj+1
, (40)

where hj and hj+1 are the parameters of the two consequent triangulations of
the boundary surface into boundary elements. Results of the calculations given
in table 2 highlight the equal orders of errors of the numerical solutions of the
interior and exterior problems. Moreover, the obtained result has eoc ≈ 2.0.

Now lets demonstrate that the developed method gives us ability to �nd
components of the numerical solutions with other values of the indexes.
Example 2. Find N components of the numerical solution uh

i , i = 0, N, of
the exterior Dirichlet problem (1), (2) if h̃i = vi, κ = 2 and x∗ = (0, 0, 0).

Charts of the obtained numerical solutions are given on �gure 1. They
demonstrate rapid decrease of the functions uh

i (x), i = 0, 10, 20, with the in-
crease of their index. Numerical solutions obtained on M = 1200 boundary
elements are given in table 3 and indicate the commensurability of the errors
of components of the numerical solutions uh

i (x) when i = 10 and i = 20 with
the corresponding error of uh

0(x).
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Tabl. 3. Solutions uh
i (x), i = 10, 20 of the problem 2 when

M = 1200.

x1 u10(x) uh
10(x) u20(x) uh

20(x)
1.5 8.8570 · 10−2 9.0932 · 10−2 −7.6672 · 10−2 −7.5956 · 10−2

2.0 5.6502 · 10−2 5.6254 · 10−2 4.0784 · 10−2 4.1496 · 10−2

3.0 −1.9676 · 10−2 −1.9664 · 10−2 −1.0549 · 10−2 −1.0619 · 10−2

4.0 4.3413 · 10−3 4.3359 · 10−3 2.9939 · 10−3 3.0045 · 10−3

Fig. 1. Charts of the components uh
0(x), uh

10(x), uh
20(x) of the

numerical solution of the problem 2 when M = 768

As it has been mentioned above, the Dirichlet problem (1), (2) can be ob-
tained by means of the application of the Laguerre transform by the time vari-
able to a certain class of linear evolutionary problems. For instance, the system
(1), that is mentioned in problems 1 and 2, can be obtained from a homoge-
neous wave equation with homogeneous boundary conditions. After �nding for
some N the components uh

i , i = 0, N, the numerical solution of the mixed
problem can be given as a partial sum of the Laguerre-Fourier expansion

uh,N (x, t) =
1
κ

N∑

i=0

uh
i (x)Li(κt), (x, t) ∈ Ω+ × (0,∞). (41)

To generate the data for the boundary conditions (2) we use a �spherical im-
pulse� with a center at x∗

v(x, t) =
f(t− |x− x∗|)

4π|x− x∗| , (x, t) ∈ Ω+ × [0,∞), (42)
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Fig. 2. Chart of the solution of the problem 3 in the exterior
of the sphere with N = 40, M = 720

where f is a cubical β-spline [12], and apply to it the Laguerre transform

vk(x) =
∫

R+

v(x, t)Lk(κt) e−κtdt, x ∈ Γ, k ∈ N0. (43)

Example 3. In the exterior Ω+ of the unit sphere calculate the numerical
solution of the Dirichlet problem for the wave equation with homogeneous initial
conditions and the boundary condition de�ned by (42) at x∗ = (0, 0, 0).

Let the problem (1), (2) correspond to the initial-boundary value problem
3 when κ = 2. After �nding N = 40 components of the numerical solution
uh

i , i = 0, N, with the use of M = 720 boundary elements, the numerical
solution of the problem 3 at the points along the axis Ox1 is calculated by the
formula (41). As it can be seen from the charts of the numerical solution, given
on the �gure 2, the obtained results are well representing the physics of the
wave propagation from the boundary surface, especially, passing through the
observation points of the front and rear disturbance fronts.

Note that the formulation of the problem 3 gives us ability to �nd the coef-
�cients ui, i ∈ N0, of the expansion of the precise solution u(x, t) into series
(41) analytically. So it can be compared how the partial sums of the series (41)
with analytical coe�cients and coe�cients found by the suggested approach
approximate the precise solution of the evolution problem. As it can be see
from the table 4, values of such partial sums are pointwise (regarding the time
variable) close.

6. Conclusions
Application of the surface potentials built using the q-convolution opera-

tion is an e�ective way to obtain the integral representation of the solutions of
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Tabl. 4. Comparison of the numerical solution of the prob-
lem3 uh,N (x, t) (the row above) with the values of the partial
sum (41)(the row below), in which the coe�cients are calculated
analytically

t x1 = 1.0 x1 = 1.2 x1 = 1.4 x1 = 1.6 x1 = 1.8 x1 = 2.0
0.0 0.00037 0.00043 -0.00011 0.00013 -0.00010 -0.00013

0.00012 -0.00034 0.00012 0.00000 0.00008 -0.00004
0.4 0.01521 0.00136 -0.00007 -0.00006 -0.00003 -0.00002

0.01595 0.00178 -0.00006 -0.00004 0.00004 0.00001
1.2 0.41588 0.20541 0.08926 0.03234 0.00852 0.00100

0.42386 0.20880 0.09113 0.03376 0.00898 0.00100
2.0 0.99249 0.78406 0.57393 0.38364 0.23108 0.12327

0.99860 0.78846 0.57774 0.38853 0.23510 0.12553

boundary value problems for in�nite systems of PDE with convolutional struc-
ture. Such approach makes it possible to reduce the boundary value problem
to an equivalent BIE system, develop e�cient projection methods for its nu-
merical solution and justify their usage. The results of a series of numerical
experiments that con�rm the theoretical statements and demonstrate the ap-
plicability of the proposed methods for modeling of evolutionary processes are
given.
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ANOTHER CASE OF INCIDENCE MATRIX
FOR BIVARIATE BIRKHOFF INTERPOLATION

A.Nazarzadeh, KH.Rahsepar Fard, A.Mahmoodi

Ðåçþìå. Ó öié ñòàòòi ñïåðøó ïîäàíî ñïåöiàëüíèé âèïàäîê îäíîâèìiðíî¨
çàäà÷i iíòåðïîëÿöi¨ Áiðêãîôà i çà ¨¨ äîïîìîãîþ àïðîêñèìîâàíî ðîçâ'ÿçîê
ãðàíè÷íî¨ çàäà÷i äëÿ ðiâíÿííÿ Ëàïëàñà. Äàëi ðîçãëÿíóòî iíøèé òèï äâî-
âèìiðíî¨ çàäà÷i iíòåðïîëÿöi¨ Áiðêãîôà, â ÿêié óìîâè iíòåðïîëÿöi¨ çàäàíi â
òî÷êàõ ç êðàòíiñòþ. Ââåäåíî iíøå ïîçíà÷åííÿ äëÿ ìàòðèöi iíöèäåíòíîñòi.
Çðîáëåíî ïîðiâíÿííÿ àïðîêñèìàöié Áiðêãîôà i Õààðà i ïîêàçàíî ïåðåâàãó
iíòåðïîëÿöi¨ Áiðêãîôà.
Abstract. In this paper, �rst we present a special case of the univariate
Birkho� interpolation problem, and using that, we approximate the solution of
a Laplace boundary value problem. Then we present another type of bivariate
Birkho� interpolation problem in which interpolation conditions are on some
knots with multiplicity. We introduce another notation for incidence matrix.
Finally, we compare two approximations Birkho� and Haar then we show that
Birkho� interpolation is better than the other.

1. Introduction
In this paper we present some basic notations and useful properties in ana-

lyzing the interpolation polynomials. Let us denote Πn the space of one variable
interpolation polynomials of degree not exceeding n, and Π2

n the space of bi-
variate interpolation polynomials of degree not exceeding n.

The problem of interpolating a real function f by a univariate polynomial
from the values of f and some of its derivatives on a set of knots is one of the
main questions in numerical analysis and approximation theory.

In [1] and [10] the authors studied univariate Birkho� interpolation and its
properties. Let x = {x1, ..., xn} be a set of real numbers such that x1 < ... < xn,
let r be an integer and let I ⊂ {1, ..., n} × {0, .., r} be the set of pairs (i, j) in
which the value f (j)(xi) = fi,j is known where f is a real function. The problem
of determining the existence and uniqueness of a polynomial P in R1 satisfying
the conditions ∀(i, j) ∈ I, p(i)(xi) = fi,j is called the Birkho� interpolation
problem.

In recent years there has been renewed interest and progress on Hermite-
Birkho� interpolation. The original source for this activity is work by G.D.Bir-
kho� in 1906, with a notable contribution by G.Polya in 1931.

Key words. Bivariate Birkho� Interpolation Problem; Polya Condition; Incidence Matrix;
Interpolation Polynomial; Haar Approximation; Hermite-Birkho�; Operator Interpolation.
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The interpolation conditions can be described by using special type matrices.
Consider the matrix E = (ei,j) with n rows and r+1 columns, �lled with 0's
and 1's so that ei,j = 1 if and only if (i, j) ∈ I. The E is called incidence
matrix.

In 1966 Schoenberg (see [19]) posed the problem of determining all those
E for which the problem P (j)(xii) = ci,j is always (for all choice of xi, ci,j)
solvable. We call such matrices E regular and the remaining matrices singular.

Let E = (ei,j) be an m× (n + 1) incidence matrix. Then mj =
∑

i ei,j is the
number of 1's in column j, and Mr =

∑r
j=0 mj =

∑r
j=0

∑m
i=1 ei,j is the number

of 1's in columns of E numbered 0, 1, . . . , r. For the matrix E, the condition
Mr ≥ r + 1, r = 0.1, ..., n, is called the Polya condition.
De�nition 7. The incidence matrix E = (ei,j), 1 ≤ i ≤ m, 0 ≤ j ≤ n is called
poised with respect to {xi}m

i=1 if the unique solution of problem P (j)(xi) =
0, 1 ≤ i ≤ m, 0 ≤ j ≤ n is a trivial polynomial.

In [8], the following Polya's result is well-known.
Theorem 1 (Polya's Theorem). The incidence matrix E of 2×n dimension is
poised if and only if Polya condition is true.

In [20], the author posed, for a 2× n incidence matrix E = (ei,j), we de�ne
a 2× n matrix G = (gi,j) as follows:

gi,j = 1− ei,n−j−1, 1 ≤ i ≤ 2, 0 ≤ j ≤ n− 1.

Then G is also an incidence matrix, because
∑2

i=1

∑n−1
j=0 ei,j = n. The matrix

G is called a dual incidence matrix corresponding to E. For example, for the
incidence matrix E =

∥∥∥∥
1 0 0
0 1 1

∥∥∥∥, its dual matrix becomes E′ =
∥∥∥∥
1 1 0
0 0 1

∥∥∥∥.
The following theorem give a relationship between a 2× n incidence matrix

E and its dual matrix G.
Theorem 2. A 2×n incidence matrix E is poised if and only if dual matrix G
is poised. In [20], the author shown that there exists a quadrature formula in the
form

∫ b
a P (x)dx =

∑
ei,j=1 wi,jP

(j)(xi) to be exact for any polynomial P with
degree at most n-1, where wi,j's are weight coe�cients independent of P. This
is called, the Hermite-Birkho� quadrature formula for the incidence matrix E.
Theorem 3. A 2× n incidence matrix E is poised if and only if there exists a
Hermite-Birkho� quadrature formula speci�ed by E.

In [16], author presented below property of incidence matrix E:
Let mj =

∑
i ei,j , j = 0, ..., n and Mr =

∑r
j=0 mj , r = 0, ..., n, then E satis�es

the strong Polya condition if Mr ≥ r + 2, r = 0, ..., n − 1. If E does not
satisfy strong Polya condition, then E may be decomposed in to matrices,
E = E1

⊕
E2

⊕ · · ·⊕EN where Ej 's satis�es strong Polya condition.
In [18], the author proved below theorem:

Theorem 4. Let En satisfy the Polya condition. Then En has a unique decom-
position En = En1

⊕
En2

⊕
...

⊕
Enq , n1+n2...+nq = n, where Enj , j = 1, ..., q
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satis�es the strong Polya condition. Moreover En is poised if and only if Enj 's
are poised.

The Birkho� interpolation problem is one of the most general problems in
multivariate interpolations. For clarity of the exposition, we will only restrict
ourselves to the bivariate case.

In [11, Def. 3.1.1, p. 9], the authors studied bivariate Birkho� interpolation
problem. The bivariate Birkho� interpolation problem depends on a �nite set
T = {zq}m

q=1 ⊂ R2 of knots and interpolation space Π2
n of polynomials and

an incidence matrix E = (eq,α). The bivariate Birkho� interpolation problem
is, for given real numbers cq,α, to �nd a polynomial p ∈ Π2

n satisfying the
interpolation conditions

∂α1+α2

∂yα2∂xα1
p(zq) = cq,α (1)

with eq,α = 1 where α = (α1, α2).
In this paper, we present a special case of univariate Birkho� interpolation

problem together with an example of boundary value problem introduce in [2],
and also a method for obtaining the interpolation polynomial in the case of
a set of types conditions, given on a set of knots in R2. This method is a
generalization of the tensorial product method introduced by F.J.Hack in [7].
In this way, we investigate bivariate Birkho� polynomial for the set of knots T
such that |T | < (

n+2
2

)
.

In [11] and [3], authors introduced Polya conditions for multivariate Birkho�
interpolation as follows:

De�nition 8. An incidence matrix E satis�es the (lower) Polya condition (with
respect to S) if |EA| ≤ |A| for any lower set A ⊆ S. E satis�es the upper Polya
condition if |EB| ≤ |B| for any upper set B ⊆ S. A set B is an upper set with
respect to S if α ∈ B, β ≥ α and β ∈ S imply that β ∈ B. B is an upper set of
S if and only if S \B is a lower set.

Similar to notations in [4], we apply the Haar function and interpolation
problem. In [4], the authors presented some theorems for uniqueness. Thus we
employ those theorems, for example, formula (8) and Theorem 3.1 and Example
3.2, p.107-109.

Problems of generalization in functions interpolation theory with functionals
and operators in abstract spaces are considered in numerous works.

De�nition 9. Let F : X −→ Y be an operator, where X is a Hilbert and Y
is a vector space; let Pn : X −→ Y be an operator polynomial of the form
Pn(x) = L0 + L1x + ... + Lnxn, where L0 ∈ Y ; and let Lp(t1, ..., tp) : Xp −→ Y
be a p-linear operator, p = 1, ..., n. Let {xi}m

i=1 be a system of elements from X.
A polynomial operator Pn is called an interpolating polynomial for F in nodes
{xi}m

i=1 ⊂ X if it satis�es the conditions Pn(xi) = F (xi), i = 1, ..., m.

In the case X = Y = R1 the requirement that the interpolation functionals
be the same algebraic polynomials.
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In [12] and [13], the authors investigated the operator interpolation theory
in Hilbert space and solvability Hermite interpolation problem with the op-
erator values at the nodes with Gateaux di�erentials de�ned on the auxiliary
nodes and some given directions. For example, let Πn be a set of the operator
polynomials Pn : X −→ Y of degree not exceeding n and p ∈ Πn satis�es the
conditions:

p(xi) = F (xi), p′(xi)hi = F ′(xi)hi, i = 1, ...,m (2)
For investigate Hermite problem with interpolation conditions (2) we consider
the auxiliary nodes

x1 = x1, x2 = x1 + αh1, x3 = x2, x4 = x2 + αh2, ..., x2m−1 = xm,

x2m = xm + αhm, α ∈ R1, α 6= 0

of the matrix
Γ(α) =

∥∥∑n
p=0(xi, xj)p

∥∥2m

i,j=1

and

C(α) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 0 0 0 0 ... 0 0 0
−1
α

1
α 0 0 0 ... 0 0 0

0 0 1 0 0 ... 0 0 0
0 0 −1

α
1
α 0 ... 0 0 0

. . . . . ... . . .

. . . . . ... . . .

. . . . . ... . . .
0 0 0 0 0 ... 0 1 0
0 0 0 0 0 ... 0 −1

α
1
α

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
and the vectors
F (α) = (F (x1), F (x2), ..., F (x2m)), P (α) = (p(x1), p(x2), ..., p(x2m)), p ∈ Πn.

In [13], p.97, Theorem 1.1 shown that a necessary and su�cient condition for
the solvability of the Hermite operator interpolation problem (2) in a Hilbert
space, that the condition ZFH = 0 and the formula p(x) = q(x) + 〈FH −
qH ,H+gH(x)〉, with q(x) varies over Πn, describes the whole set of the Hermite
operator polynomials of the n-th degree satis�es the interpolation conditions
(2). In [13], explained notations ZFH , FH , qH ,H+gH .

When some of the conditions of the Hermite interpolation are absent then,
they are called to Hermite- Birkho� conditions. For example, the conditions:

p(xi) = F (xi), p′′(xi)h
(2)
2 h

(2)
1 = F ′′(xi)h

(2)
2 h

(2)
1 , i = 1, ..., m (3)

are Hermite-Birkho� conditions. In [13], Theorem 2.1, p.110, itroduced a neces-
sary and su�cient condition for the solvability of the Hermite-Birkho� operator
interpolation problem in a Hilbert space.

Now we introduce an important result as follows:
A su�cient condition for the invariant solvability of the Hermite operator

interpolation problem given as the following theorem. We shall denote by M a
number of the interpolation conditions in the Hermite operator interpolation.
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Theorem 5. The Hermite interpolation problem in a Hilbert space is invariant
solvability for any n ≥ M − 1.

For example every Hermite interpolation problem with conditions (2) by
Theorem 5 is invariant solvable.

By text in [13], p.112, if the Hermite-Birkho� interpolation problem for a
function of one variable has the unique solution, then the appropriate Hermite-
Birkho� operator interpolation problem is invariantly solvable. Now we ap-
ply Polya's theorem in case m=2 for the invariant solvability of the Hermite-
Birkho� operator problem with the interpolation conditions containing values
of operator polynomial p of the third degree and Gateaux di�erentials of the
second order

p(x1), p′′(x1)h
(1)
2 h

(1)
1 , p(x2), p′′(x2)h

(2)
2 h

(2)
1 (4)

In the corresponding Hermite-Birkho� interpolation problem of one variable we
have

M = 4, n = M − 1 = 3, E =
∥∥∥∥
1 0 1
1 0 1

∥∥∥∥ ,

m0 = 2, m1 = 0, m2 = 2, M0 = 2, M1 = 2, M2 = 4
Since Mj ≥ j + 1, j = 0, 1, 2 then by Polya's Theorem, the classical Hermite-
Birkho� problem

p(t1) = 0, p′′(t1) = 0, p(t2) = 0, p′′(t2) = 0

on the set of the polynomial of the 3-d degree has the unique solution zero-
polynomial. But as we stated above, the corresponding Hermite-Birkho� oper-
ator problem (4) is invariantly solvable.

2. Bivariate Birkhoff Interpolation
Following R.A. Lorentz in [11], an interpolation problem is regular if it is

uniquely solvable for all selections of distinct nodes and all data. In the uni-
variate case, Lagrange and Hermite interpolation are regular, but in the mul-
tivariate case, even Lagrange interpolation is not regular. Here, we study a
solvable interpolation problem in multivariate case.

A uniqueness technique for bivariate Birkho� interpolation problem is pre-
sented in [7]. The technique has been explained in [7, theorem 3.3, p.26], where
interpolation polynomial is tensor product of functionals. that is why, we intro-
duce incidence matrix. For exactly M+1 pairs (i, k) ∈ {1, ...,m} × {0, ...,M},
we suppose that Ei,k = (ek,l

i,j )1≤j≤ai,k ,0≤l≤Ni,k
where ai,k ∈ N,Ni,k ∈ N0 and

for others (i, k)′s,Ei,k = 0. Regularity condition is established, using bidi-
mensional incidence matrix corresponding to Birkho� interpolation problem.
Hence, the bivariate Birkho� interpolation problem is as follows:

CM (G),
p∑

s=1

ΠMs ⊗ΠNs ;D
k,l
xi,yi,k,j

: (i, k) ∈ Z, (xi, yi,k,j) ∈ T (5)

This means that for all f ∈ CM (G), G ⊂ R2 there exists P ∈ ∑p
s=1 ΠMs ⊗ΠNs

where ΠMs ⊗ ΠNs is tensor product of functionals and Dk,l
xi,yi,k,jP = Dk,l

xi,yi,k,jf
such that T is the set of distinct knots i.e. T = {(xi, yi,k,j)} s.t. x1 < ... < xm
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and also yi,k,1 < ... < yi,k,ai,k
, (i, k) ∈ Z, Z ⊂ {1, ..., m} × {0, ..., M} so that

Z = {(i, k) : Ei,k 6= 0}.
In view of corollary 3.4 [7, p.27], if matrices Es's for points x1, ..., xm are

regular and matrices Ei,k's are regular for points yi,k,1, ..., yi,k,ai,k
then the inci-

dence matrix εm,M is regular for {(xi, yi,k,j)}. It means that the interpolation
problem is unique.

3. The Result
3.1. Univariate Case. In [2], a Birkho� interpolation problem was studied.
Now, we introduce another case of Birkho� interpolation problem. In [17],
the author introduced Lagrange's fundamental polynomials. For given points
x0, x1, ..., xn, let us use the fundamental polynomials l0, l1, ..., ln, where li(x) =
∏

j 6=i(
x− xj

xi − xj
) such that

li(xk) =

{
1 ifk = i

0 ifk 6= i
, k, i = 0, 1, ..., n.

We recall that the Green's function was de�ned in [5], [6], [14].
Theorem 6. Let ωi ∈ R1, i = 0, 1, ..., n and −1 = x0 < x1 < ... < xn−1 <
xn = 1 and li(x) be the fundamental polynomials of Lagrange calculated on the
n-1 points xi, i = 1, ..., n − 1 and pn,i(x) =

∫ 1
−1 G(x, t)li(t)dt, i = 1, ..., n − 1,

where

G(x, t) =

{
1 t < x

0 x < t

is a Green's function, then the polynomial

Pn(x) =

{
ωn x = xn

ω0 +
∑n−1

i=1 pn,i(x)ωi otherwise
(6)

is the unique polynomial of degree ≤ n− 1 which satis�es the Birkho� interpo-
lation conditions

Pn(x0) = ω0, P ′
n(xi) = ωi, i = 1, ..., n− 1, Pn(xn) = ωn (7)

Proof. We know that Pn,i(x) is the solution of the boundary value problem
{

P ′
n,i(x) = li(x)

Pn,i(−1) = 0
, i = 1, ..., n− 1, because Pn,i(x) =

∫ x

−1
li(t)dt.

The polynomial (6) satis�es the interpolatory conditions (7). For the proof of
the uniqueness, since Pn,i(x) is a polynomial of degree not exceeding n-1, now
suppose that Pn is another polynomial of degree not exceeding n-1 where it is
true in (7) such that Pn(x) 6= Pn(x).

We set φn(x) := Pn(x)−Pn(x). The polynomial φn(x) has n-1 zeros, there-
fore it has n-2 optimum, namely, φ′n(xi) = P

′
n(xi)−P ′

n(xi) = 0. After repeated
this process and applying Rolle's theorem, we conclude that φn(x) ≡ 0. Thus
Pn(x) = Pn(x) that is contradiction. 2
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Remark 1. By Theorem 6, since the Hermite-Birkho� interpolation problem
with conditions (7) has unique solution then the corresponding Hermite-Birkho�
operator interpolation problem is invariant solvable.

In [9] and [15], the authors presented Haar approximation. Now, we intro-
duce Haar function and its apply for below example.
De�nition 10. The Haar function χn(x), x ∈ [0, 1], where χ1 ≡ 1, and for
2k < n ≤ 2k+1, k = 0, 1, · · · is de�ned as follows:

χn(x) =





2
k
2 x ∈ ∆+

n

−2
k
2 x ∈ ∆−

n

0 x /∈ ∆n

(8)

where ∆n is a binary interval of the form ( i−1
2k , i

2k ) where k = 0, 1, ... and i =
1, 2, ..., 2k. For n = 2k + i we write ∆n = ∆i

k = ( i−1
2k , i

2k ), ∆n = [ i−1
2k , i

2k ],∆1 :=
∆0

0 = (0, 1), ∆1 = [0, 1], ∆+
n = ( i−1

2k , 2i−1
2k+1 ), ∆−

n = (2i−1
2k+1 , i

2k ) The values of χn(x)
at points of discontinuity and at the endpoints of [0, 1] are speci�ed as follows:
χn(x) = 1

2 lima→0[χn(x + a) + χn(x− a)], x ∈ (0, 1), χn(0) = limt→0+χn(t),
χn(1) = limt→0+χn(1− t).

For clarity of the Theorem 6, we present an example:
Example 1. The solution of Laplace boundary value problem




∂2u
∂x2 + ∂2u

∂y2 = 0 , 0 < x < 1 , 0 < y < 1

u(0, y) = u(1, y) = 0

u(x, 0) = 0

u(x, 1) = ex

is u (x, y) =
∑∞

n=1 bn sinh (nπy) sin (nπx) where bn = 2nπ−2neπ(−1)n

(1+n2π2)sinh(nπ)
.

Using theorem 6, we compute Birkho� interpolation polynomial for f(x) = ex

in these knots: x0 = 0, x1 = 1
4 , x2 = 1

2 , x3 = 3
4 , x4 = 1. Let ω0 = f(0) =

1, ω1 = f ′(1
4) = e

1
4 , ω2 = f ′(1

2) = e
1
2 , ω3 = f ′(3

4) = e
3
4 , ω4 = f(1) = e then,

l1(t) = 8t2 − 10t + 3, l2(t) = −16t2 + 16t− 3, l3(t) = 8t2 − 6t + 1 are Lagrange
polynomials on x1, x2, x3 and P4,1(x) = 8

3x3−5x2+3x, P4,2(x) = −16
3 x3+8x2+

3x, P4,3(x) = 8
3x3 − 3x2 + x thus P4(x) = (8

3e
1
4 − 16

3 e
1
2 + 8

3e
3
4 )x3 + (−5e

1
4 +

8e
1
2 − 3e

3
4 )x2 + (3e

1
4 − 3e

1
2 + e

3
4 )x + 1 and also p4(1) = e.

Now, we employ approximation Haar-Fourier PH(x) =
∑∞

n=1 Cn(f)χn(x)
for the function f(x) = ex and its compare to P4(x). First, we compute Haar-
Fourier coe�cients Cn(f) =

∫ 1
0 f(x)χn(x)dx as follows: C1(f) = e−1, C2(f) =

2e1/2−e−1, C3(f) = 2
√

2e1/4−√2e1/2−√2, C4(f) = 2
√

2e3/4−√2e1/2−√2e,

thus the Haar polynomial is: PH(x) = e−1+(2e1/2−e−1)χ2(x)+(2
√

2e1/4−√
2e1/2 −√2)χ3(x) + (2

√
2e3/4 −√2e1/2 −√2e)χ4(x) Using the following ten

points, we compare f(x), P4(x), PH(x)
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Tabl. 1. Comparison of f(x), p4(x), pH(x) in [0, 1]

x f(x) p4(x) pH(x)
0 1 1 1.136101666
0.1 1.105170918 1.106753896 1.136101666
0.25 1.284025417 1.286209257 1.297442541
0.3 1.349858808 1.352009578 1.458783416
0.5 1.648721271 1.650644616 1.665949200
0.7 2.013752707 2.020817622 1.873114984
0.75 2.117000017 2.119201800 2.139121116
0.9 2.459603111 2.461087206 2.405127248
0.99 2.691234472 2.691012369 2.405127248
1 2.718281828 2.717776531 2.405127248

Consequently one might favor Birkho� interpolation in some cases.
Now, we set p4(x) instead of f(x) = ex in Laplace boundary value problem and
obtain the approximation solution u(x, y) = Σ∞n=1an sinh(nπy) sin(nπx) where
an = 2

sinh(nπ)

∫ 1
0 p4(x) sin(nπx)dx.

Using Maple program, graphs are as follows:

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.2 0.4 0.6 0.8 1
x

Fig. 1. Comparison of f(x) with p4(x) in [0,1]

3.2. Bivariate Case. In this paper, uniqueness is investigated in another way.
In [7, Corollary 3.4, p.27], if the incidence matrix is characterized, then the
interpolation polynomial can be obtained.

Now, suppose that the interpolation conditions are given. Then, we compute
a corresponding matrix as follows:
Theorem 7. Suppose that the bivariate Birkho� interpolation problem (5) is
given. Then, the incidence matrix is characterized.
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1

1.02

1.04

1.06

1.08

1.1

0 0.02 0.04 0.06 0.08 0.1
x

Fig. 2. Comparison of f(x) with p4(x) in [0,0.01]

Fig. 3. Graph u (x, y) =
∑1000

n=1 bn sinh (nπy) sin (nπx)

Proof. First, we arrange the knots as follows x1 < ... < xm, where for each the
second component of these points, namely, yi,k,1, ..., yi.k.j , 1 ≤ j ≤ ai,k, where
ai,k ∈ N.

Note that k is the order of partial derivative of the �rst variable for P(x,y),
and we denote the order of partial derivative of second variable for P(x,y) by
l, where 0 ≤ l ≤ Ni,k , Ni,k ∈ N0.

Let Z be a set of pairwise (i,k)'s in (5). For indices i,j,k,l in (5), we de�ne
ek,l
i,j = 1, (i, k) ∈ Z.
Using ek,l

i,j , we construct a matrix where j,l are the number of rows and
columns, respectively.
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Fig. 4. Graph u (x, y) =
∑1000

n=1 an sinh (nπy) sin (nπx)

Let Ei,k = (ek,l
i,j )

ai,k

j=1,
Ni,k

l=0 , (i, k) ∈ Z. Regarding Ei,k, the number of rows
and columns are equal ai,k and Ni,k + 1 respectively. It means that for every
(i, k) ∈ Z the value of ek,l

i,j is equal 1 otherwise is equal 0. But for the other
points (i, k) ∈ {1, ..., m} × {0, ...,M} every array of Ei,k equals zero where

M = |Z| − 1 (9)
Thus, for the bivariate Birkho� interpolation problem (5), the corresponding
matrix is εm,M = (Ei,k)m

i=1,
M
k=0 that is an incidence matrix. 2

Now, we present two examples as follows and apply Theorem 7 to obtain
interpolation polynomial. In the �rst example, we use incidence matrix and
obtain interpolation polynomial. In the second example, we use interpolation
conditions and obtain interpolation polynomial.
Example 2. Consider bivariate incidence matrix

ε4,4 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0

∥∥∥∥∥∥

0 0 1 0
1 0 1 0
0 1 0 0

∥∥∥∥∥∥
0 0 0

∥∥∥∥∥∥

1 0 1 0 0
0 1 1 0 0
0 1 0 0 0

∥∥∥∥∥∥
0 0 0 0

0

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥

∥∥∥∥
1 0
1 0

∥∥∥∥ 0 0

∥∥∥∥
1 0
1 0

∥∥∥∥ 0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(10)

In view of Theorem 7, we have
Z = {(1, 1), (2, 0), (3, 1), (3, 2), (4, 0)}, m = M = 4,
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E1,1 =

∥∥∥∥∥∥

0 0 1 0
1 0 1 0
0 1 0 0

∥∥∥∥∥∥
⇒ a1,1 = 3, N1,1 = 3,

E2,0 =

∥∥∥∥∥∥

1 0 1 0 0
0 1 1 0 0
0 1 0 0 0

∥∥∥∥∥∥
⇒ a2,0 = 3, N2,0 = 4,

E3,1 =

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
⇒ a3,1 = 4, N3,1 = 3,

E3,2 =
∥∥∥∥
1 0
1 0

∥∥∥∥ ⇒ a3,2 = 2, N3,2 = 1,

E4,0 =
∥∥∥∥
1 0
0 1

∥∥∥∥ ⇒ a4,0 = 2, N4,0 = 14

Using (3.6) in [7], we have
N1 = N2,0 = 4 , M1 = 0
N2 = N1,1 = N3,1 = 3 , M2 = 2
N3 = N3,2 = N4,0 = 1 , M3 = 4

Consider the following points in [0, 1]2



x1 = 0, x2 = 0.1, x3 = 0.9, x4 = 1
y1,1,1 = 0, y1,1,2 = 0.1, y1,1,3 = 0.2
y2,0,1 = 0, y2,0,2 = 0.2, y2,0,3 = 0.5
y3,1,1 = 0, y3,1,2 = 0.3, y3,1,3 = 0.6, y3,1,4 = 0.9
y3,2,1 = 0.8, y3,2,2 = 1
y4,0,1 = 0, y4,0,2 = 1

(11)

Since the incidence matrices Ei,k's are regular and

E1 =

∥∥∥∥∥∥∥∥

0
1
0
0

∥∥∥∥∥∥∥∥
, E2 =

∥∥∥∥∥∥∥∥

0 1 0
1 0 0
0 1 0
0 0 0

∥∥∥∥∥∥∥∥
, E3 =

∥∥∥∥∥∥∥∥

0 1 0 0 0
1 0 0 0 0
0 1 1 0 0
1 0 0 0 0

∥∥∥∥∥∥∥∥
are also regular, then by [7, Corollary 3.4,p.27], the incidence matrix ε4,4 is
regular. So, bivariate Birkho� interpolation problem
(Cq([0, 1]2), Π0⊗Π4 + Π2⊗Π3 + Π4⊗Π1; Dk,l

xi,yi,k,j
: (i, k) ∈ Z, (xi, yi,k,j) ∈ T ),

where
q = max{Ms + Ns}3

s=1 = 5, and x1 < ... < x4, yi,k,1 < ... < yi,k,ai,k

is uniquely solvable.
That is for all f ∈ C5([0, 1]2) for example f(x, y) = yex there exists

P ∈
3∑

s=1

ΠMs ⊗ΠNs

i.e.
P (x, y) = a0,0 + a1,0x + a0,1y + a2,0x

2 + a1,1xy+
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+a0,2y
2 + a3,0x

3 + a2,1x
2y + a1,2xy2 + a0,3y

3 + a4,0x
4+

+a3,1x
3y + a2,2x

2y2 + a1,3xy3 + a0,4y
4 + a4,1x

4y + a2,3x
2y3

and




∂3P
∂y2∂x

(0, 0) = ∂3f
∂y2∂x

(0, 0)
∂P
∂x (0, 0.1) = ∂f

∂x (0, 0.1)
∂3P

∂y2∂x
(0, 0.1) = ∂3f

∂y2∂x
(0, 0.1)

∂2P
∂y∂x(0, 0.2) = ∂2f

∂y∂x(0, 0.2)

,





P (0.1, 0) = f(0.1, 0)
∂2P
∂y2 (0.1, 0) = ∂2f

∂y2 (0.1, 0)
∂P
∂y (0.1, 0.2) = ∂f

∂y (0.1, 0.2)
∂2P
∂y2 (0.1, 0.2) = ∂2f

∂y2 (0.1, 0.2)
∂P
∂y (0.1, 0.5) = ∂f

∂y (0.1, 0.5)



∂P
∂x (0.9, 0) = ∂f

∂x (0.9, 0)
∂2P
∂y∂x(0.9, 0.3) = ∂2f

∂y∂x(0.9, 0.3)
∂3P

∂y2∂x
(0.9, 0.6) = ∂3f

∂y2∂x
(0.9, 0.6)

∂4P
∂y3∂x

(0.9, 0.9) = ∂4f
∂y3∂x

(0.9, 0.9)

,
{

∂2P
∂x2 (0.9, 0.8) = ∂2f

∂x2 (0.9, 0.8)
∂2P
∂x2 (0.9, 0.1) = ∂2f

∂x2 (0.9, 0.1)
,

{
P (1, 0) = f(1, 0)
∂P
∂y (1, 1) = ∂f

∂y (1, 1)
By the conditions above, the algebraic system of coe�cients of p(x,y) is as
follows: 




2a1,2 = 0
a1,0 + 0.1a1,1 + 0.01a1,2 + 0.001a1,3 = 0.1
............

............

............

1 + a0,1 + a2,1 + 3a0,3 + a3,1 + 4a0,4 + a4,1 = e

Therefore, the solution of system is
a1,0 = a0,2 = a1,2 = a0,3 = a2,2 = a1,3 = a0,4 = a2,3 = 0, a1,1 = 1,
a0,0 = 3.46× 10−7, a0,1 = 0.999928024, a4,1 = 6.678685615,
a3,1 = 0.13497021, a2,1 = 0.510326531, a2,0 = −1.314× 10−5,
a4,0 = −1.5909× 10−5, a3,0 = 2.8702× 10−5

Thus, the Birkho� polynomial P is
PB(x, y) = 0.0000003459603111 + 0.999928024y − 0.00001314x2+
+xy + 0.000028702x3 + 0.510326531x2y−
−0.000015909x4 + 0.13497021x3y + 6.678685615x4y.

In the following example, the knots and Birkho� conditions are given then, we
obtain Birkho� polynomial.
Example 3. By the following knots in [0, 1]2 and Birkho� conditions and in
view of Theorem 7 and the indices i,j,k,l, we have





∂3P
∂y2∂x

(x1, y1) = ∂3f
∂y2∂x

(x1, y1)
∂P
∂x (x1, y2) = ∂f

∂x (x1, y2)
∂3P

∂y2∂x
(x1, y2) = ∂3f

∂y2∂x
(x1, y2)

∂2P
∂y∂x(x1, y3) = ∂2f

∂y∂x(x1, y3)

,





P (x2, y1) = f(x2, y1)
∂2P
∂y2 (x2, y1) = ∂2f

∂y2 (x2, y1)
∂P
∂y (x2, y2) = ∂f

∂y (x2, y2)
∂2P
∂y2 (x2, y2) = ∂2f

∂y2 (x2, y2)
∂P
∂y (x2, y3) = ∂f

∂y (x2, y3)
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∂P
∂x (x3, y1) = ∂f

∂x (x3, y1)
∂2P
∂y∂x(x3, y2) = ∂2f

∂y∂x(x3, y2)
∂3P

∂y2∂x
(x3, y3) = ∂3f

∂y2∂x
(x3, y3)

∂4P
∂y3∂x

(x3, y4) = ∂4f
∂y3∂x

(x3, y4)

,
{

∂2P
∂x2 (x3, y1) = ∂2f

∂x2 (x3, y1)
∂2P
∂x2 (x3, y2) = ∂2f

∂x2 (x3, y2)
,

{
P (x4, y1) = f(x4, y1)
∂P
∂y (x4, y2) = ∂f

∂y (x4, y2)
Now, we consider the points (11) in [0, 1]2, then

Z = {(1, 1), (2, 0), (3, 1), (3, 2), (4, 0)}.

Regularity of Ei,k's is obvious here:

E1,1 =

∥∥∥∥∥∥

0 0 1 0
1 0 1 0
0 1 0 0

∥∥∥∥∥∥
, E2,0 =

∥∥∥∥∥∥

1 0 1 0 0
0 1 1 0 0
0 1 0 0 0

∥∥∥∥∥∥
, E3,1 =

∥∥∥∥∥∥∥∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
,

E3,2 =
∥∥∥∥
1 0
1 0

∥∥∥∥ , E4,0 =
∥∥∥∥
1 0
0 1

∥∥∥∥
Therefore,

a1,1 = 3, N1,1 = 3, a2,0 = 3, N2,0 = 4

a3,1 = 4, N3,1 = 3, a3,2 = 2, N3,2 = 1

a4,0 = 2, N4,0 = 1

and also
N1 = N2,0 = 4, M1 = 0,

N2 = N1,1 = N3,1 = 3, M2 = 2

N3 = N3,2 = N4,0 = 1, M3 = 4.

Using (9), we can write incidence matrix ε4,4 in (10).
Thus, matrices

E1 =

∥∥∥∥∥∥∥∥

0
1
0
0

∥∥∥∥∥∥∥∥
, E2 =

∥∥∥∥∥∥∥∥

0 1 0
1 0 0
0 1 0
0 0 0

∥∥∥∥∥∥∥∥
, E3 =

∥∥∥∥∥∥∥∥

0 1 0 0 0
1 0 0 0 0
0 1 1 0 0
1 0 0 0 0

∥∥∥∥∥∥∥∥

for knots x1, x2, x3, x4 and also the incidence matrices E1,1, E2,0, E3,1, E3,2, E4,0

for knots yi,k,j 's are regular. Thus by corollary 3.4 of [7, P.27], ε4,4 is regu-
lar. For every f ∈ C5([0, 1]2) there exists P ∈ ∑3

s=1 ΠMs ⊗ ΠNs so that it
satis�es interpolation conditions. Finally, with knots (xi, yi,k,j) in (11), we can
establish P .
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3.3. Bivariate Haar Approximation. In [9] and [15], the authors presented
univariate Haar series. Now, we investigate a new case of bivariate Haar ap-
proximation in the following example.

Example 4. Using the approximation presented in [4], we compute Haar �
Fourier coe�cients

am,n(f) =
∫ 1

0

∫ 1

0
f(x, y)χm,n(x, y)dxdy

for bivariate function f(x, y) = yex then, by (20) in [4], we have

a1,1(f) =
e− 1

2
, a2,2(f) =

2e1/2 − e− 1
2

,

a3,3(f) =
2e1/4 − e1/2 − 1

4
, a3,4(f) =

6e1/4 − 3e1/2 − 3
4

,

a4,3(f) =
2e3/4 − e1/2 − e

4
, a4,4(f) =

6e3/4 − 3e1/2 − 3e

4
.

We recall that the Haar function is given

χm,n(x, y) =





2k x ∈ ∆+
m, y ∈ ∆n

−2k x ∈ ∆−
m, y ∈ ∆n

0 (x, y) /∈ ∆n,m

where χ1,1 ≡ 1 and the binary interval ∆n and other signs in De�nition 10 are
satis�ed. Then the Haar polynomial is:

PH(x, y) = 2.218281828− 0.210419644χ2,2(x, y) + 1.919329563χ3,3(x, y)+

+0.486540953χ3,4(x, y)− 0.033250766χ4,3(x, y)− 0.099752299χ4,4(x, y).

4. Comparison of function f(x, y) = yex with PB(x, y) and PH(x, y)
Using the following eight points, we compare f(x, y), PB(x, y), PH(x, y)

Tabl. 2. comparison of f(x, y), PB(x, y), PH(x, y)

(x, y) f(x, y) pB(x, y) pH(x, y)
(0,0) 0 0.0000003 5.846521
(0,0.1) 0.1 0.099993 5.846521
(0.1,0) 0 0.0000002 5.846521
(0.1,0.1) 0.110517 0.110583 5.846521
(0.2,0.5) 0.610701 0.616053 4.413732
(0.9,0.1) 0.245960 0.679357 2.495203
(0.2,0.9) 1.099262 1.108896 2.980944
(0.9,0.9) 2.213642 6.114214 2.628206
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Now, we compare f(x, y), PB(x, y) by using their graphs.

Fig. 5. The graph of f(x, y) on [0, 1]2

Fig. 6. The graph of PB(x, y) on [0, 1]2
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RESONANT LIQUID SLOSHING IN AN UPRIGHT
CIRCULAR TANK PERFORMING A PERIODIC MOTION

I. A.Raynovskyy, A.N.Timokha

Ðåçþìå. Âèêîðèñòîâó¹òüñÿ ñëàáî-íåëiíiéíà ìîäàëüíà òåîðiÿ Íàðiìàíî-
âà-Ìîiñ¹¹âà äëÿ àíàëiçó óñòàëåíèõ ðåçîíàíñíèõ õâèëü â âåðòèêàëüíîìó
öèëiíäðè÷íîìó ðåçåðâóàði, ÿêèé ðóõà¹òüñÿ ïåðiîäè÷íî ç ÷àñòîòîþ, áëèçü-
êîþ äî ïåðøî¨ âëàñíî¨ ÷àñòîòè êîëèâàííÿ ðiäèíè.
Abstract. A weakly-nonlinear Narimanov-Moiseev type modal theory is
used to analyse steady-state resonant waves in an upright circular tank which
moves periodically with the forcing frequency close to the lowest natural slosh-
ing frequency.

1. Introduction
The upright circular tank is relevant for spacecraft applications, the pressure-

suppression pools of Boiling Water Reactors, storage tanks, Tuned Liquid
Dampers, o�shore towers, and basins of the aqua-cultural engineering. Res-
onant sloshing due to harmonic excitations of the tank was extensively studied,
theoretically and experimentally, in [1,3,4,6]. For the longitudinal tank forcing,
steady-state planar (in the excitation plane), swirling and irregular (chaotic)
waves were detected [1, 4, 6] when the forcing frequency is close to the lowest
natural sloshing frequency. A review on sloshing due to parametric (vertical) ex-
citations is given in [3]. However, the above-mentioned industrial applications
deal, normally, with the coupled rigid tank-and-sloshing dynamics when the
tank performs complex three-dimensional motions which unnecessarily occur
in either meridional plane or vertical direction. This causes an interest to ana-
lytical studies on the resonant steady-state sloshing due to a three-dimensional
periodic tank excitation that are done in the present paper by employing the
weakly-nonlinear modal system [7].

2. Statement of the problem
An inviscid incompressible contained liquid with irrotational �ows sloshes

in an upright circular rigid tank with radius r0. The tank performs small-
magnitude prescribed periodic sway, surge, roll, and pitch motions which are
described by the r0-scaled generalised coordinates η1(t) and η2(t) (horizontal
tank motions) and angular perturbations η4(t) and η5(t) (see, �gure 1). The
yaw cannot excite sloshing within the framework of the inviscid potential �ow
model but the heave is not considered. All geometric and physical parameters

Key words. Sloshing, multimodal method; periodic solution; response curves.
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Fig. 1. The time-dependent liquid domain Q(t) con�ned by
the free surface Σ(t) and the wetted tank surface S(t). The
free-surface evolution is considered in the tank-�xed coordinate
system Oxyz whose coordinate plane Oxy coincides with the
mean (hydrostatic) free surface Σ0 and Oz is the symmetry axis.
Small-magnitude periodic tank motions are governed by the gen-
eralised coordinates η1(t) (surge), η4(t) (roll), η2(t) (sway), and
η5(t) (pitch). The mean free surface Σ0 is perpendicular to Oz

are henceforth considered scaled by r0. We introduce a small parameter 0 <
ε ¿ 1 characterising the periodic forcing, i.e. ηi(t) = O(ε), i = 1, 2, 4, 5.

Figure 1 shows the time-dependent liquid domain Q(t) with the free surface
Σ(t) (governed by the single-valued function z = ζ(r, θ, t)) and the wetted tank
surface S(t). The liquid �ow is determined by the velocity potential Φ(r, θ, z, t).
The unknowns, ζ and Φ, are de�ned in the tank-�xed Cartesian (equivalent
cylindrical) non-inertial coordinate system; they can be found from either the
corresponding free-surface problem or its equivalent variational formulation.
The latter formulation facilitates the multimodal method, which employs the
Fourier-type representations of ζ and Φ in which the time-dependent coe�cients
are interpreted as generalised coordinates and velocities. The representations
are normally based on the natural sloshing modes which are the eigenfunctions
of the spectral boundary problem

∇2ϕ = 0 in Q0,
∂ϕ

∂n
= 0 on S0,

∂ϕ

∂n
= κϕ on Σ0,

∫

Σ0

ϕdS = 0 (1)

in the mean (hydrostatic) liquid domain Q0 con�ned by the mean free surface
Σ0 and the wetted tank surface S0. The r0-scaled problem (1) has the analytical
solution [4]

ϕMi(r, z, θ) = RMi(r)ZMi(z) cosMθ
sinMθ , M = 0, . . . ; i = 1, . . . , (2a)

RMi(r) = αMiJM (kMir), ZMi(z) =
cosh(kMi(z + h))

cosh(kMih)
, (2b)

where JM (·) is the Bessel functions of the �rst kind, the radial wave numbers
kMi are determined byR′M,i(r1) = 0 and the normalising multipliers αMi follow
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from the orthogonality condition

λ(Mi)(Mj) =
∫ 1

r1

rRMi(r)RMj(r) dr = δij , i, j = 1, . . . , (3)

where δij is the Kronecker delta. The eigenvalues κMi and the natural sloshing
frequencies σMi read as

κMi = kMi tanh(kMih) and σ2
Mi = κMi ḡ/r0 = κMi g, (4)

respectively, where ḡ is the dimensional gravity acceleration.
Dealing with a small-amplitude angular tank motion requires the linearised

Stokes-Joukowski potentials Ω0i(r, z, θ), i = 1, 2, 3 which are harmonic func-
tions satisfying the Neumann boundary conditions

∂Ω01

∂n
= −(znr − rnz) sin θ,

∂Ω02

∂n
= (znr − rnz) cos θ,

∂Ω03

∂n
= 0 (5)

on Σ0 and the wetted tank surface S0, where nr and nz are the outer nor-
mal components in the r- and z- directions. This implies Ω01 = −F (r, z)
sin θ, Ω02 = F (r, z) cos θ, Ω03 = 0, where

F (r, z) = rz +
∞∑

n=1

−2Pn

k1n
R1n(r)

sinh(k1n(z + 1
2h))

cosh(1
2k1nh)

,

Pn =
∫ 1

r1

r2R1n(r) dr.

(6)

When adopting (2a) and (6), the aforementioned Fourier (modal) represen-
tation takes the form [7]

ζ(r, θ, t) =
Iθ,Ir∑

M,i

RMi(r) cos(Mθ) pMi(t) +
Iθ,Ir∑

m,i

Rmi(r) sin(mθ) rmi(t), (7a)

Φ(r, θ, z, t) = η̇1(t) r cos θ + η̇2(t) r sin θ+

+ F (r, z)[−η̇4(t) sin θ + η̇5(t) cos θ]+

+
Iθ,Ir∑

M,i

RMi(r)ZMi(z) cos(Mθ) PMi(t)+

+
Iθ,Ir∑

m,i

Rmi(r)Zmi(z) sin(mθ) Rmi(t),

(7b)

Iθ, Ir → ∞. Here and further, all capital summation letters imply changing
from zero to Iθ but the lower case indices mean changing from one to either Iθ

or Ir.
In the modal representation (7), pMi and rmi play the role of the sloshing-

related generalised coordinates but PMi and Rmi are the corresponding gen-
eralised velocities. Using the Bateman-Luke variational formulation makes it
possible to derive the Euler-Lagrange equations with respect to the generalised
coordinates and velocities. The procedure is described in [7] where the latter
equations are explicitly written down in both fully- and weakly-nonlinear forms.
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The weakly-nonlinear equations are constructed in [7] adopting the Narimanov-
Moiseev asymptotic relations

p11 ∼ r11 = O(ε1/3), p0j ∼ p2j ∼ r2j = O(ε2/3),

r1(j+1) ∼ p1(j+1) ∼ p3j ∼ r3j = O(ε), j = 1, 2, . . . , Ir; Ir →∞ (8)
(see, an extensive discussion on what these relations mean for axisymmetric
tanks in [5]). The equations take the form

p̈11 + σ2
11p11 + d1p11

(
p̈11p11 + r̈11r11 + ṗ2

11 + ṙ2
11

)

+ d2 [r11(p̈11r11 − r̈11p11) + 2ṙ11(ṗ11r11 − ṙ11p11)]

+
Ir∑

j=1

[
d

(j)
3 (p̈11p2j + r̈11r2j + ṗ11ṗ2j + ṙ11ṙ2j) + d

(j)
4 (p̈2jp11 + r̈2jr11)

+d
(j)
5 (p̈11p0j + ṗ11ṗ0j) + d

(j)
6 p̈0jp11

]
= −(η̈1 − gη5 − S1η̈5)κ11P1, (9a)

r̈11 + σ2
11r11 + d1r11

(
p̈11p11 + r̈11r11 + ṗ2

11 + ṙ2
11

)

+ d2 [p11(r̈11p11 − p̈11r11) + 2ṗ11(ṙ11p11 − ṗ11r11)]

+
Ir∑

j=1

[
d

(j)
3 (p̈11r2j − r̈11p2j + ṗ11ṙ2j − ṗ2j ṙ11) + d

(j)
4 (r̈2jp11 − p̈2jr11)

+d
(j)
5 (r̈11p0j + ṙ11ṗ0j) + d

(j)
6 p̈0jr11

]
= −(η̈2 + gη4 + S1η̈4)κ11P1; (9b)

p̈2k + σ2
2kp2k + d7,k(ṗ2

11 − ṙ2
11) + d9,k(p̈11p11 − r̈11r11) = 0, (10a)

r̈2k + σ2
2kr2k + 2d7,kṗ11ṙ11 + d9,k(p̈11r11 + r̈11p11) = 0, (10b)

p̈0k + σ2
0kp0k + d8,k(ṗ2

11 + ṙ2
11) + d10,k(p̈11p11 + r̈11r11) = 0; (10c)

p̈3k + σ2
3kp3k + d11,k

[
p̈11(p2

11 − r2
11)− 2p11r11r̈11

]

+ d12,k

[
p11(ṗ2

11 − ṙ2
11)− 2r11ṗ11ṙ11

]

+
Ir∑

j=1

[
d

(j)
13,k(p̈11p2j − r̈11r2j) + d

(j)
14,k(p̈2jp11 − r̈2jr11)

+d
(j)
15,k(ṗ2j ṗ11 − ṙ2j ṙ11)

]
= 0, (11a)

r̈3k + σ2
3kr3k + d11,k

[
r̈11(p2

11 − r2
11) + 2p11r11p̈11

]

+ d12,k

[
r11(ṗ2

11 − ṙ2
11) +2p11ṗ11ṙ11]

+
Ir∑

j=1

[
d

(j)
13,k(p̈11r2j + r̈11p2j) + d

(j)
14,k(p̈2jr11 + r̈2jp11)

+d
(j)
15,k(ṗ2j ṙ11 + ṙ2j ṗ11)

]
= 0, k = 1, ..., Ir; (11b)
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p̈1n + σ2
1np1n + d16,n(p̈11p

2
11 + r11p11r̈11) + d17,n(p̈11r

2
11 − r11p11r̈11)

+ d18,np11(ṗ2
11 + ṙ2

11) + d19,n(r11ṗ11ṙ11 − p11ṙ
2
11)

+
Ir∑

j=1

[
d

(j)
20,n(p̈11p2j + r̈11r2j) + d

(j)
21,n(p11p̈2j + r11r̈2j)

+d
(j)
22,n(ṗ11ṗ2j + ṙ11ṙ2j) + d

(j)
23,np̈11p0j + d

(j)
24,np11p̈0j + d

(j)
25,nṗ11ṗ0j

]

= −(η̈1 − gη5 − Snη̈5)κ1n Pn, (12a)

r̈1n + σ2
1nr1n + d16,n(r̈11r

2
11 + r11p11p̈11) + d17,n(r̈11p

2
11 − r11p11p̈11)

+ d18,nr11(ṗ2
11 + ṙ2

11) + d19,n(p11ṗ11ṙ11 − r11ṗ
2
11)

+
Ir∑

j=1

[
d

(j)
20,n(p̈11r2j − r̈11p2j) + d

(j)
21,n(p11r̈2j − r11p̈2j)

+d
(j)
22,n(ṗ11ṙ2j − ṙ11ṗ2j) + d

(j)
23,nr̈11p0j + d

(j)
24,nr11p̈0j + d

(j)
25,nṙ11ṗ0j

]

= −(η̈2 + gη4 + Snη̈4)κ1nPn, n = 2, ..., Ir. (12b)

They couple all generalised coordinates up to the O(ε)-order as Ir → ∞;
rkl ∼ pkl = o(ε), k ≥ 4 and, therefore, are neglected. The hydrodynamic
coe�cients of (9)�(12) are functions of the nondimensional liquid depth h. The
system needs either initial or periodicity condition that determines transient
and steady-state solutions, respectively.

3. Steady-state (periodic) resonant solutions
Applicability of (9)�(12) for studying the steady-state (periodic) waves re-

quires that
� the generalised coordinates ηi(t), i = 1, 2, 4, 5, are the given 2π/σ-perio-

dic functions,

ηi(t) = η
(0)
ia +

∞∑

k=1

[
η

(k)
ia cos(kσt) + µ

(k)
ia sin(kσt)

]
, η

(k)
ia ∼ µ

(k)
ia = O(ε), (13)

where σ is the circular forcing frequency; the lowest-order harmonic com-
ponent should not be zero, i.e.

∑

i=1,2,4,5

|η(1)
ia |+ |µ(1)

ia | 6= 0; (14)

� the forcing frequency σ is close to the lowest natural sloshing frequency
σ11 so that the so-called Moiseev detuning condition

σ̄2
11 − 1 = O(ε2/3), σ̄11 = σ11/σ (15)

is satis�ed;
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� there are no resonance ampli�cations of pmj , rmj , m j 6= 1 that implies
m− σ̄1k ≥ O(1), σ̄mi = σmi/σ, m, k ≥ 2;

σ̄2
0i − 4 ∼ σ̄2

2i − 4 ∼ σ̄2
3i − 9 ∼ σ̄2

1(i+1) − 9 ≥ O(1), i ≥ 1;
(16)

the second row means that there is no the so-called secondary resonance
[2].

Our goal consists of constructing an asymptotic periodic solution of (9)�(12)
and (13). The right-hand sides of (9) are

σ2P1κ11

∞∑

k=1

[
(kη

(k)
1a − (kS1 − g/σ2)η(k)

5a ) cos(kσt)

+ (kµ
(k)
1a − (kS1 − g/σ2)µ(k)

5a ) sin(kσt)
]
,

σ2P1κ11

∞∑

k=1

[
(kη

(k)
2a + (kS1 − g/σ2)η(k)

4a ) cos(kσt)

+ (kµ
(k)
2a + (kS1 − g/σ2)µ(k)

4a ) sin(kσt)
]
.

Because of (15), neglecting the higher-order terms, o(ε), allows for replacing
g/σ2 → g/σ2

11 and, therefore, amplitudes of the �rst Fourier harmonics are

εx = P1κ11(η
(1)
1a − (S1 − g/σ2

11)η
(1)
5a ),

ε̄x = P1κ11(µ
(1)
1a − (S1 − g/σ2

11)µ
(1)
5a ),

ε̄y = P1κ11(η
(1)
2a + (S1 − g/σ2

11)η
(1)
4a ),

εy = P1κ11(µ
(1)
2a + (S1 − g/σ2

11)µ
(1)
4a ).

(17)

Here, εx and ε̄x appear in the front of cosσt and sinσt and imply the forcing
components in the Ox direction, but ε̄y and εy correspond to the cosσt and
sinσt harmonics along the Oy axis. Because of (14), rotating the Oxy frame
around Oz can always help getting the non-zero �rst-harmonic forcing com-
ponent along Ox, i.e. ε2x + ε̄2x 6= 0. Furthermore, the periodicity condition is
de�ned within to an arbitrary phase shift and one can assume, without loss of
generality, that

εx > 0, ε̄x = 0. (18)
Henceforth, we follow the Bubnov-Galerking procedure [2] by posing the

lowest-order asymptotic solution component
p11(t) = a cos(σt)+ ā sin(σt)+O(ε), r11(t) = b̄ cos(σt)+b sin(σt)+O(ε), (19)

where a, ā, b̄, and b are of O(ε1/3). The second- and third-order generalised
coordinates can be found from (10) and (11), (12), respectively. This gives, in
particular,

p0k(t) = s0k(a2 + ā2 + b2 + b̄2)

+ s1k

[
(a2 − ā2 − b2 + b̄2) cos(2σt) + 2(aā + bb̄) sin(2σt)

]
+ o(ε), (20a)
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p2k(t) = c0k(a2 + ā2 − b2 − b̄2)

+ c1k

[
(a2 − ā2 + b2 − b̄2) cos(2σt) + 2(aā− bb̄) sin(2σt)

]
+ o(ε), (20b)

r2k(t) = 2c0k(ab̄ + bā)

+ 2c1k

[
(ab̄− bā) cos(2σt) + (ab + āb̄) sin(2σt)

]
+ o(ε),

(20c)

where

s0k = 1
2

(
d10,k − d8,k

σ̄2
0k

)
, s1k =

d10,k + d8,k

2(σ̄2
0k − 4)

, σ̄0k =
σ0k

σ
,

c0k = 1
2

(
d9,k − d7,k

σ̄2
2k

)
, c1k =

d9,k + d7,k

2(σ̄2
2k − 4)

, σ̄2k =
σ2k

σ
.

(21)

Substituting (19) and (20) into (9) and gathering the �rst harmonic terms,
cosσt and sinσt, lead to the solvability (secular) equations




1© : a
[
(σ̄2

11 − 1) + m1(a2 + ā2 + b̄2) + m3b
2
]
+ (m1 −m3)āb̄b = εx,

2© : b
[
(σ̄2

11 − 1) + m1(b2 + b̄2 + ā2) + m3a
2
]
+ (m1 −m3)āab̄ = εy,

3© : ā
[
(σ̄2

11 − 1) + m1(a2 + ā2 + b2) + m3b̄
2
]
+ (m1 −m3)ab̄b = 0,

4© : b̄
[
(σ̄2

11 − 1) + m1(b2 + b̄2 + a2) + m3ā
2
]
+ (m1 −m3)āab = ε̄y

(22)

with respect to a, ā, b̄ and b. The coe�cients m1 and m3 are computed by the
formulas

m1 = −1
2d1 +

Ir∑

j=1

[
c1j

(
1
2d

(j)
3 − 2d

(j)
4

)

+ s1j

(
1
2d

(j)
5 − 2d

(j)
6

)
− s0jd

(j)
5 − c0jd

(j)
3

]
,

(23a)

m3 = 1
2d1 − 2d2 +

Ir∑

j=1

[
c1j

(
3
2d

(j)
3 − 6d

(j)
4

)

+ s1j

(
−1

2d
(j)
5 + 2d

(j)
6

)
− s0jd

(j)
5 + c0jd

(j)
3

]
.

(23b)

After �nding a, ā, b̄ and b from (22), the second- and third-order components
of the asymptotic solution are fully determined. Coe�cients in this solution as
well as m1 and m3 in (22) are functions of h, r1 and the forcing frequency σ.
Utilising (15) shows that the latter dependence can be neglected by substituting
σ = σ11 into the corresponding expressions. Dependence on σ remains only in
the (σ̄2

11 − 1)-quantity of (22).
Calculations show that (16) is ful�lled for fairy deep liquid depths, 1.2 . h,

and the conditions
O(1) = m1 < 0 and O(1) = m1 + m3 > 0 (24)

are satis�ed. This means, in particular, that m3 > 0 and m1 6= m3.
One can follow [2] to study the stability of the asymptotic solution by using

the linear stability analysis and the multi-timing technique. For this purpose,
we introduce the slowly varying time τ = ε2/3σt/2 (the order ε2/3 is chosen to
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match the lowest asymptotic terms in the multi-timing technique), the Moiseev
detuning (15), and express the in�nitesimally perturbed solution

p11 = (a + α(τ)) cos σt + (ā + ᾱ(τ)) sin σt + o(ε1/3),

r11 = (b̄ + β̄(τ)) cos σt + (b + β(τ)) sin σt + o(ε1/3),
(25)

where a, ā, b and b̄ are known and α, ᾱ, β and β̄ are their relative perturbations
depending on τ . Inserting (25) into the Narimanov-Moiseev modal equations,
gathering terms of the lowest asymptotic order and keeping linear terms in
α, ᾱ, β and β̄ lead to the following linear system of ordinary di�erential equa-
tions

dc
dτ

+ Cc = 0, (26)

where c = (α, ᾱ, β, β̄)T and the matrix C has the elements

c11 = −[2aām1 + (m1 −m3) bb̄];

c12 = −[(σ̄2
11 − 1) + m1(a2 + 3ā2 + b2) + m3 b̄2],

c13 = −[2ābm1 + (m1 −m3) ab̄]; c14 = −[2āb̄m3 + (m1 −m3) ab],

c21 = (σ̄2
11 − 1) + m1(3a2 + ā2 + b̄2) + m3 b2; c22 = 2aām1 + (m1 −m3) bb̄,

c23 = 2abm3 + (m1 −m3) āb̄; c24 = 2ab̄m1 + (m1 −m3) āb,

c31 = 2m1 ab̄ + (m1 −m3) bā; c32 = 2m3 āb̄ + (m1 −m3) ab,

c33 = 2m1 bb̄ + (m1 −m3) aā; c34 = (σ̄2
11 − 1) + m1(b2 + 3b̄2 + a2) + m3 ā2,

c41 = −[2m3 ab + (m1 −m3) āb̄]; c42 = −[2āb m1 + (m1 −m3) ab̄],

c43 = −[(σ̄2
11 − 1) + m1(3b2 + b̄2 + ā2) + m3 a2];

c44 = −[2bb̄ m1 + (m1 −m3) aā].

The instability of the asymptotic solution can be evaluated by studying (26).
Its fundamental solution depends on the eigenvalue problem det[λE + C] = 0,
where E is the identity matrix. Computations give the following characteristic
polynomial

λ4 + c1λ
2 + c0 = 0, (27)

where c0 is the determinant of C and c1 is a complicated function of the elements
of C. As discussed in [2], the stability requires c0 > 0, c1 > 0 and c2

1 − 4c0 > 0.
When at least one of the inequalities is not ful�lled, the steady-state wave
regime associated with the dominant amplitudes a, ā, b and b̄ is not stable.

4. Classification of steady-state (periodic) solutions
The steady-state (periodic) sloshing can be classi�ed by analysing the lowest-

order component (19) which gives the dominant wave contribution. The lowest-
order amplitudes a, ā, b and b̄ follow from the secular system (22) which does
not involve the super-harmonic components from (13). This means that the
resonant sloshing regimes are, within to the higher-order terms, the same as if
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the tank performs the arti�cial horizontal harmonic motions
(κ11P1) η1(t) = εx cosσt,

(κ11P1) η2(t) = ε̄y cosσt + εy sinσt, η4(t) = η5(t) = 0
(28)

that de�ne, by accounting for (18), either longitudinal (εy = 0) or elliptic
(rotary) (εy 6= 0) harmonic tank motion. The latter occurs along the trajectory

ε2y + ε̄2y
ε2x

x2 + y2 − 2
ε̄y

εx
xy = ε2y. (29)

For the longitudinal tank motions (εy = 0), one can rotate the Oxy frame
around Oz to get the arti�cial tank vibrations by (28) occurring along the
Ox axis. The forcing amplitudes become then εx > 0 and ε̄y = εy = 0 and
the secular system (22) has only two analytical solutions well known from, for
example, [4]. The �rst solution implies the so-called planar steady-state wave
(ā = b̄ = b = 0). The nonzero lowest-order amplitude parameter a is governed
by

a
[
(σ̄2

11 − 1) + m1a
2
]

= εx. (30)
This solution is characterised by the zero transverse wave component, namely,
rmi(t) ≡ 0. The second solution corresponds to swirling whose longitudinal
(a 6= 0) and transverse (b 6= 0) amplitude parameters come from the system





a
[
(σ̄2

11 − 1) + (m1 + m3)a2
]

=
m1

m1 −m3
εx,

b2 = −(σ̄2
11 − 1) + m3a

2

m1
> 0.

(31)

Why the solution ā = b̄ = 0, ab 6= 0 is called swirling is discussed in [4].
When the arti�cial horizontal harmonic motions occur along an elliptic tra-

jectory (εy 6= 0), rotating the Oxy frame around Oz helps superposing Ox with
the major axis of the ellipse. This new position of the Oxy frame implies that

ε̄y = 0, 0 < εy ≤ εx 6= 0 (32)

in (22). The following equalities

ā · 1©− a · 3© = b̄ · 2©− b · 4©
= (m1 −m3)[aā(b̄2 − b2) + b̄b(ā2 − a2)] = āεx = b̄εy,

(33a)

b̄ · 1©− a · 4© = ā · 2©− b · 3©
= (m1 −m3)[bā(b̄2 − a2) + b̄a(ā2 − b2)] = b̄εx = āεy,

(33b)

b · 1©− a · 2© = (m1 −m3)(a2 − b2)(ab− āb̄) = bεx − aεy (33c)
can then be treated as solvability conditions of (22).

When 0 < εy < εx, the homogeneous linear system (33a)�(33b) with respect
to ā and b̄ has only trivial solution ā = b̄ = 0. Equation (33c) shows then
that a b 6= 0 (and a 6= b) and, therefore, the only nonzero amplitudes a and b
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always determine swirling. The amplitudes are governed by (22) which can be
rewritten in the equivalent form





b
[
(m1 −m3)b2 +

(εx

a
− (m1 −m3)a2

)]
= εy,

(σ̄2
11 − 1) =

εx

a
−m1a

2 −m3b
2, a 6= 0.

(34)

The �rst equality is a depressed cubic with respect to b whose coe�cient at
the linear term is a function of a. The second equality computes the forcing
frequency, σ/σ11 (σ̄2

11−1), as a function of a and b. A numerical procedure may
suggest varying a in an admissible range, solving the depressed cubic (�nding
b = b(a)), and computing σ/σ11 as a function a and b = b(a). When solving
the depressed cubic, one should check for the discriminant

∆ = −4
(

εx

a (m1 −m3)
− a2

)3

− 27
(

εy

m1 −m3

)2

, 0 < εy < εx. (35)

Cartano's theorem says that, (i) if ∆ > 0, then there are three distinct real
roots for b, (ii) if ∆ = 0, then the equation has at least one multiple root and
all its roots are real, and (iii) if ∆ < 0, then the equation has one real root and
two nonreal complex conjugate roots.

When considering ∆ as a function of a, a simple analysis shows that, if
m1 − m3 < 0, there exists only a negative real root a∗ < 0 of ∆(a∗) = 0 so
that ∆(a) > 0 for a < a∗ and 0 < a (three real solutions) but ∆(a) < 0 for
a∗ < a < 0 (a unique real solution). Analogously, if m1 −m3 > 0, there exists
only a positive real root a∗ > 0 of ∆(a∗) = 0 so that ∆(a) > 0 for a < 0 and
a∗ < a but ∆(a) < 0 for 0 < a < a∗.

When ε̄y = 0, εy = εx 6= 0 (arti�cial rotary harmonic motions of the tank),
equations (33a) and (33b) are unable to derive that ā and b̄ are zeros but
deduce, instead, ā = b̄ = c. The latter makes 3© ≡ 4© in (22). By taking the
sum 1© + 2© and the di�erence 1© − 2©, we transform (22) to the form





(a + b)
{
(σ̄2

11 − 1) + m1(a2 + b2)+
+(3m1 −m3)c2 − (m1 −m3)ab

}
= 2ε,

(a− b)
[
(σ̄2

11 − 1) + m1(a2 + b2)+
+(m1 + m3)c2 + (m1 −m3)ab

]
= 0,

c
[
(σ̄2

11 − 1) + m1(a2 + b2) + (m1 + m3)c2 + (m1 −m3)ab
]

= 0,

(36)

in which the two homogeneous equations contain identical expressions in the
square bracket. These expressions are multiplied by (a− b) and c, respectively.

We adopt a+ = 1
2(a + b), a− = 1

2(a − b) instead of a and b. When both a−
and c are zeros, we arrive at

ā = b̄ = 0, a+ = a = b, a+

[
(σ̄2

11 − 1) + (m1 + m3)a2
+

]
= ε (37)

which imply rotary (circular swirling) waves characterised by equal longitu-
dinal (along Ox) and transverse (along Oy) amplitude components, p11(t) =
a+ cos(σt)+O(ε), r11(t) = a+ sin(σt)+O(ε). The rotary waves are co-directed
with the rotary tank motion.
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When either a− 6= 0 or c 6= 0, the square bracket expression of (36) must be
zero. This makes the second and third equalities of (36) automatically satis�ed
and, therefore, three amplitude parameters a+, a− and c should be found from
the two equalities





a+

[
(σ̄2

11 − 1) + 4m1a
2
+

]
= − m1 + m3

2(m1 −m3)
ε,

a2
− + c2 = −(σ̄2

11 − 1) + (3m1 −m3)a2
+

(m1 + m3)
> 0,

(38)

which de�ne the following lowest-order steady-state solution component
p11(t) = (a+ + a−) cos(σt) + c sin(σt) + O(ε),

r11(t) = (a+ − a−) sin(σt) + c cos(σt) + O(ε).
(39)

The amplitude a+ can be found from the �rst equation of (38) but the am-
plitudes a− and c are not uniquely de�ned. Only the sum a2− + c2 can be
found for any �xed pair (σ̄2

11, a+) from the �rst cubic equation. This de�nes
a manifold a+ = a+(σ/σ11), a2− + c2 = F (σ/σ11, a+) in the four-dimensional
space (σ/σ11, a+, a−, c). Numerical analysis of the solution (39) shows that it
is unstable on the aforementioned manifold due to c0 = 0 in the characteristic
equation (27).

When c = 0, system (38) de�nes the three-dimensional response curves a+ =
a+(σ/σ11), a− = a−(σ/σ11) which implies the solution

p11(t) = (a+ + a−) cos(σt) + O(ε), r11(t) = (a+ − a−) sin(σt) + O(ε) (40)

which has the same form as for the elliptically-excited swirling with εy < εx.

5. Conclusions
By using the Narimanov-Moiseev type modal theory [7], the steady-state

(periodic) resonant waves in an upright circular cylindrical tank with a fairly
deep liquid depth are analysed when the tank performs an arbitrary small-
magnitude sway-surge-pitch-roll periodic motion. The forcing frequency is close
to the lowest natural sloshing frequency. The analysis shows that, within to
the higher-order terms, the resonant sloshing is the same as that due to either
longitudinal or elliptic/rotary horizontal harmonic tank motions. The longitu-
dinal case is well known from the literature. Planar (in the excitation plane)
and swirling waves were established and described. In the present paper, the
cases of elliptic and rotary excitations are studied to show that they always
lead to swirling, which can be either co- or counter-directed with respect to the
forcing direction. The co-directed wave converts then to the rotary wave regime
when the elliptic forcing tends to the rotary one. The e�ective frequency range
of the stable counter-directed swirling becomes unstable in this limit case.

The second author acknowledges the �nancial support of the Centre of Au-
tonomous Marine Operations and Systems (AMOS) whose main sponsor is the
Norwegian Research Council (Project number 223254�AMOS).

81



I. A.RAYNOVSKYY, A.N.TIMOKHA

Bibliography
1. AbramsonH.N. Some studies of nonlinear lateral sloshing in rigid containers /H.N.Ab-

ramson, W.H.Chu, D.D.Kana // Journal of Applied Mechanics. � 1966. � Vol. 33. �
P. 66-74.

2. FaltinsenO.M. Resonant three-dimensional nonlinear sloshing in a square base basin
/O.M.Faltinsen, O. F.Rognebakke, A.N.Timokha // Journal of Fluid Mechanics. �
2003. � Vol. 487. � P. 1-42.

3. IbrahimR.A. Recent advances in physics of �uid parametric sloshing and related prob-
lems /R.A. Ibrahim // Journal of Fluids Engineering. � 2015. � Vol. 137. � ID 090801-1.

4. Lukovsky I. A. Nonlinear Dynamics: Mathematical Models for Rigid Bodies with a Liquid
/ I. A. Lukovsky. � De Gruyter, 2015.

5. Lukovsky I. Combining Narimanov�Moiseev' and Lukovsky�Miles' schemes for nonlinear
liquid sloshing / I. Lukovsky, A.Timokha // Journal of Numerical and Applied Mathe-
matics. � 2011. � Vol. 105. � P. 69-82.

6. Royon-LebeaudA. Liquid sloshing and wave breaking in circular and square-base cylin-
drical containers /A.Royon-Lebeaud, E.Hop�nger, A.Cartellier // Journal of Fluid Me-
chanics. � 2007. � Vol. 577. � P. 467-494.

7. TimokhaA.N. The Narimanov�Moiseev modal equations for sloshing in an annular tank
/A.N.Timokha //Proceedings of the Institute of Mathematics of the NASU. � 2015. �
Vol. 12, �5. � P. 122-147.

I. A.Raynovskyy,
Institute of Mathematics,
National Academy of Sciences,
3, Tereschenkivs'ka Str., Kyiv, 01004, Ukraine;
A.N.Timokha,
Centre for Autonomous Marine Operations and Systems,
Department of Marine Technology,
Norwegian University of Science and Technology,
NO-7491, Trondheim, Norway.

Received 11.05.2016

82



Æóðíàë îá÷èñëþâàëüíî¨ 2016
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (122)

Journal of Computational
& Applied Mathematics

UDC 517.5

THE BEST M-TERM TRIGONOMETRIC APPROXIMATIONS
OF CLASSES OF (ψ, β)-DIFFERENTIABLE PERIODIC
MULTIVARIATE FUNCTIONS IN THE SPACE Lψ

β,1

K.V. Shvai

Ðåçþìå. Âñòàíîâëåíî ïîðÿäêîâi îöiíêè íàéêðàùèõ M�÷ëåííèõ òðèãîíî-
ìåòðè÷íèõ íàáëèæåíü ïåðiîäè÷íèõ ôóíêöié Dψ

β ó ïðîñòîði Lq, 1 < q ≤ 2.
Âèêîðèñòîâóþ÷è îäåðæàíi ðåçóëüòàòè, âñòàíîâëåíî ïîðÿäêîâi ñïiââiäíî-
øåííÿ öèõ âåëè÷èí äëÿ êëàñiâ Lψ

β,1.
Abstract. Obtained here are the order estimates of the best M�term
trigonometric approximations of periodic functions Dψ

β in the space Lq, 1 <
q ≤ 2. The results are applied to establish the order estimates of the same
quantities for classes Lψ

β,1.

1. Introduction
Let us introduce all necessary denotations and give a de�nition of the ap-

proximative characteristic to investigate.
Let Lq (πd) , 1 ≤ q ≤ ∞, � be the space of functions f, 2π�periodic by each

variable, with the �nite norm

‖f‖Lq(πd) = ‖f‖q =
(

(2π)−d

∫

πd

|f(x)|qdx

) 1
q

, 1 ≤ q < ∞,

‖f‖L∞(πd) = ‖f‖∞ = ess sup
x∈πd

|f(x)|,

where x = (x1, . . . , xd) is the element of Euclidean space Rd, d ≥ 1, and πd =
d∏

j=1
[−π, π]. Suppose further that for the functions f ∈ Lq (πd) the condition

π∫

−π

f(x)dxj = 0, j = 1, d,

holds.
Let us consider the Fourier series for the function f ∈ L1 (πd)∑

k∈Zd

f̂(k)ei(k,x),

Key words. The best trigonometric approximations; Bernoulli kernel; order estimates;
Fourier series.
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where
f̂ (k) = (2π)−d

∫

πd

f(t)e−i(k,t)dt

are the Fourier coe�cients of the function f, (k, x) = k1x1 + . . . + kdxd.
Let ψj(·) 6= 0 be arbitrary functions of the natural argument, βj ∈ R, j =

1, d. Assume that the series

∑

k∈Z̊d

d∏

j=1

ei
πβj
2

sgnkj

ψj(|kj |) f̂(k)ei(k,x),

where Z̊d = (Z \ {0})d , are the Fourier series of some summable on πd function.
Following O. I. Stepanets [1, ñ. 25], (see also [2, c. 132]), let us call it (ψ, β)�
derivative of the function f and denote it as fψ

β . A set of functions f , for which
(ψ, β)�derivatives exist, is denoted as Lψ

β .

If the condition
∥∥∥fψ

β (·)
∥∥∥

p
≤ 1, 1 ≤ p ≤ ∞, holds then f ∈ Lψ

β,p.

The article deals with the best M�term trigonometric approximations of the
functions Dψ

β whose Fourier series are written in a form

∑

k∈Z̊d

d∏

j=1

ψj (|kj |) ei
πβj
2

sgnkjei(k,x).

Note that if ψj (|kj |) = |kj |−rj , rj > 0, kj ∈ Z\{0}, j = 1, d, Dψ
β is a multi-

variate analogue of the Bernoulli kernel (see, e.g., [3, c. 31]).
Each of the functions f ∈ Lψ

β,p can be presented in a form of convolution

f(x) =
(
ϕ ∗Dψ

β

)
(x) = (2π)−d

∫

πd

ϕ(x− t)Dψ
β (t)dt, (1)

where ‖ϕ‖p ≤ 1, and the function ϕ(·) almost everywhere coincides with fψ
β .

As an apparatus of the approximation we will use trigonometric polynomials
of the form

P (θM ; x) =
∑

k∈θM

cke
i(k,x),

where θM is an arbitrary set of M di�erent vectors k = (k1, . . . kd) and ck ∈ C.
For f ∈ Lq (πd) , 1 ≤ q ≤ ∞, the quantity

eM (f)q = inf
θM

inf
P (θM ;·)

‖f(·)− P (θM ; ·) ‖q. (2)

is called the best M�term trigonometric approximation of the function f. And
the quantity

e⊥M (f)q = inf
θM

∥∥∥∥∥∥
f(·)−

∑

k∈θM

f̂ (k) ei(k,x)

∥∥∥∥∥∥
q

, (3)
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is called the best orthogonal trigonometric approximation of the function f. It
is obvious that the relation

eM (f)q ≤ e⊥M (f)q, 1 ≤ q ≤ ∞, (4)
holds. If F ⊂ Lq is some functional class then denote

eM (F )q = sup
f∈F

eM (f)q, (5)

and, accordingly,
e⊥M (F )q = sup

f∈F
e⊥M (f)q. (6)

The quantity (2) appeared at �rst in the paper of S. B. Stechkin [4] in
formulating an absolute convergence criterion for orthogonal series. Later the
quantity (5) for classes of periodic functions of one and many variables was
investigated in the papers of V. N. Temlyakov [3], [5�7], E. S. Belinskii [8�10,12],
A. S. Romanyuk [13�20], A. S. Fedorenko [21�23], N. M. Konsevych [24, 25],
V. V. Shkapa [26] and others.

The quantities (3) and (6) were considered by E. S. Belinskii (see, e.g., [12]),
and later their exploration was further developed in the works of many authors.
The detailed bibliography can be found in [20,27].

The results of the article are formulated in order-relation terms. So, further
for the quantities A and B under the notation A ¿ B we will understand the
existance of a positive constant C1 such that A ≤ C1B. If the conditions A ¿ B
and B ¿ A hold then we write A ³ B. All constants in order relations can
depend only on the parameters that are in the de�nitions of class and metric
in which the approximation is carried out, and on the dimension of the space
Rd.

2. Auxiliary statements
To formulate and prove the results of the article some notations and auxiliary

statements will be needed.
Let D be a set of functions ψ(·) of natural argument that satisfy the condi-

tions
1) ψ(·) are positive and nonincreasing;
2) ∃M > 0 such that ∀l ∈ N ψ(l)

ψ(2l) ≤ M.

Note that to the indicated set of functions belong, in particular, functions
ψ(|k|) = |k|−r , ψ(|k|) = |k|−r lnα (|k|+ 1) , r > 0, k ∈ Z\{0}, α ∈ R and
others.

Further, let us put into conformity to each vector s = (s1, . . . , sd), sj ∈
N ∪ {0}, j = 1, d, a set

ρ(s) =
{
k = (k1, . . . , kd) :

[
2sj−1

] ≤ |kj | < 2sj , j = 1, d
}

,

where [·] is the whole part, and for f ∈ L1 (πd) put

δs(f, x) =
∑

k∈ρ(s)

f̂(k)ei(k,x),
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where f̂(k) are the Fourier coe�cients of this function. Note that the uni�ca-
tions of "blocks" ρ(s), (s, 1) = s1 + . . . + sd < n, n ∈ N, form a set Qn that is
called "step-hyperbolic cross" [3, ñ. 7]. The quantity of points in this set is of
the order 2nnd−1 [3, ñ. 70].

The following propositions hold.
Proposition 7. [27] Let 1 < q < ∞, ψj ∈ D, βj ∈ R, j = 1, d, and, besides,
there exists ε > 0 such that ψj (|kj |) |kj |1−

1
q
+ε are nonincreasing. Then for all

natural M and n that satisfy the condition M ³ 2nnd−1, the following relations
hold

Φ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
¿ e⊥M

(
Dψ

β

)
q
¿

¿ Ψ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
,

Φ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
¿ e⊥M

(
Lψ

β,1

)
q
¿

¿ Ψ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
.

where

Φ(n) = min
(s,1)=n

d∏

j=1

ψj (2sj ), Ψ(n) = max
(s,1)=n

d∏

j=1

ψj (2sj ).

Proposition 8. [3, c. 28] For an arbitrary function f ∈ Lq(πd),
1 < q < p ≤ ∞, holds

‖f‖q
q À

∑
s

‖δs(f, ·)‖q
p · 2

(s,1)
(

1
p
− 1

q

)
q
.

To make further speculations we need one more relation which follows from
a more general result of S. N. Nikolskii (see, e.g., [28, c. 25]).
Proposition 9. For all functions f ∈ Lq(πd), 1 ≤ q < ∞, holds

eM (f)q = inf
θM

sup
P∈L⊥(θM ),

‖P‖q′≤1

∣∣∣∣∣∣

∫

πd

f(x)P (x)dx

∣∣∣∣∣∣
,

where L⊥(θM ) is a set of functions that is orthogonal to the subset of trigono-
metric polynomials with the numbers of harmonics from the set θM , and 1

q + 1
q′ =

1.

3. The best M-term trigonometric approximations
The following statement holds.

Theorem 1. Let 1 < q ≤ 2, ψj ∈ D, βj ∈ R, j = 1, d, and, besides, there
exists ε > 0 such that ψj (|kj |) |kj |1−

1
q
+ε are nonincreasing. Then for arbitrary

natural M and n that satisfy condition M ³ 2nnd−1, we have the estimate

Φ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
¿ eM

(
Dψ

β

)
q
¿
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¿ Ψ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
, (7)

where

Φ(n) = min
(s,1)=n

d∏

j=1

ψj (2sj ), Ψ(n) = max
(s,1)=n

d∏

j=1

ψj (2sj ).

Proof. The upper estimate follows from (4) and proposition 7, that is

eM

(
Dψ

β

)
q
≤ e⊥M

(
Dψ

β

)
q
¿

¿ Ψ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
, 1 < q ≤ 2. (8)

Let us go to the establishment of the lower estimate in (7). For the given
M let us choose n so that the relation M ³ 2nnd−1 holds. Note that the
consideration of the case β = 0 is su�cient to receive a corresponding estimate.

Let

Dψ(x) = Dψ
0 (x) = 2d

∑
s

∑

k∈ρ+(s)

d∏

j=1

ψj (kj) cos kjxj ,

where ρ+(s) = {k = (k1, . . . , kd) :
[
2sj−1

] ≤ kj < 2sj , j = 1, d
}

. By S we de-
note a set of vectors s ∈ Nd, such that (s, 1) = n and |θM ∩ ρ+(s)| ≤ 1

2 |ρ+(s)|
hold. Then, using proposition 8 (if p = 2), we get

I1 =
∥∥∥Dψ

β (·)− P (θM ; ·)
∥∥∥

q
À

À
(∑

s

∥∥∥δs

(
Dψ(·)− P (θM ; ·)

)∥∥∥
q

2
· 2(s,1)

(
1
2
− 1

q

)
q

) 1
q

À

À 2n
(

1
2
− 1

q

) 
 ∑

(s,1)=n

∥∥∥δs

(
Dψ(·)− P (θM ; ·)

)∥∥∥
q

2




1
q

À

À 2n
(

1
2
− 1

q

) 
∑

s∈S

∥∥∥∥∥∥
∑

k∈ρ+(s)

(
Dψ(·)− P (θM ; ·)

)
∥∥∥∥∥∥

q

2




1
q

.

Further, according to the Parseval equality, we can write

I1 À 2n
(

1
2
− 1

q

)



∑

s∈S


 ∑

k∈ρ+(s)




d∏

j=1

ψj (kj)




2


q
2



1
q

À

À 2n
(

1
2
− 1

q

) 
∑

s∈S


 min

(s,1)=n

d∏

j=1

ψj (2sj )




q

2(s,1) q
2




1
q

À

À 2n
(

1
2
− 1

q

)
Φ(n)

(
2

nq
2 |S|

) 1
q À
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À 2n
(

1
2
− 1

q

)
Φ(n)2

n
2 n

d−1
q = Φ(n)2n

(
1− 1

q

)
n

d−1
q (9)

So, taking into account that M ³ 2nnd−1, from (9) we receive

eM

(
Dψ

β

)
q
À Φ(n)M1− 1

q (log M)2(d−1)
(

1
q
− 1

2

)
, 1 < q ≤ 2. (10)

The lower estimate is proven. The relation (7) follows from (8) and (10).
The theorem is proven.

Remark 2. In the case ψj (|kj |) = |kj |−rj , rj > 1− 1
q , 1 ≤ q ≤ 2, kj ∈ Z\{0},

j = 1, d, corresponding results were obtained by E. S. Belinskii [8, 9].
Further, by using the lower estimate established in theorem 1, we get es-

timates of the best M�term trigonometric approximations for the classes of
functions Lψ

β,1.
The theorem holds.

Theorem 2. Let 1 < q ≤ 2, ψj ∈ D, βj ∈ R, j = 1, d, and, besides, there
exists ε > 0 such that ψj (|kj |) |kj |1−

1
q
+ε are nonincreasing. Then for arbitrary

natural M and n that satisfy condition M ³ 2nnd−1, the relation holds

Φ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
¿ eM

(
Lψ

β,1

)
q
¿

¿ Ψ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
.

(11)

Proof. The upper estimate follows from the relation (4) and the already
known result for the best orthogonal trigonometric approximations. Given
proposition 7 we get

eM

(
Lψ

β,1

)
q
¿ e⊥M

(
Lψ

β,1

)
q
¿

¿ Ψ(n)M1− 1
q (log M)2(d−1)

(
1
q
− 1

2

)
, 1 < q ≤ 2.

Let us obtain the lower estimate. By virtue of proposition 9 and (1) we can
write

eM

(
Lψ

β,1

)
q

= sup
f∈Lψ

β,1

inf
θM

sup
P ψ

β ∈L⊥(θM ),

‖P ψ
β ‖q′≤1

∣∣∣∣∣∣

∫

πd

f(x)Pψ
β (x)dx

∣∣∣∣∣∣
=

= sup
‖ϕ‖1≤1

inf
θM

sup
P ψ

β ∈L⊥(θM ),

‖P ψ
β ‖q′≤1

∣∣∣∣∣∣

∫

πd


(2π)−d

∫

πd

ϕ(t)Dψ
β (x− t)dt


Pψ

β (x)dx

∣∣∣∣∣∣
.

(12)

Now we are going to verify the conditions of the Fubini theorem (see, e.g., [30, ñ.
336]) for an integral on the right side of (12). Let us consider the integral

∫

πd

ϕ(t)




∫

πd

Dψ
β (x− t)Pψ

β (x)dx


 dt. (13)
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Since Dψ
β ∈ Lq, 1 < q < ∞, and Pψ

β ∈ Lq′ , then using the Holder's inequality
we get ∫

πd

Dψ
β (x− t)Pψ

β (x)dx ≤
∥∥∥Dψ

β

∥∥∥
q

∥∥∥Pψ
β

∥∥∥
q′

,

and then for an arbitrary function ϕ ∈ L1 the integral (13) is convergent.
After changing the order of integration in (12) we receive

eM

(
Lψ

β,1

)
q

= sup
‖ϕ‖1≤1

inf
θM

sup
P ψ

β ∈L⊥(θM ),

‖P ψ
β ‖q′≤1

∫

πd

ϕ(t)×

×

(2π)−d

∫

πd

Dψ
β (x− t)Pψ

β (x)dx


 dt.

Using �rst the Holder's inequality (if p = 1, p′ = ∞) and then proposition 9
we get

eM

(
Lψ

β,1

)
q

= inf
θM

sup
P ψ

β ∈L⊥(θM ),

‖P ψ
β ‖q′≤1

∥∥∥∥∥∥
(2π)−d

∫

πd

Dψ
β (x− t)Pψ

β (x)dx

∥∥∥∥∥∥
∞

≥

≥ inf
θM

sup
P ψ

β ∈L⊥(θM ),

‖P ψ
β ‖q′≤1

∣∣∣∣∣∣
(2π)−d

∫

πd

Dψ
β (x− t)Pψ

β (x)dx

∣∣∣∣∣∣
=

= (2π)−deM

(
Dψ

β

)
q
.

By virtue of theorem 7 we can write

eM

(
Lψ

β,1

)
q
À Φ(n)M1− 1

q (log M)2(d−1)
(

1
q
− 1

2

)
, 1 < q ≤ 2.

The lower estimate and consequently theorem 2 is proven.
Remark 3. The corresponding statement if ψj (|kj |) = |kj |−rj , rj > 1 − 1

q ,

1 < q ≤ 2, kj ∈ Z\{0}, j = 1, d, was formulated by A.S. Romanyuk [17].

4. Conclusions
The paper continues investigation of the approximative characteristics that

where considered earlier by TemlyakovV.N., StepanetsA. I., RomanyukA. S.
and other mathematicians. Many results for the best M -term and orthogonal
trigonometric approximations of classes of functions Br

p,θ, W r
β,p, Hr

p are already
obtained. Note that the great attention was paid to classes of functions of one
variable. Nevertheless the problem of estimation of the best M -term approxi-
mations of classes Lψ

β,1 of multivariate (ψ, β)-di�erentiable functions remained
unsolved until now. We have obtained order relations of the quantities eM (f)q
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for the concrete functions Dψ
β , that are of interest themselves. And besides, by

using established results, we have written down the order relations for classes
Lψ

β,1.
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ON OPTIMAL SELECTION OF GALERKIN'S
INFORMATION FOR SOLVING SEVERELY

ILL-POSED PROBLEMS

S.G. Solodky, G. L.Myleiko

Ðåçþìå. Äëÿ ðîçâ'ÿçóâàííÿ åêñïîíåíöiéíî íåêîðåêòíèõ çàäà÷ ðîçðîá-
ëåíî åêîíîìi÷íèé ïðîåêöiéíèé ìåòîä, ÿêèé ïîëÿãà¹ ó êîìáiíóâàííi ñòàí-
äàðòíîãî ìåòîäà Òiõîíîâà òà ïðèíöèïó íåâ'ÿçêè Ìîðîçîâà. Ïðè öüîìó
âñòàíîâëåíî, ùî çàïðîïîíîâàíèé àëãîðèòì çàáåçïå÷ó¹ îïòèìàëüíèé ïîðÿ-
äîê iíôîðìàöiéíî¨ ñêëàäíîñòi íà êëàñi äîñëiäæóâàíèõ çàäà÷.
Abstract. An economical projection method is developed for solving expo-
nentially ill-posed problems. The method consist in combination of the stan-
dard Tikhonov method and the Morozov discrepancy principle. Herewith, it
is established that this approach provides optimal order of information com-
plexity on the class of problems under consideration.

1. Introduction
The implicit (a posteriori) choice of the regularization parameter without any

information on smoothness of a desired solution is usually assume to be the key
issue in the theory of ill-posed problems. It is well-known, there are a lot of
di�erent rules of a regularization parameter choice among them we mention
discrepancy principle [6, 8, 9, 20], Gfrerer's method [3, 19], the monotone error
rule [27], the balancing principle [2, 4, 14, 25] which sometimes is called the
Lepskij principle. Nowadays, it is sure the discrepancy principle is the most
common one.

In the present paper that is extension of the research started in [23, 24]
the authors develop economical projection method for e�ective solving severely
ill-posed problems. As a regularization the standard Tikhonov method is ap-
plied. Unlike to above-mentioned works, the regularization parameter is chosen
a posteriori, namely, according with the balancing principle. Moreover, it is es-
tablished that a proposed strategy maintains optimal oder accuracy on the
class of problems under consideration, as well as provides oder estimates of the
information complexity.

The organization of the material is as follows: in Section 2 we give the state-
ment of the problem. Further in Section 3 the regularization and discretization
methods are described. Auxiliary statements and facts are in Section 4. An
algorithm of the regularization parameter choice by discrepancy principle is

Key words. Severely ill-posed problems; minimal radius of Galerkin information; dis-
crapency principle; information complexity.
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presented in Section 5. The combination of proposed methods allows to estab-
lished optimal order accuracy for solving equations from the class of problems
under research. Finally, in Section 6, the authors establish the main result.
Namely, the order estimate for the minimal radius of the Galerkin information
is obtained.

2. Statement of the problem
Following [23] we present the rough statement of the problem. Consider

Fredholm's integral equation of the �rst kind
Ax(t) = f(t), t ∈ [0, 1], (1)

with
Ax(t) =

∫ 1

0
a(t, τ)x(τ)dτ, (2)

acting continuously in L2 = L2(0, 1). Suppose that Range(A) is not closed in
L2 and f ∈ Range(A).

We also assume that a perturbation fδ ∈ L2 : ‖f − fδ‖ ≤ δ, δ > 0 is given
instead of the right-hand side of the equation (1).

The problem (1) is regarded as severely ill-posed problem if its solution has
substantially worse smoothness than a kernel a(·, τ) In such case it is nature to
assume that an exact solutions satis�es some logarithmic source condition, in
other words it belongs to the set

Mp(A) := {u : u = ln−p(A∗A)−1v, ‖v‖ ≤ ρ},
where p, ρ are some positive parameters and A∗ is adjoined operator to A. Such
problems are called exponentially ill-posed (see e.g. [5]).

Note, that the exact information about smoothness, namely, the parameter
p, is usually not available by practical experiment. For this reason the set

M(A) :=
⋃

p∈(0,p1]

Mp(A) (3)

is considered in place of Mp(A). Here p1 < ∞ is an upper bound for possible
values of p.

Within the framework of our researches we construct an approximation to
the exact solution x† (1), which has minimal norm in L2 and belongs to the set
M(A). From now on, we assume that a parameter p is unknown.

Let {ei}∞i=1 be some orthonormal basis in L2, and let Pm denotes the orthog-
onal projection onto span{e1, e2, . . . , em}

Pmϕ(t) =
m∑

i=1

(ϕ, ei)ei(t).

Consider the following class of operators (2):

Hr,s
γ = {A : ‖A‖ ≤ γ0,

∞∑

n+m=1

â2
n,m n2rm2s ≤ γ2

1}, r, s > 0, (4)
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where
ân,m =

∫ 1

0

∫ 1

0
en(t)a(t, τ)em(τ)dτdt,

γ0 ≤ e−
1
2 , γ = (γ0; γ1), n = 1 if n = 0 and n = n otherwise.

If the kernel a(t, τ) of A has mixed partial derivatives and the inequalities
∫ 1

0

∫ 1

0

[
∂i+ja(t; τ)

∂ti∂τ j

]2

dtdτ < ∞

hold for all i = 0, 1, . . . , r, j = 0, 1, . . . , s then it is known (see e.g. [16]), A ∈ Hr,s
γ

for some γ = (γ0, γ1).
From now on, class of equations (1) with operators belonging to Hr,s

γ (4)
and solutions from M(A) (3) will be denoted by (Hr,s

γ ,M(A)). In the present
paper we concentrate on the study of projection methods for solving equations
belonging to (Hr,s

γ , M(A)), r ≥ s.
A discretization projection scheme of equations (1) with the perturbed right-

hand side one can de�ne by means of a �nite set of the inner products
(Aej , ei), (i, j) ∈ Ω, (5)

(fδ, ek), k ∈ ω1, ω1 = {i : (i, j) ∈ Ω}, (6)
where Ω to be an bounded domain of the coordinate plane [1,∞) × [1,∞).
The inner products (5), (6) are used to call the Galerkin information about
(1). Here card(Ω) is the total number of the inner products (5). In particular,
if Ω = [1, n] × [1,m], then one deal with the standard Galerkin discretization
scheme, card(Ω) = n · m. Researches for various classes of ill-posed problems
related to such scheme of discretization were conducted in a number of works
among which we mention [7, 17,18].
De�nition 11. A projection method of solving (1) can be associated with
any mapping P = P(Ω) : L2 → L2 which by the Galerkin information (5),
(6) about (1) provides a correspondence between the right-hand side of the
equation being solved and an element P(AΩ)fδ ∈ L2, which is a polynomial
by the basis {ei}∞i=1 with harmonic numbers from ω2 := {j : (i, j) ∈ Ω}. This
element is taken as an approximate solution (1).

The error of the method P(Ω) on the class of equations (Hr,s
γ ,Mp(A)) is

de�ned as
eδ

(Hr,s
γ ,M(A),P(Ω)

)
= sup

A∈Hr,s
γ

sup
x†∈M(A)

sup
fδ:‖f−fδ‖≤δ

‖x† − P(AΩ)fδ‖.

The minimal radius of the Galerkin information is given by
RN,δ

(Hr,s
γ ,M(A)

)
= inf

Ω: card(Ω)≤N
inf
P(Ω)

eδ

(Hr,s
γ ,M(A),P(Ω)

)
.

This value describes the minimal possible accuracy (among all projection meth-
ods), while the Galerkin information amount are bound. Thus, RN,δ charac-
terizes information complexity on the class of problems (Hr,s

γ ,M(A)).
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It is easy to see, that such studies belong to the range of problems from
Information Based Complexity Theory. The fundamentals of this theory were
introduced in monographs [28, 29]. It should be noted that in recent years the
interest to such researches in the light of ill-posed problems is greatly increase.
In the work [18] �rst economical projection methods for solving moderately ill-
posed problems were constructed. The standard Galerkin scheme was employed
as discretization scheme. But �rst order estimates for complexity of moderately
ill-posed problems were obtained in [16, 21, 22]. The authors point to the fact
that optimal orders of such values are achieved under a modi�ed Galerkin
scheme that is called hyperbolic cross. The complexity of severely ill-posed
problems began to be study relatively recently. These researches are highlighted
in the series of works, we mention [7, 23,24].

In the present paper as opposite to above-mentioned one, an economical
projection scheme with a posteriori rule of regularization parameter choice will
be developed for solving severely ill-posed problems.

3. Regularization and discretization strategies
To guarantee stable approximations we apply the standard Tikhonov method.

By means of this method the rugularized solution xα is de�ned as the solution
of the variation problem

Iα(x) := ‖Ax− fδ‖2 + α‖x‖2 → min . (7)
For a numerical realization of the standard Tikhonov method it is necessary to
carry out all computations with �nite amount of input data. For that reason
the variation problem (7) is replaced by following

Iα,n(x) = ‖Anx− fδ‖2 + α‖x‖2 → min,

where An is some operator of the �nite rank.
The idea to apply the hyperbolic cross to operator equations of the second

kind belongs to S.V. Pereverzev and implements in the series of works (see
e.g. [10�13]). The e�ciency of the hyperbolic cross for ill-posed problems has
been demonstrated in [15, 16, 23]. Within the framework of our researches we
apply a projection scheme with Ω = Γa

n, where

Γa
n = {1} × [1; 22an]

2n⋃

k=1

(2k−1; 2k]× [1; 2(2n−k)a] ⊂ [1; 22n]× [1; 22an] (8)

is a hyperbolic cross on the coordinate plane by the basis {ei}∞i=1 involved in
the de�nition of the class Hr,s

γ . Here for r > s the parameter a is an arbitrary
real number such that 1 < a < r

s , and for a = 1 we set r = s. To simplify
computations we assume that ak are integer numbers. An approximate solution
one can �nd from an operator equation of the second kind

αx + A∗nAnx = A∗nfδ.

On other words, we seek an approximate solution x = xδ
α,n of the form

xδ
α,n = gα(A∗nAn)A∗nfδ, (9)
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where gα(λ) = (α + λ)−1, and

An = P1AP22an +
2n∑

k=1

(P2k − P2k−1) AP2(2n−k)a . (10)

Moreover we introduce following auxiliary elements

xα = gα(A∗A)A∗f, (11)

xα,n = gα(A∗nAn)A∗nf. (12)

4. Auxiliary results
In this Section we formulate some de�nitions and facts, and also the series

of auxiliary assertions which shell later need.
It is well-known (see e.g. [30]), that for any linear bounded operator A the

inequalities
‖(αI + A∗A)−1‖ ≤ α−1, ‖(αI + A∗A)−1A∗‖ ≤ 1

2
√

α
,

‖A(αI + A∗A)−1A∗‖ ≤ 1
(13)

hold.

Lemma 1. (see [30, p. 34]) If g to be bounded Borel measurable function on
[0; γ2

0 ], A ∈ L(L2, L2), ‖A‖ ≤ γ0, then
A∗g(AA∗) = g(A∗A)A∗,
Ag(A∗A) = g(AA∗)A.

(14)

Lemma 2. (see [20]) Let ‖A‖ ≤ γ0 ≤ e−1/2. Then for su�ciently small α ∈
(0, e−2p) it holds

‖Axα − f‖ ≤ γ−1
0 ρ

√
α ln−p 1/α,

where xα is determined by (11).

Lemma 3. (see [20]) Let ‖A‖ ≤ γ0 ≤ e−1/2, and α is such that

‖Axα − f‖ ≤ d
′
δ,

where d
′
> 0 is some positive constant. Then the estimate

‖x† − xα‖ ≤ ξ ln−p 1/δ

is ful�lled. The constant ξ > 0 depends only on d
′
, ρ and p.

Lemma 4. For any α > 0 and n ∈ N the estimate

‖Axα − f‖ ≤ ‖Anxδ
α,n − P22nfδ‖+

(‖(I − P22n)f‖2 + δ2
)1/2 +

5
4
ρ‖A−An‖

holds, where xα and xδ
α,n is determined by (11) and (9), respectively.
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Proof. First o� all, we note that
‖x†‖ = ‖ ln−p(A∗A)v‖ ≤ ρ sup

0<λ≤γ2
0

| ln−p 1/λ| ≤ ρ. (15)

Further, consider the decomposition
Axα − f = Anxδ

α,n − P22nfδ + S1 + S2,

where
S1 := − (I −Angα(A∗nAn)A∗n) (f − P22nfδ) ,

S2 := (Agα(A∗A)A∗ −Angα(A∗nAn)A∗n) f.

Now we are going to bound each term S1, S2. By (13), (14) we immediate �nd
‖S1‖ ≤ ‖I −An(αI + A∗nAn)−1A∗n‖‖f − P22nfδ‖ ≤

≤ ‖I − (αI + AnA∗n)−1AnA∗n‖‖(I − P22n)f + P22n(f − fδ)‖ ≤
≤ (‖ (I − P22n) f‖2 + δ2

) 1
2 .

It remains to estimate the norm of S2. First, rewrite S2 as follows
S2 = (Agα(A∗A)A∗ −Angα(A∗nAn)A∗n) f =

= α (αI + AnA∗n)−1 (AA∗ −AnA∗n) (αI + AA∗)−1 f = s1 + s2,

where
s1 := α (αI + AnA∗n)−1 (A−An) A∗ (αI + AA∗)−1 Ax†,

s2 := α (αI + AnA∗n)−1 An (A∗ −A∗n) (αI + AA∗)−1 Ax†.

Further, we bound norms of s1 and s2. By (13), (14) and (15) we obtain
‖s1‖ ≤ α‖ (αI + AnA∗n)−1 ‖‖A−An‖‖ (αI + A∗A)−1 A∗A‖‖x†‖ ≤

≤ ρ‖A−An‖,
‖s2‖ ≤ α‖ (αI + AnA∗n)−1 An‖‖A∗ −A∗n‖‖ (αI + AA∗)−1 A‖‖x†‖ ≤

≤ ρ

4
‖A−An‖.

Thus,
‖S2‖ ≤ ‖s1‖+ ‖s2‖ ≤ 5ρ

4
‖A−An‖.

Summing up the above bounds, we �nally get
‖Axα − f‖ ≤ ‖Anxδ

α,n − P22nfδ‖+
+

(‖(I − P22n)f‖2 + δ2
)1/2 +

5ρ

4
‖A−An‖.

The lemma is proved. 2

Lemma 5. The two-side estimates
22nn < card(Γ1

n) ≤ 2 · 22nn, r = s,

η122an ≤ card(Γa
n) ≤ η222an, r > s,

(16)

are hold, with η1 = 1 + 1−23(1−a)

1−21−a , η2 = 2−21−a

1−21−a .

97



S.G. SOLODKY, G. L.MYLEIKO

Proof. From (8) it follows

card(Γa
n) =

2n∑

k=0

card(Qk),

where

Qk =

{
(2k−1; 2k]× [1; 2(2n−k)a], k = 1, 2, . . . , 2n

{1} × [1; 22an], k = 0
,

and we obtain

card(Γa
n) = 22an +

1
2

2n∑

k=1

2k2(2n−k)a.

Further, consider two cases. It is obvious that for r = s it holds

card(Γ1
n) = 22n +

1
2

2n∑

k=1

22n = 22n (1 + n) = 22nn

(
1 +

1
n

)
.

Hence,
22nn < card(Γ1

n) ≤ 2 · 22nn.

When r > s the sequence {card(Qk)}2n
k=1 is the geometric progression with the

quotient 21−a, and the relation

card(Γa
n) = 22an

(
1 +

1
2

2n∑

k=1

2k(1−a)

)

is hold. It follows that

card(Γa
n) =

1
2
22an

(
1 +

2n∑

k=0

2k(1−a)

)
=

1
2
22an

(
1 +

1− 2(1−a)(2n+1)

1− 2(1−a)

)
.

Further, we obtain lower and upper bounds for the bracketed expression:

1 +
1− 2(1−a)(2n+1)

1− 2(1−a)
=

2− 21−a
(
1 + 2(1−a)2n

)

1− 21−a
≤ 2− 21−a

1− 21−a
,

1 +
1− 2(1−a)(2n+1)

1− 2(1−a)
≥ 1 +

1− 23(1−a)

1− 21−a
.

Thus, �nally we get(
1 +

1− 23(1−a)

1− 21−a

)
22an ≤ card(Γa

n) ≤ 2− 21−a

1− 21−a
22an.

The statement of the lemma is proved. 2

It is known (see. [21]), that for any A ∈ Hr,s
γ the inequality

‖A−An‖ ≤ εr,s(n) (17)
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is ful�lled, where

εr,s(n) =

{
γ12r+1/2√n2−2rn, r = s

γ1

(
1 + 2r

1−2as−r

)
2−2nas, r > s

.

5. Error estimate of the algorithm
5.1. Algorithm (Discrepancy principle as stop rule). Let us �x θ ∈ (0, 1)
and α0 ∈ (0, 1]. We are going to choose the regularization parameter α according
with the rule

α ∈ ∆θ(δ) = { α : α = αm := α0θ
m, m = 0, 1, 2, . . . , α ∈ (δ2, α0]}, (18)

and the discretization parameter n as follows

εr,s(n) =
4
5ρ

δ. (19)

Now, we describe proposed algorithm with the discrepancy principle as a
stop rule concerning to studied problem.

1. Input data: A ∈ Hr,s
γ , fδ, δ, ρ.

2. To construct An (10) and P22nfδ we compute the inner products (5), (6).
3. The cycle: m = 1, 2, . . . , M, α = αm = α0θ

m.
An approximate solution xδ

αm,n (9) is computed by solving the equation

αmxδ
αm,n + A∗nAnxδ

αm,n = AnA∗fδ.

The cycle is running as long as stop rule conditions will be meet.
4. The stop rule (the discrepancy principle)

‖Anxδ
αM ,n − P22nfδ‖ ≤ dδ, (20)

‖Anxδ
αm,n − P22nfδ‖ > dδ, (21)

with m < M, d >
√

2 + 1, and xδ
αM ,n is determined by (9).

Introduced projection method (10), (18)�(21) we denoted as P ‘.

Lemma 6. Let αM such that the conditions (20) and (21) are satis�ed with
d >

√
2 + 1, and the parameter n in (10) is chosen as (19). Then there are the

constants d1, d2 > 0, that the two-side estimate
d1δ ≤ ‖AxαM − f‖ ≤ d2δ

is ful�lled.

Proof. First, note that by (17) and (19) it holds
5ρ

4
‖A−An‖ ≤ δ,

‖(I − P22n)f‖ ≤ δ. (22)
If αM meets the condition (20) then

‖AngαM (A∗nAn)A∗nfδ − P22nfδ‖ ≤ dδ,
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and applying Lemma 4 we obtain
‖AxαM − f‖ ≤ dδ +

√
2δ2 + δ = (d +

√
2 + 1)δ.

At the same time, kipping in mind (21), for α = αM−1 we have
‖AngαM−1(A

∗
nAn)A∗nfδ − P22nfδ‖ > dδ. (23)

Owing to the inverse triangle rule it holds
‖AxαM−1 − f‖ ≥ ‖AngαM−1(A

∗
nAn)A∗nfδ − P22nfδ‖ − (

√
2 + 1)δ. (24)

By spectral decomposition of the operator A we get

‖AxαM − f‖2 =
∞∑

k=1

λ2
k ln−2p λ−2

k (v, ψk)2
[

λ2
k

αM + λ2
k

− 1
]2

=

= α2
M

∞∑

k=1

λ2
k(

αM + λ2
k

)2 ln−2p λ−2
k (v, ψk)2 >

> θ2α2
M−1

∞∑

k=1

λ2
k(

αM−1 + λ2
k

)2 ln−2p λ−2
k (v, ψk)2.

Hence,
‖AxαM − f‖2 > θ2‖AxαM−1 − f‖2. (25)

Substituting (23) and (24) in (25), we �nally obtain
‖AxαM − f‖ ≥ θ(d−

√
2− 1)δ.

Thus, the lemma is proved with d1 = θ(d−√2− 1)δ and d2 = θ(d +
√

2 + 1)δ.

5.2. Error estimate of the algorithm P ′.
Theorem 1. Let ‖A‖ ≤ γ0 ≤ e−1/2, the parameters of regularization αM and
discretization n are chosen as in (20) and (19), correspondingly. Than the
estimate

‖x† − xδ
αM ,n‖ ≤ c̃ ln−p 1/δ (26)

holds, where the constant c̃ > 0 only depends on γ0, d1, d2, ρ and p; xδ
αM ,n is

determined by (9).
Proof. It is obvious that

‖x† − xδ
αM ,n‖ ≤ ‖x† − xαM‖+ ‖xαM − xαM ,n‖+ ‖xαM ,n − xδ

αM ,n‖.
Owing to 3 for the �rst term we have

‖x† − xαM‖ ≤ ξ ln−p 1/δ.

By applying (13) the last term is immediately bounded

‖xαM ,n − xδ
αM ,n‖ = ‖(αMI + A∗nAn)−1A∗n(f − fδ)‖ ≤ δ

2
√

αM
.

Finally, we need to estimate the second term. First, consider the decomposition
xαM − xαM ,n = (αMI + A∗A)−1A∗Ax† − (αMI + A∗nAn)−1A∗nAx† =

= T1x
† + T2x

†,
(27)
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where
T1 := (αMI + A∗A)−1A∗A− (αMI + A∗nAn)−1A∗nAn,

T2 := (αMI + A∗nAn)−1A∗n(An −A).

By (13), (19) and (17) we have

‖T2‖ ≤ 1
2
√

αM

4
5ρ

δ =
2
5ρ

δ√
αM

.

It is remain to estimate ‖T1‖. Due to (14), we rewrite T1 as follows
T1 = αM (αMI + A∗A)−1 (A∗A−A∗nAn) (αMI + A∗nAn)−1 = T 1 + T 2,

where
T 1 := αM (αMI + A∗A)−1 A∗ (A−An) (αMI + A∗nAn)−1 ,

T 2 := αM (αMI + A∗A)−1 (A∗ −A∗n) An (αMI + A∗nAn)−1 .

Further, we estimate the norms of T 1 and T 2. Owing to (13), (19) and (17) the
norm of T 1 is immediately bounded as

‖T 1‖ ≤ 2
5ρ

δ√
αM

.

Now, we are going to estimate the norm of T 2. By (14) we have
T 2 = αM (αMI + A∗A)−1 (A∗ −A∗n) (αMI + AnA∗n)−1 An.

Applying (13), (19) and (17), we obtain

‖T 2‖ ≤ 2
5ρ

δ√
αM

.

Hence,
‖T1‖ ≤ ‖T 1‖+ ‖T 2‖ ≤ 4

5ρ

δ√
αM

.

Thus,
‖xαM − xαM ,n‖ ≤ 6

5
δ√
αM

.

Summing up the above bounds we �nally get

‖x† − xδ
αM ,n‖ ≤ ξ ln−p 1/δ +

6
5

δ√
αM

+
1
2

δ√
αM

≤ ξ ln−p 1/δ +
17
10

δ√
αM

.

Further, if αM is chosen as in (20) and the inequality αM ≥ δ holds then for
su�ciently small δ we have

‖x† − xδ
αM ,n‖ ≤ ξ ln−p 1/δ +

17
10

√
δ ≤ c̃1 ln−p 1/δ,

with c̃1 = ξ + 17
10 .

Otherwise, if αM ≤ δ then by Lemma 2 and Lemma 6 we get
d1δ ≤ ‖AxαM − f‖ ≤ γ−1

0 ρ
√

αM ln−p 1/αM ≤ γ−1
0 ρ

√
αM ln−p 1/δ.
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Thus,

‖x† − xδ
αM ,n‖ ≤ ξ ln−p 1/δ +

17
10

γ−1
0 ρ

d1
ln−p 1/δ = c̃2 ln−p 1/δ,

where c̃2 = ξ + 17
10

γ−1
0 ρ
d1

. The theorem is proved with c̃ = max{c̃1, c̃2}. 2

6. Minimal radius of Galerkin's information. Optimal order
estimate

Theorem 2. For su�ciently small δ the estimate

RN,δ

(Hr,s
γ ,M(A)

) ≤ eδ

(
Hr,s

γ M(A),P ‘
)
≤ cp ln−p N2s

is ful�lled, where cp > 0 depends only on γ, r, s, d1, d2, ρ and p. Moreover,

card(Γa
n) ³





δ−
1
r (ln δ−1)1+ 1

2r , r = s,

delta−
1
s , r > s.

Proof. Rewrite the right-hand side of (26) by N, where

N =





c′1n22n, r = s,

c′22
2an, r > s,

1 < c′1 ≤ 2, 1 + 1−23(1−a)

1−21−a ≤ c′2 ≤ 2−21−a

1−21−a (see Lemma 5). Further, we
consider two cases.

First, let r = s. Owing to (16),(19) we have

δ−1 =
4

5ρc1
n−1/222rn =

4(c′1)
−r

5ρc1
N rn−

1
2
−r, (28)

with c1 = γ12r+1/2. It is easy to see that ln N = ln c′1 + 2n ln 2 + lnn. It follows
n ≤ ln N

2 ln 2 . Kipping in the mind the last inequality, from (28) we obtain the
lower bound of δ−1

δ−1 ≥ 4(c′1)
−r(2 ln 2)1/2+r

5ρc1
N r(lnN)−1/2−r.

For any µ > 0 there are some N0 that for all N ≥ N0 it holds lnN ≤ Nµ.
Hence,

δ−1 ≥ 4(c′1)
−r(2 ln 2)1/2+r

5ρc1
N rNµ(−1/2−r) =

=
4(c′1)

−r(2 ln 2)1/2+r

5ρc2
N (1−µ)r− 1

2
µ.

There are always exist µ such that (1 − µ)r − 1
2µ > 0, and the estimate (26)

we can rewrite as follows
‖x† − xδ

αM ,n‖ ≤ cp,1 ln−p N2r. (29)
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Now, we are going to consider the case r > s. Using the same arguments as
above, by (16) and (19) we have

δ−1 =
4

5ρc2
22asn =

4(c′2)
−s

5ρc2
N s, (30)

where
c2 = γ1

(
1 +

2r

1− 2as−r

)
.

In this case the estimate (26) we rewrite as follows
‖x† − xδ

αM ,n‖ ≤ cp,2 ln−p N2s. (31)
Taking into account the de�nition RN,δ (Hr,s

γ ,M(A)) , and also the relations
(29) and (31) we have

RN,δ

(Hr,s
γ ,M(A)

) ≤ ‖x† − xδ
αM ,n‖ ≤ cp ln−p N2s,

where cp = max{cp,1, cp,2}.
It is remain to express the amount card(Γa

n) by δ. Let consider the two cases.
First let r = s, then

card(Γ1
n) := N ³ 22nn = (

√
n2−2sn)−

1
s n1+ 1

2s ³ δ−
1
s (ln δ−1)1+ 1

2s .

2) Now let r > s, then
card(Γa

n) := N ³ 22an = (2−2asn)−
1
s ³ δ−

1
s .

Thus, summing up obtained estimates of card(Γa
n), we have

card(Γa
n) ³





δ−
1
r (ln δ−1)1+ 1

2r , r = s

δ−
1
s , r > s

.

The statement of the theorem is completely proved. 2

Below we formulate a result giving the order estimate of the minimal radius
of the Galerkin information.

Theorem 3. The two-side estimate
1

2p+1
ln−p N2s ≤ RN,δ

(Hr,s
γ , M(A)

) ≤ cp ln−p N2s

holds. The indicate optimal order is achieved under the algorithm P ‘ (10),
(18)�(21).

The lower bound for RN,δ is established in [26], and the upper estimate was
obtained in Theorem 2.
Remark 4. Comparing results of Theorem 3 to that of [26], where the balancing
principle was applied as stop rule, we can conclude that both approaches are
achieved an optimal order of accuracy. Moreover, the proposed algorithm allows
to provide order estimates on more wide classes of problems. Herewith, we
reduce the amount of the Galerkin information (on the logarithmic multiplier)
when r = s.
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NUMERICAL SOLUTION OF LORD-SHULMAN
THERMOPIEZOELECTRICITY FORCED

VIBRATIONS PROBLEM

V.V. Stelmashchuk, H.A. Shynkarenko

Ðåçþìå. Ìè ðîçãëÿäà¹ìî ìîäåëü òåðìîï'¹çîåëåêòðèêè Ëîðäà-Øóëüìàíà
(LS). Äëÿ ïî÷àòêîâî-êðàéîâî¨ çàäà÷i LS-òåðìîï'¹çîåëåêòðèêè ôîðìóëþ-
¹òüñÿ âiäïîâiäíà âàðiàöiéíà çàäà÷à. Äàëi ðîçãëÿäàþòüñÿ âèìóøåíi êîëè-
âàííÿ ïiðîåëåêòðèêà i âàðiàöiéíà çàäà÷à ïåðåïèñó¹òüñÿ ó ñïåöiàëüíîìó
âèãëÿäi äëÿ öüîãî îêðåìîãî âèïàäêó. Äîâîäèòüñÿ êîðåêòíiñòü îñòàííüî¨
âàðiàöiéíî¨ çàäà÷i. Ç âèêîðèñòàííÿì äèñêðåòèçàöi¨ Ãàëüîðêiíà áóäó¹òüñÿ
÷èñåëüíà ñõåìà äëÿ ðîçâ`ÿçóâàííÿ öi¹¨ âàðiàöiéíî¨ çàäà÷i. Ïèòàííÿ çáiæ-
íîñòi öi¹¨ ñõåìè òàêîæ ðîçãëÿíóòi â öié ñòàòòi. Çðåøòîþ, ïðîâîäèòüñÿ
÷èñåëüíèé åêñïåðèìåíò, ÿêèé äîáðå iëþñòðó¹ âïëèâ ïàðàìåòðà "÷àñó ðå-
ëàêñàöi¨" íà îòðèìàíi ðîçâ`ÿçêè.
Abstract. We consider the Lord-Shulman (LS) model of thermopiezoelec-
tricity. Variational formulation is constructed for the initial boundary value
problem of LS-thermopiezoelectricity. Then forced vibrations of pyroelectric
specimen are considered and the variational problem is rewritten in the special
form for that particular case. Well-posedness of the latter variational prob-
lem is proved. Then using Galerkin semidiscretization a numerical scheme
for solving this variational problem is built. The questions of convergence of
this scheme are also covered in this article. Finally, a numerical experiment
is performed, which perfectly illustrates the in�uence of "relaxation time"
parameter on the obtained solutions.

1. Introduction
Nowadays piezoelectric and pyroelectric materials are widely utilized in vari-

ous modern devices such as sensors, actuators, transducers, etc [14]. The classic
theory of linear thermopiezoelectricity was introduced by Mindlin [12]. The fur-
ther study of the theory was performed by Nowacki [13]. The main drawback of
the classic theory is the assumption of in�nite speed of propagation of thermal
signals in the piezoelectric specimen. To overcome this, Lord and Shulman [10]
proposed a modi�ed theory of thermoelasticity (LS-theory), where the clas-
sic Fourier' law of heat conduction is replaced by Maxwell-Cattaneo equation
with introduction of so-called "relaxation time". Chandrasekharaiah was the
�rst researcher to apply the LS-theory to thermopiezoelectricity [5]. Later a
set of generalization theories for thermoelasticity and thermopiezoelectricity

Key words. generalized thermopiezoelectricity; Lord-Shulman model; PZT-4 ceramics;
thermoelectromechanical waves; harmonic forced vibrations; Galerkin method; �nite element
method.
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was developed, for example Green-Lindsay, Chandrasekharaiah-Tzou, Green-
Naghdi, etc. A good review of the existing generalization theories can be found
in [1], [6], [8], [9]. Di�erent methods were used by researchers to obtain the solu-
tions of the generalized thermopiezoelectricity problem, see [2], [3], [7], [15], [20].

Forced vibrations of pyroelectrics is the special case of the thermopiezoelec-
tricity problem and was studied under the classic (Mindlin`s) theory in [11], [21]
and [22]. In our previous work [19], we utilized our �nite-element-based numer-
ical scheme for solving forced vibrations problem under classic thermopiezo-
electricity theory and developed an adaptive algorithm for obtaining solution
with a preset level of accuracy. The goal of the present research is to construct
a similar FEM-based numerical scheme for forced vibrations problem under
LS-thermopiezoelectricity theory.

2. Problem statement
The theory of thermopiezoelectricity describes the coupled interaction of me-

chanical, electrical and thermal �elds in pyroelectric material.
Suppose the piezoelectric specimen occupies a bounded domain Ω in Eu-

clidean space Rd, d = 1, 2, or 3 with continuous by Lipschitz boundary Γ with
unit external normal vector n = {ni}d

i=1, where ni = cos(n, xi). According
to the classic theory (see [12, 13, 16, 17]), we need to �nd elastic displacement
vector u = u(x, t), electric potential p = p(x, t) and temperature increment
θ = θ(x, t), which satisfy the following equations:

ρu′′i − σij,j = ρfi, (1)
D′

k,k + Jk,k = 0, (2)
ρ(T0S

′ − w) + qi,i = 0, (3)
namely, equation of motion, di�erentiated Maxwell`s equation and generalized
heat equation respectively, where fi is a vector of volume mechanical forces
and w represents volume heat forces. Here the constitutive equations for stress
tensor

σij = cijkm[εkm − αkmθ]− ekijEk, (4)
electric displacement vector

Dk = ekijεij + χkmEm + πkθ, (5)
and entropy density

ρS = cijkmαkmεij + πkEk + ρcv

T0
θ (6)

are used.
Vector Jk is the electrical current density, generated by a free electrical charge

density. We assume that pyroelectric material is not an ideal dielectric, and the
electric current runs through the pyroelectric specimen and satis�es standard
Ohm`s law, i.e.

Jk = zkmEm(p). (7)
Heat �ux vector q = q(x, t) is assumed to satisfy the standard Fourier`s law:

qi = −λijθ,j . (8)
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Strain tensor εkm and electrical �eld vector Ek are assumed to satisfy the
relations

εkm = εkm(u) = 1
2(uk,m + um,k),

Ek = Ek(p) = −p,k,
(9)

where comma in the subscript stands for the partial derivative by the spatial
variable, i. e. g,k = −∂g/∂xk.

The other symbols in the above equations represent the material properties
of pyroelectric medium: cijkm is an elasticity coe�cients tensor with common
properties of symmetry and ellipticity, that is:

cijkm = cjikm = ckmij ,
cijkmκijκkm ≥ c0κijκkm, c0 = const > 0, ∀κij = κji ∈ R,

(10)

αij is a thermal expansion tensor with similar properties
αij = αji,
αijξiξj ≥ α0ξiξj , α0 = const > 0, ∀ξi ∈ R,

(11)

ekij ia a piezoelectricity tensor with properties:
ekij = ekji, (12)

χij is a dielectric permittivity tensor with properties
χij = χji,
χijξiξj ≥ χ0ξiξi, χ0 = const > 0, ∀ξi ∈ R,

(13)

πk are the pyroelectric coe�cients, which are assumed to satisfy the following
inequality, mentioned in [13]

χkmykym + 2πkykξ + ρcvξ
2 ≥ 0, ∀ξ, yk ∈ R, (14)

zkm is the electrical conductivity tensor with common properties of symmetry
and ellipticity, λij is a symmetrical elliptic heat conductivity tensor, ρ, cv and
T0 represent a mass density, speci�c heat and a �xed uniform reference tem-
perature of a piezoelectric specimen, respectively. Here and everywhere below
the ordinary summation by repetitive indices is expected.

To take into account a viscosity e�ect in pyroelectric materials, we modify
the constitutive equation (4) for stress σij by adding the term proportional to
strain velocity. Therefore, the stress-relation now looks in the following way:

σij = cijkm[εkm − αkmθ]− ekijEk + aijkmε′km, (15)
where aijkm is a viscosity coe�cients tensor with common properties of sym-
metry and ellipticity.

To characterize the interaction of piezoelectric specimen with the environ-
ment, we must consider the boundary conditions. The boundary conditions for
mechanical and heat �elds are:{

ui = 0 on Γu × [0, T ], Γu ⊂ Γ,mes(Γu) > 0,
σijnj = σ̂i on Γσ × [0, T ], Γσ := Γ \ Γu,

(16)
{

θ = 0 on Γθ × [0, T ], Γθ ⊂ Γ,mes(Γθ) > 0,
qini = q̂ on Γq × [0, T ], Γq := Γ \ Γθ.

(17)
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Note that nonuniform boundary conditions on parts Γu and Γθ can be always
transformed into uniform ones.

Similarly, the boundary conditions at the interface between the pyroelectric
specimen and an ideal dielectric can be described in the following way:[

D′
k + Jk

]
nk = 0 on Γd, Γd ⊂ Γ. (18)

Many pyroelectric materials and devices are operated under high electric �eld,
which is applied through surface electrodes. We suppose that the electrode
has a constant electric potential pe on its surface, and is soft enough, so that it
does not transfer any mechanical loadings. In this case we consider the following
boundary conditions

p = 0 on Γp × [0, T ], Γp ⊂ Γ,mes(Γp) > 0 (grounded electrode), (19)
and { ∫

Γe

[D′
k + Jk] nkdγ = I,

p = const on Γe, Γe = Γ \ (Γd ∩ Γp),
(20)

where I de�nes the external electrical current.
In order to terminate the formulation of initial boundary value problem of

classic piezothermoelectricity, we consider the initial conditions
u|t=0 = u0, u′|t=0 = v0, p|t=0 = p0, θ|t=0 = θ0 in Ω. (21)

The aforementioned mathematical model of thermopiezoelectricity was consid-
ered in [16,17], where its well-posedness is proved. Also a �nite element based
numerical scheme for solving this problem was constructed and the results of
numerical experiments are described in [4, 18].

In present work, instead of (8), we use modi�ed Fourier`s law (also known as
Maxwell-Cattaneo equation):

τq′i + qi = −λijθ,j . (22)
Here the parameter τ > 0 is so-called "relaxation time". This assumption
ensures �nite speeds of heat wave propagation and was �rstly introduced by
Lord and Shulman in [10] and was �rstly applied to thermopiezoelectricity
theory by Chandrasekharaiah in [5]. Also, for convenience, similar to how
Chandrasekharaiah did in [5], we introduce arti�cial coe�cients bij in the way
that the following condition is held:

T0bijλjm = δim, where δim are the elements of the unit matrix, (23)
and they satisfy ellipticity conditions:

bijyiyj ≥ 0 ∀yi, yj ∈ R. (24)
Then the modi�ed Fourier`s law can be rewritten in the following form:

τbijq
′
i + bijqi = −T−1

0 θ,j . (25)
Using Maxwell-Cattaneo equation (22) implies, that for Lord-Shulman theory
a heat �ux q is an additional independent variable. Therefore, the initial con-
ditions (21) must be rewritten into:

u|t=0 = u0, u′|t=0 = v0, p|t=0 = p0, θ|t=0 = θ0, q|t=0 = q0 in Ω. (26)
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Thus, the equations (1)-(3), (5)-(7), (9), (15) and (25) together with bound-
ary conditions (16)-(20) and initial conditions (26) de�ne the Lord-Shulman
mathematical model of thermopiezoelectricity (initial boundary value problem
of LS-thermopiezo-electricity).

3. Variational problem
Let us introduce the spaces of admissible elactic displacements, electric po-

tentials, temperature increments and heat �uxes respectively:
V =

{
v ∈ [H1(Ω)]d|v = 0 on Γu

}
,

X =
{
ξ ∈ H1(Ω)|ξ = 0 on Γp, ξ = const on Γe

}
Y =

{
η ∈ H1(Ω)|η = 0 on Γθ

}
,

Z =
{
ζ ∈ [L2(Ω)]d

}
,

(27)

and notations
Φ = V ×X × Y × Z, Φ1 = V ×X × Y, G = L2(Ω), H = Gd. (28)

Here symbol Hm(Ω) means a standard Sobolev space.
After applying the principle of virtual works to initial boundary value prob-

lem of LS-thermopiezoelectricity, we obtain the following variational problem:



given ψ0 = (u0, p0, θ0, q0) ∈ Φ, v0 ∈ H and (l, r, µ) ∈ L2(0, T ; Φ′);
�nd ψ = (u, p, θ, q) ∈ L2(0, T ; Φ) such that
m(u′′(t), v) + a(u′(t), v) + c(u(t), v)− e(p(t), v)−

−γ(θ(t), v) =< l(t), v >,
χ(p′(t), ξ) + e(ξ,u′(t)) + z(p(t), ξ) + π(θ′(t), ξ) =< r(t), ξ >,
s(θ′(t), η) + π(η, p′(t)) + γ(η, u′(t))− g(q(t), η) =< µ(t), η >,
τb(q′(t), ζ) + b(q(t), ζ) + g(ζ, θ(t)) = 0 ∀ t ∈ (0, T ] ,
m(u′(0)− v0, v) = 0, c(u(0)− u0, v) = 0 ∀v ∈ V,
χ(p(0)− p0, ξ) = 0 ∀ξ ∈ X,
s(θ(0)− θ0, η) = 0 ∀η ∈ Y,
b(q(0)− q0, ζ) = 0 ∀ζ ∈ Z

(29)

The introduced bilinear and linear forms are as follows:
m(u, v) :=

∫
Ω

ρuividx =
∫
Ω

ρu.vdx, a(u,v) :=
∫
Ω

aijkmεij(u)εkm(v)dx,

c(u, v) :=
∫
Ω

cijkmεij(u)εkm(v)dx, < l,v >:=
∫
Ω

ρfividx +
∫
Γσ

σ̂ividγ,

γ(ξ,v) :=
∫
Ω

ξcijkmαkmεijv)dx,

e(ξ, v) :=
∫
Ω

ekijEk(ξ)εij(v)dx ∀u, v ∈ V,

χ(p, ξ) :=
∫
Ω

χkmEk(p)Em(ξ)dx, z(p, ξ) :=
∫
Ω

zkmEk(p)Em(ξ)dx,

< r, ξ >:= Iξ|Γe ∀p, ξ ∈ X,
π(η, ξ) =

∫
Ω

ηπkEk(ξ)dx, s(θ, η) =
∫
Ω

ρcvT
−1
0 θηdx,

< µ, η >:=
∫
Ω

T−1
0 ρwηdx− ∫

Γh

T−1
0 ĥηdγ ∀η, θ ∈ Y,

b(q, ζ) =
∫
Ω

bijqiζjdx, g(ζ, η) =
∫
Ω

T−1
0 ζkη,kdx ∀q, ζ ∈ Z.

(30)
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Now suppose the harmonic loadings with angular frequency ω > 0 are applied
to the piezoelectric specimen:

l(t) = (l1 + il2)e−iωt,
r(t) = (r1 + ir2)e−iωt,
µ(t) = (µ1 + iµ2)e−iωt, ∀ t ∈ (0, T ].

(31)

Then we can look for approximate solutions of problem (29) in the form of the
following expansions:

u(x, t) ∼= (u1(x) + iu2(x))e−iωt,
p(x, t) ∼= (p1(x) + ip2(x))e−iωt,
θ(x, t) ∼= (θ1(x) + iθ2(x))e−iωt,
q(x, t) ∼= (q1(x) + iq2(x))e−iωt,

(32)

where u1(x), u2(x), p1(x), p2(x), θ1(x), θ2(x) and q1(x), q2(x) are the un-
known amplitudes of mechanical displacement, electric potential, temperature
increment and heat �ux respectively.

After substitution of (31) and (32) into (29) and neglection of its initial
conditions, we obtain the variational problem for forced harmonic vibrations of
piezoelectric specimen:





given ω > 0, (l1, l2, r1, r2, µ1, µ2, 0, 0) ∈ W ′ = Φ′ × Φ′;
�nd ψ = (u1, p1, θ1, q1, u2, p2, θ2, q2) ∈ W = Φ× Φ such that
−ω2m(u1,v2) + ωa(u2,v2) + c(u1, v2)− e(p1, v2)−

−γ(θ1,v2) =< l1, v2 >,
−ω2m(u2,v1)− ωa(u1,v1) + c(u2, v1)− e(p2, v1)−

−γ(θ2,v1) =< l2, v1 >,
ωχ(p2, ξ1) + ωe(ξ1,u2) + z(p1, ξ1) + ωπ(θ2, ξ1) =< r1, ξ1 >,
−ωχ(p1, ξ2)− ωe(ξ2, u1) + z(p2, ξ2)− ωπ(θ1, ξ2) =< r2, ξ2 >,
ωs(θ2, η1) + ωπ(η1, p2) + ωγ(η1, u2)− g(q1, η1) =< µ1, η1 >,
−ωs(θ1, η2)− ωπ(η2, p1)− ωγ(η2, u1)− g(q2, η2) =< µ2, η2 >,
ωτb(q2, ζ1) + b(q1, ζ1) + g(ζ1, θ1) = 0,
−ωτb(q1, ζ2) + b(q2, ζ2) + g(ζ2, θ2) = 0

∀ w = (v1, ξ1, η1, ζ1, v2, ξ2, η2, ζ2, ) ∈ W.

(33)

Having added all the equations of the problem (33), we introduce the bilinear
form Πω : W ×W → R and linear form χω : W → R in the following way:

Πω(ψ, w) = −ω2[m(u1, v2)−m(u2,v1)]+
+ω[a(u1, v1) + a(u2, v2)] + [c(u1, v2)− c(u2, v1)]+
+[e(p2,v1)− e(p1, v2) + e(ξ1, u2)− e(ξ2, u1)]+
+[γ(θ2, v1)− γ(θ1, v2) + γ(η1, u2)− γ(η2, u1)]+
+[π(θ2, ξ1)− π(θ1, ξ2) + π(η1, p2)− π(η2, p1)]+
+[χ(p2, ξ1)− χ(p1, ξ2)] + ω−1[z(p1, ξ1) + z(p2, ξ2)]+
+[s(θ2, η1)− s(θ1, η2)]+
+ω−1[g(ζ1, θ1) + g(ζ2, θ2)− g(q1, η1)− g(q2, η2)]+
+τ [b(q2, ζ1)− b(q1, ζ2)] + ω−1[b(q1, ζ1) + b(q2, ζ2)]

∀ ψ = (u1, p1, θ1, q1,u2, p2, θ2, q2) ∈ W,
∀ w = (v1, ξ1, η1, ζ1,v2, ξ2, η2, ζ2, ) ∈ W.

(34)
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< χω, w >= − < l2, v1 > +ω−1[< r1, ξ1 > + < µ1, η1 >]+
+ < l1,v2 > +ω−1[< r2, ξ2 > + < µ2, η2 >]

∀ w = (v1, ξ1, η1, ζ1, v2, ξ2, η2, ζ2, ) ∈ W.
(35)

Then variational problem for forced harmonic vibrations of pyroelectric can
be rewritten as follows:




given ω > 0, χω ∈ W ′ = Φ′ × Φ′;
�nd ψ = (u1, p1, θ1, q1, u2, p2, θ2, q2) ∈ W = Φ× Φ such that
Πω(ψ, w) =< χω, w > ∀ w = (v1, ξ1, η1, ζ1,v2, ξ2, η2, ζ2) ∈ W.

(36)

4. Well-posedness of the variational problem
Theorem 1. Let us de�ne the bilinear form k(·, ·) as follows:

k(θ, η) =
∫

Ω

T−1
0 Λ∇θ∇ηdx, (37)

where Λ = {λij} is matrix of thermal conductivity coe�cients. Then the below
equality is held:

(1 + ω2τ2)[b(q1, q1) + b(q2, q2)] = k(θ1, θ1) + k(θ2, θ2), (38)
where q1, q2, θ1, θ2 are the solutions of variational problems (33) and (36),
de�ning amplitudes of heat �ux and temperature increment correspondingly.

Proof.
The modi�ed Fourier law

τq′ + q = −Λ∇θ (39)
is rewritten for the case of harmonic vibrations:

−iωτ(q1 + iq2)e−iwt + (q1 + iq2)e−iwt = −Λ(∇θ1 + i∇θ2)e−iwt. (40)
The expression (40) is then splitted into real and imaginary parts. As a result,
we obtain:

q1 + ωτq2 = −Λ∇θ1,
q2 − ωτq1 = −Λ∇θ2.

(41)

After multiplying equations of (41) by T−1
0 ∇θ1 and T−1

0 ∇θ2 respectively and
integration over the domain Ω we get:

g(q1 + ωτq2, θ1) = −k(θ1, θ1),
g(q2 − ωτq1, θ2) = −k(θ2, θ2).

(42)

Then two last equations of the variational problem (33) are considered and
a substitution of admissible functions ζ1 = q1 + ωτq2 and ζ2 = q2 − ωτq1 is
performed respectively:

ωτb(q2, ζ1) + b(q1, ζ1) + g(ζ1, θ1) = 0, ζ1 = q1 + ωτq2,
−ωτb(q1, ζ2) + b(q2, ζ2) + g(ζ2, θ2) = 0, ζ2 = q2 − ωτq1.

(43)

After simplifying the �rst equation of (43) with taking into account the relations
(42) we obtain:

ωτb(q2, q1 + ωτq2) + b(q1, q1 + ωτq2) + g(q1 + ωτq2, θ1) = 0,
b(q1 + ωτq2, q1 + ωτq2) = k(θ1, θ1).

(44)
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Similarly, simplifying the second equation of (43) with taking into account the
relations (42) we get:

−ωτb(q1, q2 − ωτq1) + b(q2, q2 − ωτq1) + g(q2 − ωτq1, θ2) = 0,
b(q2 − ωτq1, q2 − ωτq1) = k(θ2, θ2).

(45)

The last equations of the relations (44) and (45) can be rewritten in the fol-
lowing way:

b(q1, q1) + 2ωτb(q1, q2) + ω2τ2b(q2, q2) = k(θ1, θ1),
ω2τ2b(q1, q1)− 2ωτb(q1, q2) + b(q2, q2) = k(θ2, θ2).

(46)

After summarizing these 2 equations of (46) we obtain:
(1 + ω2τ2)[b(q1, q1) + b(q2, q2)] = k(θ1, θ1) + k(θ2, θ2). (47)

2

Let us introduce a scalar product on the space W in the following way:

((y, w)) =
2∑

i=1
[a(ui, vi) + z(pi, ξi) + 1

2b(qi, ζi) + 1
2(1+ω2τ2)

k(θi, ηi)]

∀ y = (u1, p1, θ1, q1, u2, p2, θ2, q2) ∈ W,
∀ w = (v1, ξ1, η1, ζ1,v2, ξ2, η2, ζ2, ) ∈ W.

(48)

We also introduce a norm generated by the scalar product (48):
|||y|||2 = (y, y) ∀y ∈ W. (49)

Then the following estimations are easy noticed:
|Πω(y, w)| ≤ M1(ω)|||y||| · |||w|||,
M1(ω) = C max{ω−1, 1, ω, ω2}, ∀y, w ∈ W,

(50)

and
| < χω, w > | ≤ M2(ω)||χω||∗ · |||w|||,
M2(ω) = C max{ω−1, 1}, ∀w ∈ W.

(51)

Here and everywhere the symbol C means a positive constant value, which is
not dependent on solutions of variational problem (36).

Consider now the expression for Πω(w,w):
Πω(w,w) = −ω2[m(u1, u2)−m(u2, u1)]+
+ω[a(u1,u1) + a(u2, u2)] + [c(u1, u2)− c(u2, u1)]+
+[e(p2, u1)− e(p1, u2) + e(p1, u2)− e(p2,u1)]+
+[γ(θ2, u1)− γ(θ1,u2) + γ(θ1, u2)− γ(θ2, u1)]+
+[π(θ2, p1)− π(θ1, p2) + π(θ1, p2)− π(θ2, p1)]+
+[χ(p2, p1)− χ(p1, p2)]+
+ω−1[z(p1, p1) + z(p2, p2)] + [s(θ2, θ1)− s(θ1, θ2)]+
+ω−1[g(q1, θ1) + g(q2, θ2)− g(q1, θ1)− g(q2, θ2)]+
+τ [b(q2, q1)− b(q1, q2)] + ω−1[b(q1, q1) + b(q2, q2)] =

=
2∑

i=1
[ωa(ui, ui) + ω−1z(pi, pi) + ω−1b(qi, qi)] =

=
2∑

i=1
[ωa(ui, ui) + ω−1z(pi, pi)+

+ω−1(1
2b(qi, qi) + 1

2(1+ω2τ2)
k(θi, θi))] ≥ α(ω) · |||w|||2,

(52)
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where α(ω) = min{ω−1, ω} ∀w ∈ W.
Since the statements (50 - 52) are held and they are actually the conditions

of Lions-Lax-Milgram theorem, the following theorem is then proved:
Theorem 2. For each w > 0 and τ > 0 variational problem (36 ) has a unique
solution ψ ∈ W , which satisfy the relation:

|||ψ||| ≤ α−1(ω)M2(ω)||χω||∗. (53)

5. Galerkin discretization
Galerkin scheme makes a transition of the solution of variational problem

(33) from space W := Φ×Φ to its �nite-dimensional subspace Wh := Φh×Φh,
Φh ⊂ Φ, dimWh = N(h) < +∞. Thus, discretized variational problem (36)
looks in the following way:




given angular frequency ω > 0, χω ∈ W
′
,

approximations space Wh ⊂ W, dimWh < +∞;
�nd vector ψh = (u1h, u2h, p1h, p2h, θ1h, θ2h, q1h, q2h) ∈ Wh

such that Πω(ψh, ϕ) =< χω, ϕ > ∀ ϕ ∈ Wh.

(54)

Since problem (36) is well-posed, the same applies to its discretized counterpart
(54).

In the space W we select some basis functions {wi}∞i=1. For each natural
number m ≥ 1, h = 1/m a sequence of approximation spaces Wh and operators
of orthogonal projection Prh : W → Wh are de�ned so that a set {wi}m

i=1 is a
base of Wh, ((ψ − Prh ψ,w)) = 0 ∀ ψ ∈ W , ∀ wh ∈ Wh.

Now variational problem (36) is replaced by a sequence of the following
problems:




given ω > 0, χω ∈ W ′and h > 0, Wh ⊂ W, dimWh = m < +∞;
�nd vector ψh ∈ Wh such that
Πω(ψh, w) =< χω, w > ∀w ∈ Wh.

(55)

Theorem 3. Let ψ ∈ W be a solution of problem (36) with parameter ω >
0. Then a sequence of Galerkin approximations {ψh} ⊂ W is unambiguously
de�ned by the solutions of problems (55) and has the following properties:

||ψ − ψh||W ≤ α−1M1(ω) inf
w∈Wh

||ψ − w||W ∀ h > 0; (56)

lim
h→0

||ψ − ψh||W = 0. (57)

Proof. The correctness of the inequality (56) is based on the fact that
Πω(ψ − ψh, w) = 0 ∀ w ∈ Wh,

and the estimation
α||ψ − ψh||2W ≤ Πω(ψ − ψh, ψ − ψh) = Πω(ψ − ψh, ψ − w) ≤
≤ M1(ω)||ψ − ψh||W ||ψ − w||W ∀ w ∈ Wh.

Taking into account the density of sequence of spaces {Wh} in the separable
space W

lim
h→0

||w − Prhw||W = 0 ∀ w ∈ W.
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Therefore, basing on the equality

inf
w∈Wh

||ψ − w||W = ||ψ − Pr
h

ψ||W

and (56) we can conclude the correctness of (57), when ω > 0. 2

Theorem 4. on the convergence of FEM approximations.
Let ψ ∈ W be a solution of problem (36) and exists a natural number k ≥ 1

such that ψ ∈ W ∩[Hk+1(Ω)]2(d+1). Let approximations ψh be de�ned by solving
problem (55) in the spaces Wh ⊂ W , which are constructed with making use of
piecewise-polynomial functions of FEM and have the following property:

for each ϕ ∈ W ∩ [Hk+1(Ω)]2(d+1), k ≥ 1 there exist ϕh ∈ Wh and C =
const > 0 such that ‖ϕ − ϕh‖m,Ω ≤ C · hk+1−m‖ϕ‖k+1,Ω, 0 ≤ m ≤ k, where
h is the diameter of �nite element mesh and k is the greatest degree of full
polynomial of d variables, which is precisely de�ned by basis functions of Wh

on each �nite element.
Then the convergence of sequence ψh ⊂ W is characterized by the estimation

‖ψ − ψh‖ ≤ C · hk||ψ||k+1,Ω, (58)

where C = const > 0 is not dependent on values we are looking for.

Proof. The estimation (58) is implied from the inequality (56), the equiva-
lence of norms || · ||W and || · ||1,Ω on W and the density properties de�ned in
the theorem body.

‖ψ − ψh‖W ≤ α−1M1(ω) inf
w∈Wh

‖ψ − w‖ = ‖ψ − w‖1,Ω ≤ C · hk||ψ||k+1,Ω

2

Let us now pay a deeper attention to the aforementioned selection of �nite-
dimensional subspace Wh ∈ W . Taking into account the de�nition of Wh that
is Wh = Vh ×Xh × Yh × Zh × Vh ×Xh × Yh × Zh, where

Vh ⊂ V, Xh ⊂ X, Yh ⊂ Y, Zh ⊂ Z,
dimVh < +∞, dimXh < +∞, dimYh < +∞, dimZh < +∞.

(59)

we can write the expansions of solution amplitudes as following:

uαh '
N∑

i=0
UαφV

i (x),

pαh '
N∑

i=0
PαφX

i (x),

θαh '
N∑

i=0
ΘαφY

i (x),

qαh '
N∑

i=0
QαφZ

i (x), α = 1, 2,

(60)

where φV
i (x), φX

i (x), φY
i (x) and φZ

i (x) are the basis functions of spaces V, X, Y
and Z respectively. Then we obtain the system of linear equations for �nding

115



V.V. STELMASHCHUK, H.A. SHYNKARENKO

0 2 4 6 8 10

0

50

100

150

200

250

L´109,m

Θ
1,

K

Fig. 1. Amplitude
of temperature θ1

0 2 4 6 8 10
0

2

4

6

8

10

12

L´109,m

Θ
2´

10
3 ,K

Fig. 2. Amplitude
of temperature θ2

nodal values of the unknown amplitudes:



ωA −[−ω2M + C] 0 ET 0 Y T 0 0

[−ω2M + C] ωA −ET 0 −Y T 0 0 0

0 E ω−1Z ωX 0 ΠT 0 0

−E 0 −X ω−1Z −ΠT 0 0 0

0 Y 0 Π 0 S −ω−1GT 0

−Y 0 −Π 0 −S 0 0 −ω−1GT

0 0 0 0 ω−1G 0 ω−1B τB

0 0 0 0 0 ω−1G −τB ω−1B




·

· [U1,U2, P1, P2,Θ1,Θ2, Q1, Q2]T =
=

[−L2, L1, ω−1R1, ω−1R2, ω−1F1, ω−1F2, 0, 0
]T

.
(61)

Here the elements of the matrices and vectors are computed using the bilin-
ear and linear forms de�ned in (30), for example A = {aij} = {a(φV

i , φV
j )}.

The matrix of the system of equations (61) is positively de�ned, but not the
symmetric one. More precisely, it can be represented as the sum of positively
de�ned symmetric matrix and a skew-symmetric one.

6. Numerical experiments
We consider a piezoelectric bar with length L = 10−8m made of PZT-4

ceramics.A harmonic thermal loading with angular frequency ω = 3 · 106rad/s
is applied to the right edge of the bar. So, the boundary conditions for thermal
�eld are:

θ1(0) = 0K, θ1(L) = 273K, θ2(0) = 0K, θ2(L) = 0K. (62)
On the left edge of the bar the boundary conditions for mechanical and electric
�elds are homogeneous and of Dirichlet type :

u1(0) = 0m, u2(0) = 0m, p1(0) = 0V, p2(0) = 0V. (63)
On the right edge of the bar the boundary conditions for mechanical and electric
�elds are homogeneous and of Neumann type :

σ1(L) = 0N ·m−2, σ2(L) = 0N ·m−2, J1(L) = 0A, J2(L) = 0A. (64)
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Fig. 3. Amplitude of heat �ux component q2 for the PZT-4 bar
for relaxation times τ = 10−10, 8 · 10−11, 5 · 10−11, 10−11, 10−12s

We take the coe�cients of PZT-4 as in [20]:

ρ = 7500[kg/m3]
cv = 350[J/kg ·K]
λ = 1.1[W/m ·K]
c = 115× 109[N/m2]

e = 15.1[C/m2]
π = 2.7× 10−4[C/K ·m2]
χ = 6.46× 10−9[C2/N ·m2]
α = 3.13× 10−5[K−1]

Also we take z = 5 × 10−12[Ω−1 ·m−1], a = 40[m2 · s−1] and T0 = 298[K].
As mentioned in [20], the value of the relaxation time τ for PZT-4 cannot
be found in the literature. However, the relation time τ is determined for
di�erent type of materials, ranging from 10−10 for gases to 10−14 for metals.
Therefore, in our numerical experiments we will use the values of relaxation
time τ = 10−10, 8 · 10−11, 5 · 10−11, 10−11, 10−12s. For discretization by spatial
variable we divide the interval [0, L] into N = 256 �nite elements with piecewise
linear solution approximations on them.

Fig. 1 shows that under these boundary conditions and angular frequency
ω = 3 ·106rad ·s−1 the calculated temperature increment θ1 is changing linearly
along the bar, regardless of the value of relaxation time τ . Fig. 2 depicts the
calculated amplitude θ2 of the temperature increment. It is also not dependent
on the value of relaxation time τ .

On the other hand, as Fig.3 shows, the amplitude of heat �ux q2 is depen-
dent on the parameter τ . It worth mentioning, that the amplitude calculated
with τ = 10−12s is almost identical to the one obtained as a solution of the
classical thermopiezoelectricity problem for forced harmonic vibrations (when
no modi�ed Fourier law is taken into account).

7. Conclusions
The harmonic vibrations of the pyroelectric materials have been studied un-

der generalized Lord-Shulman thermopiezoelectricity theory. The variational
problem for this special case has been formulated and its well-posedness has

117



V.V. STELMASHCHUK, H.A. SHYNKARENKO

been proved. Then the discretization of the problem using Galerkin-method has
been performed. The �nite element method has been utilized to construct the
bases of approximation spaces of the discretized problem. The rate of conver-
gence of FEM-approximations has been determined. After the discretization we
obtain the system of linear algebraic equations with positively de�ned matrix in
its left part. Therefore, we can be sure that the solution of that system always
exists. The numerical experiment of applying a harmonic thermal loading to
the pyroelectric bar has been set up and studied. The results of the experi-
ment showed the signi�cant in�uence of the "relaxation time" parameter on
the nodal values of solution amplitudes.

Bibliography
1. AouadiM. Generalized Theory of Thermoelastic Di�usion for Anisotropic Media

/M.Aouadi // J. Thermal Stresses. � 2008. � Vol. 31. � P. 270-285.
2. AouadiM. Generalized Thermoelastic-Piezoelectric Problem by Hybrid Laplace Tran-

sform-Finite Element Method /M.Aouadi // Internat. J. Computational Methods in En-
gineering Science and Mechanics. � 2007. � Vol. 8. � P. 137-147.

3. BabaeiM.H. Transient Thermopiezoelectric Response of a One-Dimensional Function-
ally Graded Piezoelectric Medium to a Moving Heat Source /M.H.Babaei, Z. T.Chen
//Archive of Applied Mechanics. � 2010. � Vol. 80. � P. 803-813.

4. ÑhabanF. Numeric Modeling of Mechanical and Electric Fields Interaction in Piezoelec-
tric / F.Chaban, H. Shynkarenko, V. Stelmashchuk, S.Rosinska //Manufacturing Pro-
cesses. Some Problems. Volume I /M.Gajek, O.Hachkevych, A. Stadnik-Besler eds. �
Opole: Politechnika Opolska, 2012. � P. 107-118.

5. ChandrasekharaiahD. S. A Generalized Linear Thermoelasticity Theory for Piezoelectric
Media /D. S.Chandrasekharaiah //Acta Mechanica. � 1988. � Vol. 71, �. 1-4. � P. 39�49.

6. ChandrasekharaiahD. S. Hyperbolic Thermoelasticity: a Review of Recent Literature
/D. S. Chandrasekharaiah //Applied Mechanics Reviews. � 1998. � Vol. 51. � P. 705-729

7. El-KaramanyA. S. Propagation of Discontinuities in Thermopiezoelectric Rod /A. S. El-
Karamany, M.A.Ezzat // J. Thermal Stresses. � 2005. � Vol. 28. � P. 997-1030.

8. HetnarskiR.B. Generalized Thermoelasticity /R.B.Hetnarski, J. Ignaczak // J.Thermal
Stresses. � 1999. � Vol. 22. � P. 451-476.

9. Ignaczak J. Thermoelasticity with Finite Wave Speeds / J. Ignaczak, M.Ostoja-Star-
zewski. � New York: Oxford University Press Inc., 2010. � 412 p.

10. LordH. A Generalized Dynamical Rheory of Thermoelasticity /H. Lord, Y. Shulman
// J.Mechanics and Physics of Solids. � 1967. � Vol. 15. � P. 299-309.

11. MercierD. Existence, Uniqueness, and Regularity Results for Piezoelectric Systems
/D.Mercier, S.Nicaise // J.Math. Anal. � 2005. � Vol. 37. � P. 651-672.

12. MindlinR.D. On the Equations of Motion of Piezoelectric Crystals /R.D.Mindlin
//Problems of Continuum Mechanics, N. I.Muskelishvili 70th Birthday Volume. � Phila-
delphia: SIAM, 1961. � P. 282-290.

13. NowackiW. Some General Theorems of Thermopiezoelectricity /W.Nowacki // J. Ther-
mal Stresses. � 1978. � Vol. 1. � P. 171-182.

14. PreumontA. Vibration Control of Active Structures An Introduction, third ed. /A.Pre-
umont. � Berlin: Springer, 2011. � 436 p.

15. Sherief H.H. Boundary Element Method in Generalized Thermoelasticity /H.H. Sherief,
A.M.A.El-Latief //Encyclopedia of Thermal Stresses /R.B.Hetnarski ed. � Dordrecht:
Springer, 2014. � P. 567-575.

16. ShynkarenkoH. Projection-mesh Approximations for Pyroelectricity Variational Prob-
lems. I. Problems Statement and Analysis of Forced Vibrations /H. Shynkarenko //Dif-
ferential equations. � 1993. � Vol. 29. � P. 1252-1260. (in Russian).

118



NUMERICAL SOLUTION OF LS-THERMOPIEZOELECTRICITY ...

17. ShynkarenkoH. Projection-mesh Approximations for Pyroelectricity Variational Prob-
lems. II. Discretization and Solvability of Non-stationary Problems /H. Shynkarenko
//Di�erential equations. � 1994. � Vol. 3. � P. 317-325. (in Russian).

18. StelmashchukV. Numerical Modeling of Dynamical Pyroelectricity Problems /V. Stel-
mashchuk, H. Shynkarenko //Visnyk of the Lviv University. Series Applied Mathematics
and Computer Science. � 2014. � Vol. 22. � P. 92-107. (in Ukrainian).

19. StelmashchukV. Numerical Modeling of Thermopiezoelectricity Steady State Forced Vi-
brations Problem Using Adaptive Finite Element Method /V. Stelmashchuk, H. Shyn-
karenko //Advances in Mechanics: Theoretical, Computational and Interdisciplinary Is-
sues /M.Kleiber, T.Burczynski, K.Wilde, J.Gorski, K.Winkelmann, L. Smakosz eds. �
London: CRC Press, 2016. � P. 547-550.

20. SumiN. Solution for Thermal and Mechanical Waves in a Piezoelectric Plate by the
Method of Characteristics /N. Sumi, F.Ashida // J. Thermal Stresses. �2003. � Vol. 26. �
P. 1113-1123.

21. Wauer J. Free and Forced Magneto-thermo-elastic Vibrations in a Conducting Plate
/ J.Wauer. // J. Thermal Stresses. � 1996. � Vol. 19. � P. 671-691.

22. Yang J. S. Free Vibrations of a Linear Thermopiezoelectric Body / J. S.Yang, R.C.Batra
// J.Thermal Stresses. �1995. �Vol. 18. � P. 247-262.

V.V. Stelmashchuk, H.A. Shynkarenko,
Faculty of Applied Mathematics and Informatics,
Ivan Franko National University of Lviv,
1, Universytets'ka Str., Lviv, 79000, Ukraine;
H.A. Shynkarenko,
Department of Mathematics and Applied Informatics,
Opole University of Technology,
76, Pr�oszkowska Str., 45-758, Opole, Poland.

Received 27.04.2016

119



Æóðíàë îá÷èñëþâàëüíî¨ 2016
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (122)

Journal of Computational
& Applied Mathematics

UDC 517.9

BOUNDARY VALUE PROBLEM FOR THE
TWO-DIMENSIONAL

LAPLACE EQUATION WITH TRANSMISSION CONDITION
ON THIN INCLUSION

Yu.M. Sybil, B. E.Grytsko

Ðåçþìå. Ðîçãëÿíóòî çàäà÷ó äëÿ ðiâíÿííÿ Ëàïëàñà â îáìåæåíié äâîâè-
ìiðíié Ëiïøèöåâié îáëàñòi ç òîíêèì âêëþ÷åííÿì, íà ÿêîìó çàäàíà òðàíñ-
ìiñiéíà ãðàíè÷íà óìîâà, òîáòî óìîâà, ùî ìiñòèòü ÿê ñòðèáîê íîðìàëüíî¨
ïîõiäíî¨, òàê i ãðàíè÷íå çíà÷åííÿ øóêàíî¨ ôóíêöi¨. Äîâåäåíî åêâiâàëåíò-
íiñòü çàäà÷i ó äèôåðåíöiàëüíîìó ôîðìóëþâàííi òà âiäïîâiäíî¨ âàðiàöiéíî¨
çàäà÷i. Äîñëiäæåíî ïèòàííÿ iñíóâàííÿ òà ¹äèíîñòi ðîçâ'ÿçêó ïîñòàâëåíî¨
çàäà÷i ó âiäïîâiäíèõ ôóíêöiîíàëüíèõ ïðîñòîðàõ. Íà îñíîâi iíòåãðàëüíîãî
ïîäàííÿ ðîçâ'ÿçêó âèõiäíà äèôåðåíöiàëüíà çàäà÷à çâåäåíà äî ñèñòåìè
ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü. Ïîáóäîâàíî àëãîðèòì ÷èñåëüíîãî ðîç-
â'ÿçóâàííÿ îòðèìàíî¨ ñèñòåìè iíòåãðàëüíèõ ðiâíÿíü ìåòîäîì êîëîêàöi¨.
Ïðåäñòàâëåíî ÷èñåëüíi ðåçóëüòàòè íàáëèæåíîãî ðîçâ'ÿçóâàíÿ äåÿêèõ êîí-
êðåòíèõ ãðàíè÷íèõ çàäà÷.
Abstract. We consider boundary value problem for Laplace equation in
bounded two-dimensional Lipschitz domain with thin inclusion. Transmission
boundary condition upon it consists of the jump of normal derivative and the
meaning of boundary value of seeking function. We prove the equivalence
of initial boundary value problem and connected variational problem. As a
result we obtain existence and uniqueness of solution of the posed problem in
appropriate functional spaces. Based on the integral representation formula
the considered boundary value problem is reduced to the system of bound-
ary integral equations. We construct the algorithm of numerical solution of
obtained system by collocation method. Our approach is illustrated by some
numerical examples.

The numerical results show that the proposed methods give a good accu-
racy of reconstructions with an economical computational cost.

1. Introduction
Boundary value problems for the second order elliptic equations with trans-

mission boundary conditions in nonsmooth domains are important class of
boundary value problems and were considered by many authors [1]- [4], [7, 8].

We consider a special case of the transmission conditions when they are posed
on an open Lipschitz curve. From the mathematical point of view such kind of
problem describes stationary temperature �eld in domain with thin inclusion
when the temperature passing through this inclusion is continuous and the heat
�ux is discontinuous and proportional to the boundary value of temperature.

Key words. Laplace equation; transmission condition; variational problem; open curve.
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In oder to obtain convenient mathematical model for this physical problem it's
useful to present thin objects as inclusion or crack like an open curve. As a
result we get essentially unregular domain and need to introduce corresponding
trace maps and appropriate functional spaces [1, 6].

In present paper we use a variational formulation of the posed boundary value
problem with transmission condition which gives us opportunity to obtain the
existence and uniqueness of solution.

2. Functional spaces and trace operators
Let Ω+ ⊂ R2 be a bounded connected Lipschitz domain. This means that

its boundary curve Σ is locally the graph of a Lipschitz function [5, 6]. Let us
note that Σ can be piecewise smooth and have corner points. Ω+ = Ω+ ∪ Σ.
We suppose that S is an open Lipschitz curve with the end points c1 and c2,
S = S ∪ {c1, c2} and S ⊂ Ω+. We denote Ω = Ω+ \ S and consider S as a part
of a some closed bounded Lipschitz curve Σ0 = S ∪ S0, Σ0 ⊂ Ω+.

Since Σ and S are Lipschitz almost everywhere we can de�ne outward point-
ing vector of the normal ~nx, x ∈ Σ or x ∈ S. Depend on the direction of ~nx,
x ∈ S, we consider S as a double sided curve with sides S+ and S−.

In Ω+ we consider the Laplace operator

Lu = −∆u = −
2∑

i=1

(
∂u

∂xi

)2

and connected bilinear form

a(u, v) = (∇u,∇v)L2(Ω+) =
∫

Ω+

{
2∑

i=1

∂u

∂xi

∂v

∂xi

}
dx.

We use the Hilbert spaces H1(Ω+) and H1(Ω+, L) of real functions with
norms and inner products

‖u‖2
H1(Ω+) =

∫

Ω+

{|∇u|2 + u2
}

dx, (u, v)H1(Ω+) =
∫

Ω+

{(∇u,∇v) + uv} dx,

‖u‖2
H1(Ω+,L) = ‖u‖2

H1(Ω+) + ‖Lu‖2
L2(Ω+),

(u, v)H1(Ω+,L) = (u, v)H1(Ω+) + (Lu,Lv)L2(Ω+).

The trace operators γ+
0,Σ : H1(Ω+) → H1/2(Σ) and γ+

1,Σ : H1(Ω+, L) →
H−1/2(Σ) are continuous and surjective [5, 6]. Here γ+

1,Σu ∈ H−1/2(Σ) =
(H1/2(Σ))′ and coincides with ∂u

∂nx
for u ∈ C1(Ω+).

Let us denote by C∞
0 (Ω) the class of in�nitely di�erentiable functions with

compact support in Ω. We introduce the Hilbert spaces H1(Ω) and H1(Ω, L)
of real functions with norms

‖u‖2
H1(Ω) =

∫

Ω

{|∇u|2 + u2
}

dx, (1)

‖u‖2
H1(Ω,L) = ‖u‖2

H1(Ω) + ‖Lu‖2
L2(Ω),
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where derivatives ∂u
∂xi

∈ L2(Ω) are de�ned as
(

∂u

∂xi
, ϕ

)

L2(Ω)

= −
∫

Ω
u

∂ϕ

∂xi
dx = −

(
u,

∂ϕ

∂xi

)

L2(Ω)

for all ϕ ∈ C∞
0 (Ω).

We consider some trace maps in Ω. We denote γ±0,S and γ±1,S the restrictions of
trace maps γ±0,Σ0

and γ±1,Σ0
on S respectively [9]. Then we have γ±0,S : H1(Ω) →

H1/2(S) and γ±1,S : H1(Ω, L) → H−1/2(S).
We introduce the space

H1
0 (Ω) = {u ∈ H1(Ω) : γ±0,Su = 0, γ+

0,Σu = 0}
and denote dual space H−1(Ω) = (H1

0 (Ω))′. We also have that H1
0 (Ω) is a

closure of C∞
0 (Ω) in the norm (1).

In what follows we use the next trace maps: [γ0,S ] = γ+
0,S − γ−0,S , [γ1,S ] =

γ+
1,S − γ−1,S . Analogously as it was obtained in [9, 10] for R3 we can show that

[γ0,S ] : H1(Ω) → H
1/2
00 (S), [γ1,S ] : H1(Ω, L) → H

−1/2
00 (S),

where H
1/2
00 (S) = {g ∈ H1/2(S) : p0g ∈ H1/2(Σ0)}. Here p0g is extension by

zero of the function g on S0. The norm in H
1/2
00 (S) is given as

‖g‖
H

1/2
00 (S)

= ‖p0g‖H1/2(Σ0).

H
−1/2
00 (S) = (H1/2(S))′, H−1/2(S) = (H1/2

00 (S))′.
We have the �rst Green's formula for bounded domain with an open curve

which in presented case for u ∈ H1(Ω, L) and v ∈ H1(Ω) has the following
form:
a(u, v) = (Lu, v)L2(Ω) + 〈γ+

1,Su, [γ0,S ]v〉+ 〈[γ1,S ]u, γ−0,S ]v〉+ 〈γ+
1,Σu, γ+

0,Σv〉. (2)

Here 〈·, ·〉 are relations of duality between H
1/2
00 (S) and H−1/2(S), H1/2(S) and

H
−1/2
00 (S), H1/2(Σ) and H−1/2(Σ) respectively.
Let Ω1 ⊂ Ω+ be a Lipschitz domain bounded by the closed curve Σ0. Ω1 =

Ω1 ∪ Σ0, Ω2 = Ω+ \ Ω1. We denote by ui the restriction of u ∈ H1(Ω) to Ωi,
i = 1, 2. It's obviously that ui ∈ H1(Ωi), i = 1, 2.

Lemma 1. The trace map γ−0,S : H1(Ω+) → H1/2(S) is continuous and sur-
jective.

Proof. Let g ∈ H1/2(S) be an arbitrary function. We denote by pg ∈ H1/2(Σ0)
the extension of g on Σ0. The trace map γ−0,Σ0

: H1(Ω1) → H1/2(Σ0) is con-
tinuous and surjective. Thus there exists function u1 ∈ H1(Ω1) with trace
γ−0,Σ0

u1 = pg and
‖pg‖H1/2(Σ0) ≤ c‖u1‖H1(Ω1). (3)

Analogously there exists the function u2 ∈ H1(Ω2) that γ+
0,Σ0

u2 = pg. Thus we
have function u ∈ H1(Ω+) where ui are the restrictions of u to Ωi, i = 1, 2.
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Then from (3) we obtain
‖g‖H1/2(S) = inf

pg∈H1/2(Σ0)
‖pg‖H1/2(Σ0) ≤ c‖u1‖H1(Ω1) ≤ c‖u‖H1(Ω+).

Here c - some positive constant. ¤

3. Boundary value problem with transmision boundary
condition and it's variational formulation

Let us state the following boundary value problem in domain Ω.
Problem T . Find a function u ∈ H1(Ω, L) that satis�es

Lu = −∆u = 0 in Ω,

[γ0,S ]u = 0, [γ1,S ]u + λγ−0,Su = f,

γ+
0,Σu = g.

Here f ∈ H
−1/2
00 (S), g ∈ H1/2(Σ) and λ ∈ C(S̄) are given.

A partial case of the problem T when γ+
0,Σu = 0 we denote as problem T0.

We can connect with problem T0 the next variational problem.
Problem V T0. Find a function u ∈ H1

0 (Ω+) = {u ∈ H1(Ω+) : γ+
0,Σu = 0}

that satis�es
b(u, v) = l(v)

for every v ∈ H1
0 (Ω+).

Here
b(u, v) = (∇u,∇v)L2(Ω+) + (λγ−0,Su, γ−0,Sv)L2(S),

l(v) = 〈f, γ−0,Sv〉. (4)

Lemma 2. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, then bilinear form b(u, v) : H1
0 (Ω+)×

H1
0 (Ω+) → R is continuous and H1

0 (Ω+)-elliptic.

Proof. Since trace map γ−0,S : H1
0 (Ω+) → H1/2(S) is continuous we have

|(λγ−0,Su, γ−0,Sv)L2(S)| ≤ M‖γ−0,Su‖L2(S)‖γ−0,Sv‖L2(S) ≤
≤ M‖γ−0,Su‖H1/2(S)‖γ−0,Sv‖H1/2(S) ≤ Mc‖u‖H1

0 (Ω+)‖v‖H1
0 (Ω+),

where M = maxx∈S̄ |λ(x)|.
|(∇u,∇v)L2(Ω+)| ≤ ‖∇u‖L2(Ω+)‖∇v‖L2(Ω+) ≤ ‖u‖H1

0 (Ω+)‖v‖H1
0 (Ω+).

Thus we obtain
|b(u, v)| ≤ (Mc + 1)‖u‖H1

0 (Ω+)‖v‖H1
0 (Ω+).

If λ(x) ≥ 0, x ∈ S̄, then using Friedreich's inequality in H1
0 (Ω+) we can get

b(u, u) = ‖u‖2
L2(Ω+) + ‖λ1/2γ−0,Su‖2

L2(S) ≥ c‖u‖2
H1

0 (Ω+).

Thus b(u, v) is H1
0 (Ω+) - elliptic. Here c - some positive constants which don't

depend on u and v. ¤
Theorem 1. Problems T0 and V T0 are equivalent.
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Proof. Let u be a solution of the problem T0. It means that u ∈ H1(Ω, L) and
[γ0,S ]u = 0, γ+

0,Σu = 0. Thus u ∈ H1
0 (Ω+). From the �rst Green's formula

(2) we have b(u, v) = l(v) for every v ∈ H1
0 (Ω+). Thus u is a solution of the

problem V T0.
Let now u ∈ H1

0 (Ω+) be a solution of the problem V T0. Then for every
v ∈ H1

0 (Ω+) we have
(∇u,∇v)L2(Ω+) = 〈f − λγ−0,Su, γ−0,Sv〉. (5)

By de�nition 〈Lu, v〉 = (∇u,∇v)L2(Ω+) for every u ∈ H1(Ω+) and v ∈ H1
0 (Ω+).

Here Lu ∈ H−1(Ω+) = (H1
0 (Ω+))′. If v ∈ C∞

0 (Ω) from (5) we can get the
following relation:

(∇u,∇v)L2(Ω+) = 〈Lu, v〉 = 0.

It means that Lu ∈ H−1(Ω) = (H1
0 (Ω))′ and Lu = 0 in Ω.

Since u ∈ H1
0 (Ω+) it follows that [γ0,S ]u = 0. Then from the �rst Green's

formula (2) for arbitrary v ∈ H1
0 (Ω+) we can get:

〈[γ1,S ]u− f + λγ−0,Su, γ−0,Sv〉 = 0.

The trace map γ−0,S : H1
0 (Ω+) → H1/2(S) is surjective. Thus 〈[γ1,S ]u − f +

λγ−0,Su, g〉 = 0 for arbitrary g ∈ H1/2(S). It gives us that [γ1,S ]u + λγ−0,Su = f
and as a consequence we obtain that function u is a solution of the problem
T0. ¤
Theorem 2. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, then problem V T0 has a unique
solution for arbitrary f ∈ H

−1/2
00 (S).

Proof. Lemma 2 gives us that the bilinear form b(u, v) : H1
0 (Ω+)×H1

0 (Ω+) → R
is continuous and H1

0 (Ω+)-elliptic
It's easy to show that the functional l : H1

0 (Ω+) → R given by (4) is contin-
uous. Since the trace map γ−0,S : H1

0 (Ω+) → H1/2(S) is continuous we have:
|l(v)| = |〈f, γ−0,Sv〉| ≤ ‖f‖

H
−1/2
00 (S)

‖γ−0,Sv‖H1/2(S) ≤ c‖f‖
H
−1/2
00 (S)

‖v‖H1
0 (Ω+),

where c - some positive constant which does not depend on v. Then by the
Lax-Milgram Lemma we obtain what was to be proved. ¤
Theorem 3. If λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄, then problem T has a unique
solution for arbitrary f ∈ H

−1/2
00 (S) and g ∈ H1/2(Σ).

Proof. Let function w ∈ H1(Ω+) satis�es Lw = 0 in Ω+ and γ+
0,Σw = g. Then

[γ0,S ]w = 0 and [γ1,S ]w = 0. As a corollary of theorem 1 and theorem 2 we
obtain that the problem T0 has a unique solution for arbitrary f ∈ H

−1/2
00 (S)

if λ ∈ C(S̄), λ(x) ≥ 0, x ∈ S̄. It means that there exists a solution u0 of the
problem T0 with boundary condition [γ1,S ]u0 + λγ−0,Su0 = f − λγ−0,Sw. Then
it's easy to verify that the function u = u0 − w ∈ H1(Ω) is a solution of the
problem T . ¤

Let us note that our approach remains true when S =
⋃n

i=1 Si, where Si are
open Lipshitz curves without common points.
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4. System of boundary integral equations
Let Q(x, y) = 1

2π ln 1
|x−y| - be fundamental solution of the operator L = −∆.

Then the solution u of the problem T with condition γ−0,Σu = γ+
0,Σu has the

following integral representation
u(x) = V τ(x) + VΣµ(x), x ∈ Ω+,

where τ = [γ1,S ]u, µ = [γ1,Σ]u,

V τ(x) =
∫

S

Q(x, y)τ(y)dsy, VΣµ(x) =
∫

Σ

Q(x, y)µ(y)dy.

Using boundary conditions we can reduce problem T to the following system
of boundary integral equations:

{
τ + λKτ + λγ+

0,SVΣµ = f,

γ+
0,ΣV τ + KΣµ = g,

(6)

where

Kτ(x) =
∫

S

Q(x, y)τ(y)dSy, γ+
0,SVΣµ(x) =

∫

Σ

Q(x, y)µ(y)dSy, x ∈ S,

KΣµ(x) =
∫

Σ

Q(x, y)µ(y)dSy, γ+
0,ΣV τ(x) =

∫

S

Q(x, y)τ(y)dSy, x ∈ Σ.

We use collocation method for solving of obtained system (6). Let us denote
by NS and NΣ number of boundary elements of the second order given upon
curves S and Σ respectively. Finally we derive the following system of linear
algebraic equations:

(
A11 A12

A21 A22

)(
τ̃
µ̃

)
=

(
f̃
g̃

)
.

Here

A11 =





δij + λ(xi)
∫

Sj

Q(xi, y)dsy





, i, j = 1, NS ,

A12 =





λ(xi)
∫

Σj

Q(xi, y)dsy





, i = 1, NS , j = 1, NΣ,

A21 =





∫

Sj

Q(xi, y)dsy





, i = 1, NΣ, j = 1, NS ,

A22 =





∫

Σj

Q(xi, y)dsy





, i, j = 1, NΣ,
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τ̃ = (τ1, · · · , τNS
), µ̃ = (µ1, · · · , µNΣ

),

f̃ = (f(x1), · · · , f(xNS
)), g̃ = (g(x1), · · · , g(xNΣ

)),
xi � collocation points on S or Σ.

Approximate meaning of searching solution of the problem T we can get
from the next expression:

u(x) =
NS∑

i=1

τi

∫

Si

Q(x, y)dsy +
NΣ∑

i=1

µi

∫

Σi

Q(x, y)dsy.

5. Numerical examples
Example 1. We consider the domain Ω bounded by circle Σ of the radius

R = 2 and with open curve S = {(x1, x2) : x2 = x1,−1 < x1 < 1} (see Fig. 1):

Fig. 1

The obtained numerical result for given meaning of λ, f and g is presented
in Fig. 2a and Fig. 2b.

a)

b)

Fig. 2. λ = 1, g = 1, f = 5, NΣ = 800, NS = 160
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If we take another meanings of functions g and f we can get the following
results (see Fig. 3a, Fig. 3b, Fig. 4a and Fig. 4b):

a)

b)

Fig. 3. λ = 1, g = x2, f = 5, NΣ = 800, NS = 160

a)

b)

Fig. 4. λ = 1, g = x2, f = 10x2, NΣ = 800, NS = 160
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Example 2. We consider the next domain where S consists of two parts as
it presented on Fig. 5

Fig. 5

Numerical result for given meanings of λ, f and g for this example is pre-
sented in Fig. 6a and Fig. 6b.

a)

b)

Fig. 6. λ = 1, g = 1, f = 1, NΣ = 640, NS = 320
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EXPONENTIALLY CONVERGENT METHOD
FOR DIFFERENTIAL EQUATION IN BANACH

SPACE WITH A BOUNDED OPERATOR
IN NONLOCAL CONDITION

V.B.Vasylyk

Ðåçþìå. Ðîçãëÿäà¹òüñÿ äâîòî÷êîâà íåëîêàëüíà çàäà÷à äëÿ äèôåðåí-
öiàëüíîãî ðiâíÿííÿ ïåðøîãî ïîðÿäêó ç íåîáìåæåíèì îïåðàòîðíèì êîåôi-
öi¹íòîì â áàíàõîâîìó ïðîñòîði X. Â íåëîêàëüíié óìîâi ìiñòèòüñÿ îáìåæå-
íèé îïåðàòîðíèé êîåôiöi¹íò. Ïîáóäîâàíî òà îáãðóíòîâàíî íîâèé åêñïî-
íåíöiàëüíî çáiæíèé ìåòîä ó âèïàäêó, êîëè îïåðàòîðíèé êîåôiöi¹íò A ó
ðiâíÿííi ¹ ñåêòîðiàëüíèì i âèêîíàííi óìîâè iñíóâàííÿ òà ¹äèíîñòi ðîçâ'ÿç-
êó. Öåé ìåòîä ãðóíòó¹òüñÿ íà çîáðàæåííi îïåðàòîðíèõ ôóíêöié çà äîïîìî-
ãîþ iíòåãðàëà Äàíôîðäà-Êîøi âçäîâæ ãiïåðáîëè, ùî îõîïëþ¹ ñïåêòð îïå-
ðàòîðà A, òà âiäïîâiäíié êâàäðàòóðíié ôîðìóëi, ùî ìiñòèòü íåâåëèêó
êiëüêiñòü ðåçîëüâåíò. Åôåêòèâíiñòü çàïðîïîíîâàíîãî ìåòîäó äåìîíñò-
ðó¹òüñÿ çà äîïîìîãîþ ÷èñåëüíèõ ðîçðàõóíêiâ.
Abstract. The two-pointed nonlocal problem for the �rst order di�eren-
tial equation with an unbounded operator coe�cient in a Banach space X
is considered. The nonlocal condition involves a bounded operator coe�-
cient. A new exponentially convergent method is proposed and justi�ed in
the case when the operator coe�cient A in equatuion is strongly positive
and some existence and uniqueness conditions are ful�lled. This method is
based on representations of operator functions by a Dunford-Cauchy integral
along a hyperbola enveloping the spectrum of A and on the proper quadra-
tures involving short sums of resolvents. The e�ciency of proposed method
is demonstrated by numerical examples.

1. Introduction
Problems with nonlocal conditions arise in many applications particulary in

the theory of physics of plasma [12], nuclear physics [9], waveguides [7] etc. The
nonlocal problems for a di�erential equation with various nonlocal conditions
are also interesting from theoretical point of view and are ones of the important
topics in the study of di�erential equations.

Di�erential equations with operator coe�cients in some Hilbert or Banach
space can be considered as meta-models for systems of partial or ordinary di�er-
ential equations and are suitable for investigations using tools of the functional
analysis (see e.g. [8, 11]). Nonlocal problems often are considered within this
framework [1�3,18,19].

Key words. Nonlocal problem; di�erential equation with an operator coe�cient in Banach
space; operator exponential; exponentially convergent methods.
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In this work we consider the following nonlocal two-pointed problem:

u′t + Au = f(t), t ∈ [0, T ]

u(0) + Bu(T ) = u0, 0 < T,
(1)

where B : X → X is a bounded operator, f(t) is a given vector-valued function
with values in Banach space X, u0 ∈ X. The operator A with domain D(A) in
Banach space X is assumed to be a densely de�ned strongly positive (sectorial)
operator, i.e. its spectrum Σ(A) lies in a sector of the right half-plane with the
vertex at the origin and with a resolvent that decays inversely proportional to
|z| at the in�nity (see estimate (2) below).

Discretization methods for di�erential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. [5,10,13,14,16,17] and
the references therein). Methods from [5, 10, 14, 16, 17] possess an exponential
convergence rate, i.e. the error estimate in an appropriate norm is of the type
O(e−Nα

), α > 0 with respect to a discretization parameter N →∞. For a given
tolerance ε such methods provide optimal or nearly optimal computational
complexity [4]. One of the possible ways to obtain exponentially convergent
approximations to abstract di�erential equations is based on a representation
of the solution through the Dunford-Cauchy integral along a parametrized path
enveloping the spectrum of the operator coe�cient and choosing a proper quad-
rature for this integral. In such way we obtain a short sum of resolvents. Since
the treatment of such resolvents is usually the most time consuming part of any
approximation this leads to a low-cost naturally parallelization techniques. Pa-
rameters of the algorithms from [5,10,14] were optimized in [20,21] to improve
the convergence rate.

Exponentially convergent method was constructed recently for nonlocal m-
point problem for the �rst order di�erential equation with an unbounded co-
e�cient in Banach space in [3]. But unlike this work there were considered
the case of scalar coe�cients in nonlocal condition. The aim of this paper is
to construct an exponentially convergent approximation to the problem for a
di�erential equation with two-pointed nonlocal condition with a bounded oper-
ator in abstract setting (1). The paper is organized as follows. In Section 2 we
discuss the existence and uniqueness of the solution as well as its representation
through input data. A numerical method for the homogeneous problem (1) is
proposed in section 3. The main result of this section is theorem 1 about the
exponential convergence rate of the proposed discretization.

2. Existence and representation of the solution
Let the operator A in (1) be a densely de�ned strongly positive (sectorial)

operator in a Banach space X with the domain D(A), i.e. its spectrum Σ(A)
lies in the sector. Additionally outside the sector and on its boundary ΓΣ the
following estimate for the resolvent holds true

∥∥(zI −A)−1
∥∥ ≤ M

1 + |z| . (2)
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Let us assume that operator B is bounded in Banach space X, i.e. ‖B‖ ≤
c < ∞.

The hyperbola
Γ0 = {z(ξ) = ρ0 cosh ξ − ib0 sinh ξ : ξ ∈ (−∞,∞), b0 = ρ0 tanϕ} (3)

is called a spectral hyperbola. It has a vertex at (ρ0, 0) and asymptotes which
are parallel to the rays of the spectral angle Σ. The numbers ρ0, ϕ are called
the spectral characteristics of A.

A convenient representation of operator functions is the one through the
Dunford-Cauchy integral (see e.g. [8, 11]) where the integration path plays an
important role. We choose the following hyperbola

ΓI = {z(ξ) = aI cosh ξ − ibI sinh ξ : ξ ∈ (−∞,∞)}, (4)
as the integration contour which envelopes the spectrum of A.

One can reduce problem (1) to homogeneous using the following way. Let
u = v + w, where v is a solution to the problem

v′t + Au = f(t), t ∈ [0, T ]

u(0) = 0.

Namely it has a representation

v(t) =
∫ t

0
e−A(t−τ)f(τ)dτ. (5)

Then for w(t) we obtain the problem
w′t + Aw = 0, t ∈ [0, T ]

w(0) + Bw(T ) = u0 −B

∫ T

0
e−A(T−τ)f(τ)dτ = ũ0, 0 < T.

Note that exponentially convergent method for approximating v(t) from (5)
was developed in [6] (see also [4]). So, we can consider homogeneous problem
(1) (f(t) ≡ 0).

According to the Hille-Yosida-Phillips theorem [22] the strongly positive op-
erator A generates a one parameter semigroup T (t) = e−tA and solution to (1)
(homogeneous case) can be represented by

u(t) = e−Atu(0). (6)
Combining the nonlocal condition from (1) and (6) we obtain

u(0) + Be−AT u(0) = u0, (7)
from where we have

u(0) =
[
I + Be−AT

]−1
u0,

in the case when
[
I + Be−AT

]−1 exists. Here I is an identity operator. So,
using (6) we obtain

u(t) = e−At
[
I + Be−AT

]−1
u0. (8)
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Let us looking for existing conditions for
[
I + e−AT B

]−1
. We have

∥∥∥
[
I + e−AT B

]−1
∥∥∥ ≤

(
1− ∥∥e−AT B

∥∥)−1 ≤ (1− ‖B‖)−1 ≤ c < ∞,

in the case
‖B‖ < 1. (9)

Remark 5. It is possible to obtain weaker conditions than (9) in the case when
the operator A is positive de�nite and selfadjoint A = A∗ ≥ λ0I, λ0 > 0. For
example if B = A then we have using spectral integral representation

∥∥Be−AT
∥∥ =

∥∥∥∥
∫ ∞

λ0

e−λT λdEλ

∥∥∥∥ ≤
e−1

T

∫ ∞

λ0

‖dEλ‖ =
e−1

T
.

Therefore, for T > e−1 we have
∥∥∥
[
I + e−AT B

]−1
∥∥∥ ≤

[
1− ∥∥e−AT A

∥∥]−1
<

[
1− e−1

T

]−1

=
T

T − e−1
< ∞.

3. Numerical approximation
Our aim in this section is to construct an exponentially convergent method

for the solution to homogeneous problem (1) with assumption (9). Additionally
we assume that the operators A and B are commutative: AB = BA.

Using the Dunford-Cauchy representation of u(t) (see [11]) analogously to [4]
we obtain

u(t) =
1

2πi

∫

ΓI

e−zt
[
I + e−zT B

]−1
(zI −A)−1u0dz (10)

Representation (10) makes sense only when the function e−zt
[
I + e−zT B

]−1 is
analytic in the region enveloped by ΓI . Let us show, that condition (9) guaranty
this analyticity [8].

Actually, the analyticity of e−zt
[
I + e−zT B

]−1 might only be violated when
e−zT B = −I, since in this case the function becomes unbounded. It is easy to
see that for an arbitrary z we have

∥∥I + Be−zT
∥∥ ≥ |1− ‖B‖| > 0,

provided that (9) holds true.
We modify the representation of u(t) to obtain numerical stability for small

t as follows (see [4]):

u(t) =
1

2πi

∫

ΓI

e−zt
[
I + e−zT B

]−1
[
(zI −A)−1 − 1

z
I

]
u0dz. (11)

After discretization of the integral such modi�ed resolvent provides better con-
vergence speed than (10) in a neighborhood of t = 0 (see [4, 6] for details).

Parameterizing the integral (11) by (4) we get

u(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ, (12)
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with
F(t, ξ) = FA(t, ξ)u0,

FA(t, ξ) = e−z(ξ)tz′(ξ)[I + Be−z(ξ)T ]−1

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
,

z′(ξ) = aI sinh ξ − ibI cosh ξ.

Supposing u0 ∈ D(Aα), 0 < α < 1 it was shown in [4, 6] that

‖e−z(ξ)tz′(ξ)
[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
u0‖

≤ (1 + M)K
bI

aI

(
2
aI

)α

e−aI t cosh ξ−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0.

The part responsible for the nonlocal condition in (12), can be estimated in
the following way

∥∥∥∥
(
I + Be−z(ξ)T

)−1
∥∥∥∥ ≤ (1− ‖B‖)−1 = Q.

Thus, we obtain the following estimate for F(t, ξ) using commutative prop-
erty of operators A and B:

‖F(t, ξ)‖ ≤ Q(1 + M)K
bI

aI

(
2
aI

)α

e−aI t cosh ξ−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0. (13)

Further, we have to estimate a strip around the real axis where the function
F(t, ξ) permit analytical extension (with respect to ξ). The analyticity of
function F(t, ξ + iν), in the strip

Dd1 = {(ξ, ν) : ξ ∈ (−∞,∞), |ν| < d1/2},

with some d1 could be violated if the resolvent or the part related to the nonlocal
condition become unbounded. To avoid this we have to choose d1 so that for
ν ∈ (−d1/2, d1/2) the hyperbola set Γ(ν) remains in the right half-plane of the
complex plane. For ν = −d1/2 the corresponding hyperbola is going through
the origin (0, 0). For ν = d1/2 it coincides with the spectral hyperbola and
therefore for all ν ∈ (−d1/2, d1/2) the set Γ(ν) does not intersect the spectral
sector.

The above requirements are ful�lled when (see [4])

d1 = arccos

(
ρ1√

ρ2
0 + b2

0

)
− ϕ, (14)

134



EXPONENTIALLY CONVERGENT METHOD FOR DIFFERENTIAL ...

where cosϕ = ρ0√
ρ2
0+b20

, sinϕ = b0√
ρ2
0+b20

. And for aI , bI

aI =
√

ρ2
0 + b2

0 cos
(

d1

2
+ ϕ

)

= ρ0

cos
(

d1
2 + ϕ

)

cosϕ
= ρ0

cos
(

arccos
(

ρ1√
ρ2
0+b20

)
/2 + ϕ/2

)

cosϕ
,

bI =
√

ρ2
0 + b2

0 sin
(

d1

2
+ ϕ

)

= ρ0

cos
(

d1
2 + ϕ

)

cosϕ
= ρ0

cos
(

arccos
(

ρ1√
ρ2
0+b20

)
/2 + ϕ/2

)

cosϕ
.

(15)

For aI and bI de�ned as above the vector valued function F(t, w) is analytic in
the strip Dd1 with respect to w = ξ + iν for any t ≥ 0.

Similarly to [15] (see [4]), we introduce the space Hp(Dd), 1 ≤ p ≤ ∞ of all
vector-valued functions F analytic in the strip

Dd = {z ∈ C : −∞ < <z < ∞, |=z| < d},
equipped by the norm

‖F‖Hp(Dd) =

{
limε→0(

∫
∂Dd(ε) ‖F(z)‖p|dz|)1/p if 1 ≤ p < ∞,

limε→0 supz∈∂Dd(ε) ‖F(z)‖ if p = ∞,

where
Dd(ε) = {z ∈ C : |Re(z)| < 1/ε, |Im(z)| < d(1− ε)}

and ∂Dd(ε) is the boundary of Dd(ε).
Similarly to [4] we have estimate for ‖F(t, w)‖

‖F(t, ·)‖H1(Dd1
) ≤ ‖Aαu0‖[C−(ϕ, α)

+ C+(ϕ, α)]
∫ ∞

−∞
e−α|ξ|dξ = C(ϕ, α)‖Aαu0‖

(16)

with
C(ϕ, α) =

2
α

[C+(ϕ, α) + C−(ϕ, α)],

C±(ϕ, α) = (1 + M)QK tan
(

d1

2
+ ϕ± d1

2

)
 2 cos ϕ

ρ0 cos
(

d1
2 + ϕ± d1

2

)



α

.

Note that the in�uence of both the smoothness parameter of u0 given by α and
of the spectral characteristics of the operator A given by ϕ and ρ0 is accounted
by that fact, that the constant C(ϕ, α) from (15) tends to∞ if α → 0, ϕ → π/2
or ρ1 → 0 (in this case due to (14) d1 → π

2 − ϕ).
We approximate integral (12) by the following Sinc-quadrature [4, 6, 15]:

uN (t) =
h

2πi

N∑

k=−N

F(t, z(kh)), (17)
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with an error
‖ηN (F , h)‖ = ‖u(t)− uh,N (t)‖

≤ ‖u(t)− h

2πi

∞∑

k=−∞
F(t, z(kh))‖+ ‖ h

2πi

∑

|k|>N

F(t, z(kh))‖

≤ 1
2π

e−πd1/h

2 sinh (πd1/h)
‖F‖H1(Dd1

)

+
C(ϕ, α)h‖Aαu0‖

2π

∞∑

k=N+1

exp[−aIt cosh (kh)− αkh]

≤ c‖Aαu0‖
α

{
e−πd1/h

sinh (πd1/h)
+ exp[−aIt cosh ((N + 1)h)− α(N + 1)h]

}
,

where the constant c does not depend on h, N, t. Equalizing the both exponen-
tials for t = 0 implies

2πd1

h
= α(N + 1)h,

or after the transformation

h =

√
2πd1

α(N + 1)
. (18)

With this step-size the following error estimate holds true

‖ηN (F , h)‖ ≤ c

α
exp

(
−

√
πd1α

2
(N + 1)

)
‖Aαu0‖, (19)

where the constant c independent of t,N. In the case t > 0 the �rst summand
in the argument of exp[−aIt cosh ((N + 1)h)− α(N + 1)h] from the estimate
for ‖ηN (F , h)‖ contributes mainly to the error order. Setting in this case h =
c1 lnN/N with some positive constant c1 we remain, asymptotically for a �xed
t, with an error

‖ηN (F , h)‖ ≤ c
[
e−πd1N/(c1 ln N) + e−c1aI tN/2−c1α ln N

]
‖Aαu0‖, (20)

where c is a positive constant. Thus, we have proven the following result.

Theorem 1. Let A be a densely de�ned strongly positive operator and u0 ∈
D(Aα), α ∈ (0, 1), then the Sinc-quadrature (17) represents an approximate so-
lution of the homogeneous nonlocal value problem (1) (i.e. the case when f(t) ≡
0) and possesses an exponential convergence rate which is uniform with respect
to t ≥ 0 and is of the order O(e−c

√
N ) uniformly in t ≥ 0 for h = O(1/

√
N)

(estimate (19)) and of the order O (
max

{
e−πdN/(c1 ln N), e−c1aI tN/2−c1α ln N

})
for each �xed t > 0 when h = c1 lnN/N (estimate (20)).
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Tabl. 1. The error for x = 0.5, t = 0.5.

N ε1,N ε2,N

8 0.4686576088595737062e-1 0.1900886270925846e-2
16 0.934021577137014178e-2 0.852946984325721275711e-4
32 0.1546349721567053042e-3 0.810358320985172283872e-5
64 0.0159641801061596051e-3 0.01035505780238307696e-5
128 0.735484912605954949e-5 0.91841759148488051333e-6
256 0.146908016254907436e-7 0.24806555113840622551e-7
512 0.8577765610e-8 0.1165963141e-8
1024 0.7339799837e-11 0.1591565422e-11

Tabl. 2. The estimate of c

N c

4 2.372652515388745588587496
8 1.120148732795449515627946
16 1.458741976765153165445005
32 1.527648924601130131250452
64 1.476794596387591759032900
128 1.499935011373075736075927
256 1.506597339081609844717370

4. Numerical example
We consider the problem

∂u

∂t
=

∂2u

∂x2
,

u(0, t) = u(1, t) = 0,

u(x, 0) + Bu(x, 1) = u0,

with
u(x, t) =

(
u1(x, t)
u2(x, t)

)
, B =

(
0.2 0.1
0.1 0.4

)
(21)

u0(x, t) =
(

(1 + 0.2e−π2
) sin(πx) + 0.1e−4π2

sin(2πx)
0.1e−π2

sin(πx) + (1 + 0.4e−4π2
) sin(2πx)

)
(22)

It is easy to check that exact solution is

u(x, t) =
(

sin(πx)
sin(2πx)

)
, (23)

The error of computation is presented in Tabl. 1.
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Due to Theorem 1 the error should not be greater then εN = O
(
e−c

√
N

)
.

The constant c in the exponent can be estimated using the following a-posteriori
relation:

c = ln
(

εN

ε2N

)
(
√

2− 1)−1N−1/2 = ln (µN ) (
√

2− 1)−1N−1/2.

The numerical results are presented in Tabl. 2. Note that the constant can be
estimated as c ≈ 1.5 when N →∞.

Bibliography
1. Byszewski L. Theorems about the existence and uniqueness of solution of a semilin-

ear evolution nonlocal cauchy problem /L.Byszewski // J.Math. Anal. Appl. � 1991. �
Vol. 162, �5. � P. 494-505.

2. Byszewski L. Application of properties of the right-hand sides of evolution equations to an
investigation of nonlocal evolution problems /L.Byszewski //Nonlinear Anal. � 1998. �
Vol. 33, �5. � P. 413-426.

3. Gavrilyuk I. P. Exponentially convergent method for the m-point nonlocal problem
for a �rst order di�erential equation in Banach space / I. P.Gavrilyuk, V. L.Makarov,
D.O. Sytnyk, V.B.Vasylyk //Numer. Funct. Anal. Optim. � 2010. � Vol. 31, �. 1-3. �
P. 1-21.

4. Gavrilyuk I. Exponentially convergent algorithms for abstract di�erential equations
/ Ivan Gavrilyuk, Volodymyr Makarov, Vitalii Vasylyk. � Frontiers in Mathematics. �
Birkh�auser/Springer Basel AG, Basel, 2011. � P. viii+180.

5. Gavrilyuk I. P. Exponentially convergent parallel discretization methods for the �rst or-
der evolution equations / I. P.Gavrilyuk, V. L.Makarov //Computational Methods in
Applied Mathematics (CMAM). � 2001. � Vol. 1, �4. � P. 333-355.

6. Gavrilyuk I. P. Exponentially convergent algorithms for the operator exponential with
applications to inhomogeneous problems in Banach spaces / I. P.Gavrilyuk, V. L.Makarov
// SIAM Journal on Numerical Analysis. � 2005. � Vol. 43, �5. � P. 2144-2171.

7. GordezianiD. Investigation of the nonlocal initial boundary value problems for some hy-
perbolic equations /D.Gordeziani, G.Avalishvili //Hiroshima Math. J. � 2001. � Vol. 31,
�3. � P. 345-366.

8. Kre��n S.G. Linear di�erential equations in Banach space / S.G.Kre��n. � ProvidenceR. I.:
American Mathematical Society, 1971. � P. v+390. � Translated from the Russian by J.
M. Danskin, Translations of Mathematical Monographs, Vol. 29.

9. LeungA.W. Optimal control of multigroup neutron �ssion systems /A.W.Leung, G.-
S. Chen //Appl. Math. Optim. � 1999. � Vol. 40, �1. � P. 39-60.

10. L�opez-Fern�andezM. A spectral order method for inverting sectorial laplace trans-
forms /M.L�opez-Fern�andez, C. Palencia, A. Sch�adle // SIAM J.Numer. Anal. � 2006. �
Vol. 44. � P. 1332-1350.

11. Cl�ementPh. One-parameter semigroups /Ph.Cl�ement, H. J.A.M.Heijmans, S.Ange-
nent et al. � Amsterdam: North-Holland Publishing Co., 1987. � Vol. 5 of CWI Mono-
graphs. � P. x+312.

12. Samarskii A.A. Some problems of the theory of di�erential equations /A.A. Samarskii
//Di�erentsial'nye Uravneniya. � 1980. � Vol. 16, �11. � P. 1925-1935.

13. SheenD. A parallel method for time-discretization of parabolic problems based on con-
tour integral representation and quadrature /D. Sheen, I. H. Sloan, V.Thom�ee //Math.
Comp. � 2000. � Vol. 69, �. 229. � P. 177-195.

14. SheenD. A parallel method for time discretization of parabolic equations based on
Laplace transformation and quadrature /D. Sheen, I. H. Sloan, V.Thom�ee // IMA J. Nu-
mer. Anal. � 2003. � Vol. 23, �2. � P. 269-299.

138



EXPONENTIALLY CONVERGENT METHOD FOR DIFFERENTIAL ...

15. Stenger F. Numerical methods based on sinc and analytic functions /Frank Stenger. �
New-York: Springer-Verlag, 1993. � Vol. 20 of Springer Series in Computational Mathe-
matics. � P. xvi+565.

16. VasylykV. Uniform exponentially convergent method for the �rst order evolution equa-
tion with unbounded operator coe�cient /V.Vasylyk // Journal of Numerical and Ap-
plied Mathematics. � 2003. � Vol. 1. � P. 99-104.

17. VasylykV. Approximate solution of the cauchy problem for di�erential equation with
sectorial operator in banach space /V.Vasylyk //Bulletin of Lviv University. Physical
and Mathematical sciences. � 2004. � Vol. 9. � P. 34-46. (in Ukrainian).

18. VasylykV. Nonlocal problem for an evolution �rst order equation in banach space
/V.Vasylyk // Journal of Numerical and Applied Mathematics. � 2012. � Vol. 109, �3. �
P. 139�149.

19. VasylykV.B. Exponentially convergent method for the �rst-order di�erential equa-
tion in a Banach space with integral nonlocal condition /V.B.Vasylyk, V. L.Makarov
//Ukrainian Math. J. � 2015. � Vol. 66, �8. � P. 1152-1164. � Translation of Ukra��n. Mat.
Zh. 66 (2014), � 8, P. 1029-1040.

20. Weideman J.A.C. Optimizing Talbot's contours for the inversion of the Laplace trans-
form / J.A.C.Weideman // SIAM J.Numer. Anal. � 2006. � Vol. 44, �6. � P. 2342-2362.

21. Weideman J.A.C. Improved contour integral methods for parabolic PDEs
/ J.A.C.Weideman // IMA J.Numer. Anal. � 2010. � Vol. 30, �1. � P. 334-350.

22. YosidaK. Functional analysis /K�osaku Yosida. � Sixth edition. � Berlin: Springer-Verlag,
1980. � Vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. � P. xii+501.

V.B.Vasylyk,
Institute of Mathematics,
National Academy of Sciences,
3, Tereschenkivs'ka Str., Kyiv, 01004, Ukraine;

Received 11.05.2016

139



Æóðíàë îá÷èñëþâàëüíî¨ 2016
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (122)

Journal of Computational
& Applied Mathematics

UDC 519.6

INTERPOLATION FORMULAS FOR FUNCTIONS,
DEFINED ON THE SETS OF MATRICES WITH

DIFFERENT MULTIPLICATION RULES

L.A.Yanovich, M.V. Ignatenko

Ðåçþìå. Ðîçãëÿäà¹òüñÿ çàäà÷à iíòåðïîëÿöi¨ ôóíêöi¨ âiä ìàòðèöi ó âèïàä-
êó ìíîæåííÿ çà ïðàâèëàìè Éîðäàíà, Àäàìàðà, Ôðîáåíióñà, Êðîíåêåðà i
Ëàïëàñà. Îòðèìàíî íîâèé êëàñ iíòåðïîëÿöiéíèõ ìíîãî÷ëåíiâ Ëàãðàíæà
i Íüþòîíà ôiêñîâàíîãî ñòåïåíÿ äëÿ ôóíêöié, âèçíà÷åíèõ íà ìíîæèíàõ
ñêií÷åííèõ i íåñêií÷åííèõ ìàòðèöü. Âêàçàíî âèãëÿä îïåðàòîðíèõ ïîëiíî-
ìiâ, äëÿ ÿêèõ öi ôîðìóëè iíâàðiàíòíi.
Abstract. We consider the problem of matrix functions interpolation in the
case of Jordan, Hadamard, Frobenius, Kronecker and Laplace multiplication
rules. We give a new class of Lagrange and Newton interpolation polynomials
of �xed degree for functions, de�ned on the sets of �nite and in�nite matrices.
The type of operator polynomials, for which these formulas are invariant, is
indicated.

1. Introduction
Let X be a set of square or rectangular matrices of the �xed size. The

operator F : X → Y , where Y is a given set, is called a function of the matrix.
In particular, Y may coincide with X, may be some other set of matrices, a
numerical set, a function space and others.

Approximation of functions of the matrix variables is a part of a more general
problem � interpolation of operators [1�4].

General form of the interpolation formulas is determined by the structure
and properties of elements of the set X, on which the interpolated function
F (A) is given, as well as the interpolation nodes. A number of interpolation
formulas on the sets of square and rectangular matrices was obtained in the
works [1, 2; 5�8].

Along with the commonly accepted operation of matrix multiplication, the
other matrix multiplication rules are also used and can be applied in mathe-
matics and its applications. Such an approach is also e�ective at constructing
of interpolation methods for functions of matrices. In this paper the interpo-
lation formulas, using both the ordinary matrix multiplication and the matrix
multiplication by Jordan, Hadamard, Frobenius and others, are obtained.

Key words. Interpolation; matrix functions; interpolation matrix polynomial; interpola-
tion formula of Lagrange and Newton type; matrix multiplication by Jordan, Hadamard,
Frobenius and Kronecker, Laplace discrete convolution.
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2. Interpolation formulas with multiplication
of square matrix by Jordan

Let X be a set of square matrices of the �xed size, the operator F : X → X.
The Jordan product A ◦ B of two matrices A and B from X is de�ned by the
following rule: A ◦ B = 1

2 (AB + BA). It is commutative, but not associative.
So, if the Jordan product contains more than two matrices, then in some cases
it is required to indicate the execution order of the multiplication in the given
product for uniqueness.

Let us �rst consider interpolation formulas of Lagrange type of the arbitrary
order, which are constructed on the basis of such rules of multiplication of
square matrices. Here are three variants of the formulas for constant matrices.
We denote by lnk (A) the product

lnk (A) = Bk0 ◦ (A−A0) ◦Bk1 ◦ ... ◦Bk,k−1◦
◦ (A−Ak−1) ◦Bkk ◦ (A−Ak+1) ◦Bk,k+1 ◦ ... ◦Bk,n−1 ◦ (A−An) ◦Bnn,

where Ak (k = 0, 1, ..., n) are interpolation nodes, Bkν ≡ Bk,ν (k, ν = 0, 1, ..., n)
are arbitrarily given matrices. Let the order of execution of multiplication oper-
ation in lnk (A) be determined in advance. We introduce the matrix polynomials
of the form

L0n (A) =
n∑

k=0

F (Ak) ◦
{
l−1
nk (Ak) ◦ lnk (A)

}
(1)

Ln0 (A) =
n∑

k=0

{
F (Ak) ◦ l−1

nk (Ak)
} ◦ lnk (A) , (2)

in which �rst the multiplication operation in the curly brackets is performed.
Since l−1

nk (Ak) ◦ lnk (Aν) = δkνI (k, ν = 0, 1, ..., n), where δkν is the Kronecker
symbol, than for the formula (1) in the nodes Ak the interpolation conditions
L0n (Ak) = F (Ak) are met.

These conditions are satis�ed for the formula (2), if the associator
{
F (Aν) , l−1

nν (Aν) , lnν (Aν)
}

= 0.

It takes place in virtue of the equality
{
F (Aν) , l−1

nν (Aν) , lnν (Aν)
}

=

=
(
F (Aν) ◦ l−1

nν (Aν)
) ◦ lnν (Aν)− F (Aν) ◦

(
l−1
nν (Aν) ◦ lnν (Aν)

)
=

=
(
F (Aν) ◦ l−1

nν (Aν)
) ◦ lnν (Aν)− F (Aν) = 0.

It follows that (2) is the interpolation formula.
It is easy to check that the matrix polynomial of the n-th degree

Ln (A) =
n∑

k=0

F (Ak) ◦ lkk (A) , (3)

where
lkk (A) =

n∏

ν=0,ν 6=k

Bν

{
(A−Aν) ◦ (Ak −Aν)

−1
}

B−1
ν ,
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Bν (ν = 0, 1, ..., n) are arbitrary invertible matrices, also satis�es the conditions
Ln (Ak) = F (Ak) (k = 0, 1, ..., n), at that the product of matrices, indicated
in curly brackets, on Bν and B−1

ν can be understood as the ordinary or in the
sense of Jordan. In the both cases lkk (Aν) = δkνI (k, ν = 0, 1, ..., n).

The interpolation polynomials (1)�(3) are exact for the matrix polynomials

P0n (A) =
n∑

ν=0

Dν ◦
{
l−1
nν (Aν) ◦ lnν (A)

}
,

Pn0 (A) =
n∑

ν=0

{
Dν ◦ l−1

nν (Aν)
} ◦ lnν (A) , Pn (A) =

n∑

ν=0

Dν ◦ lνν (A) ,

respectively, where Dν are arbitrary square matrices. As already mentioned,
the interpolation conditions for the formula (2) are satis�ed, if and only if
associator {

F (Ak) , l−1
nk (Ak) , lnk (Ak)

}
= 0 (k = 0, 1, ..., n) .

This imposes additional conditions on the operator F and the interpolation
nodes.

If n = 1, and Bkν (k, ν = 0, 1) are the identity matrices, then the formula
(1) with the nodes A0 and A1 is reduced to the equality

L01 (A) = F (A0) + [F (A1)− F (A0)] ◦
{

(A1 −A0)
−1 ◦ (A−A0)

}
. (4)

It is exact (invariant) for the polynomials P01 (A) = D◦
{

(A1 −A0)
−1 ◦A

}
+C,

where D and C are arbitrary matrices.
In the particular case, when A1 − A0 = I, the linear interpolation formula

(4) takes the form
L01 (A) = F (A0)+

+
1
2

[(F (A1)− F (A0)) (A−A0) + (A−A0) (F (A1)− F (A0))]

and it will be invariant for the matrix polynomials P1 (A) = DA + AD + C,
where D and C are arbitrary �xed matrices.

Here is another formula of the linear interpolation with the multiplication
by Jordan:

L1 (A) = F (A0) + (A−A0) ◦B+

+ [F (A1)− F (A0)− (A1 −A0) ◦B] ◦
{

(A1 −A0)
−1 ◦ (A−A0)

}
,

where B is an arbitrary given matrix. This interpolation formula is exact for
polynomials of the form

P1 (A) = D ◦
{

(A1 −A0)
−1 ◦A

}
+ B ◦A + C.

One of the quadratic interpolation formulas of the kind (3) has the form

L21 (A) = L01 (A)+
{

(A−A1) ◦ (A2 −A1)
−1

}
◦
[{

(A−A0) ◦ (A2 −A0)
−1

}
◦

◦ (F (A2)− F (A1))−
{

(A−A0) ◦ (A1 −A0)
−1

}
◦ (F (A1)− F (A0))

]
,
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where, as before, at the beginning matrices in the curly brackets are found, and
then in the usual order � in square brackets; L01 (A) is the matrix polynomial of
the �rst degree (4). For it the following equalities L21 (Ai) = F (Ai), (i = 0, 1, 2)
are valid.
Example 2.1. It is not di�cult to show that the interpolation polynomial

L10 (A) = F (A0) +
{

(A−A0) ◦ (A1 −A0)
−1

}
◦ [F (A1)− F (A0)] ,

where the function F (A) = A2, and the nodes

A0 =
[

1 2
3 4

]
, A1 =

[
0 2
3 3

]
,

has the form

L10 (A) =
1
2
A

[
1 4
6 7

]
+

1
2

[
1 4
6 7

]
A−

[
6 8
12 18

]
.

Next, we consider the formulas of the linear and quadratic interpolation
on the set of square functional matrices, which are determined by the matrix
Stieltjes integrals. Let X = C (T ) be the set of continuous on T = [a, b] square
matrices; F : X → X, A0 (t), A1 (t) be interpolation nodes from X.

On the set of matrices with the Jordan multiplication, the interpolation
polynomial of the �rst degree with respect to the nodes A0 (t) and A1 (t) has
the form

L̃10 (A) = F (A0) +
∫

T

{
[A (τ)−A0 (τ)] ◦ [A1 (τ)−A0 (τ)]−1

}
◦

◦dτF [A0 (·) + χ (τ, ·) (A1 (·)−A0 (·))] .
(5)

In the formula (5), as before, �rst the multiplication operation in the curly
brackets is carried out. This formula is invariant with respect to the polynomials

P1 (A) = K0 +
∫

T

{
A (t) ◦ [A1 (t)−A0 (t)]−1

}
◦K (t) ◦ [A1 (t)−A0 (t)] dt,

where K0, K (t) are some given matrices.
Example 2.2. The interpolation matrix polynomial of the form (5) with

respect to the nodes A0 (t) and A1 (t) for the function F (A) =
∫ b
a A2 (t) dt takes

the form
L̃10 (A) = F (A0) +

∫ b

a
G [A (τ) , A0 (τ) , A1 (τ)] dτ,

where
G [A,A0, A1] =

=
1
4

{
(A−A0) (A1 −A0)

−1 + (A1 −A0)
−1 (A−A0)

}(
A2

1 −A2
0

)
+

+
1
4

(
A2

1 −A2
0

){
(A−A0) (A1 −A0)

−1 + (A1 −A0)
−1 (A−A0)

}
.

Next, we consider the interpolation polynomials of the arbitrary degree for
functions of two matrix variables. Let F (A, B) be a function of two variable
square matrices A and B, the interpolation nodes {Aν , Bν} (ν = 0, 1, ..., n) are
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given, where Aν , Bν are some square matrices. We introduce the following no-
tations: rl ≡ rl (A,B) is the vector with matrix coordinates {A−Al, B −Bl};

rl,k ≡ rlk ≡ rlk (Ak, Bk) ≡ rl (Ak, Bk) (l, k = 0, 1, ..., n) .

The vector rlk has coordinates {Ak −Al, Bk −Bl}. It's obvious that rll =
rl (Al, Bl) = 0. Assume that

(rl, rlk) = (A−Al) ◦ (Ak −Al) + (B −Bl) ◦ (Bk −Bl) (l, k = 0, 1, ..., n) ,

(rlk, rlk) = (Ak −Al)
2 + (Bk −Bl)

2

and, accordingly, we denote
lk (A,B) = (r0, r0k) ... (rk−1, rk−1,k) (rk+1, rk+1,k) ... (rn, rnk)×
× [(r0k, r0k) ... (rk−1,k, rk−1,k) (rk+1,k, rk+1,k) ... (rnk, rnk)]

−1 .

Since lk (Aν , Bν) = δkνI, then the matrix polynomial

L1n (A,B) =
n∑

k=0

lk (A,B) F (Ak, Bk) , (6)

where the product of the matrices lk (A,B) and F (Ak, Bk) on the right side of
(6) may be usual or in the sense of Jordan, is also the interpolation polynomial
for the function F (A,B) with respect to the nodes (Ak, Bk) (k = 0, 1, ..., n).

We give a slightly modi�ed version of the interpolation formula of the form
(6). We introduce the notations

l̃k (A,B) =
n∏

ν=0,ν 6=k

l̃νk (A,B) , l̃νk (A,B) = (rν , rνk) ◦ (rνk, rνk)
−1 .

Since l̃νk (Ak, Bk) = I, l̃νk (Aν , Bν) = 0, then l̃k (Aν , Bν) = δkνI. Thus, the
formula

Ln (A,B) =
n∑

k=0

l̃k (A, B) F (Ak, Bk)

is the interpolation polynomial of the degree not higher than n, for which the
equalities Ln (Aν , Bν) = F (Aν , Bν) (ν = 0, 1, ..., n) are true.

Next, we consider formulas of the other form for the linear interpolation
of functions of two matrix variables on the set of constant matrix with the
multiplication by Jordan. Let F (A, B) be a function of matrix variables A and
B; (Ai, Bi) be interpolation nodes (i = 0, 1, 2).

We introduce the following notations:
l̃0 (A,B) = [(A−A1) ◦ (B1 −B2)− (A1 −A2) ◦ (B −B1)] ◦D−1,

l̃1 (A,B) = [(A−A0) ◦ (B2 −B0)− (A2 −A0) ◦ (B −B0)] ◦D−1,

l̃2 (A,B) = [(A−A0) ◦ (B0 −B1)− (A0 −A1) ◦ (B −B0)] ◦D−1,

where
D = (A0 −A1) ◦ (B1 −B2)− (A1 −A2) ◦ (B0 −B1) .
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Note that the relations l̃i (Aj , Bj) = δijI; l̃0 (A,B) + l̃1 (A,B) + l̃2 (A,B) = I
take place. It is not di�cult to verify that for matrix polynomial of the variables
A and B of the �rst degree of the form

L̃1 (A,B) = l̃0 (A,B)◦F (A0, B0)+ l̃1 (A,B)◦F (A1, B1)+ l̃2 (A,B)◦F (A2, B2)
(7)

the interpolation conditions L̃1 (Ai, Bi) = F (Ai, Bi) (i = 0, 1, 2) are carried
out.

3. Interpolation formulas with matrix multiplication
by Hadamard

Let A = [aij ] and B = [bij ] be some matrices of the same dimension. The
matrix C = A · B of the same size with elements cij = aijbij is called the
Hadamard product of the matrices A and B. It is commutative, associative
and distributive with respect to the addition of matrices. The role of the
identity matrix for such rule of multiplication carries the matrix J , all elements
of which are equal to one. By A

•−1=
[

1
aij

]
we denote the matrix that is inverse

in the sense of Hadamard for the matrix A = [aij ] with the elements aij 6= 0.
By the de�nition, the n-th degree of matrix A = [aij ] in the sense of

Hadamard, which is denoted as A
•
n, is the matrix A

•
n=

[
an

ij

]
, where A

•
n = J

for n = 0. The function f (z) =
∑∞

k=0 akz
k of the matrix A = [aij ], analytical

in a neighborhood of each element of this matrix, is de�ned on the set of ma-
trices with Hadamard multiplication by the formula f (A) =

∑∞
k=0 akA

•
k and,

accordingly, it is the matrix f (A) = [f (aij)].
Here are the special cases of interpolation formula [8] of the form

L0n (A) =
n∑

k=0

F (Ak) · l
•−1

nk (Ak) · lnk (A) =

=
n∑

k=0


fk

ij

(
aij − a0

ij

)
...

(
aij − ak−1

ij

)(
aij − ak+1

ij

)
...

(
aij − an

ij

)
(
ak

ij − a0
ij

)
...

(
ak

ij − ak−1
ij

)(
ak

ij − ak+1
ij

)
...

(
ak

ij − an
ij

)

 ,

(8)

where

lnk (A) = (A−A0) · ... · (A−Ak−1) · (A−Ak+1) · ... · (A−An) ,

matrices lnk (Ak) do not have zero elements, matrix A and nodes Ak of the
same dimension, fk

ij are elements of the matrix F (Ak) (k = 0, 1, ..., n). It is
obvious that the equalities L0n (Ai) = F (Ai) (i = 0, 1, ..., n) hold.

Consider the linear case of the interpolation formula (8). Let the interpo-
lation nodes A0 =

[
a0

ij

]
, A1 =

[
a1

ij

]
be such that all elements of the matrix

A0 −A1 =
[
a0

ij − a1
ij

]
are di�erent from zero. Then for the formula

L01 (A) = F (A0) · (A0 −A1)
•−1 · (A−A1) + F (A1) · (A1 −A0)

•−1 · (A−A0)
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or, what is the same thing, for the formula

L01 (A) = F (A0) ·
[

aij − a1
ij

a0
ij − a1

ij

]
+ F (A1) ·

[
aij − a0

ij

a1
ij − a0

ij

]
,

where A = [aij ] is current matrix variable, the interpolation conditions
L01 (Ai) = F (Ai) (i = 0, 1) are ful�lled.

During the construction of interpolation formulas, based on the Hadamard
multiplication of square matrices, it is useful to introduce yet another analogue
of the inverse matrix. Let A = [aij ] be a square matrix and aii 6= 0. By A(−1)

we denote the matrix, for which A · A(−1) = A(−1) · A = I, where I is the
identity matrix in the ordinary sense of the same dimension as the matrix A.
This matrix will be A(−1) = diag

[
1

aii

]
.

We give formulas of the linear interpolation with the ordinary and the Hada-
mard multiplication. Let A = [aij ] be some square matrix that has nonzero
diagonal elements. Then for the linear interpolation formula

L01 (A) = F (A0)
{

(A0 −A1)
(−1) · (A−A1)

}
+

+ F (A1)
{

(A1 −A0)
(−1) · (A−A0)

}
,

or for the same formula in another form

L01 (A) = F (A0) diag
[
aii − a1

ii

a0
ii − a1

ii

]
+ F (A1) diag

[
aii − a0

ii

a1
ii − a0

ii

]
,

equalities L10 (A0) = F (A0), L10 (A1) = F (A1) hold.
We consider the case n = 2 of the interpolation formula (8). The quadratic

interpolation formula with respect to the nodes A0 =
[
a0

ij

]
, A1 =

[
a1

ij

]
and

A2 =
[
a2

ij

]
, such that all elements of the matrices

A0 −A1 =
[
a0

ij − a1
ij

]
, A0 −A2 =

[
a0

ij − a2
ij

]
, A1 −A2 =

[
a1

ij − a2
ij

]

are di�erent from zero, is a matrix polynomial of the form

L02 (A) = F (A0) ·



(
aij − a1

ij

) (
aij − a2

ij

)
(
a0

ij − a1
ij

) (
a0

ij − a2
ij

)

+

+F (A1) ·



(
aij − a0

ij

)(
aij − a2

ij

)
(
a1

ij − a0
ij

)(
a1

ij − a2
ij

)

 + F (A2) ·




(
aij − a0

ij

)(
aij − a1

ij

)
(
a2

ij − a0
ij

)(
a2

ij − a1
ij

)

 ,

for which the conditions L02 (Ai) = F (Ai) (i = 0, 1, 2) are ful�lled.
Next, we give formulas of the quadratic interpolation with the ordinary and

the Hadamard multiplication. Let A = [aij ] be some square matrix that has
di�erent from zero diagonal elements. For quadratic interpolation with the
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same restrictions on the nodes A0, A1 and A2, as in the previous case, we have
the formula

L02 (A) = F (A0) diag

[(
aii − a1

ii

) (
aii − a2

ii

)
(
a0

ii − a1
ii

) (
a0

ii − a2
ii

)
]

+

+F (A1) diag

[(
aii − a0

ii

) (
aii − a2

ii

)
(
a1

ii − a0
ii

) (
a1

ii − a2
ii

)
]

+ F (A2) diag

[(
aii − a0

ii

) (
aii − a1

ii

)
(
a2

ii − a0
ii

) (
a2

ii − a1
ii

)
]

,

which satis�es the conditions L02 (Ai) = F (Ai) (i = 0, 1, 2).
Example 3.1. On the set of matrices A =

[
a11 a12

a21 a22

]
with matrix mul-

tiplication only in the sense of Hadamard for the function F (A) = A2 with
respect to the nodes

A0 =
[

1 2
3 4

]
, A1 =

[
0 0
2 3

]
,

the interpolation polynomial

L01 (A) = F (A0) + [F (A1)− F (A0)] · (A1 −A0)
− •

1 · (A−A0)

takes the form

L01 (A) =
[

7 5
9 13

]
·A−

[
0 0
12 30

]
=

[
7a11 5a12

9a21 13a22

]
−

[
0 0
12 30

]
.

For the constructed polynomial the interpolation conditions

L01 (A0) = F (A0) =
[

7 10
15 22

]
, L01 (A1) = F (A1) =

[
0 0
6 9

]
.

are also true. In the case if the interpolation nodes Ak = αkJ , where αk

(k = 0, 1, ..., n) are di�erent in pairs numbers, then the formula (8) takes the
form
Ln (A) =

=
n∑

k=0

(A− α0J) · ... · (A− αk−1J) · (A− αk+1J) · ... · (A− αnJ)
(αk − α0) ... (αk − αk−1) (αk − αk+1) ... (αk − αn)

· F (αkJ) .

Next, we consider interpolation formulas for operators, de�ned on the set of
functional matrices. Let X = C (T ) be the set of continuous on T = [a, b] square
matrices; an operator F : X → X and A0 (t), A1 (t) be interpolation nodes from
X. Suppose also that A = A (t), interpolation nodes A0 (t), A1 (t) are matrices
of the same order, de�ned on the segment [a, b], and operator F (A) is de�ned at
the nodes A0 (t), A1 (t) and on the matrix curve A0 (t)+χ (τ, t) (A1 (t)−A0 (t)),
where the function

χ (τ, t) =
{

1, τ ≥ t;
0, τ < t,

χ (a, t) ≡ 0, χ (b, t) ≡ 1 (a ≤ τ, t ≤ b) .
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One of the linear interpolation formulas on the set of continuous on the
segment [a, b] matrices can be written using the Stieltjes integral in the form

L10 (A) = F (A0) +
∫ b

a
[A (τ)−A0 (τ)] · [A1 (τ)−A0 (τ)]

•−1 · dτ×
× F [A0 (t) + χ (τ, t) (A1 (t)−A0 (t))] ,

on condition that all elements of the matrix A1 (t)−A0 (t) are di�erent from zero
on [a, b] and in this formula integral exists. The equalities L10 (Ai) = F (Ai)
(i = 0, 1) are true.

In the space Cm [a, b] of rectangular matrices A(t) = [aij(t)] of the dimen-
sion p×q, for which the derivativeA(m)(t) =

[
a

(m)
ij (t)

]
of order m is continuous

on the [a, b] , we consider the matrix polynomial of the �rst degree

P1(A) = B +
n∑

j=0

A(tj) · Cj +
m∑

k=0

∫ b

a
Dk(t, s) ·A(k)(s)ds (9)

where B = B(t), Cj = Cj(t), Dk(t, s) ( j = 0, 1, ...n; k = 0, 1, ..., m) are �xed
(p× q)-matrices.

We denote by σ1i(t) and Hi(t) the matrices
σ1i(t) = A0(t) + A1(ti)−A0(ti), Hi(t) = A(t)−A0(t)−A(ti) + A0(ti),

where ti (i = 0, 1, ...n) are given points of the segment [a, b]; A0 (t) and A1 (t)
are interpolation nodes such that the matrices A1 (ti)−A0 (ti) are reversible in
the sense of Hadamard.

For the formula
L1(A) = F (A0)+

+
1

n + 1

n∑

i=0

[A(ti)−A0(ti)] · [A1(ti)−A0(ti)]
•−1 · [F (σ1i)− F (A0)]+

+
1

n + 1

n∑

i=0

∫ 1

0
δF [σ1i(·) + τ (A1(·)− σ1i(·)) ;Hi(·)]dτ

(10)

the conditions L1(Ai) = F (Ai) (i = 0, 1) hold, and it is exact for matrix
polynomials of the form (9).

Really, the equation L1 (A0) = F (A0) is satis�ed, since the second and third
terms in (10) become zero. Execution of interpolation condition at the second
node is also easy to verify, taking into account that in this case the integral in
(10) can be calculated exactly.

Let F (A,B) be also a function of two matrix variables A and B; (Ai, Bi) be
interpolation nodes (i = 0, 1, 2). We introduce the following notations:

l10 (A,B) = [(A−A1) · (B1 −B2)− (A1 −A2) · (B −B1)] ·D
•−1,

l11 (A,B) = [(A−A0) · (B2 −B0)− (A2 −A0) · (B −B0)] ·D
•−1,

l12 (A,B) = [(A−A0) · (B0 −B1)− (A0 −A1) · (B −B0)] ·D
•−1.
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Here the matrix D
•−1 is reversible in the sense of Hadamard for

D = (A0 −A1) · (B1 −B2)− (A1 −A2) · (B0 −B1) ;

A, B are independent variables, interpolation nodes (Ai, Bi) and values
F (Ai, Bi) (i = 0, 1, 2) are rectangular matrices of the same dimension.

For the interpolation formula

L11 (A,B) = l10 (A,B) · F (A0, B0)+

+ l11 (A,B) · F (A1, B1) + l12 (A,B) · F (A2, B2)
(11)

the conditions L11 (Ai, Bi) = F (Ai, Bi) (i = 0, 1, 2) are satis�ed. The formula
(11) is invariant with respect to matrix polynomials of the form

P1 (A,B) = l10 (A,B) · C0 + l11 (A, B) · C1 + l12 (A,B) · C2. (12)

At that in the equation (12) arbitrary rectangular matrices Ci are of the same
dimension as the matrices F (Ai, Bi) (i = 0, 1, 2).
Example 3.2. Let A = [aij ], B = [bij ] (i, j = 1, 2) be square matrices of the

second order. The interpolation formula (11) for the function F (A,B) = (AB)2

with respect to the nodes

A0 =
[

1 1
1 1

]
, B0 =

[
0 2
0 1

]
; A1 =

[
1 2
0 −1

]
,

B1 =
[

1 1
1 2

]
; A2 =

[
0 1
1 2

]
, B2 =

[
0 1
2 1

]

takes the form

L11 [A,B] =
[

8− 8a11 + 4b11 1 + 4b12

−11 + 11a21 + 10b21 7 + 4a22 − 2b22

]
.

For L11 [A,B] the interpolation conditions

L11 [A0, B0] = F (A0, B0) =
[

0 9
0 9

]
,

L11 [A1, B1] = F (A1, B1) =
[

4 5
−1 −1

]
,

L11 [A2, B2] = F (A2, B2) =
[

8 5
20 13

]

are true.
Note that in [1, 46 ð.] the matrix Γ is constructed as a sum of the powers of

the Hadamard matrices, which plays an important role in the construction of
the set of interpolating polynomials in the Hilbert space and in the justi�cation
of a number of the results obtained on this set.
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4. Interpolation formulas with matrix multiplication by
Frobenius

Suppose that the matrices A = [aij ] and B = [bij ] have the same dimension.
Their product in the sense of Frobenius is de�ned as

A♦B =
∑

i,j

aijbij .

This operation is commutative, and its result is a scalar. Interpolation for-
mulas for functions of matrices may be also constructed on the basis of such
multiplication rule.

Let interpolation nodes Ak (k = 0, 1, ..., n) be di�erent stationary or func-
tional matrices, and F (Ak) be given �xed matrices, which dimension may di�er
from the dimension of Ak, or some other mathematical objects over the �eld of
real or complex numbers. Then in the case of rectangular matrices of the same
dimension (including square matrices) for the formula

Ln (F ; A) =
n∑

k=0

lnk (A)
lnk (Ak)

F (Ak) , (13)

where
lnk (A) = [(A−A0)♦ (Ak −A0)] ... [(A−Ak−1)♦ (Ak −Ak−1)]×

× [(A−Ak+1)♦ (Ak −Ak+1)] ... [(A−An)♦ (Ak −An)] ,

the equalities Ln (F ; Aν) = F (Aν) (ν = 0, 1, ..., n) take place.
If the interpolation nodes Ak such that tr (Ak −Aν) 6= 0 (k, ν = 0, 1, ..., n),

then on the set of square matrices for the similar formula

Ln (F ; A) =
n∑

k=0

l̃nk (A)
l̃nk (Ak)

F (Ak) ,

where
l̃nk (A) = tr (A−A0) tr (Ak −A0) · · · tr (A−Ak−1) tr (Ak −Ak−1)×

×tr (A−Ak+1) tr (Ak −Ak+1) · · · tr (A−An) tr (Ak −An) ,

the same interpolation conditions are ful�lled.
Obviously, the equation (13) remains an interpolation, if lnk (A) is replaced

by any number function φnk (A) of matrix function arguments such that
φnk (Ak) 6= 0 for k = 0, 1, ..., n.

In particular, if n = 2 and n = 1, then the formula (13) takes the form

L2 (F ; A) =
[(A−A1)♦ (A0 −A1)] [(A−A2)♦ (A0 −A2)]

[(A0 −A1)♦ (A0 −A1)] [(A0 −A2)♦ (A0 −A2)]
F (A0)+

+
[(A−A0)♦ (A1 −A0)]
[(A1 −A0)♦ (A1 −A0)]

[(A−A2)♦ (A1 −A2)]
[(A1 −A2)♦ (A1 −A2)]

F (A1)+

+
[(A−A0)♦ (A2 −A0)] [(A−A1)♦ (A2 −A1)]

[(A2 −A0)♦ (A2 −A0)] [(A2 −A1)♦ (A2 −A1)]
F (A2)
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and
L1 (F ; A) =

(A−A1)♦ (A0 −A1)
(A0 −A1)♦ (A0 −A1)

F (A0) +

+
(A−A0)♦ (A1 −A0)
(A1 −A0)♦ (A1 −A0)

F (A1) ,

(14)

respectively.
Example 4.1. The interpolation formula (14), based on the nodes

A0 =
[

1 2
3 4

]
, A1 =

[
0 2
3 3

]

for the function F (A) = A2, has the form

L1 (F ; A) =
1
2
trA

[
1 4
6 7

]
+

1
2

[
9 0
0 9

]
.

Example 4.2. Let A =
[

x11 x12 x13

x21 x22 x23

]
be a functional matrix and

A0 =
[

1 0 2
3 5 0

]
, A1 =

[
1 0 1
2 5 0

]

be the interpolation nodes. Then
(A0 −A1)♦ (A0 −A1) = (A1 −A0)♦ (A1 −A0) = 2,

and the interpolation formula (14) takes the form

L1 (F ;A) =
1
2

(x13 + x21 − 3)F (A0)− 1
2

(x13 + x21 − 5)F (A1) ,

and, therefore, we get that L1 (F ; A0) = F (A0), L1 (F ; A1) = F (A1).
Next, we consider a formula of the linear interpolation, similar to (7) and

(11), with the multiplication in the case of Frobenius. We introduce the follow-
ing notation:

l̃00 (A,B) =
1
D

[(A−A1)♦ (B1 −B2)− (A1 −A2)♦ (B −B1)] ,

l̃11 (A,B) =
1
D

[(A−A0)♦ (B2 −B0)− (A2 −A0)♦ (B −B0)] ,

l̃22 (A,B) =
1
D

[(A−A0)♦ (B0 −B1)− (A0 −A1)♦ (B −B0)] ,

where D is the numeric value, which is calculated by the formula
D = (A0 −A1)♦ (B1 −B2)− (A1 −A2)♦♦ (B0 −B1) .

The interpolation formula
L̃11 (A,B) = l̃00 (A,B) F (A0, B0)+

+ l̃11 (A,B) F (A1, B1) + l̃22 (A,B) F (A2, B2)
(15)

satis�es the interpolation conditions L̃11 (Ai, Bi) = F (Ai, Bi) (i = 0, 1, 2).
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Example 4.3. Let A = [aij ] and B = [bij ] be square matrices of the second
order. We construct interpolation formulas of the form (7), (11) and (15) for
the function F (A,B) = (AB)2 on the nodes

A0 =
[

1 1
1 1

]
, B0 =

[
0 2
0 1

]
;

A1 =
[

1 2
0 −1

]
, B1 =

[
1 1
1 2

]
; A2 =

[
0 1
1 2

]
, B2 =

[
0 1
2 1

]
.

In the case of the formula (7) we have

L11 [A,B] =
1
26
×

×
[ −38 + 91a11 − 156a12 + 22a21 + 123a22 + 122b11 − 144b12 + 16b21 + 246b22

1440 + 32a11 − 388a12 + 206a21 − 192a22 + 58b11 − 328b12 + 176b21 − 378b22

−102 + 94a11 − 16a12 − 52a21 + 126a22 + 16b11 + 8b12 − 64b21 + 168b22

128 + 211a11 − 364a12 + 138a21 + 131a22 + 82b11 − 136b12 + 24b21 + 262b22

]
.

Using the rule (11), we get that

L11 [A,B] =
[

8− 8a11 + 4b11 1 + 4b12

−11 + 11a21 + 10b21 7 + 4a22 − 2b22

]
.

Finally, for the formula (15) the value D = −3, and the required polynomial
has the form

L11 [A,B] =

=
1
3

[
4 (−4 + 2a11 − a12 + 2a22 − b11 − 2b12 + 2b21 + 5b22)

−40 + 20a11 − 21a12 + 22a21 + 20a22 + b11 − 20b12 + 20b21 + 39b22

35− 4a11 + 4a21 − 4a22 + 4b11 + 4b12 − 4b21 − 12b22

19 + 4a11 − 14a12 + 24a21 + 4a22 + 10b11 − 4b12 + 4b21 − 2b22

]
.

We note that all formulas, obtained in this example, have a di�erent form,
but for them the same interpolation conditions

L11 [A0, B0] = F (A0, B0) =
[

0 9
0 9

]
,

L11 [A1, B1] = F (A1, B1) =
[

4 5
−1 −1

]
,

L11 [A2, B2] = F (A2, B2) =
[

8 5
20 13

]

are ful�lled.
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5. Kronecker matrix multiplication and corresponding
matrix polynomials

If A = [aij ] and B = [bij ] are some matrices of the dimensions m × n and
p × q, respectively, then the Kronecker product of these matrices A ⊗ B is a
matrix of dimension mp× nq, which is de�ned by the formula

A⊗B =




a11B a12B ... a1nB
a21B a22B ... a2nB
... ... ... ...

am1B am2B ... amnB


 .

In general, the Kronecker product of matrices, in contrast to the Jordan mul-
tiplication, non-commutative, but has the property of associativity. The Kro-
necker multiplication is distributive with respect to the addition of matrices.

Let X be a set of square matrices, an operator F : X → Y , where Y is also
a set of square matrices of the �xed dimension, interpolation nodes Ak ∈ X
(k = 0, 1, ..., n) and there are inverse matrices (Ai −Aj)

−1 (i 6= j). In addition,
the dimension of matrices of the set Y coincides with the dimension of square
matrices of the form (A−Aν)⊗ I.

We introduce the notation
lk (A) = [(A−A0)⊗ I] ... [(A−Ak−1)⊗ I] [(A−Ak+1)⊗ I] ... [(A−An)⊗ I] .

Then for the polynomials

L0n (A) =
n∑

k=0

F (Ak) l−1
k (Ak) lk (A) , (16)

Ln0 (A) =
n∑

k=0

lk (A) l−1
k (Ak) F (Ak) (17)

the equalities L0n (Ak) = Ln0 (Ak) = F (Ak) are true, because
l−1
k (Ak) lk (Aν) = lk (Aν) l−1

k (Ak) = δkνI.

Here and further the orders of matrices F (Ak) are consistent with the order of
the interpolation fundamental square matrices lk (A). If we select the expression
lk (A) = [I ⊗ (A−A0)] ... [I ⊗ (A−Ak−1)] [I ⊗ (A−Ak+1)] ... [I ⊗ (A−An)]

for the function lk (A) in (16) and (17), we come to some other kind of these
formulas.

The formulas L0n (A) and Ln0 (A) are exact for the matrix polynomials

P0n (A) =
n∑

k=0

Bkl
−1
k (Ak) lk (A) , Pn0 (A) =

n∑

k=0

lk (A) l−1
k (Ak) Bk,

where Bν (ν = 0, 1, ..., n) are arbitrary matrices from the set Y , respectively.
We consider formulas of the linear interpolation

L01 (A) = F (A0) + [F (A1)− F (A0)]
[
I ⊗ (A1 −A0)

−1
]
[I ⊗ (A−A0)] ,

L10 (A) = F (A0) + [(A−A0)⊗ I]
[
(A1 −A0)

−1 ⊗ I
]
[F (A1)− F (A0)] .
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The formula L10 (A) is exact for matrix polynomials of the form P10 (A) =
A⊗B + D. Really,

L10 [P10;A] = A0⊗B+D+[(A−A0)⊗ I]
[
(A1 −A0)

−1 ⊗ I
]
[(A1 −A0)⊗B] =

= A0 ⊗B + D + (A−A0) (A1 −A0)
−1 (A1 −A0)⊗B =

= A0 ⊗B + D + (A−A0)⊗B = P10 (A) .

Similarly, the formula L01 (A) is exact for matrix polynomials of the form
P01 (A) = B ⊗A + D.

We consider the application of the Lagrange�Sylvester formula to construct
the corresponding interpolation formulas, using several properties of the Kro-
necker multiplication for this. One of the important properties of this multipli-
cation for the given problem is that the spectrum of the Cartesian product of
matrices is clearly expressed through the spectrum of its factors.

Suppose that the matrix C has the form C = A ⊗ B, and square matrices
A and B of the orders p and q have the eigenvalues λi (i = 1, 2, ..., p) and µj

(j = 1, 2, ..., q), respectively. Then [9] the matrix C has pq eigenvalues λiµj

(i = 1, 2, ..., p; j = 1, 2, ..., q).
If the eigenvalues λiµj are di�erent, then for the matrix C the Lagrange�

Sylvester formula takes the form

F (C) =
p∑

k=1

q∑

ν=1

lkν (C)
lkν (λkµν)

F (λkµν) ,

where

lkν (C) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(C − λiµjIpq) ,

lkν (λkµν) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(λkµν − λiµj) ,

Ipq is the identity matrix of the pq-dimension.
We give the trigonometric variant of the Lagrange-Sylvester formula for the

Kronecker product of matrices C = A⊗B:

F (C) =
p∑

k=1

q∑

ν=1

l̃kν (C)
l̃kν (λkµν)

×

×
(

F (λkµν) + F (−λkµν)
2

Ipq +
F (λkµν)− F (−λkµν)

2 sin (λkµν)
sinC

)
,

where

l̃kν (C) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(cosC − cos (λiµj) Ipq) ,

l̃kν (λkµν) =
p∏

i=1,i6=k

q∏

j=1,j 6=ν

(cos (λkµν)− cos (λiµj)) ,

and Ipq is the identity matrix of the pq-dimension as before.
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6. Infinite matrix and some interpolation formulas
Operators of the discrete convolution, as well as continuous, are widely used

in the solution of many mathematical and applied problems [10�12]. Discrete
convolutions can be applied to the interpolation problem of functions with many
variables and in�nite matrix variables.

Matrix A = [aij ] with real or complex elements aij is called in�nite, if i, j =
1, 2, ... or at least one of the indices i or j has in�nite number of the values.
Addition and multiplication of the in�nite matrices A = [aij ] and B = [bij ]
is de�ned the same way as in the �nite-dimensional case. In contrast to the
�nite matrices, the product AB = [cij ] may not exist, since the series cij =∑∞

k=1 aikbkj (i, j = 1, 2, ...) may be divergent or nonsummable for all or only
for the several i and j values. Moreover, if there is the existing product BA, the
product AB may not exist. In general, the multiplication of in�nite matrices
is not associative: (AB) C 6= A (BC).

On the set of in�nite matrix A, on condition that the matrices Ak (k ≥ 2)
exist, for entire functions f (z) (z ∈ C) the matrices f (A) may be determined
by the usual rules.

The theory of in�nite matrices, as one of the sections of mathematical analy-
sis, and its applications are interconnected with the theory of separable Hilbert
spaces, including the coordinate Hilbert space l2.

We consider some formulas for the interpolation of functions, given on the
set of in�nite sequences, which we denote by l. Each element x (in�nite-
dimensional vector) from l is de�ned by its coordinates: x = {xk}∞k=0 =
{x0, x1, x2, ...}, where xk (k = 0, 1, ...) are complex numbers or complex ran-
dom values with given distribution laws. Here the addition of elements of the
set and its multiplication by a number are determined by the usual rules, and
the product x ∗ y is given by the discrete convolution of the Laplace according
to the rule

x ∗ y =

{
k∑

ν=0

xk−νyν

}∞

k=0

;

the product x ∗ y also belongs to l. For this multiplication rule the sequence
I = {1, 0, 0, ...} is the unit, and in this case the set l is a commutative algebra.

Let F be operator, mapping the set l into l, and the elements x0 = α0I,
x1 = α1I and x2 = α2I, where I is the unit element in l, αi ∈ C, αj 6= αi for
j 6= i (i, j = 0, 1, 2), are taken as the interpolation nodes. Then simplest on l
formulas are formulas of the linear and quadratic interpolation

L1 (F ; x) = F (x0) +
1

α1 − α0
[F (x1)− F (x0)] ∗ (x− x0) ,

L2 (F ;x) =
1

(α0 − α1) (α0 − α2)
F (x0) ∗ (x− x1) ∗ (x− x2)+

+
1

(α1 − α0) (α1 − α2)
F (x1) (x− x0) ∗ (x− x2)+

+
1

(α2 − α0) (α2 − α1)
F (x2) ∗ (x− x0) ∗ (x− x1) ,
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respectively, for which L1 (F ;x0) = F (x0), L1 (F ; x1) = F (x1) and
L2 (F ;xi) = F (xi) (i = 0, 1, 2).

For the same system of interpolation nodes xi = αiI on condition that αj 6=
αi, j 6= i (i, j = 0, 1, 2, ..., n), the Lagrange formula of the n-th order is written
in the analogous form

Ln (F ; x) =
n∑

k=0

ωnk (x) ∗ F (αkI) , (18)

where

ωnk (x) =
(x− α0I) (x− α1I) · · · (x− αk−1I) (x− αk+1I) · · · (x− αnI)
(αk − α0) (αk − α1) · · · (αk − αk−1) (αk − αk+1) · · · (αk − αn)

,

I is the unit element of the algebra l. It's obvious that Ln (F ;xk) = F (xk)
(k = 0, 1, ..., n).

Let us consider a slightly di�erent variant of (18). By lm×m we denote the
set of m × m-matrices of the form X = [xij ], where xij are elements from l,
i.e. xij =

{
xij

k

}∞
k=0

(i, j = 1, 2, ..., m). Here the operations of addition and
multiplication of matrices by a number are ordinary, and the multiplication of
matrices X = [xij ] and Y = [yij ] from lm×m is carried out according to the
rule:

C = X ∗ Y =
[
cij

]
,

where cij =
∑m

ν=1 xiν ∗ yνj , i.e. xiν ∗ yνj means the product of sequences xiν

and yνj also in the sense of the Laplace convolution given above. This set of
matrices with indicated rules of multiplication also form an algebra.

We consider the formula of the form (18), in which the interpolation nodes
xν are m×m-matrices

xν =




x11
ν x12

ν · · · x1m
ν

x21
ν x22

ν · · · x2m
ν

· · · · · · · · · · · ·
xm1

ν xm2
ν · · · xmm

ν


 (ν = 0, 1, ..., n)

with the elements xij
ν from l. It is required of nodes xν that the matrices xν−xk

are reversible in the ordinary sense.
Let the interpolation nodes be matrices of the form

x̃ν = xνI =
[
xij

ν , 0, 0, ...
]

(i, j = 1, 2, ..., m; ν = 0, 1, ..., n) .

Then for an operator F : lm×m → lm×m and the formula

L̃n (F ; x) =
n∑

k=0

ω̃nk (x) ∗ F (x̃k) ,

where
ω̃nk (x) = lk,0 (x) ∗ lk,1 (x) ∗ · · · ∗ lk,k−1 (x) ∗ lk,k+1 (x) ∗ · · · ∗ lk,n (x) ,

lk,ν (x) = (x− x̃ν) ∗ (x̃k − x̃ν)
−1 ≡ (x− x̃ν) ∗ (xk − xν)

−1 I (k, ν = 0, 1, ..., n)
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the interpolation conditions L̃n (F ; x̃k) = F (x̃k) (k = 0, 1, ..., n) are ful�lled.
These conditions take place by virtue of the equalities ω̃nk (x̃ν) = δkνI, where,
as before, δkν is the Kronecker symbol.
Example 6.1. Let A and B be in�nite rectangular matrices of the dimen-

sions 2×∞ and ∞× 2, respectively:

A =
[

a11 a12 · · · a1n · · ·
a21 a22 · · · a2n · · ·

]
, B =




b11 b12

b21 b22
... ...

bn1 bn2
... ...




.

Their product is a (2 × 2)-matrix AB =
[

S11 S12

S21 S22

]
, where the elements

Sij (1 ≤ i, j ≤ 2) are given by series

S11 =
∞∑

i=1

a1ibi1, S12 =
∞∑

i=1

a1ibi2, S21 =
∞∑

i=1

a2ibi1, S22 =
∞∑

i=1

a2ibi2.

For the existence of the product AB it is required that these series are con-
verging in some sense. For example, if the elements of matrix A and B are
random values or processes, then one of the variants of the convergence may be
the convergence of mathematical expectations of the summands of these series.
We consider an example with this type of convergence.

Suppose that

a1i =
1

(2i− 1)!
W 4i−2 (t) , a2i =

1
(2i− 2)!

W 4i+2 (t) ;

bi1 =
(−1)1+i

[(4i− 3)!!]2
ξ4i−2 (t) , bi2 =

(−1)1−i

[(4i + 1)!!]2
ξ4i+2 (t) ,

where W (t) is standard Wiener process, ξ (t) is a random Gaussian process with
zero mean value and variance σ = σ (t). We assume that these processes are
stochastically independent. We remind that the k-th moments of the processes
W (t) and ξ (t) are given [13] by the equalities

E
{

W k (t)
}

=
{

(2ν − 1)!!tν , k = 2ν;
0, k = 2ν + 1,

E
{

ξk (t)
}

=
{

(2ν − 1)!!σν , k = 2ν;
0, k = 2ν + 1

(ν = 0, 1, ...). In this case, the series E {Sjν} (j = 1, 2; ν = 1, 2) converge.
Since

E {S11} =
∞∑

i=1

E {a1ibi1} = sin (tσ (t)) , E {S22} =
∞∑

i=1

E {a2ibi2} = tσ (t) cos (tσ (t)) ,

then the mathematical expectation of the trace of matrix AB has the simple
form

E {tr (AB)} = sin (tσ (t)) + t3σ3 (t) cos (tσ (t)) .

157



L.A.YANOVICH, M.V. IGNATENKO

Construction and research of interpolation operator polynomials in the Hil-
bert spaces, which theory in some cases is interconnected with the in�nite
matrix theory, are considered in the articles [14�15].
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ON THE APPLICATION OF MULTIPARAMETER INVERSE
EIGENVALUE PROBLEM AND NUMERICAL METHODS

FOR FINDING ITS SOLUTION

O. S.Yaroshko

Ðåçþìå. Ó ðîáîòi çäiéñíåíî îãëÿä âiäîìèõ ïðèêëàäiâ ïðàêòè÷íèõ çàñòî-
ñóâàíü îáåðíåíî¨ çàäà÷i íà âëàñíi çíà÷åííÿ ó ðiçíèõ íàóêîâèõ òà iíæåíåð-
íèõ ñôåðàõ äîñëiäæåíü. Êðiì òîãî, ïðåäñòàâëåíî iñíóþ÷i ÷èñåëüíi ìåòîäè
òà ðiçíîìàíiòíi òåõíiêè âiäøóêàííÿ ðîçâ'ÿçêó îáåðíåíî¨ ñïåêòðàëüíî¨ çà-
äà÷i.
Abstract. This survey collects the known examples of practical application
of inverse eigenvalue problems in di�erent scienti�c and engineering areas.
It also provides an overview of the existing numerical methods and di�erent
techniques for �nding the solution of the inverse eigenvalue problem.

1. Introduction
An inverse eigenvalue problem is a subject of interest of di�erent authors.

There are numerous examples of practical application of this problem and of
the analysis of its partial cases. In this article we try to make an overview of
the most known and interesting examples of practical application of this type
of problems.

Let A (c) be an a�nne family

A (c) = A0 +
n∑

k=1

ckAk, (1)

where c ∈ Rn, and {Ak} are real symmetric matrices of dimension n× n.
Let's also denote the eigenvalues of the matrix A (c) as {λi (c)}n

1 , where
λ1 (c) ≤ ... ≤ λn (c).

The following problem is known as the general inverse eigenvalue problem:
Problem 1. Provided real numbers λ∗1 ≤ ... ≤ λ∗n �nd c ∈ Rn such that the

eigenvalues of (1) satisfy the condition λi (c) = λ∗i , i = 1, ..., n.
One of the partial cases of the Problem 1 is the additive inverse eigenvalue

problem:
Problem 2. Let the linear family (1) be de�ned as Ak = eke

T
k , k = 1, ..., n

where ek is a k-th unit vector such, that
A (c) = A0 + D, whereD = diag (ck) (2)

Key words. Inverse eigenvalue problem; inverse spectral problem; Sturm-Liouville problem;
eigenvalue; eigenvector; numerical method; iteration procedure; Newton-like methods.
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Provided the real values λ∗1 ≤ ... ≤ λ∗n �nd c ∈ Rn such, that the eigenvalues of
the matrix (2) satisfy the condition λi (c) = λ∗i , i = 1, ..., n.

Another partial case of general problem, that is considered in this survey, is
the multiplicative inverse eigenvalue problem:
Problem 3. Given a real symmetric matrix A and its eigenvalues λ∗1 ≤ ... ≤

λ∗n, �nd an additive diagonal matrix D = diag (ck), c ∈ Rn, such that the result
matrix AD has the given eigenvalues.

Both additive and multiplicative inverse eigenvalue problems have been for-
mulated by Downing and Householder (1956).

It is known that the inverse eigenvalue problems arise in di�erent scien-
ti�c areas, including systems of identi�cation, seismic topography, geophysics,
molecular spectroscopy, structural analysis, mechanic systems simulation and
so on. Some of the partial cases of inverse eigenvalue problem appear in factor
analysis, educational testing problem, etc (see [1] and the cited references).

2. Examples and practical application of the inverse
eigenvalue problems

The classical example of inverse eigenvalue problem is the problem of �nding
a solution of inverse Sturm-Liouville problem. The continuous problem has been
investigated by, for example, Borh, Gelfand, Levitan and Hald. The discrete
analog can be found in the survey [3], a more detailed overview is presented
below.

Let's consider a boundary problem [3]:

−u
′′
(x) + p (x) u (x) = λu (x) ,

u (0) = u (π) = 0.

The task is to �nd the potential p (x) by using the given spectrum {λ∗i }∞1 . In
order to build the discrete analog, the authors [3] use a uniform mesh, de�ning
h = π

n+1 , uk = u (kh), pk = p (kh), k = 1, ..., n, and make a suggestion that the
values {λ∗i }∞1 are known. By using the �nite di�erences for the approximation
u
′′ , the following equation is received:

−uk+1 + 2uk − uk−1

h2
+ pkuk = λ∗juk, k = 1, ..., n, u0 = un+1 = 0,

where λ∗j is an eigenvalue from the set {λ∗i }n
1 .

Thus,it is obtained the additive inverse eigenvalue problem (2) with the ma-
trix

A0 =
1
h2




2 −1
−1 2 −1

. . .
2


 (3)

and D = diag (pk).
Another well known example is the inverse spectral problem which arises in

the analysis of string vibrations. A reference to this example can be found, for
example, in [1], [3]. Let's brie�y explain the content of this problem.
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Consider the corresponding boundary problem [3]:

−u
′′
(x) = λp (x) u (x) ,

u (0) = u (π) = 0.

It is needed to �nd the density function p (x) > 0, under the condition that
the �xed eigenvalues {λ∗i }∞1 are known. In order to proceed to the discrete ana-
log of this problem, the transformations, similar to the case of Sturm-Liouville
problem, are performed. As a result, the following equation is obtained:

Au = λ∗i Du, i = 1, ..., n,

or, if reformulating a bit:

D−1Au = λ∗i u, i = 1, ..., n,

where D = diag (p (kh)) > 0, and the matrix A is de�ned by the correlation
(3).

It can be easily seen that the obtained problem is the multiplicative inverse
eigenvalue problem.

It is also possible to rewrite this problem in the form (1), where A0 = 0,
Ak = eka

T
k , k = 1, ..., n, and the aT

k is a k-th row if the matrix A.
There are several inverse spectral problems with a matrix of a speci�c struc-

ture. For example, the problem of reconstructing the Jacobi matrix from the
given spectral data. Brie�y speaking, the inverse eigenvalue problem with the
Jacobi matrix consists in de�ning the elements of the matrix from the given
spectral data. This problem plays an important role in di�erent applications,
including vibration theory and structural design [10]. In some cases only a
limited number of eigenvalues of the Jacobi matrix is provided. For example,
four or �ve, as in the problem, presented in [10].

An interesting partial case of the general inverse spectral problem is the
inverse Toeplitz problem (see [6]). According to the author, it is important,
that although the Toeplitz matrices have such special structure, the question
of solvability is opened for the case n ≥ 5.

An inverse eigenvalue problem with a symmetrix matrix arises, for example,
in the applied physics and the theory of control. This problem is investigated
in the survey [9] and the cited references.

The other areas where the Problem 1 arises are nuclear spectroscopy and
molecular spectroscopy. In practice the formulation of such problem often in-
cludes less parameters that there are eigenvalues. In such cases it makes sense
to consider the problem formulation in least squares:

min
c∈Rn

m∑

i=1

(λi (c)− λ∗i )
2 .

An important type of problems arising in the engineer researches can be
described with the following formula

minc∈Rm f (c) by l ≤ λi (c) ≤ u, i = 1, ..., n,
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where f (c) is a real-valued function of purpose, l and u are �xed lower and
upper boundaries of eigenvalues of matrix A (c), which is de�ned by the cor-
relation (1). It's interesting to mention that the solution of the given problem
often includes multiple eigenvalues, because the minimization of the function
of purpose can simultaneously conduct several eigenvalues to the same bound-
ary. This is why it's very important to choose the numerical method of solving
the inverse spectral problem so that it correctly handles the case of multiple
eigenvalues.

3. Numerical methods for solving the inverse
eigenvalue problems

There is the rich literature dedicated to the question of numerical methods
for �nding an approximate solution of the inverse spectral problem. One of
the creators of this theory is Friendland, who developed four quadratically
convergent numerical methods together with his colleagues [3]. One of the
methods, presented in [3], is, basically, the Newton method for solving the
following system of nonlinear equations:

f (c) =




λ1 (c)− λ∗1
...

λn (c)− λ∗n


 = 0,

where λ∗ = [λ∗1, ..., λ
∗
n]T ∈ R, and λ (c) = [λ1 (c) , ..., λn (c)]T is the vector of

unique eigenvalues of the matrix A (c). Each λi (c) is a real-valued function,
di�erentiable in some neighborhood of the point c∗, if c∗ is the solution of
Problem 1.

Note, that each iteration of this method involves solving a full spectral prob-
lem for the matrix A (c).

Two other methods from [3] are considered to be the modi�cations of the
Newton method, where the calculation of eigenvectors is simpli�ed. This means
that instead of calculating the exact eigenvectors, or in other words, solving
the corresponding spectral problem, the approximation of these eigenvectors
is calculated. The fourth method from [3] originally is based on the work of
Biegler-Konig, (see [4] and the cited references), and uses the idea of calculating
the determinant.

Based on the methods developed by Friedland and others [3], there have
been constructed new methods for solving some inverse eigenvalue problems
by other scientists. For example, in the paper [6] there are presented two
methods for �nding the solution of an inverse singular problem: one of the
methods is continuous, the other � discrete. The discrete method generalizes
the iteration process, originally proposed by Friedland for solving an inverse
spectral problem. The new method converges locally under the condition of
existence of the problem's solution.

Di�erent authors have investigated this methods. Ones of the �rsts who
used it, where Downing and Householder � for solving the additive and the
multiplicative inverse spectral problems. For a long time this method was also
used by the physics in the nuclear spectroscopy calculations.
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Instead of calculating the exact eigenvectors of the matrix A (c) on each iter-
ation of the method, it is possible to approximate them by using, for example,
the inverse iteration. On this idea the Method II [3] is based.

The Method III is built on the idea of using a matrix of exponentials and
the Cayley transform.

As explained by the authors in the survey [6], from the geometric point of
view, the Method III [3] can be interpreted as the classical Newton method.
This means that the geometry which is involved in the Method III, is closely
bound to the geometry of the Newton method for the nonlinear equations with
one variable. Consequently, the Method III can be generalized to the iteration
process for calculation the approximate solution of the inverse singular problem.

Investigation of the methods, described in [3], can be found in other various
articles, for example � in [1]. As it is stated by the author [1], in case of a matrix
of big dimensions, the Method III has an obvious disadvantage: constructing
an inverse matrix on each step is an expensive operation. These expenses can
be decreased by using the iteration procedures (inner iterations). Because of it,
usually the Method III, as the other methods of this type, is too expensive in
such sense that the number of performed iterations (inner iterations) is much
bigger then the number of iterations needed for convergence of the Newton
method (outer iterations).

In order to calculate the solution of the classic additive and multiplicative
inverse eigenvalue problems the Newton-like methods are also �ne to use.

Among the known methods of this type it is worth mentioning the algorithm
suggested by Kublanovskaya [2]. This algorithm calculates the solution as a
zero of the function

H (c) =




λ1 (c)− λ1
...

λn (c)− λn


 ,

where λ1 (c) < ... < λn (c) are the eigenvalues of the matrix A (c), and λ1 ≤
... ≤ λn are the given eigenvalues.

As an alternative to the Kublanovskaya method, there is another algorithm
presented in [2]. This one is also a Newton-like method and it calculates the
solution of the initial problem, as the zeros of the function

F (c) =




det (A (c)− λ1I)
...

det (A (c)− λnI)


 .

In order to reduce extra expenses of the exact iteration methods and to in-
crease the e�ectiveness, the scientists Chan, Chung and Xu (see [1] and the
cited references) suggested in inexact Newton-like method, which is used for
the matrices of big dimensions. The inexact Newton method stops the inner
iteration process before it converges. Thus, it is possible to decrease the total
number of both, inner and outer, iterations, by choosing a proper stop condi-
tion.
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In the paper [1] another approach is put forward � an inexact method of Cay-
ley transform for the inverse eigenvalue probelm. This methods also minimizes
the extra expenses and increases the productivity.

Based on the di�erentiation theory and on theQR-decomposition of a matrix,
Li suggested a numerical method for solving the inverse spectral problems,
which works for the case of unique eigenvalues (see [4] and the cited references).

In the same paper [4] there is examined the formulation and local convergence
of a quadratically convergent method for solving the general inverse eigenvalue
problem provided that its solution exists. The proposed method is based on
the mentioned QR-decomposition of a matrix and the ideas of Li and Dai
(see [4] and the cites references). As it is stated by the authors, this method is
applicable for the case of unique eigenvalues as well as for multiple eigenvalues
of the matrix.

One more approach to building a numerical method for solving an inverse
spectral problem is suggested in the survey [9]. This approach is based on the
analysis of analyticity of eigenvalues and eigenvectors of matrix of the prob-
lem. The examination of analyticity of spectral problems has a long history
(see [9] and the cited references). However, according to the author, relatively
small attention has been paid to the examination of analyticity of matrix spec-
tra in the case when the matrix analytically depends on several parameters.
Thereby, in [9] a new method is proposed. This is another modi�cation of
the known Newton method and allows to �nd the approximate solution of an
inverse eigenvalue problem with a real symmetric matrix, which depends on
several parameters.

Recently another approach type of methods � the gradient methods � gained
the attention of scientists. For example, a variation-gradient method for solv-
ing multiparameter eigenvalue problems has been developed by Klobystov and
Podlevkyi (see [5], [7]). The proposed method was later modi�ed and extended
to the inverse spectral problem by Podlevskyi and Yaroshko (see [8]). The
idea of these methods, for both direct and inverse multiparameter eigenvalue
problems, is to replace the spectral problem with an equivalent variation prob-
lem and applying the iterative method to �nd the solution of this variation
problem. The mentioned method is based on the gradient procedure and the
Newton method.

Let's consider the following multiparameter spectral problem in the Euclidian
space En:

T (λ) x ≡ Ax− λ1B1x− · · · − λmBmx = 0, (4)

where λ = {λ1, ..., λm} ∈ Em � are spectral parameters, x = (x1, . . . , xn) ∈ En,
and A,B1, ..., Bm � are some linear operators that act in the Euclidian space
En.

Let's place in correspondence to the spectral problem (4) the variation prob-
lem of minimization of a functional:

F (u) =
1
2
‖T (λ) x‖2

H ,∀u = {x, λ} ∈ H. (5)
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The problem (5) consists in �nding such set of parameters λ = {λ1, ..., λm} ∈
Em and the corresponding vector x ∈ En \ {0} on which the functional F (u)
reaches its minimal value:

F (u) → min
u

, u ∈ U ⊂ H, (6)

where U is a set of points u = {x, λ}, that satis�es the equation (4), H is an
Euclidian space.

It can be shown that the spectral problem (4) and the variation problem (6)
are equivalent. This means that each eigenpair {x, λ} of the problem (4) is a
point of minimum u = {x, λ} of the functional (5), and vice versa.

This result allows us to build the gradient procedure for the numerical solving
of the problem (6) and, therefore, the problem (4):

uk+1 = uk − γ (uk)∇F (uk) , k = 0, 1, 2, .... (7)
The formula (7) describes the whole class of methods, which di�er one from

another only by the choice of the step γ (uk).
In our method we suggest calculating the value γk = γ (uk) on each step of

the iteration process by the formula:

γk =
F (uk)

‖∇F (uk)‖2
H

.

To conclude, the iteration process can be written in the form:

uk+1 = uk − F (uk)
‖∇F (uk)‖2

H

∇F (uk) . (8)

So far we have described the method for solving the direct eigenvalue prob-
lem. Let's explain the algorithm of solving the inverse spectral problem, which
is based on the described gradient procedure.

Consider the inverse eigenvalue problem (1) with the real matrices A0,
A1, ..., Am ∈ En×n, and where the pairs

{
λk, x

k
}m

k=1
are the eigenpairs of the

matrix A (p). Here λ = {λ1, ..., λm} ∈ Em, xk ∈ H = En \ {0}, k = 1, ..., m,
and E is a real Euclidian space.

Using the de�nition of the eigenvalue and the corresponding eigenvector, we
can build the system of m equations for �nding the parameters p1, ..., pm:




((A0 − λ1I) + p1A1 + ... + pmAm) x1 = 0,
. . .

((A0 − λmI) + p1A1 + ... + pmAm) xm = 0.
(9)

Now lets transform this system by introducing the matrix operators A,Bi :
H→ H, H = ⊕m

k=1E
n×n (i = 1, ...,m.),

A =




(A0 − λ1I) 0
. . .

0 (A0 − λmI)


 , Bi =



−Ai 0

. . .
0 −Ai


 ,

In case x =
(
x1, x2, ..., xm

)T ∈ H, we get
Ax =

(
(A0 − λ1I)x1, (A0 − λ2I) x2, ..., (A0 − λmI)xm

)
,
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Bix =
(−Aix

1,−Aix
2, ...,−Aix

m
)
.

Now it is possible to pass from the problem (9) to the problem in the form
(4) in the space H

T (p) ≡ Ax− p1B1x− ...− pmBmx = 0. (10)
Therefore, we retrieved the problem of �nding the set of parameters p1, ..., pm,

such that the equation (10) has a non-trivial solution x ∈ H \ {0}.
In correspondence to the problem (10) we put the variation problem:

F (u) → min
u

,u ∈ U ⊂ H,

where F (u) = 1
2 ‖T (p)x‖2

H , ∀u = {x, p} ∈ H = H⊕ Em.
As expected, the task is to �nd the set of parameters p = {p1, ..., pm} ∈ Em

and the corresponding vector x ∈ H\{0}, on which the functional F (u) reaches
its minimal value.

In order to solve the variation problem we use the iteration process (8).
Consequently, we obtain the solution of the initial inverse eigenvalue problem.
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