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ACADEMICIAN V.L.MAKAROV IS 75!

In 2016 the well-known Ukrainian scientist in the field of numerical mathe-
matics, Academician of National Academy of Science of Ukraine (NASU), Doc-
tor of Physical and Mathematical Sciences, Professor Volodymyr Leonidovych
Makarov turned 75.

In 1963 V.L.Makarov graduated from the Faculty Mechanics and Mathe-
matics of Kyiv State University. In 1967 he received a Ph.D. in Physics and
Mathematics from the Kyiv State University. In 1974 he received a degree
of a Doctor of Science in Physics, Mathematics and Computer Sciences and
became a Professor of Applied and Computational Mathematics. In the pe-
riod between 1981 and 1998 V. L. Makarov was the head of the Department of
Numerical Methods of Mathematical Physics at the Kyiv National University
of Ukraine. In October 1998 he became the head of Department of Numeri-
cal Mathematics at the Institute of Mathematics (NASU). During a long time
V. L. Makarov was also the head of the Department of Applied Mathematics at
the National Aviation University (Kyiv).

Numerous achievements of modern numerical mathematics are connected
with the name of Professor V.L.Makarov. He developed many algorithms
for solving different problems in mathematical physics; many other ones were
developed and used for practical calculations under his supervision and with
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his direct participation. V.L.Makarov has also carried out a wide range of
theoretical investigations in numerical mathematics. His works span a vast
majority of problems in mathematical modeling including numerical simulation.
These works have opened new directions in the theory of difference schemes, in
automatic design of complex radio engineering systems etc. Professor Makarov
developed the base of common theory of polynomial interpolation of non-linear
operators in abstract spaces and recently obtained new important results in
constructive representation of the solution operators for differential equations
with operator coefficients in Hilbert and Banach spaces. The latter ones allow
the construction of efficient numerical algorithms without accuracy saturation
or exponential convergent algorithms for solving partial differential equations,
integral equations etc.

Professor Makarov published more than 370 papers, 13 monographs and 8
textbooks. Since 1963 until 1974 the main direction of V.L. Makarov’s scien-
tific activities was the theory of difference schemes. In this period, he was
onethe first to introduce and study the new class of difference schemes — a
so-called difference scheme with exact and explicit spectrum. Studying the
mathematical apparatus of these schemes, special functions of discrete argu-
ment, V. L. Makarov achieved some important results in the theory of associated
orthogonal polynomials. Difference schemes with exact spectrums are widely
used in practice, especially when solving hyperbolic equations with non-smooth
solutions.

V.L.Makarov made an important contribution to the theory of exact and
truncated differences schemes, the base of which was established in 1959-1968 by
academicians A. M. Tikhonov and O. A. Samarskiy. These scientists and their
followers proved the existence and uniqueness theorems for exact differences
scheme for vectorial systems of ordinary differential equations of the second or-
der, of ordinary differential equations of the forth order, differential equations
with degeneration on the boundary and in unbounded domains. Sufficient con-
ditions for conservatism of differences scheme for the equations of gasdynamics
were pointed out.

In 1979-1980 in their common works, V. L. Makrov and academician O. A. Sa-
marskiy suggested a new direction in numerical mathematics, namely difference
schemes which rate of convergence is adjusted to the smoothness of the solu-
tion of the primary differential problem. These investigations were contin-
ued by V.L.Makarov and his followers. They derived and studied differences
scheme with adjusted convergencerate for quasi-linear problems of mathemati-
cal physics in Sobolev spaces. Now these models are widely used in mechanics,
elasticity theory, theory of operating systems with distributed parameters etc.

Since 1975 V.L.Makarov engaged in active research on the development
of theoretical base for automatic projection of complicated radio engineering
systems. This research, under his supervision and with his direct participation,
created the mathematical concept of systems of embedded models, methods of
verification of mathematical models, the statistical approach to the problem
of verification. Important attention was paid to the algorithmic realization
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of mathematical models, where the results by V.L.Makarov in the field of
numerical methods were used.

During the last years V. L. Makarov laid the foundation of the general theory
of the polynomial interpolation of the non-linear operators in abstract spaces.
His work proves the necessary and sufficient existence and uniqueness condi-
tions for polynomial interpolants in Hilbert and vector spaces and proposes
procedures to construct these polynomials. Professor Makarov also obtained
generalizations for the case of interpolation conditions containing Gato deriva-
tives in all directions.

In the last decade V. L. Makarov have proposed and futher develops a very ef-
ficient so called F'D-method, which shows especially good results for eigenvalue
problems.

In 1990 Prof. Makarov, while working in an international team at the Uni-
versity of Leipzig, began a new line of research. Together with I. P. Gavrilyuk he
studied differential equations with operator coefficients as meta-models of par-
tial differential equations, their solution operators and various operator equa-
tions in Hilbert and Banach spaces. A series of results of fundamental impor-
tance were obtained by Professor V. L. Makarov in this. These results were the
base for the new efficient parallel approximations without accuracy saturation
or with an exponential convergence rate to solutions of various partial differen-
tial equations. The exponentially convergent methods for various mathematical
and applied problems remain to be the focus of Professor Makarovs research ac-
tivities of the last decade since they are the basis foralgorithms of optimal com-
plexity. A part of results on this was published in the Birkhauser Series "Fron-
tiers in Mathematics" (in co-authorship with I. Gavrilyuk and V. Vasylyk).

An important field of Professor Makarovs scientific activities is mathematical
modeling of sloshing of fluids in moving containers with various marine applica-
tions. These phenomena are described by complex systems of nonlinear partial
differential equations in domains with moving boundary. This investigations of
Professor Makarov were supported by the German Research Council (DFG) and
by the German Academic Council (DAAD). Professor V.L. Makarov has been
teaching for 35 years in the Taras Shevchenko National University of Kyiv.
He created a school of numerical mathematics which includes 48 candidates
(PhD) and 15 doctors (DS) of physical-mathematical sciences that have pre-
pared their theses under his supervision. Results published by V.L.Makarov
are widely known in the scientific world and make an important contribution to
mathematics. Long before the end of the Soviet Union V.L. Makarov has pre-
pared the first teaching complex of books on numerical methods in Ukrainian
(in co-authorship) including two theoretical parts, a practical part with algo-
rithms and programs as well as two books with a collection of exercises. At that
time such a complex was a novelty in teaching of numerical mathematics and
not only in Ukraine. A creative and fruitful relationship connects V. L. Makarov
with many other scientists including the famous mathematical schools of aca-
demicians A.M. Tikhonov, O.A.Samarskiy, and Kyiv and Leipzig schools of
numerical and applied mathematics.
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Under the guidance of Academician Makarov, a seminar on numerical math-
ematics takes place. V.L.Makarov is the editor ofthefollowing journals: "Dif-
ferential equations", "Ukrainian Mathematical Journal", "Nonlinear Oscilla-
tions", CMAM, AMI, and a deputy editor-in-chief of the Journal of Numeri-
cal and Applied Mathematics. Besides, he repeatedly belonged to specialized
boards of the doctoral and Ph.D. thesis defends. Academician Makarov was
invited speaker at a number of international conferences and schools of applied
mathematics. He is a member of the American Mathematical Society.

For the gained success in his work V. L. Makarov was awarded the order of the
Labor Red Flag (1984), M. M. Krylov’s Prize from NASU (2007), M. M. Bogolu-
bov’s Prize from NASU (2012) and State Prize of Ukraine in Science and Tech-
nology in 2012. In 2000 V. L. Makarov was elected as a Corresponding Member
of the NASU and in 2009 as an Academician of the NASU.

Volodymyr Leonidovych Makarov is full of new scientific ideas and concepts.
His active work promotes development of numerical mathematics in Ukraine
and recognition of the achievements of Ukrainian mathematicians by the inter-
national scientific society.

We cordially congratulate the celebrator of a jubilee and wish Volodymyr
Leonidovych creative successes and scientific longevity.

R. Chapko, I. Gavrilyuk, O. Khimich, V. Khlobystov, V. Korolyuk,
M. Kutniv, I. Lukovskyy, P. Matus, A. Samoilenko, G. Shynkarenko,
S. Solodkyy, O. Timokha, V. Vasylyk, M. Voitovich.
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ON THE NON-LINEAR INTEGRAL EQUATION
APPROACHES FOR THE BOUNDARY RECONSTRUCTION
IN DOUBLE-CONNECTED PLANAR DOMAINS

R.S. CHAPKO, O. M.IVANYSHYN YAMAN, T.S. KANAFOTSKYI

PE3IOME. Po3srnmamaeThed 3a1ad9a peKOHCTPYKIII BHYTPIIHBOI KPUBOI 3a 3a-
maanvu gaaumu Komri rapmomiiinol ¢yHKMI HAa 30BHIMHIN KPUBIA MI0CKOL
obmacti. 3a momomorooo dyskmii ['pina i Teopii moTenriagy HesiHifiHa 06ep-
HeHa 3a/I1a9a peayKOBAHA /10 CUCTEMM HEJIHIMHUX I'DAHUYHUX IHTErpajbHUX
piBusHb. Po3pobieno Tpu iTepariiiai asropurmu s i1 9ucessbHOTO po3B’A3y-
BaHHSA. 3HaMmeHo moxigai dperre BiAMOBIIHUX OMEPATOPIB i TMMOKA3AHO €M~
HICTH PO3B’A3Ky JiHeapu30BaHMX cucTteM. lloBHa muCKperm3amis 3miiicHeHA
METO/IOM TPUTOHOMETPUYHHUX KB3JPATyD. ‘lepe3 HEKOPEKTHICTh BUXITHOI 3a-
Jadqi 10 OTPUMAHWUX CUCTEM JIHIHHUX PIBHAHB 3aCTOCOBAHO PETYJIAPHUIAILIO
TixonoBa. YucenpHi pe3yabTaTy MOKA3yIOTh, M0 IIPOIIOHOBAHI METOIH JTAI0Th
JOCTATHBO 00Dy TOUHICTH PEKOHCTPYKINI IIPM €KOHOMHHX OOYHC/IIOBATIBHIX
3aTpaTax.
ABsTRACT. We counsider the reconstruction of an interior curve from the given
Cauchy data of a harmonic function on the exterior boundary of the planar
domain. With the help of Green’s function and potential theory the non-
linear boundary reconstruction problem is reduced to the system of non-linear
boundary integral equations. The three iterative algorithms are developed for
its numerical solution. We find the Fréchet derivatives for the corresponding
operators and show unique solviability of the linearized systems. Full dis-
cretization of the systems is realized by a trigonometric quadrature method.
Due to the inherited ill-possedness in the obtained system of linear equations
we apply the Tikhonov regularization.

The numerical results show that the proposed methods give a good ac-
curacy of reconstructions with an economical computational cost.

1. INTRODUCTION

The mathematical modeling of electrostatic or thermal imaging methods in
nondestructive testing and evaluation leads to inverse boundary value problems
for the Laplace equation. In principle, in these applications an unknown inclu-
sion within a conducting host medium with a constant conductivity is resolved
from the overdetermined Cauchy data on the accessible part of the boundary
of the medium.

The idea to reduce the problem of the boundary reconstruction to the system
of non-linear equations and to employ a regularized iterative procedure was
firstly suggested in [11]. This approach was successfully extended in [1,3,6,11,

Key words. Double connected domains; boundary reconstruction; Green’s function; single
layer potential; boundary integral equations; trigonometric quadrature method; Tikhonov
regularization.
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12] for the case of the Laplace equation and in [4,5,7-9,13-15] for the Helmholtz
equation.

As an alternative to the reciprocity gap approach based on Green’s integral
theorem we propose iterative solution methods based on the Green’s function.
Although the proposed methods are restricted to the class of domains for which
the Green’s function can be easily found the methods have several advantages
over the reciprocity gap approach. In particular, the corresponding single layer
potential is bounded at infinity and hence its modification is not needed. More-
over, for the complicated boundary conditions such as generalized impedance
the proposed methods will be easier to adopt.

We assume that D is a doubly connected bounded domain in IR? with the
boundary 0D consisting of two disjoint closed C? curves I' and A such that I’
is contained in the interior of A.

The corresponding direct problem is: Given a function f on A consider the
Dirichlet problem for u € C?(D) N C(D) satisfying the Laplace equation

Au=0 inD (1)
and the boundary conditions

u=0 onl, (2)

u=f onA. (3)

The inverse problem we are concerned with is: Given the Dirichlet data f on
A with f # 0 and the Neumann data

ou
9=, on A, (4)

determine the shape of the interior boundary I'. Here, and in the sequel, by
v we denote the outward unit normal to I' or to A. We tacitly assume that
f has enough smoothness, for example f € Ch*(A) for classical solutions or
f € HY2(A) for weak solutions, to ensure the existence of the normal derivative
on A. As opposed to the forward boundary value problem, the inverse problem
is nonlinear and ill-posed.

The issue of uniqueness, i.e., identifiability of the unknown curve I' from the
Cauchy data on A, is settled by the following theorem (see [10]).

Theorem 1. Let T and I' be two closed curves contained in the interior of A
and denote by w and w the solutions to the Dirichlet problem (1)—(3) for the

interior boundaries I' and f, respectively. Assume that f # 0 and

ou Ou

ov~ ov
on an open subset of A. Then I’ = r.

The plan of the paper is as follows. In Section 2 we reduce the inverse bound-
ary value problem (1)—(4) to two boundary integral equations using Green’s
function. Section 3 contains three iterative schemes for the numerical solution
of the non-linear integral equations. We show the injectivity of the correspond-
ing linearized operators. The practical realization of suggested algorithms is
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discussed in Section 4. Section 5 concludes the paper with some numerical
examples illustrating the feasibility of the non-linear integral equation method
for approximate solution of the inverse boundary value problem.

2. REDUCTION TO BOUNDARY INTEGRAL EQUATIONS
To this end, we denote the interior of A by B. Then, by G we denote the
Green’s function for B, that is, G is defined for all z # y in B and of the form

Glay) = 5-n

where, for a fixed y € B, the function G is harmonic in B with respect to x
such that G(-,y) = 0 on A. We note that for A a circle of radius R centered at
the origin G is explicitly given by
RY + |2|y|? — 2R%z - y
R? '
The solution w to the Dirichlet problem in B with boundary values w = f on
A can be represented in the form
0G(z,y)
= d , € B. )

w(z) o) fy)ds(y), = ()
In the case of A a circle the representation (5) reduces to the Poisson integral.
In a more abstract sense, we may interpret (5) as solution operator that maps
the boundary value f into the solution w of the Dirichlet problem in B. Seeking

~ 1
G(z,y) = Eln

the unique solution of (1)—(3) in the form
/G z,y)e(y)ds(y) +w(zx), xe€D, (6)
now leads to the integral equation of the first kind
[ Gnet) ist) = —u(@). weT. ©

for the unknown density ¢. We name the integral equation (7) as a field equa-
tion. The given flux g on A leads to the integral equation

[ o2 ist) = g(o) - G, w e, ©

which is named a data equation.
Let introduce the single-layer potential

- [ Gptdsty), zeT, (9)
and the operator
(o)) = [ Tt o dst), @ e A, (10)
I

for the normal derivative of the single-layer potential on A.
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Theorem 2. The inverse boundary value problem (1)—(4) is equivalent to the
system of integral equations

Sp=—-w on T, (11)
Ap=g— ?;5 on A. (12)
Proof. Analogously to [11]. O

Theorem 3. The operator S : H-Y2(I') — HY?(T') is bijective and has boun-
ded inverse. The operator A : L?(T') — L%(A) is injective and has dense range.

Proof. The bijectivity of S is the classical result and can be found in [10]. The
injectivity of A is proved in |2]. O

To describe the algorithms conveniently a parametrization of boundary cur-
ves is required. Let

A(s) = {(z1(s),22(8)) : s € [0,27]}

is the parametrization for the exterior curve A. For simplicity we consider only
starlike interior curves, i.e., we choose a parametrization in polar coordinates
of the form

vr(s) = {r(s)e(s) : s € [0,27]}, (13)
where ¢(s) = (coss,sins) and 7 : IR — (0,00) is a 27 periodic function rep-
resenting the radial distance from the origin. However, we wish to emphasize
that the concepts described below, in principle, are not confined to starlike
boundaries only. We introduce the parametrized density as ¢(t) := ¢(7,(t)) or
o(t) == o(7r(t)|7.(t)|. We indicate the dependence on r by denoting the curve
with parametrization (13) by I';. The corresponding operators defined through
(9) and (10) for I = I, are given by

2
(5000 = 3= [ 6602
2
Gt = 3= | eIGOHB. (D,
2
(400 = 3= [ o) 55 MO (D)

and

(o)) = o [ o) 5o A0,
T 0x Jo P au(np) N I
3. ITERATIVE SCHEMES
Operators S, A, and A, have the following Freéchet derivatives with respect
to the radial function r

2m
STrola®) = 3= [ 6@LOLO ) +aOL . ldr
2
oot = 5- [ oD rar

10
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and
2
A gl ® =5 [ o@D @R
: (D) + () () 14)
T T (T T (2) - -
* o) e

Here we introduced the kernels
r(r) = r(t)cos(t —T) ~
Ls'l)(tv 7—) = |'7r(t) — ,W(T”Q + gra‘d’yr(T) G('Yr(t)’ ’77“(7—)) ’ C(T),
. r(t) —r(7)cos(t — T) ~
(7)== DT g, ) G097 -<l0)
OGOM 1)
v (A(t))

HM (t,7) = grad,, (7

and
H?(t,7) = 8GE9/\1/(8\7(Z)T)(T))
Note that
lig(q(T)Lgl)(t7r) gLt 7)) = r(t)Q(t)vjEt;‘gt)q ®,

+2q(t) grad,, ) G(7:(2), (1)) - c(t)-

These representation were obtained by standard differentiation procedure in
(9) and (10). Also we will need the Freéchet derivative for the function w

1 21

(w'rla)(t) = -5 ; f()a(T)We(t, 7)dr

v 9G (3 (1), (7))
Yr L), A\T
a4

The linear operators S’[r, ¢] and A’[r, ¢] have the following properties.

Wr(ta T) = ‘)‘/(7—)’ grad'yr(t)

Theorem 4. Let r be the radial function of the interior boundary Iy and let

¢ be a solution to the integral equation (11), i.e. S, = —w on T',. Assume
that ¢ € C?[0,27] and ¥ € L?[0,27] solve the homogeneous system

Srp+ S8'[r, ¢lg +w'lrlg = 0, (15)

A + A'lr, ¢lq = 0. (16)

Then ¢ =0 and ) = 0.

Proof. As it is shown in [6], for sufficiently small ¢, the perturbed interior curve
as given in polar coordinates by

Lryg ={(r(t) +q(t)c(t) : t € [0, 27]}
can be represented in the form

Tyiy = {r(t)e(t) + G)(t) : ¢ € [0,27]}

11
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in terms of the normal vector
v(t) = 7'(t)(—sint, cost) — r(t)(cost,sint)

to the unperturbed curve I'; and a function ¢. Now in the Fréchet derivatives
S’, A" and w’ we may replace the perturbation vector ((t) = q(t)c(t) by ¢ = qv.
We introduce the function

2m

Viz) = ; Y(1)G(x, v (T))dT—

2m -
— /0 grad, G(z,7-(7)) - ((T)é(1) dr, =€ R*\T,.

Then (16) implies that %—‘; = 0 on A. The function V satisfies the Laplace
equation in the exterior of A, it decays at infinity, therefore by the uniqueness
for the exterior Neumann problem we conclude that V' = 0 in the exterior of
A. By analyticity we obtain V = 0 in the exterior of I'.. Approaching I, from
the exterior by the jump relations we obtain

2

02/0 ()G (t), e (T)dr

2
= [ o, ) GOn ). 31(7) - EoAr) dr + 5000, 1€ (0,211

Employing the above equality and recalling the definition (6) of u we can rewrite
(15) as follows

¢ -graduo~, =0.
Due to the definition of u and the condition on ¢ we have v = 0 on I';, which

is equivalent to
~ ou
C-vony <> oy =0.
ov

Since by Holmgren’s theorem % cannot vanish on open subsets of ', we obtain

Z -vo~y, =¢q =0 and hence ¢ = 0. Analogously to [11]| by continuity of a single-
layer potential and the uniqueness of the interior Dirichlet problem we obtain
V =0 in IR? and therefore the density ¢ = 0. O

Theorem 5. Let r be the radial function of the interior boundary Iy and let ¢

be a solution to the integral equation (12), i.e. Ay = g— ‘?d—zl‘j on A. Assume

that q¢ € C?[0, 27 solves the homogeneous equation
S'r, ¢lg +w'lrlg = 0. (17)
Then q = 0.

Proof. Since ¢ is a solution to A,¢ = g — %—f on A it also satisfies S,¢ =
—w on I'y. We represent the perturbed interior curve again as

Lryq = {r(t)c(t) + qt)v(t) : t € [0, 2]}
and introduce the function

2m T
Vi = [ oG- [ S8 f)ds), 2 e BT

12
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The function V is a solution to the interior Dirichlet boundary value problem
with the homogeneous condition. In view of the unique solution we obtain

V = 0 in the interior of T', and therefore 8—‘/

By . =0, ie.
2
0= q(t)v(t) grad, o) | Glw(t), 7 (7))o(T )dT+%5(t)¢>(t)
—G(t)v(t) - grad,, t)/ 9G( 7"(; Y ) dsty), ¢ e [0, 2],
From (17) we find
1 2 ~
0= —55@)(?@) - /0 gra’d'yr(t) G(%“(t)? /71”(7—)) ’ C(T) ¢(T) dr, te€ [07 27‘-]‘

(18)
We define a double layer potential

2
W(x):= —/0 grad, G(x,v. (1)) - v(7)q(T)p(T)dT, =€ R? \ T

Since the function W is harmonic in the interior of I', and satisfies the homo-
geneous Dirichlet boundary condition, (18), it implies W = 0 in the interior of
I';. One can show, similarly to [10, Theorem 6.21], that the operator —I + K
is injective, where

2
(K0)(0) = [ rad, ) GOn(t). (7)) - VP dr, 1€ [0.27)
Hence from (18) we obtain
qt)p(t) =0, tel0,2n]
By the jump relations for the function V' we have
ov-| oVt
v %

ov—™
ov

d)_

le

Since by Holmgren’s theorem 2 W cannot vanish on open subsets of I', and
|7+ # 0 we obtain ¢ = 0 and hence ¢ = 0. O
Remark (about the Algorithm 2).

If the interior boundary is a circle, then exists a nontrivial solution ¢ = const
to the homogeneous equation A’[r, p]¢g = 0. Indeed, introducing the function

27
V(z) = —qgrad, i G(z, 7, (7)) - v(T)p(r)dr, xe€R*\T,

we obtain that V' is a unique solution to the Neumann boundary value problem
with the homogeneous condition in the exterior of A, and hence V|, = 0.
Since the null-space of the operator of the integral equation

2T
%gp(t) — grad, ; G(t,y (7)) - v(T)p(r)dr =0, t€]0,2n]

is not empty, one can find ¢ # 0 which solves A’[r, ¢]qg = 0.

13
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In view of this remark we introduced the modified version A'[r,¢], (14),
instead of the operator A'[r, ¢].

Now we describe three iterative algorithms for the numerical solution of (11)-
(12).
Algorithm 1.

1. Choose some starting value 7. Solve the well-posed integral equation

Spp = —w,. (19)

2. For the given r and ¢ solve the system of linearized ill-posed integral
equations

Spp + S'[r, plg + w'[rlg = —Srd — wy, (20)
ow

A+ Allr glg =g — =
with respect to functions ¥ and q.

3. Calculate new approximations for the radial function » = r + ¢ and for
the density ¢ = ¢ + 1.

4. Repeat steps 2-3 until some stopping criterion is satisfied.
Algorithm 2.

1. Choose some starting value r.

2. Solve the well-posed integral equation

A (21)

STSO = —Wyp. (22)
3. For the given r and ¢ solve the linearized ill-posed integral equation
_ ow -~
A =g— — — A,
[rela=9— 4" @ (23)

with respect to function q.
4. Calculate new approximations for the radial function r = r + q.
5. Repeat steps 2-4 until some stopping criterion is satisfied.
Algorithm 3.
1. Choose some starting value r.
2. Solve the ill-posed integral equation

ow
Ar¢ =g — E (24)

3. For given r and ¢ solve the linearized ill-posed integral equation
S/[T’, ¢}Q+w/[r]q = =50 — wy, (25)

with respect to function q.

4. Calculate new approximations for the radial function r = r + q.

5. Repeat steps 2-4 until some stopping criteria is satisfied. Note here that
we need to use some regularization method in the case of ill-posed integral
equations. According to properties of the corresponding integral operators an
application of the Tikhonov regularization is justified for the algorithms 1, 3.

14
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4. IMPLEMENTATION
Algorithm 1.
Stepl. On the first step of this algorithm we need to solve the well posed
integral equation of the first kind (19) with a logarithmic singularity for a
current approximation of r. Since all functions in this equation are 27 periodic
we implement the trigonometric quadrature method. To do this we rewrite the
equation (19) in the following equivalent form

1 2
o

1. 4 ,t—
o(7) {—zlnesinz Ly Ko (t,7)| dr = —w,(t), te 0,2,

where
1
K, (t,7) = -In
2
with the diagonal term

R
eI%( )|?

The following trigonometric quadratures with equidistant points t; = %, j=
0,...,2n — 1 are used

Kp(t,t) = + G (1), 7 (2)).

1 4 2n—1
o f( ) In (e sin? > dr ~ Z Ry (t (26)
and
1 2n—1
o ), T fydr e - Z (b (27)

with explicit expressions for the weight functions given in [10]. It leads to the
following system of linear equations with respect to ¢n; =~ ¢(t;)

2n—1 1
Zqﬁm SRite) + 5Ktk ti)] = —p(tr), k=0,....2n—1
with
2n—1
Z F(t)H(t,t;),
where

_ 906G (@), A7), \/
H(t,7) = = g SN )]

The convergence and error analysis for this method can be found in [10].
Step2. We search the unknown corrections in the system (20)-(21) as

2n—1

wn—z¢mm Qm—Zszza

15
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where I}, i = 0,...,2n — 1 are basic Lagrangian trigonometric polynomials and
I2,i=0,...,2m are known basic functions. The quadrature method applied
o (20)-(21) give us the linear system

2n—1

Zwm ”)+Z gmi AL = p =0, on—1,
=0

2n—1

anl +Z mzAQQ)— k:O,,Qn—l
with matrix coefﬁ(nents

1 1 1
A(”’——5Ri(tk>+f&(tk,ti), AR — o HP (b 1),

2n

ALY = Z{qsm 2 ()LD (g, £5) +2(t) LE) (b, 1))+ (1) £ (8 Wi (s £5) },

2n—1
1
A = 5 3 onl () D (1. 1)
7=0

and right hand side

2n—1

b = qum “Ri(ty) _—K (te, ta)] — Wy (tn),

2n—1

ow r 1
b = g(ti) — (;U (tk) — 5= Z i I (g, 1)

Here 2n > 2m + 1.

Thus the received ill-posed linear system is overdetermined and therefore we
reduce it to the least-squares problem. The following cost functional needs to
be minimized

F(wno’ ceey ¢n,2n—1’ dm0, - - - 7Qm,2m) =

2

2n—1|2n—1

Z Z wng 11) —|—Z mJ.A(m _ b(l) n
i=0 | j=0
2n—1 |2n—1 9
2 Zw’”AmJFZ amsAy” = b7 |+
=0 | j=0

2n—1

« Z lewn] + ﬁZW%Qm]

16
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with the regularization parameters o > 0 and 8 > 0 and weight coefficients wy
and wy;. Clearly, the final linear system has the form

2n—1
11 (1 .
awhwm—i—zwma )—i—quJa = i), 1=0,...,2n—1,
7=0
2n—1

Bw2igmi + Z @Z}nja + Z mja b(2) 1=0,...,2m,

where
2n—1

Z "Ak(;l A(pl Z A(m ]

and
2n—1

2m
923 A 13 AP
k=0 k=0

Step 3. Now we can evaluate the new values for the radial function r,, = r,+qm
and for the density ¢, = ¢n + ¥n.
The following stopping criterion can be used

gl z2(0,2)
HrmHLQ[O,Qw}
with sufficiently small € > 0, or a discrepancy principle, as well.
Algorithm 2.
Step2. 1t is analogous to the Step I from the Algorithm 1.
Step3. To find the correction ¢ from (23) we make the discretization by
the quadrature method and due to its ill-posednes we minimize the following

Tikhonov functional
2

2n—112m 2m
22 2
F(Qm07 B Qm,Qm) = Z qujAz(’j ) - b§ ) + ﬂZWquTQHJ’ 2n > 2m + 1.
=0 |[7=0 j=0
The corresponding linear system has the form
2m
Bw2iGmi + Z gmjai; = bi, 1=0,...,2m
§=0
with
2n—1 2n—1

= S APAD. b= AT

Algorithm 3.
Step2. The discretization in (24) and ill-posednes of the received linear system
lead to the minimization of the following Tikhonov functional

2
2n—1|2n—1 2n—1
F<wn07 s 77>bn 2n— 1 Z Z wn]Agl) - bgg) + Z wljwr%j
1=0 | j=0 7=0

17
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with
(9 oW
b = g(ty) — T(tk)
which is equivalent to solving the linear system
2n—1
.
awlzwnz"‘ Z wnja” = 5 ), 1= 0,...,2’/L— 1,
7=0
where
2n—1 2n—1

ZA(m k] ’ ( ZA(zl)b

Step3. To find the correction ¢ from (25) we make the discretization by quad-
rature method and due to its ill-posednes we minimize the following Tikhonov
functional

2
2n—11|2m 2m

F(gmos - Gmam) = O | > amp ALY =00 + 83 wajd?;, 20> 2m+ 1,
i=0 |j=0 pur

Thus the corresponding linear system has the form

2 2 .
ﬁWQszz‘i'ZQm]a() E)a 2207-'-72ma
7=0

where
2n—1 2n—1

ZA(lQ k;] ’ ( ZA(lQ)b

5. NUMERICAL EXAMPLES

We demonstrate the feasibility of the proposed methods for the inverse prob-
lem (1)-(4) with the following boundaries A(t) = { Rc(t),t € [0, 27|} with R = 2,
and

() = {\/cos% 1 0.25sin%te(t),t € [0, 27r]} .

The Cauchy data on A were generated by solving the direct problem (1)-(3) for
f =1on A and calculating g as the normal derivative on A. The noisy data
were formed as

¢ =g+62n—1)9gllLoa)

with the noise level ¢ and the random value n € (0,1). The results of the
numerical experiments for exact and noisy data with § = 5% are reflected on
Fig.1. Here we used the following discretization parameters n = 16, m = 4
and e = 0.0001. The values of regularization parameters, numbers of iterations
and Le-errors are given in Tabl. 1.

18
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6 | It. E « Jé]

Algorithm 1 | 0% | 7 | 0.00561 | 10713 | 10=5
5% | 8 |0.07367 | 10719 | 1073
Algorithm 2 | 0% | 21 | 0.00614 102
5% | 17 | 0.03843 1071
Algorithm 3 | 0% | 21 | 0.00322 | 10714 | 107
5% | 15 | 0.04714 | 1075 | 107!

TaBL. 1. Errors and regularization parameters

a). Reconstruction for the exact data b). Reconstruction for 5% noise in the data

FiG. 1. Reconstruction of the boundary T’
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ON THE GENERALIZED SOLUTION OF THE
INITIAL-BOUNDARY VALUE PROBLEM WITH
NEUMANN CONDITION FOR THE WAVE EQUATION
BY THE USE OF THE RETARDED DOUBLE LAYER
POTENTIAL AND THE LAGUERRE TRANSFORM

S. V.LITYNSKYY, A.O. MUZYCHUK

PE31OME. Ommcano i 06rpyHTOBAHO MiAXi 0 pO3B’I3yBaHHS MIlTaHol 3a1ad4di
Heifimana st omHOPIIHOTO XBUIKOBOTO PiBHSAHHS, KUl 0a3yeThCs HA iHTEr-
paJsibHOMY TiIepeTBopenHi Jlarepa 3a 4acoBOIO 3MIHHOIO 1 'PAHUYHUX IHTErPaAJIb-
HUX piBHAHHAX. [l MOmAHHS y3arajJbHEHOrO PO3B’S3KYy TakKol 3aJa4i BHKO-
PUCTAHO 3aIi3HIOIYUHN ITOTEHTIIA TOIBIHOTO MIapy, TYCTUHY SKOTO NIYKAKOTHh
y Burnani pany Pyp’e-Jlarepa. [lna xoedillieHTIB PO3BHHEHHS OTPUMAHO
anamiTuaHi hopmynmu. B pesysbraTi BuxigHy HecTarjioHapHY 3a7atdy 3BEIEHO
710 eKBiBaJIEHTHOI IOC/IIOBHOCTI IPAHUYHUX IHTErPaJbHUX PiBHIHD.
ABSTRACT. Approach for solving of the initial-boundary value problem for
the homogeneous wave equation with the Neumann condition is described
and proved. It is based on the Laguerre transform in the time domain and
the boundary integral equations. The retarded double layer potential is used
for representation of generalized solution of such problem in some weighted
Sobolev spaces. The density of retarded potential is expanded in Fourier-
Laguerre series, coefficients of which have special convolution form. As a
result, the initial-boundary value problem is reduced to an equivalent sequence
of boundary integral equations.

1. INTRODUCTION

Retarded surface potentials are useful tools for the integral representation of
generalized solutions of initial-boundary value problems for the wave equation
with homogeneous initial conditions [1,2,6]. Their advantages in applications
are, first of all, caused by the generality of domain form. In addition, they allow
to reduce initial-boundary value problems to equivalent time-dependent bound-
ary integral equations (TDBIEs, also known as retarded potential boundary
integral equations), with unknown densities of potentials that are determined
at each moment of time only on the domain’s boundary [7,12,17]. Further,
they implicitly impose radiation conditions at infinity.

However, practical usage of retarded potentials has some computational com-
plexity, caused by the presence of dependency of potential density on the time
and the spatial coordinates (so-called delay, see for example [7]). To overcome

Key words. Boundary integral equation method; wave equation; Sobolev spaces; general-

ized solution; retarded surface potentials; Laguerre transform; time domain boundary integral
equations.
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such problems, the following approaches have been used: one of traditional
discretisations on spatial variables is applied to unknown values and auxiliary
problems are used for calculation of the time dependency. In particular, a con-
volution quadrature [17] method has been utilized in many applications. It
is based on the use of sustainable methods for ordinary differential equations.
Using this method in the time is more stable than using Galerkin or collocation
time approximations.

Another way to take account of dependence in the time domain is the Fourier-
Laplace integral transform over the time variable [1,6,7]|. This method is well
suitable for theoretical investigations, however, it is complex (except for some
cases) to perform corresponding inverse transform in applications. In this re-
spect the Laguerre transform, for which the inverse transform is to find the
sum of corresponding Fourier-Laguerre series, proved to be more constructive.
In combination with the method of boundary integral equations (BIEs) such
transform was used in [3,8,10,13,15,18,21] for numerical solution of various
evolution problems.

In [16] we considered the generalized solution of the Dirichlet initial-boundary
value problem for the wave equation with homogeneous initial conditions. Its
representation was built by using the retarded single layer potential in some
weighted Sobolev spaces, in which the desired solution and the potential density
allow the Fourier-Laguerre expansion over the time. In this case the Fourier-
Laguerre coefficients for the potential density are defined as solutions of the
BIEs. This work is concerned with applying the same method to the analogical
problem for the wave equation but with the Neumann boundary condition. In
this case we deal with the retarded double layer potential.

We begin in Section 2 with a brief description of the proposed method. Sec-
tion 3 contains the basic definitions of proper functional spaces, followed by a
formulation of the main theorem about conditions under which the generalized
solution of the problem belongs to the desired weighted Sobolev spaces and can
be obtained by the proposed method. In Section 4 we investigate the regularity
of the retarded double layer potential depending on the smoothness of its den-
sity. Definitions of the Laguerre transform and a g-convolution of sequences are
introduced in Section 5, as well as the Fourier-Laguerre expansion is given for
the potential’s density and the representation formula for the corresponding
Fourier-Laguerre coefficients are obtained. In Section 6 we explain how this
approach leads to a sequence of BIE, solutions of which are Fourier-Laguerre
coeflicients of the unknown potential’s density. At the end we prove a theorem
that has been referred to above.

2. REDUCTION OF THE NEUMANN PROBLEM TO A SEQUENCE OF BIE

Let © be a domain in R? with Lipschitz boundary T', QT := R3\ Q, R, :=
(0,00), @ :=Q xRy, ¥:=T xRy, and v(x) be a unit vector in the direction
of the outward normal to the surface I' at a point « € T.

Let us consider the initial-boundary value problem: find a function u(zx,t),
(z,t) € Q, that satisfies (in some sense) the homogeneous wave equation
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0?u(x,t)

T - AU($7t) = 07 (:L‘,t) € Qa (1)
homogeneous initial conditions

0 0
u(z,0) =0, M:0, z€Q, 2)
ot
and the Neumann boundary condition
Opyu(z,t) = g(x,t), (x,t) € X (3)

3
Here A = Y 9%/0x? is the Laplace operator and 9, denotes the normal deriv-
i=1
ative operator. Note that for a sufficiently smooth function v and the surface
I" operator 0, can be expressed as

ay(gc)u(xa ) =v(z) - Vau(z,-),

where V, is the gradient operator.
We use the retarded double layer potential to solve the problem (1)-(3)

(DA)(, 1) = ;/V(y) . vy<k(27t —|o — yl))
r

ar'y, (z,t)e @, (4)

z=y

|z — y|

where A : I' x R — R is a density. It is known (see, e.g., [1], [21]) that if an
arbitrary function A(y,7), (y,7) € I' x R, is smooth enough and A(y,7) = 0
when y € I', 7 < 0, then function

u(z,t) := (D) (z,t), (z,t) € Q, (5)

satisfies (in classic sense) the wave equation and initial conditions. In order
for the function u to satisfy the boundary conditions (3) we will consider the
following limit

1 . A(Z?t_ ’.’El—y’)
VN0 = pote) i Vo [wl) v, (AL e
where ' := x — ev(z) € Q, € > 0 notes a point close to the points z € T,

understanding approach of 2/ — x by € — 0. The function u satisfies the
boundary condition (3), if the function A is a solution of the TDBIE

W) (z,t) = g(z,t), (z,t) € X. (7)

To find the solution of the equation (7) we use the Laguerre transform,
namely the expansion of function in the Fourier-Laguerre series by Laguerre
polynomials {L;(0-)};en,, where Ng := NU {0}, N is a set of natural numbers
and ¢ > 0 is a parameter. It is known (see, e.g., [11]) that the system of
Laguerre polynomials forms an orthogonal basis in the space L2(R ) v : Ry —

o0
R of functions such that [ |v(7)[2e™77dr < oo, therefore, v(1) = Y v; Lj(0T),
R+ ]:0
7 € Ry, where vj := 0 [ v(7) Lj(o7) e ?7dr (j € Np) are the Laguerre-Fourier
Ry
coefficients of function v.
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Therefore, the solution of the TDBIE (7) can be expressed as:

ZA() i(or), yel, TeRy,
07 yel, TER\R-H

where Aj (j € Np) are the corresponding Laguerre-Fourier coefficients of the
unknown function A. In the case of the retarded argument with arbitrary value
a > 0 we have an expansion

Myt —a) =) X at), (9)
7=0

Ay, ) = (8)

where coeflicients S\j (y,a) have the representation formula, that was obtained
in [16]

5‘j(y> a) =e 7" Z Cj—i(aa) )‘Z(y)a J € Np, (10)

and where
Co(s) :==1, Ci(s) :=Li(s) — Lyp—1(s), se€e Ry =[0,00), keN. (11
Then, taking into account (9) and (10), we will have

M.t~ — o) = (WMZ(Zgszm W)L,

z,yel, te Ry,

and then introducing notation similar to (6)

(Whf)(z) = —v(z) - lim Vo [ €@w(y)  Vyer( — )Ty, (13)

47T /' —x

where
en(z) := (4m|z]) " 'C(o]z))e " at z e R®\ {0}, ke N, (14)

for the normal derivative of the retarded double layer potential (6) we obtain
an expansion

00 J

W) (2, t) =) <Z(Wj_i)\i)(w)>Lj(at), z,yel, teR,. (15)
j=0 “i=0

Now lets write the Fourier-Laguerre expansion of the function g
(e}
t) = gj(@)Lj(at), (a,0) €Y, (16)
j=0

where gj(z) =0 [ g(z,7) Lj(c7) e ?7dr, x € T, j € Ny. Taking into account
Ry

(15) and (16) along with (7) and equating expressions near the Laguerre poly-

nomials with the same indexes, we get an infinite triangular system of BIE for

24



ON THE GENERALIZED SOLUTION OF THE INITIAL-BOUNDARY ...

finding the Laguerre-Fourier coefficients Ag, A1,..., Aj,... of the density A
J
Z(W%Mz’)(x) =gj(z), z€T, jeN,. (17)
i=0
It is easy to see that system (17) can be rewritten as a recursive sequence of
equations

(WoXo)(x) = go(x),
(WoAi)(z) = g1(=),

o (18)
(Wo)\ )()—ﬁj(x)v jeN, zel,
" S
j—1
gj(@) == gj(z) = >_(Wj—id) (@), jeN, (19)
=0

For every j € Ny the corresponding j-th equation (18) is hypersingular equation
that has the form
(Woé)(z) = h(x), xeT. (20)

It is known [4,9] that the equation (20) has a unique solution & for an arbitrary
function h within a fairly broad class. To find the solution of this equation one
can use numerical methods (see for example [24]| and references there).

After finding the solution Ag, Ap, ... of the BIE system (17) (same as a solution
of the sequence (18)), the generalized solution of the problem (1)-(3) can be
presented using (4), (5) and (12) as a sum of the series

(1) (Z/ Ve, i y)dFy> L(1), (x.0) € Q.

(21)

If we introduce a notation

(Dié)(x / £ (y) - Vyer(s' — y)dly, (22)

the formula (21) can be rewritten as:

Z(ZDJ iNi(@ ) i(at), (x,t) € Q. (23)

7=0
If there exists a sum of the series (23) we can consider its partial sum as
an approximate solution for the problem (1)-(3). In this case one can choose
(by some criteria) value N and find from the system (18) the first components
Aoy ALy .o, Ay of its solution. Then the approximate solution of the problem
(1)-(3) is the partial sum

N J
(z,t) = (Z x)) Lj(ot), (z,t) € Q. (24)

j=0
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We can use the representation (24) for the numerical solution of the problem

(1)-(3).

3. VARIATIONAL FORMULATION OF THE PROBLEM (1)-(3)
First, we need to introduce some additional notations. Let L2(Q) be the
Lebesgue space of square integrable functions v : 2 — R with inner product

(v, w)2(0) = /vwdm, v,w € L*(Q),
Q

and norm [[v[|2q) = 1/(v,v)12(0), and H1(Q) be the Sobolev space of func-

tions v € L?(Q), having generalized derivatives of vy, Vs, Vey in L2(Q), with
inner product

(v, W) g1 () ::/(Vva—H)w) dz, v,we HY(Q),
Q

and norm |[v]| 1) == 1/(v,v)m1(), v € HY(Q). Let us denote H'/?(I') a

space of traces of elements of H'(Q) on the surface I', 7o : HY(Q) — HY*(I")
a trace operator, H—V/2(T') := (Hl/z(I‘))’ a conjugate to H'/2(I') space, and
< -~ > a duality relation for H—'/2(T") x H'/?(T").

Also let H(2) be a closure of the space C5°(£2) with norm [/l 12y and
H=YQ) := (H}(Q)) be the conjugate to H}(Q2) space. In the space H'({2)
we also consider a subspace H*(Q, A) := { v € H(Q) | Av € L*()} with the
norm

) ) 1/2
W) = (ol + 180]3e0) -
Let X be a Hilbert space with inner product (-, -)x and inducted norm || || x.
For some parameter o > 0 we consider a weighted Lebesgue space L2 (R ; X) [5]

with weight p,(t) = e 9%, t € Ry, elements of which are measurable functions

v: Ry — X such that [ |[v(t)||% e “'dt < oco. This space is equipped with
Ry
inner product

(0, W) 2R, x) = / (v(t)7w(t))X e %tdt, v,w e L2(R,;X), (25)
Ry

ol r2®,sx) = /(v 0) 2R, x), v € L2(R1; X). (26)

Note that the space L2(R; X) is complete [22, section II.1]. We will assume
that the elements of space L2(Ry; X) are extended with zero for non-positive
arguments.

For any m € N let us denote the weighted Sobolev space as

HP'Ry;X) = { ve LRy X)[o® € 2R X), k=Tm}  (27)

and the norm
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with norm

m ) 1/2
e = (S )

Here derivatives v*(k € N) are understood in terms of the space D'(Ry; X),
elements of which are distributions with values in the space X. Note that
HI(R,; X)C C(Ry; X) [5, theorem 7, section XVIII]|.

Let us also denote following spaces:

L. (Ry; X) = {v:Ry — X — measurable | |[v(-)||x € L*(0,7) VT > 0},
Hipe(Ry; X) == {v € L, (R X)| ' € Lo (R4 X)}.

Definition 1. Let g € L2 _(Ry; H~'/2(T")). A generalized solution of the prob-
lem (1)-(3) is a function u € H (R4 L2(Q))NLE (Ry; HY(S2)), which satisfies

the first of the initial conditions (2) and the integral identity

// (VuVv — u'v')dzdt = // gyovdldt (29)
Q )

for any v € HY(Ry; L2(Q)) N L?(Ry; H'(2)) such that supp v is a bounded set.

Note that there exists at most one generalized solution of the problem (1)-
(3) [19, Theorem 1, Ch. V, §2].

We introduce a couple more notations. As the sequence of elements of set
X we understand mapping V : Ng — X (denoted by bold letter) and write it
as a vector-column v := (vg, vy, ...) . All possible sequences of elements of the
set X are denoted by X*°. It is clear that when X is a linear space, then X
is also a linear space. Recall that

o
Pi={veR®| Y |’ < +oo}
j=0

(e8]
with the inner product (v,w) = Y vjwj, v,w € [? and the norm || v||;2 :=

7=0
o 1/2
(E |Uj|2> , vel?

5=0
Let X be a Hilbert space with inner product (-, -)x and inducted norm ||-|| x.
We consider the Hilbert space

PX)i={veXx®| Y |vlx < +oo}
§=0
with the inner product (v,w) = > (vj,w;)x, v,w € [*(X) and the norm

Jj=0

0 1/2
[[V]li2(x) = < Zo ||vj||§() ., v € I2(X). It is obvious that 12 = I?(R).
J:
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Definition 2 ( [14]). Let X, Y, Z be arbitrary sets and ¢ : X XY — Z be
some mapping. By a g-convolution of sequences u € X*° and v € Y we
understand the sequence w := (wq, w1, ..., wj,...) € Z°, whose elements are
obtained by the rule

j j
wj =Y q(uj-i,vi) = > q(ui,vj—), j€No; (30)
=0 =0

the g-convolution of u and v is shortly written in the form w =uowv.
q

Let X = R and Y = Z be linear spaces and ¢(u,v) := uv, u € R, v € Y.
Then the components of g-convolution of arbitrary u € R* and v € Y will
be denoted as

J
wj; = Zu]‘_i’l)i, ] S Ng, (31)
i=0
and the g-convolution would be denoted as w := uROY V.
X

If X = HY2(I), Y = H/2('), Z = R and q(u,v) =< u,v >, u €
H~Y2(I'), v € HY?(T'), for components of the g-convolution of arbitrary se-
quences u € (H_l/Q(F))OO and v € (Hl/Z(F))OO we will have

J
wj = Z < Uj—i, Vi >T, ] S I\I()7 (32)
i=0
and will write w := ulgv.

Another example concerns the g-convolutions of linear operators when X =
L(Y,Z) is the space of linear operators acting from the space Y into the space
Z and q(A,v) := Av, A€ L(Y,Z), v € Y, for components of the g-convolution
of arbitrary sequences A € (L(Y, Z ))Oo and v € Y*° we will have the following
formula

J
wj = ZAjfivia J € No, (33)
i=0
and will write w := Agv.

Based on the above, we define the sequence

= (D A , x €€, 34

ar) = (D o X)), (34)

which is the g-convolution of the sequence D composed of operators Dy :

HY(I') — HY(Q)), k € Ny, given by the formula (22), and the sequence A

of Fourier-Laguerre coefficients of the function A. Similarly, BIE system (17)
can be rewritten as

W o A=g in PBHVXD)), (35)
H-1/2(T)

where W : [2(H'/2(T)) — I?(H~'/?(T")) is a boundary operator whose compo-
nents act in accordance with (13), and g is the sequence of Fourier-Laguerre
coefficients of the function g.
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Now we can formulate the main result of this paper as the following state-
ment.

Theorem 1. Let g € H"™(Ry; H~'2(T")) for some o > 0 and m € Ny. Then
there exists a unique generalized solution of the problem (1)-(3), it belongs to
the space HI"*1(Ry; HY(Q)) and for any o > og such an inequality holds

lull s @ sy < Cll9llap o, mre@y) (36)

where C' > 0 is a constant that is not dependent on g.

In addition, the generalized solution of the problem (1)-(3) can be represented
as the sum of a serie (23), that is convergent in the space L2 (Ry; H'(Q, A)),
where uj € H'(Q,A) (j € Ny) are the corresponding components of the g-
convolution (34), and elements of the sequence X € I>(H'/?(T)) are solutions of
BIE system (35), in which g € I12(H~Y%(T")) is the sequence of Laguerre-Fourier
coefficients for the function g.

Proof of Theorem 1 will be presented further on.

4. SOME PROPERTIES OF THE RETARDED DOUBLE LAYER POTENTIAL
For examination of the generalized solution of the problem (1)-(3) we need
some results of the work [1].

Proposition 1 ( [1], Theorem 1). Let g € H} (Ry; H~'2(T")) for some oo > 0.
Then unique generalized solution of the problem space (1)-(3) exists, it belongs
to space

Hy,(Ry; L2(Q) N L7 (Ry; HY (2))
and the following inequality holds:

Nl zz @i + 11Vl z2yiz2 @) < Cilldllm e, m-12r)) Yo =00,  (37)

where C1 > 0 is a constant.
In addition, the generalized solution of the problem (1)-(3) can be represented
as a retarded double layer potential DA with density A € L2(R,; HY/?(T)),

HAHLE(RJF;HU?(F)) < C2|‘9HH;(R+;H*1/2(F)) Vo > oy, (38)
where Cy > 0 is a constant.

Let us outline the proof of the statement 1, received results will be exploited
further for the proof of 1.

First, consider some auxiliary spaces. Let X be arbitrary Banach space
with a norm || - ||x. By D/(R; X) we denote the space of distributions with
values in the space X and by D/ (R; X') we denote the space of so-called causal
distributions, consisting of distributions v € D'(R; X), for which the condition
(v,¢) = 0 holds for all test functions ¢ € D(R) with supp¢ C (—o0,0). For
any og > 0 let us define a space

Lo (R; X) ={ feD (R;X)[e 7 f() € S} (R; X) },

where S’ (R; X') denotes the space of slow casual distributions.
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Note that for slow casual distributions one can define the Fourier transform
over the time variable (See, e.g., [5, section XVI, §2, definition 7])

F: S8 (R; X) — S\ (R; X). (39)

It is an isomorphic mapping from S’ (R;X) onto &/ (R;X) and enables us
to define the Fourier-Laplace transform for any element f € £} ,,(R; X) [5,
section XVI, §2, definition 8]:

Fw):=F 7 f()(n), w=n+ioc R x (50, +00). (40)
In case of f € L4 5, (R; X)N L}

loc
sentation
Flw) = / M= (1) dt — / L F()dt, w = +io € R x (00, 400). (41)
R R

As we can see the Fourier-Laplace transform is applicable to the elements of
functional spaces that appear in the definition of the generalized solution u of
the problem (1)-(3). So with its help the initial-boundary value problem (1)-
(3) can be reduced to following boundary value problem regarding a function
u(-,w) € HY(Q, A):

(Ry; X) this transform has an integral repre-

AT+ w?T =0 in Q, (42)
mu=gonT, (43)
where g(-,w) € H'/2(T) is a known function and w € R x (g, +o0) is a
parameter.
Solution of the problem (42), (43) can be represented as a double layer po-
tential

L -V gheley ary, Q 44
E U| T e il ( )

U(z,w) = (D) (z .

—~

whose density X(, w) € H'2(T) is a solution of BIE
WA =g in HV2(I), (45)

where Ww =7 OIA)W. A boundary operator Ww is HY2-elliptical on T, that
implies the existence and uniqueness of the solution for BIE(45).

The integral (44) exists because of A(-,w) € HY2(I') ¢ L(T') and el‘;‘i;rl is
an infinitely differentiable function for an arbitrary fixed point x € Q. In addi-
tion, according to the [4, Theorem 1|, the double layer potential and its normal
derivative are bounded operators, respectively, D, : HY?(T) - HY(Q,A) and
W, : HY2(I') — H-V2(T).

As we see, the boundary value problem (42), (43) and BIE (45) depend on
parameter w, consequently, their solutions, accordingly, u(-, ) and )\( w), and

the double layer potential D and the boundary operator W can be consid-
ered as functions of parameter w. They are proved to be holomorphic in half-
space R x (09, +00) and satisfy following estimates |1, inequality (2.6),(2.7) and
(2.11)], |23, inequality (3.17) and (3.18)]:

1@, @)llr() < CrlwllgC, w)ll -1 (46)
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47
48
49
50

IAC @) garary < Colwll[GC @)ll-172(0y,
WAl g1/ < Calwl XG0l gvz
DAl (@) < Calwl*2 NG @) /2 ry»
1D (@8 < CslwP2 A, @)l ey,

where C; > 0 are some constants.

(47)
(48)
(49)
(50)

Proposition 2 ( [5], section XVI, §2, Theorem 1). Let X be a Banach space
over the field C of complex numbers with norm || - ||x, and w — f(w) be a

function defined in C with values in the space X. For the function f(w) to
be the Fourier-Laplace transform of the distribution f € D'(R; X) with support

supp f C [a, +00) it is necessary and sufficient that f(w) 1s holomorphic in the
half-space R x (09, +00) with values in X and satisfies inequality

I1f(w)||x < e 7Pol(jw|), w=n+iceR x (00, +00), (51)
where Pol(|w|) is a polynom of the variable |w|.

By the statement 2 one can prove from inequalities (46)-(50) the existence
of distributions that match the generalized solution of the problem (1)-(3),
retarded double layer potential and its density. They are elements of spaces
L'} 5, (R; X) with values in the appropriate space X (see e.g. [1, Theorem 1],
and [6, section 2|) such that

DA = DA and WA = W\,

Using inequalities (46)-(50) we can easily get estimates of the generalized

solution of the problem (1)-(3), and the retarded double layer potential. To

do this, let us consider in the set £’y ,(R; X) for arbitrary values o > o¢ and
p € R a space

HER; X) = { f €Ly qR;X)]| / W (| F(@)|kdw < +00}  (52)

R+io

with the norm

1/2
lbamx = (5 [ Lol IFlBaw) (53)

R+-io
Proposition 3 ( [2], section 3.1). Let 0 > 0, m € Ng. A function v belongs to
the space H"(Ry; X) if and only if it belongs to the space 'H(’T”/Q(]RJF;X).

Note that statement 3 is the consequence of Parseval-Plancherel identity:

[ (o9 gt =5 [ (F)5) o (54)

R R-l—za

Lemma 1. Let 0 > 0, m € Ng. If an arbitrary function X is an element of
the space H™2(Ry; H'/2(T)), then DX € H™(Ry; HY(Q)). If \ € HPH3 (R, ;
HY2(I")), then DX € H™(R,; H'(Q,A)) and WX € H™(R; H-/2(I)).
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Proof. Let us show that for any fixed values of p € R and a > 0 the operator
D HE PP Ry HYP(D)) — HE (Rys H (Q)) (55)
is bounded. To achieve this, for an arbitrary function A € HZ+3/2(R+; HY2(I),

a > oy, taking into account norm definition (53) and inequality (49), following
estimate can be performed:

1 —
1PN, oy = 5= [ 1l IBM By =
R+ia
1 ~ ~
—5r | PIBC @R ) B oy <
R+ia (56)
éZ 2p+3 (1Y 2
< o |w] H)‘<'vw)HH1/2(F)dw -
R+ic
= CRIIME oo
Hence, the operator (55) is bounded, and, in particular, for the values p = m
and a = o/2 the following operator is also bounded
D: HI2(Rys HYX(D)) — HI (Ros H'(Q). (57)
Similarly to the previous case, but using inequality (50), for arbitrary p € R
and a > 0 it can be shown that the operator
D HEPP (R HY?(D) — HE(Ry; HY (2, A)) (58)
is also bounded, and when p = m and o = 0/2 the same will apply to the
operator

~2 2
oy < O g i)

D: H'PB(Ry; HY(D)) — HIMRy; HY(Q,A)), m € Ny, (59)

which means DA € H™ (R, ; H (2, A)). It is known [4, theorem Lemma 3.2, 1]
that for elements of space H'(£2, A) we can define linear continuous operator
of normal derivative 71 : H'(Q, A) — H~Y/2(T"). Therefore, in this case it is
legitimate to define the composition of operators v; 0D =: W, for which for
any p € R and a > 0 using inequality (48) following estimate can be applied:

1 —~ ~
2 2 W 2
‘|WAHHQ(R+;H71/2(F)) = % / ‘UJ| p” ('7w)>\('7w)‘|[—[*1/2(f‘)dw <

R+ic
o2 R ) (60)
<52 [ KPR B sy = CHIN s ooy
R+ia

This means that the operator
W HE (R HYA(T)) — HE(Rys HV2(T)) (61)
is bounded, and when p = m and a = ¢/2 following operator is also bounded:
Wi HP2(Ry H'(D)) — HPN(Ras H/2(D)). (62)
a
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5. APPLICATION OF THE LAGUERRE TRANSFORM
TO RETARDED POTENTIALS
Now let us give the definition of the Laguerre transform and outline some
of its properties which we have obtained in [16]. Consider a mapping L :
L2(Ry; X) — X, where X is Hilbert space with inner product (-,-)x and

inducted norm || - ||x, which operates according to the rule
fei=0 / f(t) L(ot) e 7'dt, k € Ny, (63)
Ry

where {Li(0-) }ren, are Laguerre polynomials, which form orthogonal basis in
the space L2(Ry). We will also use the notation

Note that since the function t + ||f(¢)||x|Lx(ct)|e=" € L'(R,), the Bochner
integral in formula (63) is convergent and its value is an element of space X.

Also consider the mapping £7! : [2(X) — L2(R; X), which maps an arbi-
trary sequence h = (hg, hi,..., hg,...) | to a function

h(t) := (L7 h)(t) = i hy Li(ot), t € R, (64)
k=0

Proposition 4 ( [16], Theorem 2). The mapping £ : L2(R4; X) — X that
maps the arbitrary function f to the sequence f= (fo, fi,..., fu,...)" according
to the formula (63), is injective and its image is the space [>(X), and

1 oo
11122 i) = p AS (63)
k=0

In addition, for the arbitrary function f € L?(Ry; X) we have an equality
LLf=f, (66)

where the mapping L1 : 12(X) — L2(R,; X) is the inverse to £ and maps the
arbitrary sequence h = (hg, hy, ..., hx,...) " to the function h according to the
formula (64).

Definition 3. Let ¢ > 0 and X be a Hilbert space. Mappings
L:L2Ry;X)—13(X) and £7':1%(X) — LE(R.; X),
mentioned in theorem 4, are called, respectively, direct and inverse Laguerre

transforms, and the formula (65) is an analog of the Parseval equality.

Proposition 5 ( [16], Lemma 1). Let 0 > 0, a > 0 and X be a Hilbert space
with inner product (-,-)x and the norm || -||x. Then for an arbitrary function
f € L2(Ry; X) function f(- — a) belongs to space L2(Ry;X) too and the
following equalities hold:

1= a)llz @) =€ 2 1Oz @, x); (67)

f, = e 7%(0a) 2o b (68)
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f(-—a)=e”“Z(Z<J i(oa) ) jlor) in L2(Ry;X),  (69)

7=0
where f= Lf(-) and £, := Lf(- — a).
Using statements 4 and 5 we can outline conditions for the density A of the

retarded double layer potential DA, which guarantees that the Fourier-Laguerre
expansions for this potential

Zuj i(ot), ve€Q, teRy, (70)
and its normal derivative

oo

= ij(x) Lj(ot), €T, t Ry, (71)

=0

where u; := (£;D\) and @; := (L£;YWA), are convergent in the corresponding
Sobolev spaces.

Lemma 2. Let 0 > 0 be an arbitrary constant.

(i) If an arbitrary function A belongs to space H2(R,; H'/?(I)), then expan-
sion (70) is convergent in the space L2(Ry; HY(Q)). If A € H3(Ry; HY/2()),
then expansions (70) and (71) are convergent in spaces L2(Ry; H'(Q,A)) and
L2(Ry; H-Y2(I')), correspondingly.

(ii) Coefficients u;, uj, j € Ny, are components of g-convolutions (34) and

u(z) =W o A xzel, (72)
H—1/2(T)

correspondingly, where A = L\ € I>(HY(I)).

Proof. The first statement of this lemma follows from the fact that by
Lemma 1 the retarded double layer potential with a density that is an ele-
ment of the space H2(R,; H'/?(T")), belongs to space L2(Ry; H'(Q)). If X €
H3(R,; HY/2(I)), then DA € L2(R,; H'(Q,A)), and WA € L2(Ry; H-Y2(I')).
Then by Theorem 4 the Laguerre transform can be applied to both the poten-
tial and its normal derivative, and expansions (70) and (71) with obtained
coeflicients are convergent in the appropriate spaces.

Let us consider the retarded potential (4) with density A € H2(R,; H'/?(T"))
at an arbitrary point x € €2, and apply formula (63) to it as to an element of
the space L2(R; H1(Q)):

uj(x) :=L; DN\(x) =

4 |x—y\
R r
J € Np.

drydt, (73,

zZ=y

As points x and y do not coincide (i.e. partial derivatives in inner integral are
bounded) and [|u;||g1(q) < +00, then we can change the order of integration
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according to the Fubini theorem

_ b o oty
uj(z) =i /8,,@) <|x m //\(z,t |z —yl|)e L](mf)dt>
r Ry

r € Q.

dr,,
z=y (74)

Note that in the obtained expression, the inner integral is expressing the j-th
Fourier-Laguerre coefficient of "retarded" function A. Therefore, according to
Lemma 5 and formulas (68),(14) we can write the following:

uj(z) :ﬁ F/E)g(y) (e_alm_yl ZJ: iz — y)/\i(2)>

lz -yl =

ary, =
z=y
(75)

J
:Z/Ai(y)ag(y)eji(:ﬁ — y) dFy, j €Ny, z€Q,
=0}
where A\j := L\, j € Np.

For an arbitrary fixed point z € Q all components of sequence e(x — -) are
continuously differentiable functions on I'. Since \; € H 1/2(T), j € Ny, then
for the Lipschitz surface I' integrals in (75) can be interpreted as the inner
product of elements in L?(I') and can be extended to the duality relation on
H=Y2(T) x HY2(I):

J
uj(x) = (Opei—ile — ), M) 2 €Q, j €N, (76)
i=0
So we received coefficients of the g-convolution ( 34).

If A\ € H3(Ry; H/(I')) we have |[ujl1(,a) < +oo and, obviously, for
any point z € () previous considerations regarding functions in integrals in
formulas (73)-(76) hold. Therefore the form of coefficients uj, j € Ny, is the
same. Besides, for these coefficients as elements of the space H'(Q, A), we can
define linear continuous operator of normal derivative [4, Lemma 3.2, Theorem
1]. Let us show that @; = y1u;, j € No.

Consider an arbitrary point € I' and apply the Laguerre transform to WA:

i5(x) 1= £;WA(e) = - / e L (o) x
Ry

v(z) - lim V, y(y).vy<)\(2’t_ |z’ —y\)>

' —x |SUI — y‘

(77)

dl'ydt < 4o00.
z=y

If we move differentiation by normal at the point  out of the integral over the
time variable, we receive @;(z) = yiu;(x). O

Note that we do not move outer differentiation inside the integral over the
boundary I' in order to avoid a high order of the singularity in a kernel. The
definition of normal derivative operator v, in case if u € (H(Q, A))> was pre-
sented in [20]. In applications when calculating the respective singular integrals
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it is possible to replace normal derivatives with corresponding derivatives in the
tangent plane (See, e.g. [1, formula (2.16)]).

6. FINDING A GENERALIZED SOLUTION OF THE PROBLEM (1)-(3)
Consider operator

G : Hy(Ry; HV2(D)) — HO(Rys H(Q)), @ = 00/2, (78)

which maps the boundary value g to the generalized solution u = Gg of the
problem (1)-(3) according to the proposition 1. Taking into account the obvious
inclusion

HL(R; HY(Q) © (HL(Ry: LA(Q)) N L2 (Ry; HY(Q))),

let us define a restriction of the operator G on elements from weighted Sobolev
spaces.

Lemma 3. Let g € H§3+2(R+;H_1/2(F)) with some o9 > 0 and m € Ny.
Then for arbitrary values o > og operator

G+ HI (R HYA(T)) — HIN(Rys H(Q) (79)
is bounded.

Proof. Let g be an arbitrary function from the space HZ'™?(Ry; H-Y2(I).
Considering it as an element of the space H72(Ry; H/2(I")) with o = 00/2,
we will have the solution u = Qg. Let us estimate it using the inequality (46):

HUH’HM (R ;H () / ‘w|2m‘|u HHl dw <
R—Ha
G g 80
<L [ PPl pydo = O
R+ic

= Cillollrgn o, vy <

Since u € H™(Ry; HY(Q)), we get u € H™(Ry; H(Q)). O
Similarly, it is possible to examine the dependence of TDBIE solution on the
smoothness (7) of the function g.

Lemma 4. Let g € H'"™ (Ry; H~1/2(T")) with some og > 0 and m € Ng. Then

there exists a unique solution of TDBIE (7) in the space H™(Ry; H'/?(T)), and
it satisfies the following condition with an arbitrary o > oy:

A o ey 20y) < Cllgll gms v, -172(1y)» (81)
where C' > 0 is a constant.
Proof. According to the proposition 1 consider operator

Vo My (R HY2(D) — MRy H V(D))
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with the value a = 0(/2, that maps arbitrary function g to a unique solution
of TDBIE A = V~1g. With respect to the inequality (47), we get the following
estimate for density A:

H)\HHm (Ry; H1/2 = / ‘ |2mH)\ HH1/2 doo <
R-Ha
“ 216213 (-, w)| 2 82
< E [ PGBy = O
R+ia

2 2
2Hg|’Hz+l(R+;H—1/2(F)) < 00,

and inequality (81) implies here. O
Thus, Lemmas 3 and 4 specify the conditions regarding the function g, that

cause the required smoothness of both the retarded potential density and the

generalized solution of the problem (1)-(3) in weighted Sobolev spaces.

Proof of Theorem 1. Let boundary data in the boundary condition (3) be
defined with function g € HZ'3(Ry; H~'/2(I")) for some oy > 0 and m € Nj.
Then, based on proposition 1, there exists a unique generalized solution of
the problem (1)-(3) as element of the space H,, (Ry; L*()) N L2, (Ry; H(2)).
In addition, we can conclude according with Lemma 3 that with boundary
data specified below this solution belongs to the space HZ'"2(Ry; H*(2)) C
HI""(Ry; HY(Q)) , and for arbitrary o > oy following inequality holds:

1l 2y i)y < Cllglaps @, sm-12a)) (83)

where C' > 0 is a constant that does not depend on g. Obviously, in that case
estimate (36) is correct.

Consider now the TDBIE (7), having g € H73(Ry; H-Y/%(T)). Then by
Lemma, 4 its solution A belongs to space H"2(R,; H~/2(I")). Based on this,
the Laguerre transform is applicable to density A (by Theorem 4) and X :=
L) € I2(H'Y2(T)). Furthermore, with such density the potential DX belongs to
the space of solutions of the problem (1)-(3), because DA € H""(R; H(Q))
by Lemma 1.

If g € HI M (Ry; H~1/2(T")), then, according to Lemma 4 the density A has to
be element of the space H™3(R; H~'/2(I")) and, by Lemma 1, we have D\ €
H™R,; HY(Q,A)) and WA € H?(Ry; H'/2(T")). This means (by Lemma
4) that beginning from m = 0 the expansions (70) and (71) are convergent
in spaces L2(Ry; H' (2, A)) and L2(Ry; H-Y2(I)), correspondingly, and the
coefficients of these expansions have form of (34) and (72), correspondingly.

Let us build a sequence g := Lg € I>(H~Y/2(I")) and substitute the Fourier-
Laguerre expansion of the boundary function g in the right hand side of TDBIE
(7). If we substitute the expansion (71) in its left hand side, we can equated
the expressions beside Laguerre polynomials with the same index. As a result,
we get an infinite triangular system of BIEs (35). It is known [20], that this
system has a unique solution . O

37



S.V.LITYNSKYY, A. 0. MUZYCHUK

Consequently, the proposed method enables us to find the generalized solu-
tion of the Neumann problem for the homogeneous wave equation with homo-
geneous initial conditions using the Fourier-Laguerre expansion of the retarded
double layer potential. Note that this approach can be adapted for finding
the Cauchy datum of generalized solution using a Kirchhoff formula instead of
retarded potential.
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ON THE BOUNDARY ELEMENT METHOD FOR
BOUNDARY VALUE PROBLEMS FOR CONVOLUTIONAL
SYSTEMS OF ELLIPTIC EQUATIONS

Y.A.MUZYCHUK

PE3IOME. /Ijs 4uCesIbHOrO pO3B’sI3yBAaHHS KPAMOBUX 33Jad /I HECKIHYIEH-
HUX CHCTEM 31 3rOPTKOBOIO CTPYKTYPOIO, sIKi CK/IAIAIOTHCS 3 €INTUIHAX PiB-
HSIHB JPYTOTO TIOPSIIKY, 3AMPOIIOHOBAHO METO/ IPAHNTHIX eJIeMeHTiB. Po3s’s-
30K IIOJIAHO 3a JOIOMOTIOI0 IOCJIiIOBHOCTI MOTEHIIAJIiB IpocToro mapy. [ma
AIPOKCUMAII] HEBIOMUX I'yCTUH ITOTEHIAIIB BUKOPUCTAHO 0a3uc, AKnil CKIIa-
JAETHCS 3 KYCKOBO-CTAJINX 0A3UCHUX (DYHKIIIH, MOOYJOBAHNX HA TPUKYTHUX
rpaHnyHuX ejseMeHTax. Jlocaimkeno amnpiopni noxubku. Hasememo pesysbra-
TH cepil 06YUCTIOBAIbHUX €KCIIEPUMEHTIB.

ABSTRACT. For the numerical solution of boundary value problems for infinite
systems with convolutional structure that consist of the second order elliptic
equations, a boundary elements method is suggested. The solution is given as
a sequence of single layer potentials. For the approximation of the unknown
densities of the potentials a basis that consists of piece-wise constant functions
built on triangular boundary elements is used. A priory error estimates are
obtained. Results of a series of computational experiments are given.

1. INTRODUCTION

Boundary value problems for infinite systems that consist of elliptic partial
differential equations (PDEs) can be found while investigating solutions of lin-
ear evolution problems for instance in the following works [3, 6,10, 15,16, 21].
Note that in [14] the well-posedness of such problems has been proven by tran-
sitioning to the corresponding variational formulations. Integral representa-
tions of the solutions of these boundary value problems that lead to equivalent
boundary integral equations (BIEs) have been obtained. Properties of the BIEs
method for exterior problems have been studied by the author in [17].

The main goal of the current article is such transformation of the obtained
system of BIE that allows to efficiently apply the Bubnov-Galerkin method to
it and prove its convergence. We also develop an algorithm for its solution by
the boundary elements method (BEM) and investigate the approximation error
of the obtained solution.

The paper is organized as follows. In Section 2 we formulate a Dirichlet BVP
for an infinite triangular system of elliptic PDEs. We consider this problem in
appropriate Sobolev spaces and introduce a notion of sequences and a new
operation on them — g-convolution. In this section we also give an integral

Key words. Boundary value problems; boundary integral equations; elliptic equation; infi-
nite system; boundary element method; convolutional system.
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representation of the solution of the BVP by a combination of some surface
potentials which reduces the problem to a system of BIEs.

In Section 3 we transform the system of BIEs into such sequence of BIEs all
equations of which have the same boundary integral operator in the left hand
side. It allows us to justify the application of the Bubnov-Galerkin method
for finding the unknown functions — densities of the potentials. Afterwards,
the main properties of the BEM and a priory error estimate of the numerical
solution are obtained. In Section 4 some computational aspects of the systems
of linear equations that appear as a result of the discretization of the BIEs are
considered. Results of a series of computational experiments for the numerical
solution of some model problems are given in Section 5. In this section an
example of the application of the suggested approach for the solution of an
initial-boundary value problem for the wave equation with homogeneous initial
conditions is given. In the last section conclusions about the introduced method
are given.

2. FORMULATION OF THE CONVOLUTIONAL SYSTEMS OF PDE AND BIE

Let © C R? be a bounded and simply connected domain with a Lipschitz
boundary I and QF := R?\ Q be an exterior domain. We consider an infinite
system in QF

Coug — AUQ = 0,
c1ug + cour — Aug = 0,

coug + crur + coua — Aug = 0, (1)

cruo + Cp—1u1 + ... + coup — Aug = 0,

\

where ug, 41, ..., ug, ... are unknown functions, cg,cy, ..., cg, ... are some
given constants and ¢y > 0. We investigate BVPs for system (1) that consist
in finding its solutions that satisfy the Dirichlet condition on the boundary I"

ukr = gr, k € No := NU{0}), (2)

where g; (i € Np) are given functions on I'. In other words, we will consider
the Dirichlet problem (1), (2).

Let X be an arbitrary linear space over the field of real numbers, Z — the set
of integers. By X we denote a linear space of mappings u : Z — X satisfying
u(k) = 0 when k < 0. For any element u € X we have u, = (u) := u(k),k €
Z, and will write it as u := (ug, uy, ..., ug, ...) 7. Henceforth we will call elements
of X sequences.

_ - - T
Let E(z,y) = (Eo(a:,y), Er(z,y), ) , =,y € R3, be a fundamental so-

lution of the system (1) and sequence E(z,y) = (Eo(z,y), Ei(z,y), )T s
calculated by the formula

Ez(‘rvy) = Ez(xay) - Ei—l(‘rvy)7 €N, Eo(l’,y) = EO(xay)v T,y € RS' (3)
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Note that Ey(z,y) = e VOITUL A for the other components see, for example,

Anlz—y]
[17].
Consider a sequence of functions V&(z) = (Vo&(z), Vié(x), ...)" with com-
ponents

ViE() == (Vj) () = / EW)E (2, y)dly, j € No, 2 € RS, (4)
N

where ¢ is a square integrable on I' function. It is known [17] that sequence
u(z) = (uo(x), ui(z), ...)" built for an arbitrary sequence p = (uo, 1, -..) "
of square integrable on I' functions by the rule

i
’LLl(CL‘) = Z‘/jﬂi,]’([ﬁ), 1€ Ny, x € Rg, (5)
§=0
will satisfy the system (1). Then in order for the sequence u to be a solution

of the Dirichlet problem for the given sequence g = (go, g1, ...) it is enough
to find such sequence p that would satisfy on I' the following equalities

Voo = go,
Vipo + Vopr = g1,
Vapo + Vipr + Vopo = go2, (6)

Viero + Vi—1p1 + .. + Vopr = gi,

Lets introduce some notations. We will use the Lebesgue space L2(27) and
Sobolev spaces H!(2T) of real-valued scalar functions. Let vg : H'(QT) —
H'2(T) be the trace operator, H~/2(T) := (H_l/Q(F))/ and (-, -)r denote the
duality between H~Y2(T') and HY/?(I).

Definition 4. Let g € (H'/?(T"))*®. Sequence u € (H'Y(27))* is called a
generalized solution of the Dirichlet problem if it satisfies the system (1) in the
sense of distributions and the boundary condition (2) in the sense of traces.

Definition 5 ( [10]). Let X, Y and Z be arbitrary linear spaces and ¢ :
X XY — Z — some mapping. By a g-convolution of sequences u € X and
v € Y™ we understand a sequence w € Z°° whose components are defined by
the following rule

Ww; 1= Zq(ui_j,vj) R 1€ No, (7)
=0

and denote it w =uov.
q

In case when X = H-Y2(I'), Y = HY/*(T'), Z =R and q(u,v) :=< u,v >r,
uwe H V2T, v e Hl/Z(F , for the components of the g-convolution of arbi-
trary sequences u € (H*1/2(F))Oo and v € (H1/2(F))Oo we have the following

42



ON THE BOUNDARY ELEMENT METHOD FOR BOUNDARY VALUE ...

formula

J
wj =Y <uji,v; >, j €Ny, (8)
i=0
and write w := ugv.

Another example of g-convolution is related to linear operators, when X =
L(Y, Z) is a space of linear operators that act from Y into Z, and ¢(A,v) := Av,
Ae L(Y,Z), veY. In this case for the components of the g-convolution of
arbitrary sequences A € (L£(Y,Z))™ and v € Y™ we obtain the formula

J
wj = ZAj—’ivia ] S N(), (9)
1=0
and write w := A;v.

Definition 6 ( [14]). Let V : (H~Y2(I))™ — (HY*('))™ be a sequence
of operators that act by the rule (4), where we consider the inner product in
L*(T) extended to the duality on H—/?(T") x H/?(T') and p € (H~V2(T))™.
Sequence

— 3
VHI/C‘;(F)LL(:E) =V Hl/oz(r) w(e), = R 10

is called a single layer potential of the system (1) on the surface I'.
Using the introduced notations, we can rewrite the system (6) as

VH1/02(F) p=gonl. (11)

We will call systems of type (11) that can be represented by a g-convolution

systems with a convolutional structure. It is easy to see that the system of PDEs

(1) also has a convolutional structure since the expressions in it’s left had side

(that are not related to the Laplacian) are components of the g-convolution of
sequences ¢ and u.

Proposition 6 ( [14]). For an arbitrary sequence g € 12(HY/?(T")) there exists
a unique generalized solution of the Dirichlet problem u € I>(HY(Q)). It can be
represented as a single layer potential (10) whose density p € I>(H1/2(I)) s
a solution of the BIE (11).

3. BOoUNDARY ELEMENTS METHOD FOR BIE SYSTEM
Triangular shape of system (11) is a consequence of the convolutional struc-
ture of (1) and the application of the g-convolution in the single layer potential
definition. Lets use this property to build a step-by-step process of the numer-
ical solution of the BIE (11). This system can be represented as a sequence of
Fredholm BIEs of the first kind:

Vour =g 8 HY(I'), k € N, (12)
where
k—1
gk =gk — > Viithi. (13)
=0

43



Y.A.MUZYCHUK

As you can see, the system is reduced to a sequence of equations that have

the form

Von=f » HYX(T). (14)
They have two important properties. First, the left-hand side of the integral
equation with an arbitrary index k € IN is defined by the same boundary
operator Vy and the right-hand side depends on the boundary condition data
and on the solutions of the equations with previous indexes ¢ = 0,k — 1. Taking
these considerations into account during the the implementation of the method
makes it possible to build efficient algorithms for the numerical solution of the
obtained sequence of BIEs (12) as well as for the computation of the solutions
of the boundary problem.

Another feature of the obtained system is that the boundary integral operator
on left-hand side of the equations corresponds to the elliptic operator cogl — A,
where [ is the identity operator, and is well studied in the literature (see,
e.g., [2,4,5,13]). In our case, it gives us the opportunity not only to prove
the existence and the uniqueness of the solutions of the obtained sequence of
BIEs, but also to get the corresponding numerical solutions using BEM, which
is considered as a representative of the Bubnov-Galerkin method family [8]. A
large number of publications (see, e.g., the literature review in [9,20]) confirms
the effectiveness and the versatility of this method regarding the numerical
solution of boundary value problems for different types of elliptic equations
and systems of elliptic equations of smaller dimension.

Investigation of the solutions of BIE (14) and the approximation by the
Bubnov-Galerkin scheme is based on the ellipticity and the boundedness of the
operator Vp:

(Von,mr = ellnlfy /ey [Vonllmewy < ellnllg-12qry), Vi€ H-V2(T)),

where ¢; > 0 and ¢ > 0 are constants.

Consider a sequence of finite-dimensional subspaces Xy, ¢ H-Y2(I'), M €
N, that are linear spans of functions {¢; }£, that form a basis in Xs. According
to the Bubnov-Galerkin method, we seek a numerical solution of the equation
(14) in the form of a linear combination

M
M= "nigi € Xy (15)
i=1

as a solution of such variational problem
Von™,myr = (f,m)r, Vn € Xu. (16)

In order to find the vector of the unknown coefficients niM! := {n M < RM
lets take the basis functions ¢; as the test ones. Then from the variational
equations we obtain a system of linear algebraic equations (SLAE) regarding
the unknown coefficients 7;:

v gl = g, a7

where ViM[5,4] :== (Voor, é5)r, fj[M] = (f,¢j)r, i, =1,M.
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Note that the matrix of the obtained system if symmetric. Moreover, as
a result of the H~1/2(I")-ellipticity of the operator Vp, it is positive definite.
Therefore, with an arbitrary right-hand side the system (17) will have a unique
solution i.e. VM € N by using the Bubnov-Galerkin method we will get an
approximate solution of the equation (14). By the Cea lemma (see, e.g., |20,
Theorem 8.1]) such approximate solution satisfies the inequality

el =120y < el fll ey (18)
and there exists an estimate for its error
Co .
ln =l g-120) < o 5611)1;1»1 [ = &l g—172(r)- (19)

Hence the convergence in H~/2(I") of the approximate solution ny; — n €
H~Y2(I') when M — oo, where 7 is the solution of the corresponding BIE
in the sequence (12). Note that convergence of the numerical solution follows
from the approximation property of the trial space Xj;.

Lets specificate the numerical scheme (17) using the boundary elements

method [8,19,20]. Let I'y; = Uf\il 7; be some approximation of the surface

T built by triangular boundary elements {r}1~, with vertices {z1), 2], zlls]}

1/2
and h := max ( fﬂ d5> — parameter of the approximation. We assume that
1=1,M
vertices of all triangles have global numeration {zy},_,.
Lets build a set of linearly-independent on I' ;7 piece-wise constant functions

M —~
{90?}1:1’ M = M:

1, zem,
da={y TEm (20)
We will consider finite-dimensional spaces of functions SY(I') = XM =

span {¢7} f\i 1> dim S)(T') = M as approximating spaces for the numerical scheme
(17).

Let the operator equation (14) correspond to some k-th equation of the
sequence (12). Its approximate (numerical) solution u} can be represented as
a linear combination of piece-wise constant functions:

M
’LLZ - ZMZ,I(/D? S Sg(r); k € Np. (21)
=1
M
Here {” Zvl } =: pl € RM is a vector of unknown coefficients that can be

found from the following system of algebraic equations:
Viul =gh ke N (22)

Matrix Vg is a concrete representation of the matrix of the system (17). Its
elements can be given as

Voh[z',l]:/ / Eo(z — y)dsy,dsy, i,0=1,M, (23)
T Tl
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and the components of the right-hand side vector in (22) have the following
form

k—1
1= [ {onte) = 3 (Voo @)}, =T 0T (24
7=0
Sequence p" = (ug, Mf, )—r can be treated as a numerical solution of the

system of BIEs (12). After finding the consequent solution NZ of the algebraic
system (22), we can approximate the corresponding density element using the
formula (21) and calculate the k-th component of the numerical solution of the
Dirichlet problem at an arbitrary point z € Q*:

k
= (Vi—jul) (@), z € QF. (25)
]:

The sequence u” := (uo, uy, .. )—r can be treated as a numerical solution of the

Dirichlet problem.
Lets find an apriory estimate for the error of its components after introducing

some Sobolev spaces [9]. Let the boundary I' be given as a union I' = UZ]L T,
of surfaces I'; (I'; NT'; = @ when @ # j) each of which has a sufficiently smooth
parameterization

Ii={zeR®:2=x;(9, €7 CR*}.
By using a set of non-negative functions ¢; € C§°(R?) such that

N
D ¢ix)=1VeeT, ¢(z)=0Vzel\Iy

each function v given on the boundary I' can be written in a form

N
=Y dix)v
=1 =1

where vi(x) := ¢;(x)v(z) Vz € I';. We consider the Sobolev spaces H™(7;)
when m € N, elements of which are functions v;(£) := v;(x:(€)) when £ € 7,
with a norm and a half-norm

1/2 1/2
llinisy o= (3 lloe mw) il = (wa )

la|<m o=
(27)
correspondingly. Here 0“ is a notation of the partial derivative with a multi-
index o« = (a1, 2). Then for the functions, given on the whole surface I', we
will use the Sobolev spaces H™(I') with a norm and a half-norm

Mz

) Vz el (26)

N

1/2 1/2
ol ey = (ZHvAer(T,) \ermw)::(Zm@m@) L (28)

i=1
correspondingly.

46



ON THE BOUNDARY ELEMENT METHOD FOR BOUNDARY VALUE ...

For non-integer values of the indexes s = m + o0, m € Ny, o € (0,1),
we will use Sobolev-Slobodetski spaces H*(7;) and H*(I") with corresponding
half-norms and norms

. [ 10708 — 0" Tu(o)P v
|Ui|Hs(?i = Z \{ 77‘2+20 ds¢dsy, ,

1/2
[l = (HvZHHm T mmsm) , (20)

N 1/2 1/2
[0l g (ry = (Z\@\qu(ﬁ)) o NllEsr) = (’UH%V”(F) + |U\qu(r)) ;
=1

and also spaces of piece-wise smooth functions

H3, (1) == {v e L*T) :v|r, € H*(T})}, (30)
for which
N 1/2 N 1/2
ol o= (o By ) ol = (o ey ) - 31
i=1 =1

Lemma 1. Let p € (H;w(f‘))oo be a solution of the system (12) for some
€ (0,1], that satisfies the inequality

Z |1l () < +o00. (32)

Then for the components of the numerical solutions of the system of BIEs (12)
and the Dirichlet problem (1), (2) obtained by BEM the following asymptotic
estimates hold

< crh™ 2 g | s r

H-12(D) 5,(0) ke No, (33)

o=

k
|up(z) — uft(x)| < Gh T2 Z |15l ms, ), T € QF, k€ N, (34)
j=0
where ¢ and ¢, are some values that do not depend on the parameter h.
Proof. Validity of the statement regarding (33) directly follows from a known
theorem ( [7], |20, Theorem 12.3]).

A priory error of the k-th component of the numerical solution of the Dirichlet
problem at an arbitrary point x € Q7 can be given as

Jur(z) — ui (= |—\Zv;“ pi — o y_\z  Eyi(z— ) )rl.

Note, that for an arbitrary fixed point 2 € QT all the functions E;(z — -) are
infinitely-differentiable and bounded together with all their derivatives on I,
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ie. HE] (x — -)HH1/2(F) < ¢; = const. Using the generalized Cauchy-Schwarz

inequality, we get

k
Jur(@) = ujp(@)] < [((wi = ), Ex-ie =) )r| <

12 = 13| g2 0 1B = )| g2y
=0

Then, taking into account the 1nequality (33), we obtain

Jug () — ul(x)] < hﬁ“ﬂzck il 13, () hS“/QZ\m\H;m
1=0

where ¢ = [nax {c}_;ci} does not depend on the parameter h. O
<i<

4. COMPUTATIONAL ASPECTS OF THE METHOD

Effectiveness of the numerical solution of the Dirichlet problem depends in
great length on the approaches for the calculation of the surface potential in the
domain and the trace on the boundary. In practice, it means a combination of
algorithms for numerical integration and analytic calculation of some singular
integrals over the boundary elements.

If the point, at which the trace of the potentials mentioned above is cal-
culated, is not located on the boundary element over which the integration
is performed, then the kernels of these potentials are infinitely-differentiable
functions on the corresponding boundary element. Hence, the calculation of
the majority of the elements in corresponding SLAE and also the components
of the numerical solution of the problem at the observational points can be
performed using numerical integration and the Gauss quadrature in particular.

Lets consider the calculation of integrals over singular functions that can be
obtained during the construction of the matrix of the SLAE and correspond to
the boundary operator Vg (23):

e —+/Colz—y|
Vi, 1] = / / Sy Bovdse kI=T . (35)
Tl

If the boundary elements 75 and 7; coincide or are adjacent then the integrand
of the internal integral has a weak singularity when the points x € 7, and y € 7y
coincide. It can be explicitly eliminated if the element of the matrix is given as

ik, 1] = eZveol Tyl - S L A 36
i, e g [ e

1
—ds
T |‘T - y|
Integrand of the first integral in (36) allows continuous definition at x = y (it

can be verified if the exponential function is expanded in a Maclaurin series over
the variable r = |z — y|), so the value of this integral can be found numerically

where

Ii(z) = (37)

48



ON THE BOUNDARY ELEMENT METHOD FOR BOUNDARY VALUE ...

using the Gauss quadrature rules. The integral (37) can be found analytically
as a function [11,18-20], parameterized by the geometric data of the boundary
element 7; and the coordinates of the point x.

In the integrals

VI'k, 1] :/ /Ej($,y)d8ydsx, k,1=1,M, j € N, (38)
Tk YTl

that correspond to the boundary operator V;, j € N, and are found during
the construction of the right-hand side, the integrands are continuous for any
location of the boundary elements 7 and 7;. Hence these integrals can also be
found numerically using the Gauss quadratures.

Note, that all relations of the suggested approach can be applied to interior
BVP without any changes.

5. RESULTS OF THE COMPUTATIONAL EXPERIMENT
Lets demonstrate the usage of the suggested method to find numerical solu-
tions of some model Dirichlet problems. We assume that in (1) and (2) compo-
nents of the sequences ¢ and g have the form ¢ = (k+1)k and g = v, k € Ny,
correspondingly, where x is some parameter and the sequence v consists of func-
tions
) T O sl =) — B (sllz D)

|z — 2]

39
e—r(lz—z*|-1) ( )

vo(z) =

o — 2%

parameterized by some point z*, Ly, k € Ny, are the Laguerre polynomials [1].
Up to a factor the sequence v coincides with the fundamental solution of the
system (1), so it will be used to build the analytical solution of the Dirichlet
problem. Note, that the variable  will denote points on the boundary I' and
in the domain where the numerical solution is sought, and the parameter z* is
located in the complement of this domain to the whole space R3.

We consider the following domains in the model problem: a unit sphere,
its exterior in R3, a cube Q := (—1,1) x (=1,1) x (=1,1) and its exterior
Ot =R3\ Q.

Lets consider first the model boundary value problems for the first equation
of the system (1).

Example 1. Find a numerical solution u? of the exterior (z* = (0,0,0)) and
interior (z* = (2,0,0)) Dirichlet problems in case of the cubic boundary when

go = vo.

Table 1 contains corresponding numerical solutions of the exterior problem
using the decomposition of the cube’s boundary into M = 1200 boundary
elements. As we can see, with increasing value of x the solutions are decreasing
rapidly when moving further from the boundary. Next, we examine the errors
of the numerical solutions of this problem with a fixed value of the parameter

K, for example, take kK = 2.
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TaBL. 1. Numerical solutions u?(x) of the problem 1 for differ-
ent values of Kk

Value of the parameter s
x1 0.5 1.0 2.0 4.0 8.0
1.2 | 7483141071 | 6.75199 - 10~ T | 5.49666 - 10~ ' | 3.64214 - 10~ | 1.59908 - 10~ "
2.0 | 3.02031-107% | 1.82901 107! | 6.70731-1072 | 9.01743- 1072 | 1.62947-10~*
3.0 | 1.22230-107" | 4.49190- 1072 | 6.06765 - 102 | 1.10698 - 10~ | 3.68426 - 1078
4.0 | 5.56144 - 1072 | 1.23988 - 1072 | 6.16492 - 10* | 1.52428 - 107% | 9.29979 - 102

TABL. 2. Errors of the numerical solution u2(x) of the problem 1

Exterior problem Interior problem
M 5" eoc | €"(%) 5" eoc | €"(%)
300 | 0.01384 3.10 | 0.01324 2.99
588 | 0.00702 | 2.018 | 1.55 | 0.00673 | 2.012 | 1.50
768 | 0.00537 | 2.010 | 1.18 | 0.00515 | 2.005 | 1.14
972 | 0.00421 | 2.061 | 0.93 | 0.00404 | 2.058 | 0.90
1200 | 0.00340 | 2.030 | 0.75 | 0.00326 | 2.027 | 0.72
1728 | 0.00234 | 2.039 | 0.51 | 0.00225 | 2.037 | 0.50
2700 | 0.00149 | 2.033 | 0.33 | 0.00143 | 2.031 | 0.32

In order to find the dependency between the error of the numerical solution
and the parameter h that defines the triangulation of the boundary surface we

L -100%, where

- Hu0||L2<a,b)
(a,b) is an inverval in space from which the points of observation x are taken.
We will also calculate the value of the estimated order of convergence [19]

In § — In §hi+1

coc= In hj —In hj+1 ’

will consider the values 6" := ||uft —uo|| 2 (a,p) and el

(40)

where h; and hji1 are the parameters of the two consequent triangulations of
the boundary surface into boundary elements. Results of the calculations given
in table 2 highlight the equal orders of errors of the numerical solutions of the
interior and exterior problems. Moreover, the obtained result has eoc = 2.0.
Now lets demonstrate that the developed method gives us ability to find
components of the numerical solutions with other values of the indexes.

Example 2. Find N components of the numerical solution u?, 1 =0,N, of

the exterior Dirichlet problem (1), (2) if h; = v;, £ = 2 and z* = (0,0, 0).

Charts of the obtained numerical solutions are given on figure 1. They
demonstrate rapid decrease of the functions u?(x), 1 = 0,10, 20, with the in-
crease of their index. Numerical solutions obtained on M = 1200 boundary
elements are given in table 3 and indicate the commensurability of the errors
of components of the numerical solutions uf(z) when i = 10 and i = 20 with

the corresponding error of ul(x).
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TABL. 3. Solutions u?(az), 1 = 10,20 of the problem 2 when

M = 1200.

T uio(z) ufy(2) uzo () uy (x)

1.5 8.8570 - 10~2 9.0932-102 [ —7.6672- 102 | —7.5956 - 102
2.0 5.6502 - 102 5.6254 - 1072 4.0784 - 102 4.1496 - 102
30| —1.9676-10"2 | —1.9664-10"2 | —1.0549-10~2 | —1.0619 - 102
4.0 4.3413-1073 4.3359 - 1073 2.9939 - 103 3.0045 - 1073

1
0.5
E
-':‘S-a
0

FiG. 1. Charts of the components ult(z), uy(z), uby(z) of the
numerical solution of the problem 2 when M = 768

As it has been mentioned above, the Dirichlet problem (1), (2) can be ob-
tained by means of the application of the Laguerre transform by the time vari-
able to a certain class of linear evolutionary problems. For instance, the system
(1), that is mentioned in problems 1 and 2, can be obtained from a homoge-
neous wave equation with homogeneous boundary conditions. After finding for
some N the components u?, i = 0, N, the numerical solution of the mixed
problem can be given as a partial sum of the Laguerre-Fourier expansion

N
W (2, 1) = %Zuh(:v)Li(mf), (2,1) € OF x (0,00). (41)

7
1=0

To generate the data for the boundary conditions (2) we use a "spherical im-
pulse with a center at x*

St = |z — =)

t =
vlz,?) Arr|x — z*|

, (z,t) € QF x [0, 00), (42)
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0.8

0.6

uN(x,t)

0.4

0.2

Fia. 2. Chart of the solution of the problem 3 in the exterior
of the sphere with N =40, M = 720

where f is a cubical B-spline [12], and apply to it the Laguerre transform

vp(z) = /v(m,t) Li(xt) e "dt, x €T, k€ No. (43)

R4

Example 3. In the exterior Q of the unit sphere calculate the numerical
solution of the Dirichlet problem for the wave equation with homogeneous initial
conditions and the boundary condition defined by (42) at * = (0,0, 0).

Let the problem (1), (2) correspond to the initial-boundary value problem
3 when k = 2. After finding N = 40 components of the numerical solution
ué’, i = 0, N, with the use of M = 720 boundary elements, the numerical
solution of the problem 3 at the points along the axis Oz is calculated by the
formula (41). As it can be seen from the charts of the numerical solution, given
on the figure 2, the obtained results are well representing the physics of the
wave propagation from the boundary surface, especially, passing through the

observation points of the front and rear disturbance fronts.

Note that the formulation of the problem 3 gives us ability to find the coef-
ficients u;, @ € Np, of the expansion of the precise solution u(z,t) into series
(41) analytically. So it can be compared how the partial sums of the series (41)
with analytical coefficients and coefficients found by the suggested approach
approximate the precise solution of the evolution problem. As it can be see
from the table 4, values of such partial sums are pointwise (regarding the time
variable) close.

6. CONCLUSIONS
Application of the surface potentials built using the g¢-convolution opera-
tion is an effective way to obtain the integral representation of the solutions of
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TaBL. 4. Comparison of the numerical solution of the prob-
lem 3 u™N(x,t) (the row above) with the values of the partial
sum (41)(the row below), in which the coefficients are calculated
analytically

t T = 1.0 xr1 = 1.2 xr1 = 1.4 Tr1 = 1.6 Tr1 = 1.8 T = 2.0
0.0 | 0.00037 | 0.00043 | -0.00011 | 0.00013 | -0.00010 | -0.00013
0.00012 | -0.00034 | 0.00012 | 0.00000 | 0.00008 | -0.00004
0.4 | 0.01521 | 0.00136 | -0.00007 | -0.00006 | -0.00003 | -0.00002
0.01595 | 0.00178 | -0.00006 | -0.00004 | 0.00004 | 0.00001
1.2 | 0.41588 | 0.20541 | 0.08926 | 0.03234 | 0.00852 | 0.00100
0.42386 | 0.20880 | 0.09113 | 0.03376 | 0.00898 | 0.00100
2.0 | 0.99249 | 0.78406 | 0.57393 | 0.38364 | 0.23108 | 0.12327
0.99860 | 0.78846 | 0.57774 | 0.38853 | 0.23510 | 0.12553

boundary value problems for infinite systems of PDE with convolutional struc-
ture. Such approach makes it possible to reduce the boundary value problem
to an equivalent BIE system, develop efficient projection methods for its nu-
merical solution and justify their usage. The results of a series of numerical
experiments that confirm the theoretical statements and demonstrate the ap-
plicability of the proposed methods for modeling of evolutionary processes are
given.
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ANOTHER CASE OF INCIDENCE MATRIX
FOR BIVARIATE BIRKHOFF INTERPOLATION

A.NAzZARZADEH, KH. RAHSEPAR FARD, A. MAHMOODI

PE3IOME. V miit ctaTTi criepnry mOJAHO CHEIiaJbHUN BUTAI0K OJHOBUMIPHOL
3ama4i inreprossnii Bipkroda i 3a i1 70MOMOron amrpoKCHUMOBAHO PO3B’ 30K
rpanu<HOl 3a4a4l g pisaguug Jlanmaca. lasi po3riigmyTo iHIMAHM THI IBO-
BUMIpHOI 33134l inTepnosisarmii Bipkroda, B aKiif yMOBU iHTEPIIOJIAIIT 3a/1aHi B
TOYKaX 3 KPATHICTIO. BBeIeHO iHIIIe o3HAYeHHS /I MATPUIl 1HIIAIEHTHOCTI.
3pobuieno nopisusuus anpokcumaniii Bipkroda i Xaapa i nokazano nepesary
iaTepmosarii Bipkroda.

ABsTRACT. In this paper, first we present a special case of the univariate
Birkhoff interpolation problem, and using that, we approximate the solution of
a Laplace boundary value problem. Then we present another type of bivariate
Birkhoff interpolation problem in which interpolation conditions are on some
knots with multiplicity. We introduce another notation for incidence matrix.
Finally, we compare two approximations Birkhoff and Haar then we show that
Birkhoff interpolation is better than the other.

1. INTRODUCTION

In this paper we present some basic notations and useful properties in ana-
lyzing the interpolation polynomials. Let us denote II,, the space of one variable
interpolation polynomials of degree not exceeding n, and II? the space of bi-
variate interpolation polynomials of degree not exceeding n.

The problem of interpolating a real function f by a univariate polynomial
from the values of f and some of its derivatives on a set of knots is one of the
main questions in numerical analysis and approximation theory.

In [1] and [10] the authors studied univariate Birkhoff interpolation and its
properties. Let x = {x1, ..., z, } be a set of real numbers such that 1 < ... < x,,
let r be an integer and let I C {1,...,n} x {0,..,7} be the set of pairs (¢,7) in
which the value fU) (x;) = fij is known where f is a real function. The problem
of determining the existence and uniqueness of a polynomial P in R! satisfying
the conditions V¥(i,7) € I,p(x;) = fi; is called the Birkhoff interpolation
problem.

In recent years there has been renewed interest and progress on Hermite-
Birkhoff interpolation. The original source for this activity is work by G. D. Bir-
khoff in 1906, with a notable contribution by G. Polya in 1931.

Key words. Bivariate Birkhoff Interpolation Problem; Polya Condition; Incidence Matrix;
Interpolation Polynomial; Haar Approximation; Hermite-Birkhoff; Operator Interpolation.
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The interpolation conditions can be described by using special type matrices.
Consider the matrix E = (e; ;) with n rows and r+1 columns, filled with 0’s
and 1’s so that e;; = 1 if and only if (¢,j) € I. The E is called incidence
matriz.

In 1966 Schoenberg (see [19]) posed the problem of determining all those
E for which the problem P(j)(xii) = ¢;; is always (for all choice of x;,¢; ;)
solvable. We call such matrices E regular and the remaining matrices singular.

Let E = (e;,;) be an m x (n+ 1) incidence matrix. Then m; = ), e; ; is the
number of 1’s in column j, and M, =377 _om; = >t 4> ", €;; is the number
of 1’s in columns of E numbered 0,1,...,7r. For the matrix E, the condition
M, >r+1,r=0.1,...,n, is called the Polya condition.

Definition 7. The incidence matrix F = (em-), 1<i<m,0< 5 <niscalled
poised with respect to {z;}™, if the unique solution of problem PU)(z;) =
0,1 <¢<m,0< 7 <nis a trivial polynomial.

In [8], the following Polya’s result is well-known.

Theorem 1 (Polya’s Theorem). The incidence matriz E of 2 x n dimension is
poised if and only iof Polya condition s true.

In [20], the author posed, for a 2 x n incidence matrix E = (e; ;), we define
a 2 x n matrix G = (g;;) as follows:

gij=1l—¢€pnj1,1<i<2,0<5<n—1.

Then G is also an incidence matrix, because 2?21 Z?:_ol e;; = n. The matrix
G is called a dual incidence matrix corresponding to E. For example, for the
1 00 110
‘O 11 0 0 1

The following theorem give a relationship between a 2 X n incidence matrix
E and its dual matrix G.

incidence matrix E = , its dual matrix becomes £’ =

Theorem 2. A 2 X n incidence matriz E is poised if and only if dual matriz G
is poised. In [20], the author shown that there exists a quadrature formula in the
form fab P(x)dx = Zei’jzl w; ;P9 (2;) to be exact for any polynomial P with
degree at most n-1, where w; ;’s are weight coefficients independent of P. This
1s called, the Hermite-Birkhoff quadrature formula for the incidence matriz E.

Theorem 3. A 2 x n incidence matriz E is poised if and only if there exists a
Hermite-Birkhoff quadrature formula specified by F.

In [16], author presented below property of incidence matrix E:

Letmj =3, €i;,j =0,..,nand M, = >7"_;mj,r = 0,...,n, then E satisfies
the strong Polya condition if M, > r 4+ 2,r = 0,....,n — 1. If E does not
satisfy strong Polya condition, then E may be decomposed in to matrices,
E=FE@QE P @ En where Ej’s satisfies strong Polya condition.

In [18], the author proved below theorem:

Theorem 4. Let E,, satisfy the Polya condition. Then E, has a unique decom-
position B, = En, @ Eny @ ... D En,,n1+na...4ng =n, where By, j =1,...,q
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satisfies the strong Polya condition. Moreover Ey, is poised if and only if Ey’s
are poised.

The Birkhoff interpolation problem is one of the most general problems in
multivariate interpolations. For clarity of the exposition, we will only restrict
ourselves to the bivariate case.

In [11, Def. 3.1.1, p. 9], the authors studied bivariate Birkhoff interpolation
problem. The bivariate Birkhoff interpolation problem depends on a finite set
T = {zg}it; C R? of knots and interpolation space IT; of polynomials and
an incidence matrix £ = (eq,). The bivariate Birkhofl interpolation problem
is, for given real numbers ¢, 4, to find a polynomial p € 112 satisfying the
interpolation conditions

3a1+a2
WP(Z‘I) = Cqa (1)

with eq o = 1 where o = (a1, az).

In this paper, we present a special case of univariate Birkhoff interpolation
problem together with an example of boundary value problem introduce in [2],
and also a method for obtaining the interpolation polynomial in the case of
a set of types conditions, given on a set of knots in R2. This method is a
generalization of the tensorial product method introduced by F.J.Hack in [7].
In this way, we investigate bivariate Birkhoff polynomial for the set of knots T
such that |T| < (";2)

In [11] and [3], authors introduced Polya conditions for multivariate Birkhoff
interpolation as follows:

Definition 8. An incidence matrix E satisfies the (lower) Polya condition (with
respect to S) if |E4| < |A| for any lower set A C S. E satisfies the upper Polya
condition if |Eg| < |B| for any upper set B C S. A set B is an upper set with
respect to Sif « € B, > a and § € S imply that 3 € B. B is an upper set of
S if and only if S\ B is a lower set.

Similar to notations in [4], we apply the Haar function and interpolation
problem. In [4], the authors presented some theorems for uniqueness. Thus we
employ those theorems, for example, formula (8) and Theorem 3.1 and Example
3.2, p.107-109.

Problems of generalization in functions interpolation theory with functionals
and operators in abstract spaces are considered in numerous works.

Definition 9. Let F': X — Y be an operator, where X is a Hilbert and Y
is a vector space; let P, : X — Y be an operator polynomial of the form
P,(x) = Lo+ Lix+...4+ Lyz™, where Lo € Y; and let Ly(t1,...,tp) : XP — Y
be a p-linear operator, p =1, ...,n. Let {x;}!" be a system of elements from X.
A polynomial operator P, is called an interpolating polynomial for F in nodes
{x;}, C X if it satisfies the conditions P, (z;) = F'(z;),7 = 1,...,m.

In the case X =Y = R! the requirement that the interpolation functionals
be the same algebraic polynomials.
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In [12] and [13], the authors investigated the operator interpolation theory
in Hilbert space and solvability Hermite interpolation problem with the op-
erator values at the nodes with Gateaux differentials defined on the auxiliary
nodes and some given directions. For example, let II,, be a set of the operator
polynomials P, : X — Y of degree not exceeding n and p € II,, satisfies the
conditions:

p(xi) = F(x),p'(wi)hi = F'(zi)hiyi = 1,...,m (2)

For investigate Hermite problem with interpolation conditions (2) we consider
the auxiliary nodes

T =T1,T2 = T1 + ah1,T3 = 22, T4 = T2 + aho, ..., Tom—1 = Ty,

Tom = Tm + @hm,a € R, a0 #0

of the matrix
T(0) = || S0 (@ 7))

i,j=1
and
1 0 0 00 0 0 0
=2 1 0 00 0 0 0
0 0 1 00 0 0 0
o o =t 1o 00 0
Cla) = .
00 0 00 01 0
0 0 0 00 o =t 1

and the vectors
F(a) = (F (1), F(Z2), ..., F(Tam)), P(a) = (p(Z1),p(T2), ..., p(Tam)), p € IL,.

In [13], p.97, Theorem 1.1 shown that a necessary and sufficient condition for
the solvability of the Hermite operator interpolation problem (2) in a Hilbert
space, that the condition ZFy = 0 and the formula p(z) = ¢(x) + (Fg —
qm, HY gg (), with q(x) varies over II,,, describes the whole set of the Hermite
operator polynomials of the n-th degree satisfies the interpolation conditions
(2). In [13], explained notations ZFy, Fi,qu, H gn.

When some of the conditions of the Hermite interpolation are absent then,
they are called to Hermite- Birkhoff conditions. For example, the conditions:

p(wi) = F(z:), 0" (@)h$ 0 = F'(@)h$hP i =1,...,m (3)

are Hermite-Birkhoff conditions. In [13], Theorem 2.1, p.110, itroduced a neces-
sary and sufficient condition for the solvability of the Hermite-Birkhoff operator
interpolation problem in a Hilbert space.

Now we introduce an important result as follows:

A sufficient condition for the invariant solvability of the Hermite operator
interpolation problem given as the following theorem. We shall denote by M a
number of the interpolation conditions in the Hermite operator interpolation.
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Theorem 5. The Hermite interpolation problem in a Hilbert space is invariant
solvability for anyn > M — 1.

For example every Hermite interpolation problem with conditions (2) by
Theorem 5 is invariant solvable.

By text in [13], p.112, if the Hermite-Birkhoff interpolation problem for a
function of one variable has the unique solution, then the appropriate Hermite-
Birkhoff operator interpolation problem is invariantly solvable. Now we ap-
ply Polya’s theorem in case m=2 for the invariant solvability of the Hermite-
Birkhoff operator problem with the interpolation conditions containing values
of operator polynomial p of the third degree and Gateaux differentials of the
second order

plan), o (@) SR, p(aa), " (22) R 1D (4)
In the corresponding Hermite-Birkhoff interpolation problem of one variable we

have
1 01

1 01
m0:2, m1:0, m2:2, M(]:Z, M1:2, M2:4
Since M; > j+1,j = 0,1,2 then by Polya’s Theorem, the classical Hermite-
Birkhoff problem
p(t) =0, p"(t1) =0, p(t2) =0, p'(t2) =0
on the set of the polynomial of the 3-d degree has the unique solution zero-

polynomial. But as we stated above, the corresponding Hermite-Birkhoff oper-
ator problem (4) is invariantly solvable.

9

M=4, n=M-1=3, E:H

2. BIVARIATE BIRKHOFF INTERPOLATION

Following R.A. Lorentz in [11], an interpolation problem is regular if it is
uniquely solvable for all selections of distinct nodes and all data. In the uni-
variate case, Lagrange and Hermite interpolation are regular, but in the mul-
tivariate case, even Lagrange interpolation is not regular. Here, we study a
solvable interpolation problem in multivariate case.

A uniqueness technique for bivariate Birkhoff interpolation problem is pre-
sented in |7]. The technique has been explained in |7, theorem 3.3, p.26]|, where
interpolation polynomial is tensor product of functionals. that is why, we intro-
duce incidence matrix. For exactly M+1 pairs (i, k) € {1,...,m} x {0,..., M},
we suppose that F;j = <€i§)1§j§ai.k 0<I<N;, Where a;x € N,N;; € Np and
for others (i,k)’s, E;r, = 0. Regularity condition is established, using bidi-
mensional incidence matrix corresponding to Birkhoff interpolation problem.
Hence, the bivariate Birkhoff interpolation problem is as follows:

P
CM(G), > T, @ Ty Dty 2 (k) € Z, (wi,yiny) €T (5)

s=1
This means that for all f € CM(G), G C R? there exists P € Y.7_, Ty, ® [y,

where I3, ® Iy, is tensor product of functionals and Dl;;{yi v P = D’;;{yi il

such that T is the set of distinct knots i.e. T' = {(z,¥ik,;)} s-t. 21 < ... < zp
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and also Yix1 < - < Yikas, (k) € Z,Z C {1,...,m} x {0,..., M} so that
Z={(i,k): Eij #0}.

In view of corollary 3.4 [7, p.27|, if matrices Ey’s for points z1,...,x,, are
regular and matrices F; ;s are regular for points v; 1 1, ..., Yi k,a;, then the inci-
dence matrix &, 1 is regular for {(x;,y;k ;)}. It means that the interpolation
problem is unique.

3. THE RESULT
3.1. Univariate Case. In [2]|, a Birkhoff interpolation problem was studied.
Now, we introduce another case of Birkhoff interpolation problem. In [17],
the author introduced Lagrange’s fundamental polynomials. For given points
X0, X1, .-, T, let us use the fundamental polynomials ly, l1, ..., l,, where [;(z) =

[T;4( ] ) such that

Ty — Xy
1 itk=i
L) =42 7' ki=0,1,..n
0 ifk#1d
We recall that the Green’s function was defined in [5], [6], [14].
Theorem 6. Let w; € R1,i =0,1,....n and —1 = 20 < 21 < ... < Tp_1 <

xn =1 and l;(x) be the fundamental polynomials of Lagrange calculated on the
n-1 points x;,i = 1,....,n — 1 and pp(x) = f_ll Gz, t);(t)dt,i = 1,..,n — 1,

where
1
G(x,t):{ t<z
0 <t

is a Green’s function, then the polynomial

Wn T =z,
P €Tr) = 6
) {“‘)0 + Z?:_f Pn,i(T)w; otherwise (6)

1§ the unique polynomial of degree < n — 1 which satisfies the Birkhoff interpo-
lation conditions

Py (z0) = wo, Po(z;) =wi,i=1,...,n—1, Py(zy) = wp (7)
Proof. We know that P, ;(z) is the solution of the boundary value problem

P (x)=1; ’
i () () , i=1,..,n—1, because P, (r)= / Li(t)dt.
Pn,i(_l) =0 | !

The polynomial (6) satisfies the interpolatory conditions (7). For the proof of
the uniqueness, since P, ;(x) is a polynomial of degree not exceeding n-1, now
suppose that P,, is another polynomial of degree not exceeding n-1 where it is
true in (7) such that Pp(x) # P,(x).

We set ¢y, (z) := Py (z) — Py(z). The polynomial ¢, () has n-1 zeros, there-
fore it has n-2 optimum, namely, ¢/, (z;) = P, (z;) — P,(x;) = 0. After repeated
this process and applying Rolle’s theorem, we conclude that ¢,(x) = 0. Thus
P,(x) = P,(z) that is contradiction. O
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Remark 1. By Theorem 6, since the Hermite-Birkhoff interpolation problem
with conditions (7) has unique solution then the corresponding Hermite-Birkhoff
operator interpolation problem is invariant solvable.

In [9] and [15], the authors presented Haar approximation. Now, we intro-
duce Haar function and its apply for below example.

Definition 10. The Haar function x,(z),x € [0,1], where x1 = 1, and for
2k < p <281 k£ =0,1,--- is defined as follows:

25 xe¢ A
Xn(2) =4 —2% x €A (8)
0 x ¢ A,
where A, is a binary interval of the form (22_—,}, Qik) where k= 0,1,... and i =
1,2,..., 2% For n = 2F 44 we write A, = Al = (;,} ) A =[5, & A=
A= (0,1), A1 = [0, 1], AF = (G, 3i57), A = (3551, 5%) The values of xn(x)

] re specified as follows:

(
at pomts of discontinuity and at the endpoints f a
n(0) = limy_o+ Xn(t),

Xn (@) = glima—o[xn(2 + a) + xa(z — @),z € (0,
Xn(1) = lithO‘FXn(l —1).

XH

For clarity of the Theorem 6, we present an example:

Example 1. The solution of Laplace boundary value problem

gi2+ay =0 , O<zx<l,0<y<l1
u(x,()):()
u(z,1) =

2nm—2nem(—1)"

is u(x,y) =Y oo by sinh (n7y) sin (nwx) where by, = G nZaDysimnh(nm) "

Using theorem 6, we compute Birkhoff interpolation polynomial for f(x) = e*
in these knots: zg = 0,717 = %,1'2 = %,173 = %,:1:4 = 1. Let wyp = f(0) =
Lw = f/(3) = ef,wy = f'(3) = ef,wy = f(3) = el,wy = f(1) = e then,
I1(t) = 8t2 — 10t + 3, 12(t) = —16t% + 16t 3 13( ) = 8t% — 6t + La are Lagrange
polynomials on x1, z2, x3 and Py 1(z) = — 52243z, Py 2(z) = m3+8:ﬂ +
3z, Pys(x) = %x3 — 322 4+ 2 thus Py(x ) = (ge}l — 13662 + 64)$ +( bei +
8ez — 36%)1‘2 + (36i — 3e2 + e%)a: + 1 and also ps(1) =e.

Now, we employ approximation Haar-Fourier Py (z) = Y oo Co(f)xn ()
for the function f(x) = e* and its compare to Ps(x). First, we compute Haar-
Fourier coefficients Cy,( fo x)dz as follows: C1(f) =e—1,Ca(f) =
261/2—6—1,Cg(f) = 2\[61/4 fel/Q f,C4( f)= 2V/2e3/4 — \/2e/2 — \/2e,
thus the Haar polynomial is: Py (x) = e — 14 (2eY/%2 —e—1)xa(z) + (2v/2e'/* —
V2el/2 — V2)x3(z) + (2ﬂe3/4 —/2el/2 = v2e)x4(x) Using the following ten

points, we compare f(x), Py(x), Py (x)
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TaBL. 1. Comparison of f(x), pa(z), pg(z) in [0,1]

x| fz) pa() pu ()

0 1 1 1.136101666
0.1 | 1.105170918 | 1.106753896 | 1.136101666
0.25 | 1.284025417 | 1.286209257 | 1.297442541
0.3 | 1.349858808 | 1.352009578 | 1.458783416
0.5 | 1.648721271 | 1.650644616 | 1.665949200
0.7 |2.013752707 | 2.020817622 | 1.873114984
0.75 ] 2.117000017 | 2.119201800 | 2.139121116
0.9 | 2.459603111 | 2.461087206 | 2.405127248
0.99 | 2.691234472 | 2.691012369 | 2.405127248
1 2.718281828 | 2.717776531 | 2.405127248

Consequently one might favor Birkhoff interpolation in some cases.
Now, we set ps(x) instead of f(z) = e” in Laplace boundary value problem and
obtain the approximation solution u(z,y) = 32, ay, sinh(nmy) sin(nrz) where

1 .
an = 7Sinh2(m) Jo pa(z) sin(nmwzx)da.
Using Maple program, graphs are as follows:

0.2

0.2 0.6

0’8 1

Fia. 1. Comparison of f(z) with ps(x) in [0,1]

3.2. Bivariate Case. In this paper, uniqueness is investigated in another way.
In [7, Corollary 3.4, p.27], if the incidence matrix is characterized, then the
interpolation polynomial can be obtained.

Now, suppose that the interpolation conditions are given. Then, we compute
a corresponding matrix as follows:

Theorem 7. Suppose that the bivariate Birkhoff interpolation problem (5) is
given. Then, the incidence matriz is characterized.
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Fia. 2. Comparison of f(z) with ps(x) in [0,0.01]

F1G. 3. Graph u (z,y) = 1% b, sinh (n7y) sin (n7z)

n=1

Proof. First, we arrange the knots as follows 1 < ... < x,,, where for each the
second component of these points, namely, y; k.1, ..., ¥ik.j, 1 < j < a; %, where
ajk € N.

Note that k is the order of partial derivative of the first variable for P(x,y),
and we denote the order of partial derivative of second variable for P(x,y) by
1, where 0 <1 < N; ., N; . € No.

Let Z be a set of pairwise (i,k)’s in (5). For indices i,j,k,1 in (5), we define
evi=1,(i,k) € Z.

Using eﬁ’; we construct a matrix where j,1 are the number of rows and
columns, respectively.
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Fic. 4. Graph u(z,y) = Z};f? ap, sinh (n7y) sin (nmx)

ik Nik /. .
Let B = (ei’;)?;’ﬁ,lg(’f ,(i,k) € Z. Regarding E;j, the number of rows
and columns are equal a; ) and N;j + 1 respectively. It means that for every
(i,k) € Z the value of ef’} is equal 1 otherwise is equal 0. But for the other

points (i,k) € {1,...,m} X {0,..., M} every array of E; equals zero where

M=|z] -1 (9)
Thus, for the bivariate Birkhoff interpolation problem (5), the corresponding
matrix is e, = (Ei k)" 1AL, that is an incidence matrix. O

Now, we present two examples as follows and apply Theorem 7 to obtain
interpolation polynomial. In the first example, we use incidence matrix and
obtain interpolation polynomial. In the second example, we use interpolation
conditions and obtain interpolation polynomial.

Example 2. Consider bivariate incidence matrix

0010
0 1010 0 00
0100

10100

01100 0 0 0 0

01000

Faa= 1000 (10)

010 ol [[1 0

0 0010H10H00
000 1

10

H10 0 0 00

In view of Theorem 7, we have

Z = {(1,1),(2,0),(3,1),(3,2),(4,0)}, m=M =4,
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0 010

El,l =11 0 1 0|l = ayl = 3, N1,1 = 3,
01 0O
1 01 0 O

E270 =)0 1 1 0 0f = az0 = 3, N270 = 4,
01 0 00
1 0 0 O
01 00

E31 = 00 1 ol=as1= 4, Nz =3,
0 0 01
1 0

B2 = |y OH = agz2 =2, Nzo2=1,
1 0

Ero= |y 1|| = ®0=2, Nap=14

Using (3.6) in |7], we have
Ni=Nyg=4,M =0
N2:N171:N371=3,M2:2
N3:N372:N470:1,M3:4

Consider the following points in [0, 1]?

(21 =0,290=0.1,23 =0.9,24 = 1

Y111 =0,9112=0.1,9113=0.2

y2,01 = 0,%202 = 0.2,y203 = 0.5

Y311 =0,9312=0.3,9y313=0.6,y314=10.9

Y321 =08,y322=1

Y401 = 0,y402 =1

(11)

Since the incidence matrices F; ;s are regular and

0 010 0100 0
1 100 10000
Er=lloll- E2=1lo 1 o =10 1 1 0 o0
0 000 10000

are also regular, then by |7, Corollary 3.4,p.27|, the incidence matrix €44 is
regular. So, bivariate Birkhoff interpolation problem

(Cq([o’ 1]2)’1_[0®H4+H2®H3+H4®H1;Dk’l : (luk) € Za (xiayi,k?,j) € T)7

TiyYik,j
where
q=max{Ms+ Ns}3_, =5, and 21 < ... < T4, Yi o1 < ... < Yik,ai
is uniquely solvable.
That is for all f € C3([0,1]?) for example f(x,7y) = ye® there exists

3
Ped My, @Iy,

s=1
1.e.
P(z,y) = aop + a1,0z + ap1y + az,07” + a1 12y+
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+a0,2y2 + 613,0373 + a2,1w2y + a1,296y2 + a0,3y3 + a47oa:4+
3 2.9 3 4 4 2.3
+a312°Y + a222°Y” + a132Y° + ap 4y + a417°Y + a2 3T°Y

and

’ P(0.1,0) = £(0.1,0)

93 )

o0 aay?a’”(o N 22(0.1,0) = 24(0.1,0)
%253001)_35(001) 6P(01 0.2) = %(01 0.2)
dpor (- 0-1) = 2 283”(0 0-1) ‘921’(0 1,0.2) = 0y £(0.1,0.2)
o°P (0,0.2) = 24.(0,0.2) ay°

Oyoe o f’P L(0.1,0.5) = 8—/‘(0 1,0.5)
'5";’(09 0) = af(o9 0)

55:(0.9,0.3) = <0 9,0.3) 2°2(0.9,0.8) = 2£(0.9,0.8)
5755 (09,0.6) = o an (0.9,0.6) " | %£(09,0.1) = 5£(0.9,0.1)
4
035-(0.9,0.9) = 52:1-(0.9,0.9)
Gr ) =gt

By the conditions above, the algebraic system of coefficients of p(x,y) is as
follows:

2&172 =0
a1+ 0.1&171 + 0.010,1’2 + 0.001a173 =0.1

1+ap1+az1+3a03+az1+4aps+as1=e
Therefore, the solution of system is
aip =ap2 =a12 = ap3 = az2 = a3 = ag4 = az3 = 0,a11 = 1,
oo =346 x 1077, agy = 0.999928024, a4 = 6.678685615,
agy = 0.13497021, az1 = 0.510326531, azo = —1.314 x 1075,
asgp = —1.5909 x 1075, a3 = 2.8702 x 107°
Thus, the Birkhoff polynomial P is
Pg(z,y) = 0.0000003459603111 + 0.999928024y — 0.0000131422+
+xy + 0.00002870223 + 0.51032653 122y —
—0.0000159092* + 0.1349702123y + 6.678685615xy.

In the following example, the knots and Birkhoff conditions are given then, we
obtain Birkhoff polynomial.

Example 3. By the following knots in [0, 1]? and Birkhoff conditions and in
view of Theorem 7 and the indices i,j,k,l, we have

P(x2,91) = f(x2,y1)
3P 83 f ) )
ayzam (r1,y1) = 979% (z1,91) 92p P (59, 11) = 2f($ )
ar (ZC ) f(l‘ ) ay 25, Y1 oy? 2, Y91
Oz 1,92 oz 1,92 oP (x )_8f(x )
93P ( ) 83f ({L‘ ) 8y 2, Y2 3y 2, Y2
8y2ax xT1,Y2 2oz \ 1y Y2 92p (.7) ) f (l‘ )
82P( )= 9 f( ) ‘ay2 \ T2, Y2 ay? \X2, Y2
Oyoz 1Y) = Byde P U8 OP (19, y3) = gf(@ Y3)

M y b
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o
O (w3,51) = 55(53,y1)
9P _ 90 2 a2
gz (X3, 92) = ﬁ(m,yz) PP (w3, y1) = L (23,11)
83 0 2 2 y
(’)3;278];(1'37:%3) = Wéx(%-&yf}) 87123(553,?42) = %(x?”yQ)

4 84
381137312(553,94) = W&@&Z/Q
{P(ﬂ%yl) = f(l‘4,yl)

9
82 (24, y2) = G (2, 10)

Now, we consider the points (11) in [0, 1]2, then

Z ={(1,1),(2,0),(3,1),(3,2),(4,0)}.

Regularity of E;’s is obvious here:

0 010 1 01 0O é (1) 8 8
Eig=|1 0 1 0, Eyo=[0 110 0, Ei=|l; o, ol
01 00 01 0 00 00 0 1
1 0 1 0
Therefore,
ajnp =3, Ni1=3, a0=3, Nypg=4
azgnp =4, N31=3, az2=2, N3p=1
asgp =2, Nypo=1
and also
Ny =Ngg=4, M =0,
No=Ni1=N31=3, My=2
N3 =N3o=N4p=1, M3z=4.
Using (9), we can write incidence matrix €44 in (10).
Thus, matrices
0 01 0 01 0 00
1 1 0 0 1 0 0 0 O
Ex=1lgll E2=1o 1 o0 B =10 1 1 0 0
0 0 0 O 1 0 0 0 O

for knots 1, w2, r3, x4 and also the incidence matrices F1 1, Ea0, 31, 32, F40
for knots y; 1 ;s are regular. Thus by corollary 3.4 of [7, P.27], €44 is regu-
lar. For every f € C°([0,1]?) there exists P € Y.°_ T, ® Iy, so that it
satisfies interpolation conditions. Finally, with knots (z;,y;x, ;) in (11), we can
establish P.
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3.3. Bivariate Haar Approximation. In [9] and [15], the authors presented
univariate Haar series. Now, we investigate a new case of bivariate Haar ap-
proximation in the following example.

Example 4. Using the approximation presented in [4], we compute Haar —
Fourier coefficients

1 1
tmn(f) = /0 /0 £, 4) X (2, ) dedy

for bivariate function f(z,y) = ye® then, by (20) in [4], we have

e—1 2012 _ ¢ -1
al,l(f) - 2 ) a2,2(f) - fv
2el/4 _el/2 _q 6el/d — 3el/2 — 3
a3,3(f) = 4 ; a3,4(f) = 4 )
2e3/4 _el/2 _¢ 6e3/4 — 3el/2 — 3¢
as3(f) = 1 ;o aaa(f) = 1 .

We recall that the Haar function is given
28 xeAf yeA,
Xm,n(2,Y) = L = AL ye A,
0 (z,9) ¢ Bnm

where x1,1 = 1 and the binary interval A,, and other signs in Definition 10 are
satisfied. Then the Haar polynomial is:

Py (x,y) = 2.218281828 — 0.210419644 X2 5(, y) + 1.919329563 3 3(z, y)+
+0.486540953 3 4(2, y) — 0.0332507664.3(x, y) — 0.099752299x4 4(, y).

4. COMPARISON OF FUNCTION f(z,y) = ye® WITH Pg(x,y) AND Pg(z,y)
Using the following eight points, we compare f(z,v), Pg(z,vy), Pu(z,y)

TABL. 2. comparison of f(x,y), Pe(x,y), Pu(z,y)

(z.y) | flzy) |ps(@y) | pu(zy)
(0,0) 0 0.0000003 | 5.846521
(0,0.1) | 0.1 0.099993 | 5.846521
(0.1,0) |0 0.0000002 | 5.846521
(0.1,0.1) [ 0.110517 | 0.110583 | 5.846521
(0.2,0.5) | 0.610701 | 0.616053 | 4.413732
(0.9,0.1) [ 0.245960 | 0.679357 | 2.495203
(0.2,0.9) [ 1.099262 | 1.108896 | 2.930944
(0.9,0.9) [ 2.213642 | 6.114214 | 2.628206
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Now, we compare f(z,y), Pg(x,y) by using their graphs.

FIG. 5. The graph of f(z,y) on [0,1]?

FiG. 6. The graph of Pg(z,y) on [0, 1]?
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RESONANT LIQUID SLOSHING IN AN UPRIGHT
CIRCULAR TANK PERFORMING A PERIODIC MOTION

I. A.RAYNOVSKYY, A.N. TIMOKHA

PE3IOME. Bukopucrosyerbcs ciabo-memiHiiina momanabHa Teopis Hapimamo-
Ba-MoiceeBa 171 aHaIi3y yCTaJIEHMX PE30HAHCHUX XBU/Ib B BEPTUKATILHOMY
OWIHHAPUYHOMY pe3epByapi, SIKHil PyXa€ThbCs HEePIOAUIHO 3 4ACTOTOI0, O/IN3b-
KOIO JI0 IEePIIOl BJIACHOI YACTOTH KOJWBAHHSA DIIUHUI.

ABSTRACT. A weakly-nonlinear Narimanov-Moiseev type modal theory is
used to analyse steady-state resonant waves in an upright circular tank which
moves periodically with the forcing frequency close to the lowest natural slosh-
ing frequency.

1. INTRODUCTION

The upright circular tank is relevant for spacecraft applications, the pressure-
suppression pools of Boiling Water Reactors, storage tanks, Tuned Liquid
Dampers, offshore towers, and basins of the aqua-cultural engineering. Res-
onant sloshing due to harmonic excitations of the tank was extensively studied,
theoretically and experimentally, in [1,3,4,6]. For the longitudinal tank forcing,
steady-state planar (in the excitation plane), swirling and irregular (chaotic)
waves were detected [1,4,6] when the forcing frequency is close to the lowest
natural sloshing frequency. A review on sloshing due to parametric (vertical) ex-
citations is given in [3|. However, the above-mentioned industrial applications
deal, normally, with the coupled rigid tank-and-sloshing dynamics when the
tank performs complex three-dimensional motions which unnecessarily occur
in either meridional plane or vertical direction. This causes an interest to ana-
lytical studies on the resonant steady-state sloshing due to a three-dimensional
periodic tank excitation that are done in the present paper by employing the
weakly-nonlinear modal system [7].

2. STATEMENT OF THE PROBLEM

An inviscid incompressible contained liquid with irrotational flows sloshes
in an upright circular rigid tank with radius r9. The tank performs small-
magnitude prescribed periodic sway, surge, roll, and pitch motions which are
described by the rg-scaled generalised coordinates n1(t) and n72(t) (horizontal
tank motions) and angular perturbations n4(t) and 75(t) (see, figure 1). The
yaw cannot excite sloshing within the framework of the inviscid potential flow
model but the heave is not considered. All geometric and physical parameters

Key words. Sloshing, multimodal method; periodic solution; response curves.
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Fia. 1. The time-dependent liquid domain Q(t) confined by
the free surface ¥(t) and the wetted tank surface S(¢). The
free-surface evolution is considered in the tank-fixed coordinate
system Oxyz whose coordinate plane Oxy coincides with the
mean (hydrostatic) free surface 3¢ and Oz is the symmetry axis.
Small-magnitude periodic tank motions are governed by the gen-
eralised coordinates 1 (t) (surge), na(t) (roll), n2(t) (sway), and
n5(t) (pitch). The mean free surface X is perpendicular to Oz

are henceforth considered scaled by rg. We introduce a small parameter 0 <
€ < 1 characterising the periodic forcing, i.e. n;(t) = O(e), i = 1,2,4,5.

Figure 1 shows the time-dependent liquid domain Q(¢) with the free surface
¥(t) (governed by the single-valued function z = ((r,6,t)) and the wetted tank
surface S(t). The liquid flow is determined by the velocity potential ®(r, 6, z,t).
The unknowns, ¢ and @, are defined in the tank-fixed Cartesian (equivalent
cylindrical) non-inertial coordinate system; they can be found from either the
corresponding free-surface problem or its equivalent variational formulation.
The latter formulation facilitates the multimodal method, which employs the
Fourier-type representations of ¢ and ® in which the time-dependent coeflicients
are interpreted as generalised coordinates and velocities. The representations
are normally based on the natural sloshing modes which are the eigenfunctions
of the spectral boundary problem

0 0
V20 =0 in Qo, —SO:OOHSO, a—::/w)onEo, /EcpdS:() (1)
0

on

in the mean (hydrostatic) liquid domain Qo confined by the mean free surface
Yo and the wetted tank surface Sp. The rg-scaled problem (1) has the analytical
solution [4]

i1, 2,0) = Rasi(r) Zni(2) gﬁf%g, M=0,...;i=1,..., (2a)
COSh(k]V[Z‘(Z + h))
COSh(k]V[ih) ’

where Jys(+) is the Bessel functions of the first kind, the radial wave numbers
knr; are determined by R/Mﬂ-(ﬁ) = 0 and the normalising multipliers aiz; follow

Rui(r) = apmidy(kair), Zmi(z) = (2b)
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from the orthogonality condition

1
)\(M’L)(Mj) = / TRMi(T) RM]'(T) dr = 5ij7 i,j = 1,. ooy (3)

T1
where d;; is the Kronecker delta. The eigenvalues ps; and the natural sloshing
frequencies opy; read as

kari = kagi tanh(kyh) and 03 = Kag §/70 = K g (4)
respectively, where g is the dimensional gravity acceleration.
Dealing with a small-amplitude angular tank motion requires the linearised

Stokes-Joukowski potentials Qo;(r, 2,6), ¢ = 1,2,3 which are harmonic func-
tions satisfying the Neumann boundary conditions

00 9902 03

o —(zn, —rn,)siné, = (zny — M) COSH, I 0 (5
on Yo and the wetted tank surface Sy, where n, and n, are the outer nor-
mal components in the r- and z- directions. This implies Qo1 = —F(r, 2)
sinf, Qo2 = F(r,z)cosf, Qpz = 0, where

: 1
F(r,z)=rz+ Z k: )Smh(klngz i Qh));
ot In cosh(5k1nh) ©)

1
Pn:/ T2R1n(r) dr.

r1
When adopting (2a) and (6), the aforementioned Fourier (modal) represen-
tation takes the form [7]

Ig Iy Iy, I
(r,0,1t) Z Rri(r) cos(M6) pari(t) + Z Rmi(r) sin(m@) rmi(t), (7a)
M,i

O(r,0,z,t) =n(t )rcos@+7'72(t)rsin9+
la(t

+ F(r,z)[—na(t) sin 0 4 105(t) cos 0]+
167[7

-+ Z RMz ZMz ) COS(MH) PMZ'(t)—i- (7b)
M,i
Iﬂy-l'r

+2le Zni(2) sin(m) Ri(t),

Iy, I, — oo. Here and further, all capital summation letters imply changing
from zero to Ip but the lower case indices mean changing from one to either Iy
or I,.

In the modal representation (7), pas; and 7, play the role of the sloshing-
related generalised coordinates but Pys; and R,,; are the corresponding gen-
eralised velocities. Using the Bateman-Luke variational formulation makes it
possible to derive the Fuler-Lagrange equations with respect to the generalised
coordinates and velocities. The procedure is described in [7] where the latter
equations are explicitly written down in both fully- and weakly-nonlinear forms.
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The weakly-nonlinear equations are constructed in [7] adopting the Narimanov-
Moiseev asymptotic relations

p11 ~ 11 = O(e/3), Poj ~ P2j ~ Toj = O(e*/3),

T1G41) ~ Pii41) ~ P3j ~ 135 = O0(e), j=1,2,...,L; L. —o00 (8)

(see, an extensive discussion on what these relations mean for axisymmetric
tanks in [5]). The equations take the form

Pui+ oppi + dipin (Puipin + Fri + piy + 75)

+ da [r11(Prir1in — F1ip1n) + 2711 (Pririn — F11p11)]
I

+ Z [d(])(pum] + 11725 + PriPe; + T11725) + dfl )(2'523‘])11 + o5111)
=1

+déj) (P11poj + P11poj) + déj)ﬁojpn} = — (71 — gn5 — Siiis)k11 P, (9a)

i1+ otrin + dirn (Pupn + farn + P +5)
+ do [p11(F11p11 — Pririn) + 2p11 (Fuapin — prirn)]

+ Z { (P17 — F11p2; + P11T2; — D2ji11) + dij)(i“éjpn — P2j7T11)

+dé])(7'“'11p0j + 711p0j) + d((;j)ijOJTll = —(fi2 + gna + S1ila)k11 P15 (9b)
Dok + 05pok + dr (B3 — 731) + do g (Prip11 — F1ari) =0, (10a)
For + o3pTak + 2d7 kpr1711 + do k(Pr1711 + F11p11) = 0, (10b)

Pok + ogepor + ds e (P11 +711) + diog(Pripin + F1arin) =0 (10c)

Pak + 03psk + dine [P (P — 1) — 2p1iriii
+ dio [p11 (BT — 1) — 2rupiiri ]

I”" . .
+ Z [dgjg,),k(ﬁnpzj — F11r2) + dﬁ)’k(mjpn — T9;711)
j=1

+d%),k(152jp11 - 7'“2]'7'“11)] =0, (11a)

P + 033k + ding [Fr1(ply — ) + 2puiripu]
+ diog [r1 (P11 — 711) +2puipiiri]
I, A
+ { 13,k (Pr1r2; + F11p2;) + dﬁ%(ﬁéﬂ“n + T25p11)
7=1

+dD, (Paginy + iopn)| =0, k=1,..,L; (11D)
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Pin + 01upin + dien (P11 + r1ip11711) + dizn(Pr1arty — riap1iiin)

+ dig np11(Ph + 771) + dign(ri1p1itin — p1iriy)

Ir
+ Z [déﬁn(z’inmj + F11res) + dgjﬁn(mﬂbj + r11725)
j=1
A0 (s s e N ) s G) )
+dsy, (P11D2j + T11725) + dsg , P11poj + dsf ,P11Poj + dss ,P11Po;

= _(ﬁl — 975 — Snﬁ5)"‘71n P, (12&)

. 2 . 92 . .9 .
Fin + 01,710 + dien (F11771 + rupuipin) + dizn(F11p77 — rip1ibin)

+ dignr11 (P11 + 7H) + dign (P11t — r11piy)

Ir
+ Z {dgj(){n(ﬁ11rzj — F11p2;) + déjl),n(]?ni"zj — r11525)
j=1
d9D (oo — o) 4 dD) s 4 g ST ()
+dsg, (P11725 — T11P25) + d33 . 711005 + d3g,r11P0j + d3s ,T11P0;
= —(ij2 + gma + Snila)k1nPn, n=2,..,I. (12b)
They couple all generalised coordinates up to the O(e)-order as I, — oc;
T ~ pr = o(e), k > 4 and, therefore, are neglected. The hydrodynamic
coefficients of (9)—(12) are functions of the nondimensional liquid depth h. The

system needs either initial or periodicity condition that determines transient
and steady-state solutions, respectively.

3. STEADY-STATE (PERIODIC) RESONANT SOLUTIONS
Applicability of (9)-(12) for studying the steady-state (periodic) waves re-
quires that

— the generalised coordinates n;(t),7 = 1,2,4,5, are the given 27 /o-perio-
dic functions,

ni(t) = 772(3) + Z [772‘(5) cos(kat) + ul(-s) sin(kat)] , 77@'(5) ~ ul(-s) =0(e), (13)
k=1

where o is the circular forcing frequency; the lowest-order harmonic com-
ponent should not be zero, i.e.

ST+ ul # 0 (14)

i=1,2,4,5

— the forcing frequency o is close to the lowest natural sloshing frequency
011 so that the so-called Moiseev detuning condition

3, —1=0(?), G11=011/0 (15)

is satisfied;
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— there are no resonance amplifications of py,;, 7m;, mj # 1 that implies
m— o1, > O(1), Omi = omifo, m,k>2;
=2 ~9 =2 ~9 - . (16)

the second row means that there is no the so-called secondary resonance
2]
Our goal consists of constructing an asymptotic periodic solution of (9)-(12)
and (13). The right-hand sides of (9) are

o Pirii ) [(k‘ngi) — (kS) — g/o?)n™)) cos(kat)
k=1
(kzug : — (kS1 — g/oQ)Mé’Z)) sin(kat)],

Py Gk + (kS1 = g/0®)ne)) cos(kat)
k=1

(k) + (k) = g/o®)ple) sin(hot) .

Because of (15), neglecting the higher-order terms, o(e), allows for replacing
g/o?® — g/ 0'%1 and, therefore, amplitudes of the first Fourier harmonics are

(1)

e = Pian(ngy — (S1— g/o%)ny),
& = Pty — (81— g/otnsy), )
&y = Pir11(n é ) + (51 9/011)U4(1¢11)),
€y = P1H11(,uga) + (51— 9/011),“4(12))

Here, €, and €, appear in the front of cosot and sin ot and imply the forcing
components in the Oz direction, but €, and €, correspond to the cosot and
sin ot harmonics along the Oy axis. Because of (14), rotating the Oxy frame
around Oz can always help getting the non-zero first-harmonic forcing com-
ponent along Oz, i.e. €2 + € # 0. Furthermore, the periodicity condition is
defined within to an arbltrary phase shift and one can assume, without loss of
generality, that
€z >0, €& =0. (18)
Henceforth, we follow the Bubnov-Galerking procedure [2] by posing the
lowest-order asymptotic solution component

p11(t) = acos(at)+asin(at) +O(e), r11(t) = beos(at) +bsin(ot) +O(e), (19)

where a,a,b, and b are of O(¢'/3). The second- and third-order generalised
coordinates can be found from (10) and (11), (12), respectively. This gives, in
particular,

pok(t) = sor(a” +a” + b7 + b°)
+ S1k [(a —a? — b + b?) cos(20t) + 2(aa + bb) sin(20t)] + o(€), (20a)
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pgk(t) = Cgk(az +a% - b — 52)
+ e [(a® — @ + b* — b%) cos(20t) + 2(aa@ — bb) sin(20t)| + o(€), (20b)

ror(t) = 2cor(ab + ba)

- o (20c)
+ 2c1y, [(ab — ba) cos(20t) + (ab + ab) sin(20t)] + o(e),
where
sor = & <d10,k:2_ d8,k:> R d10i192+ d8,lc7 o = T
0k 2(05, —4) o @1)
Cok = % <d9’k__2 d7’k> , Clk = 70[9’_]6; d7’k, 0ok = T2
a5 2(635;, — 4) o

Substituting (19) and (20) into (9) and gathering the first harmonic terms,
cosot and sinot, lead to the solvability (secular) equations

@©: a[(6%, — 1)+ mi(a® + a® + b?) + mgb?| + (m1 — m3)abb = e,
@ : b[011—1)+m1(b2+b2+a ) + msa?] + (my — mg)aab = €, (22)
®: a[(6%, — 1)+ mi(a® +a? + b?) + mgb?] + (my — mgz)abb = 0,
@ : b[(67 — 1) + my(b* + b* + a?) + mga?] + (my — mg3)aab = &,

with respect to a, @, b and b. The coefficients m; and ms are computed by the
formulas

::_7d1+-§:[qj( dy) — 2dg§

(23a)
+ 81]‘ (%dg) — 2déj)) — Sojdéj) — Cojdgj):|,
IT . .
ms3 = %dl — 2d2 + Z [Clj <%dgj) — Gdg))
j=1 (23b)

+ Slj ( 1d(]) -+ 2d(])) — Sojdgj) + ngdéj)] .

After finding a,@,b and b from (22), the second- and third-order components
of the asymptotic solution are fully determined. Coefficients in this solution as
well as my and mg in (22) are functions of h, r1 and the forcing frequency o.
Utilising (15) shows that the latter dependence can be neglected by substituting
o = 011 into the corresponding expressions. Dependence on o remains only in
the (62, — 1)-quantity of (22).

Calculations show that (16) is fulfilled for fairy deep liquid depths, 1.2 < h,
and the conditions

O(l) =my <0 and O(l) =mj;+m3>0 (24)

are satisfied. This means, in particular, that ms > 0 and m1 # mas.

One can follow [2] to study the stability of the asymptotic solution by using
the linear stability analysis and the multi-timing technique. For this purpose,
we introduce the slowly varying time 7 = €*/3¢t/2 (the order €*/3 is chosen to
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match the lowest asymptotic terms in the multi-timing technique), the Moiseev
detuning (15), and express the infinitesimally perturbed solution

p11 = (a+ a(7)) cosot + (a+ a(r)) sin ot + o(e'/?),

- 25
r11 = (b+ B(1)) cosat + (b+ﬁ(7’))sinat—|—o(61/3), (25)

where a,a, b and b are known and «, &, 3 and 3 are their relative perturbations
depending on 7. Inserting (25) into the Narimanov-Moiseev modal equations,
gathering terms of the lowest asymptotic order and keeping linear terms in
a,a, 3 and 3 lead to the following linear system of ordinary differential equa-
tions

dc
i = 2
I +Cc =0, (26)
where ¢ = (a, @, 3,3)T and the matrix C has the elements
c11 = —[2a@amy + (my — mg) bb);
Cl2 = —[(5’%1 — 1) + ml(az + 3a> + b2) + ms 62],
c13 = —[2abmy + (my1 — m3) ab]; c14 = —[2abms + (my — m3) ab],

co1 = (5%1 — 1) + m1(3a2 + a’ + 1_72) + ms3 52; coo = 2aamq + (m1 — mg) bb,
a3 = 2abmgz + (m1 — m3) ab; coq = 2abmy + (my — mg3) ab,
c31 = 2mqab+ (m1 —m3) ba; c3p = 2mgab+ (my — mg3) ab,

33 = 2m1 bb + (m1 — m3) aa; c3q = (6%1 —-1)+ ml(b2 +3b% + a2) + mga’,

ca1 = —[2mgab + (m1 —ma) abl; ca2 = —[2abmy + (m1 —mg) ab),
ca3 = —[(63 — 1) + mi (302 + B + @?) + my a?);
Cqq = —[ngml + (ml - m3) aa]

The instability of the asymptotic solution can be evaluated by studying (26).
Its fundamental solution depends on the eigenvalue problem det[A\E + C] = 0,
where E is the identity matrix. Computations give the following characteristic
polynomial

M4 e\ +¢p =0, (27)

where ¢q is the determinant of C and c¢; is a complicated function of the elements
of C. As discussed in [2], the stability requires cg > 0,¢; > 0 and ¢ — 4¢g > 0.
When at least one of the inequalities is not fulfilled, the steady-state wave
regime associated with the dominant amplitudes a,a, b and b is not stable.

4. CLASSIFICATION OF STEADY-STATE (PERIODIC) SOLUTIONS
The steady-state (periodic) sloshing can be classified by analysing the lowest-
order component (19) which gives the dominant wave contribution. The lowest-
order amplitudes a,a,b and b follow from the secular system (22) which does
not involve the super-harmonic components from (13). This means that the
resonant sloshing regimes are, within to the higher-order terms, the same as if
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the tank performs the artificial horizontal harmonic motions

(k11P1) m1(t) = €, cos at, (2)
(k11 P1) m2(t) = €y cosat + eysinoat, na(t) =ns5(t) =0

that define, by accounting for (18), either longitudinal (¢, = 0) or elliptic
(rotary) (e, # 0) harmonic tank motion. The latter occurs along the trajectory

2 =2 _
GTe 2, 2 € 2
%as +y - 26—yxy =€, (29)
x x

For the longitudinal tank motions (e, = 0), one can rotate the Ozy frame
around Oz to get the artificial tank vibrations by (28) occurring along the
Ozx axis. The forcing amplitudes become then ¢, > 0 and €, = ¢, = 0 and
the secular system (22) has only two analytical solutions well known from, for
example, [4]. The first solution implies the so-called planar steady-state wave
(@ =0b=b=0). The nonzero lowest-order amplitude parameter a is governed
by

a [(6’%1 -1)+ mlaQ] = €. (30)

This solution is characterised by the zero transverse wave component, namely,
Tmi(t) = 0. The second solution corresponds to swirling whose longitudinal
(a # 0) and transverse (b # 0) amplitude parameters come from the system

m
a[(@} = 1)+ (m1 +mg)a’] = ———,,
=2 2 L ms (31)
2 — (o —1) +maa > 0.
my

Why the solution @ = b = 0, ab # 0 is called swirling is discussed in [4].

When the artificial horizontal harmonic motions occur along an elliptic tra-
jectory (e, # 0), rotating the Ozy frame around Oz helps superposing Oz with
the major axis of the ellipse. This new position of the Ozy frame implies that

€ =0, 0<e, <€ #0 (32)
n (22). The following equalities
aD-a-®=0b-@Q—-b-

= (mq — ma)[aa(b? — b2) + bb(a2 — a%)] = Ge, = bey, (33a)

bO—a@®=a-®—-b-O

= (mq — mg)[bd(l_)2 — az) + I_)a(c_z2 — bz)] = be, = aey, (33b)

b-@®—a-@ = (m —m3)(a* —b*)(ab — ab) = be, — ae, (33c)

can then be treated as solvability conditions of (22).

When 0 < ¢y < €, the homogeneous linear system (33a)—(33b) with respect
to @ and b has only trivial solution @ = b = 0. Equation (33c) shows then
that ab # 0 (and a # b) and, therefore, the only nonzero amplitudes a and b
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always determine swirling. The amplitudes are governed by (22) which can be
rewritten in the equivalent form

b [(ml — m3)b® + (% —(m1 — mg)aQ)} = €y,

(62, - 1) = % —mya® —m3b?, a#0. (34)
The first equality is a depressed cubic with respect to b whose coefficient at
the linear term is a function of a. The second equality computes the forcing
frequency, /011 (63, —1), as a function of @ and b. A numerical procedure may
suggest varying a in an admissible range, solving the depressed cubic (finding
b = b(a)), and computing /011 as a function a and b = b(a). When solving
the depressed cubic, one should check for the discriminant

3 2
A:—4(E”C—a2> —27<6y> , 0<e <er  (35)
a(my —ms) mp —mg

Cartano’s theorem says that, (i) if A > 0, then there are three distinct real
roots for b, (ii) if A = 0, then the equation has at least one multiple root and
all its roots are real, and (iii) if A < 0, then the equation has one real root and
two nonreal complex conjugate roots.

When considering A as a function of a, a simple analysis shows that, if
mj — mg < 0, there exists only a negative real root a, < 0 of A(a,) = 0 so
that A(a) > 0 for a < a, and 0 < a (three real solutions) but A(a) < 0 for
ax < a < 0 (a unique real solution). Analogously, if m; —mg > 0, there exists
only a positive real root a, > 0 of A(as) = 0 so that A(a) > 0 for a < 0 and
a, < abut A(a) <0 for 0 < a < a,.

When €, = 0, ¢, = €, # 0 (artificial rotary harmonic motions of the tank),
equations (33a) and (33b) are unable to derive that @ and b are zeros but
deduce, instead, @ = b = c. The latter makes 3) = (@ in (22). By taking the
sum (O + @ and the difference @) — @), we transform (22) to the form

(a+b){(a%) — 1) +ma(a® + b?)+
+(3my — m3)c? — (m1 — m3)ab} = 2,

(a—b)[(67, — 1) + mi(a® + b))+ (36)
+(my +mg)c + (mq1 — mg)ab] =0,

c [(5%1 — 1) +my(a® + b2) + (mq +m3)c? + (my — mg)ab] =0,

in which the two homogeneous equations contain identical expressions in the
square bracket. These expressions are multiplied by (a —b) and ¢, respectively.

We adopt ay = 3(a+b),a_ = 1(a —b) instead of a and b. When both a_
and c are zeros, we arrive at

a=b=0, ay=a=0>b, a;[(6};—1)+ (m1+my)at] =¢ (37)

which imply rotary (circular swirling) waves characterised by equal longitu-
dinal (along Ox) and transverse (along Oy) amplitude components, p11(t) =
a4 cos(at) +O(e), r11(t) = ay sin(ot) + O(e). The rotary waves are co-directed
with the rotary tank motion.
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When either a— # 0 or ¢ # 0, the square bracket expression of (36) must be
zero. This makes the second and third equalities of (36) automatically satisfied
and, therefore, three amplitude parameters a1, a_ and ¢ should be found from
the two equalities

=2 2 my + ms
at [(071 — 1) +4mya? | = ————¢,
+ [( 11 ) 1 Jr] 2(m1 — mg) (38)
- _(5%1 — 1) + (3my — mz)a? S0,
(m1 + mg)
which define the following lowest-order steady-state solution component
p11(t) = (ay + a_) cos(at) + csin(at) + O(e), .

r11(t) = (a4 — a—) sin(ot) + ccos(at) + O(e).

The amplitude a4 can be found from the first equation of (38) but the am-
plitudes a_ and c¢ are not uniquely defined. Only the sum a? + ¢ can be
found for any fixed pair (53;,a4) from the first cubic equation. This defines
a manifold ay = ay(o/o11),a% + ¢ = F(0/o11,a4) in the four-dimensional
space (0/011,a4,a—,c). Numerical analysis of the solution (39) shows that it
is unstable on the aforementioned manifold due to c¢g = 0 in the characteristic
equation (27).

When ¢ = 0, system (38) defines the three-dimensional response curves a4 =
at(o/o11), a— = a_(o/o11) which implies the solution

p11(t) = (a4 + a—) cos(at) + O(e), rii(t) = (ay —a_)sin(at) + O(e) (40)

which has the same form as for the elliptically-excited swirling with €, < €;.

5. CONCLUSIONS

By using the Narimanov-Moiseev type modal theory [7], the steady-state
(periodic) resonant waves in an upright circular cylindrical tank with a fairly
deep liquid depth are analysed when the tank performs an arbitrary small-
magnitude sway-surge-pitch-roll periodic motion. The forcing frequency is close
to the lowest natural sloshing frequency. The analysis shows that, within to
the higher-order terms, the resonant sloshing is the same as that due to either
longitudinal or elliptic/rotary horizontal harmonic tank motions. The longitu-
dinal case is well known from the literature. Planar (in the excitation plane)
and swirling waves were established and described. In the present paper, the
cases of elliptic and rotary excitations are studied to show that they always
lead to swirling, which can be either co- or counter-directed with respect to the
forcing direction. The co-directed wave converts then to the rotary wave regime
when the elliptic forcing tends to the rotary one. The effective frequency range
of the stable counter-directed swirling becomes unstable in this limit case.

The second author acknowledges the financial support of the Centre of Au-
tonomous Marine Operations and Systems (AMOS) whose main sponsor is the

Norwegian Research Council (Project number 225254-AMOS).
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THE BEST M-TERM TRIGONOMETRIC APPROXIMATIONS
OF CLASSES OF (¢, 5)-DIFFERENTIABLE PERIODIC

MULTIVARIATE FUNCTIONS IN THE SPACE Lgl

K. V.SHval

PE3IOME. BceranoBiieHO OpsaikoBi OIiHKY HafKpamux M —4IeHHUX TPUTOHO-
MeTPUYHUAX HAOJIMKEeHb MepioguIHmX (QyHKINI Dg’ y mpoctopi Lg, 1 < g < 2.
BukopucroByioun ozep:kaHi pe3yabTaTh, BCTAHOBJIEHO IOPSIKOBI CITiBBiIHO-
MIEHHS IUX BEJINTHH [T KJIaciB Lg,r

ABSTRACT. Obtained here are the order estimates of the best M—term
trigonometric approximations of periodic functions DZ in the space Lg,1 <
q < 2. The results are applied to establish the order estimates of the same
quantities for classes Lg,r

1. INTRODUCTION
Let us introduce all necessary denotations and give a definition of the ap-
proximative characteristic to investigate.
Let Ly (mq), 1 < g < 00, — be the space of functions f, 2r—periodic by each
variable, with the finite norm

1l = 7]l = (<2w>—d / If(fr)l"dw) " l<g<os,

[l e ra) = [[flloo = esssup | ()],

xTETY

where x = (x1,...,24) is the element of Euclidean space R?, d > 1, and mg =
d

[I [—m, 7). Suppose further that for the functions f € Ly (m4) the condition
j=1

™
/f(x)da:j =0, j=1,d,

holds.

Let us consider the Fourier series for the function f € Ly (7q)

S Fkyeten,

kezd

Key words. The best trigonometric approximations; Bernoulli kernel; order estimates;
Fourier series.

83



K.V.SHVAI

where

F (k) = (@m) / (e 160 gt

are the Fourier coefficients of the function f, (k,x) = kix1 + ... + kqzg.
Let v;(-) # 0 be arbitrary functions of the natural argument, §; € R, j =
1,d. Assume that the series

where Z4 = (Z\ {0})?, are the Fourier series of some summable on 7y function.
Following O. I. Stepanets [1, c. 25|, (see also [2, c¢. 132]), let us call it (¢, 5)—

derivative of the function f and denote it as fg’ . A set of functions f, for which
(1, B)—derivatives exist, is denoted as LE.

If the condition Hfg()“ <1, 1 <p<oo, holds then f € Lgp.
p 9.

The article deals with the best M—term trigonometric approximations of the
functions Dg whose Fourier series are written in a form

d .
S TT v (g Fismtseiteo)
kezdj=1
Note that if ¢; (|k;]) = |k;| ™7, r; > 0, k; € Z\{0}, j = 1,d, D} is a multi-
variate analogue of the Bernoulli kernel (see, e.g., [3, c. 31]).
Each of the functions f € LZ , can be presented in a form of convolution

f@) = (¢4 DY) (2) = 2m)* [ ol - DD} (00, (1)
Tq
where [|¢|l, <1, and the function ¢(-) almost everywhere coincides with fg).

As an apparatus of the approximation we will use trigonometric polynomials
of the form
P(Oa;z) = Y epe'™,
kel

where 0/ is an arbitrary set of M different vectors k = (ki, ... kq) and ¢ € C.
For f € Ly (mq), 1 < g < 00, the quantity

ex(f)g=int in |£() = P (@) o )

is called the best M—term trigonometric approximation of the function f. And
the quantity

exr(fg=inf [ f() = > Fk)e®] (3)

0
M kE@]u q

84



THE BEST M-TERM TRIGONOMETRIC APPROXIMATIONS ...

is called the best orthogonal trigonometric approximation of the function f. It
is obvious that the relation

en(f), < er(f)y 1<q< o0, (4)
holds. If F' C L, is some functional class then denote
em(F)q = supen(f)g (5)
fer
and, accordingly,
ear(F)q = sup exz(f)q. (6)
feF

The quantity (2) appeared at first in the paper of S. B. Stechkin [4] in
formulating an absolute convergence criterion for orthogonal series. Later the
quantity (5) for classes of periodic functions of one and many variables was
investigated in the papers of V. N. Temlyakov |3], [5-7|, E. S. Belinskii [8-10,12],
A. S. Romanyuk [13-20], A. S. Fedorenko [21-23], N. M. Konsevych [24, 25],
V. V. Shkapa [26] and others.

The quantities (3) and (6) were considered by E. S. Belinskii (see, e.g., [12]),
and later their exploration was further developed in the works of many authors.
The detailed bibliography can be found in [20,27].

The results of the article are formulated in order-relation terms. So, further
for the quantities A and B under the notation A < B we will understand the
existance of a positive constant C; such that A < CyB. If the conditions A < B
and B < A hold then we write A < B. All constants in order relations can
depend only on the parameters that are in the definitions of class and metric

in which the approximation is carried out, and on the dimension of the space
R,

2. AUXILIARY STATEMENTS
To formulate and prove the results of the article some notations and auxiliary
statements will be needed.
Let D be a set of functions 9(-) of natural argument that satisfy the condi-
tions
1) ¥(-) are positive and nonincreasing;

l
2) 3M > 0 such that Vi € N ) < M.

Note that to the indicated set of functions belong, in particular, functions
(k) = K7, w(lk]) = [kl 0 (k[ + 1), r > 0, k € Z\{0}, a € R and
others.

Further, let us put into conformity to each vector s = (51,---,84), 85 €
NU{O},j: 1,d, a set
:{k: ki,... kd [287 ] ‘k|<23ﬂ ':1,d},

where [] is the whole part, and for f € L; ( ) put
kep(s )

85



K.V.SHVAI

where f(k) are the Fourier coefficients of this function. Note that the unifica-
tions of "blocks" p(s), (s,1) =81+ ...+ 84 <n, n €N, form a set @, that is
called "step-hyperbolic cross" [3, c. 7|. The quantity of points in this set is of
the order 2"n?~! [3, c. 70].
The following propositions hold.
Proposition 7. [27] Let 1 < g < o0, ¥; € D, 8; € R, j = 1,d, and, besides,
1
there exists € > 0 such that 1; (|k;|) \kj|175+5 are nonincreasing. Then for all

natural M and n that satisfy the condition M = 2"n%t the following relations
hold

q)(n)Ml‘5(logM)Z(dfl)(%%) < et (D‘ﬁ”) <
q
<<\Il(n)M17%(logM)2(d_l)( ;)7
@(n)Ml_%(logM)Q(dil)Gi%) <<6M<Lg ) <

1 1
< ()M (log a2V (E3)
where

®(n) = min Hw] 2%), U(n)= max Hw 2%7).

(s,1) —n (s 1)—n

Proposition 8. [3, c. 28] For an  arbitrary  function f € Ly(mq),
1< qg<p<oo, holds

”f”g > Z 10 (f, )HZ ] 2(5,1)(%_%)?

To make further speculations we need one more relation which follows from
a more general result of S. N. Nikolskii (see, e.g., |28, c. 25]).

Proposition 9. For all functions f € Ly(mq),1 < g < oo, holds

em(f), = mf sup /f

]\{ PELJ‘ 0M

1P| <1

where L*(0ar) is a set of functions that is orthogonal to the subset of trigono-
metric polynomials with the numbers of harmonics from the set 0,7, and %—l—%
1.

3. THE BEST M-TERM TRIGONOMETRIC APPROXIMATIONS
The following statement holds.

Theorem 1. Let 1 < ¢ <2, 9; € D, Bj € R, j = 1,d, and, besides, there

1
exists € > 0 such that v; (|k;|) ]kj\1_5+€ are nonincreasing. Then for arbitrary
natural M and n that satisfy condition M = 2"n*"1, we have the estimate

()M (log M)2 D (72) « ey (Dg’) <
q
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< W(n)M~F (log )PV (i73) (7)
where
d d
%(n) = min [T ¢ @), ¥(n) = max [Tv; ).
SN ST

Proof. The upper estimate follows from (4) and proposition 7, that is
emMm (Dg) < 6*/[ (Dg) <
q q

(it
< ‘P(n)Ml_é(logM)Q(d 1)(‘1 2>, I1<g<2 (8)
Let us go to the establishment of the lower estimate in (7). For the given
M let us choose n so that the relation M =< 2"n?"! holds. Note that the

consideration of the case 8 = 0 is sufficient to receive a corresponding estimate.
Let

d
DY (z) = Dz)p(a:) = 2dz Z H”L/Jj (kj) cos kjxj,
s kept(s)j=1
where pT(s) = {k = (k1,...,ka) : [2971] <k;j <2%, j=1,d}.By S we de-

note a set of vectors s € N, such that (s,1) = n and [6a N pT(s)] < 5 [pT ()|
hold. Then, using proposition 8 (if p = 2), we get

h=|[D50) =P o) >

5, (Dw(.) — PO .)) HZ : 2(8’1)(531)‘1) >

> <§s:

>>2”(%*5) Z (55<Dw(')_P(0M§'))HZ 7>>

(s,1)=n

1
a9\ q

> 2050 (] S0 (000 - P )

s€S ||kept(s) 9

Further, according to the Parseval equality, we can write

Q|

2\ 5

d
1 2"(570) S0 X ([ TTwky) >

seS \kept(s) \Jj=1

Q=

q

d
s 9"(57%) > (S [Tos@9)| 292 ] >
sesS :nj:1

s 2" o) (2"5;5[); >
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1 1 n d—1 1) d-1
> "D om)2ins = om)2(71)n% 9)
So, taking into account that M =< 2"n?~! from (9) we receive

1

em (Dg)q > @(n)Ml_%(log M)Q(d_l)(g_a, l<g<2. (10)

The lower estimate is proven. The relation (7) follows from (8) and (10).
The theorem is proven.

RenE'k 2. In the case ¥ (|kj|) = |k;| "7, r; >1— %, 1<¢q<2, k; € Z\{0},
Jj =1,d, corresponding results were obtained by E. S. Belinskii [8, 9].

Further, by using the lower estimate established in theorem 1, we get es-
timates of the best M—term trigonometric approximations for the classes of
functions Lg 1

The theorem holds.

Theorem 2. Let 1 < q < 2, 1; € D, 3; € R, j = 1,d, and, besides, there

1
exists € > 0 such that v; (|k;|) |k:j|1_5—~_‘E are nonincreasing. Then for arbitrary
natural M and n that satisfy condition M = 2"n%=1, the relation holds

11

1 1
< \I/(n)Ml_é(log M)Q(d_l)(g_f).
Proof. The upper estimate follows from the relation (4) and the already

known result for the best orthogonal trigonometric approximations. Given
proposition 7 we get

eMm <Lz’1>q < ety (szl)q <

1 — i_1
< W) M og M2 IE) 1 < g <o
Let us obtain the lower estimate. By virtue of proposition 9 and (1) we can
write

em (ng) = sup ienf sup f(m)Pg(x)dx =
T rerLy, M PyeLt(Om), |7
I1PY <1

= sup inf  sup / (277)_d/g0(t)D§(az—t)dt Pg’(x)dx .
el <108 prepigy), k4

1PY <1

Td

Now we are going to verify the conditions of the Fubini theorem (see, e.g., [30, c.
336]) for an integral on the right side of (12). Let us consider the integral

/ (1) / DY — )P (n)da | d. (13)

Td
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Since Dg) €Ly, 1 <qg<oo,and Pg’ € Ly, then using the Holder’s inequality
we get

[ pite-vriee < o], 4],

and then for an arbltrary function ¢ € Ly the integral (13) is convergent.
After changing the order of integration in (12) we receive

em <Lg’1)q = sup inf  sup /go(t)x

0
||‘10H1<1 M PgELL(GA[),ﬂ_d

1Py [l <1

x | (2m)~¢ / DY(x — )P} (v)dw | dt.

Using first the Holder’s inequality (if p = 1, p’ = o0) and then proposition 9
we get

M(LZJ =inf  sup (2m)~ D¢ (x —t)P w( ydz|| >
’ 01” P¢ELL OM
[e.9]
HP;"HQ/Q
>inf  sup (2m)~ Dw (x —1t)P, ( )dx| =

O PYeL-(0u),
I1PY [l <1

_ —d ¥
= (2m) %enm (Dﬁ>q.
By virtue of theorem 7 we can write
1 _ 1_1
en (Lgl) > @(n)M' 1 (log M)* oG 2), l<g<2.
/g
The lower estimate and consequently theorem 2 is proven.

Remark 3. The corresponding statement if ¢; (|k;]) = |k;|~"7, r; > 1 — %,
1< q<2, kj € Z\{0}, j =1,d, was formulated by A.S. Romanyuk [17].

4. CONCLUSIONS

The paper continues investigation of the approximative characteristics that
where considered earlier by Temlyakov V. N., Stepanets A.I., Romanyuk A.S.
and other mathematicians. Many results for the best M term and orthogonal
trigonometric approximations of classes of functions By 5, W5, H are already
obtained. Note that the great attention was paid to classes of functlons of one
variable. Nevertheless the problem of estimation of the best M-term approxi-
mations of classes L?l of multivariate (1, #)-differentiable functions remained
unsolved until now. We have obtained order relations of the quantities eps(f)q
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for the concrete functions Dg, that are of interest themselves. And besides, by
using established results, we have written down the order relations for classes
LY.

Bl

10.

11.

12.

13.

14.

15.

16.

17.

18.

90

BIBLIOGRAPHY
Stepanets A. 1. Classification and approximation of periodic functions / A.I. Stepanets. —
Kyiv: Nauk. Dumka, 1987. (in Russian).
Stepanets A.I. Methods of the theory of approximation /A.IL Stepanets.— Kyiv: Inst.
Math. — 2002. - Vol. 40. (in Russian).
Temlyakov V. N. Approximation of functions with bounded mixed derivative / V. N. Tem-
lyakov // Trudy MIAN.— 1986.— Vol. 178, Ne2.— P.3-113. (in Russian).
Stechkin S.B. On absolute convergence of orthogonal series /S.B.Stechkin //Dokl.
AN SSSR. - 1955.— Vol. 102, Ne1.— P. 37-40. (in Russian).
Temlyakov V.N. On the approximation of periodic functions of several variables
/ V.N. Temlyakov //Dokl. AN SSSR. - 1984. - Vol. 279, Ne2. — P. 301-305. (in Russian).
Temlyakov V.N. Approximation of periodic functions of several variables by trigono-
metric polynomials, and widths of some classes of functions /V.N. Temlyakov //Izv.
AN SSSR. - 1985. - Vol. 49, Ne5. - P. 986-1030. (in Russian).
Temlyakov V. N. Approximation of periodic functions /V.N. Temlyakov.—- New-York:
Nove Science Publichers, Inc., 1993.
Belinskii E. S. Approximation of periodic functions by a "floating" system of exponentials,
and trigonometric widths / E. S. Belinskii // Research on the theory of functions of many
real variables. Yaroslavl’.— 1984.— P.10-24. (in Russian).
Belinskii E. S. Approximation of periodic functions of several variables by a "floating"
system of exponentials, and trigonometric widths /E.S.Belinskii //Dokl. AN SSSR.—
1985. - Vol. 284. — P.1294-1297. (in Russian).
Belinskii E. S. Approximation by a "floating" system of exponentials on classes of smooth
periodic functions /E.S. Belinskii // Matem. Sb.— 1987.— Vol. 132.— P.20-27. (in Rus-
sian).
Belinskii E. S. Approximation by a "floating" system of exponentials on classes of peri-
odic smooth functions /E.S. Belinskii // Trudy MIAN. - 1987. - Vol. 180.— P. 46-47. (in
Russian).
Belinskii E. S. Approximation by a "floating" system of exponentials on classes of periodic
functions with bounded mixed derivative /E.S.Belinskii // Research on the theory of
functions of many real variables. Yaroslavl’.— 1988.— P.16-33. (in Russian).
Romanyuk A. S. Inequalities of Bohr-Favard type, and the best M-term approximations
of classes Lg,p in the space L, /A.S.Romanyuk //On some problems of the theory of
approximation of functions, and their applications. Kyiv.— 1988.— P. 98-108. (in Russian).
Romanyuk A. S. The best trigonometric and bilinear approximations of functions of many
variables on classes B}, 4. I / A.S. Romanyuk // Ukrainian Math. - 1992. - Vol. 44, Ne11. -
P.1535-1547. (in Russian).
Romanyuk A.S. On the best trigonometric approximations and Kolmogorov widths of
Besov classes of multivariate functions /A.S.Romanyuk // Ukrainian Math.— 1993.—
Vol. 45, Ne5. - P.663-675. (in Russian).
Romanyuk A. S. The best trigonometric and bilinear approximations of functions of many
variables on classes By, . II / A.S. Romanyuk // Ukrainian Math. - 1993. - Vol. 45, Ne 10. -
P.1411-1423. (in Russian).
Romanyuk A.S. On the best trigonometric and bilinear approximations of Besov classes
of multivariate functions /A.S.Romanyuk //Ukrainian Math.— 1995.— Vol. 47, Ne8.—
P.1097-1111. (in Russian).
Romanyuk A.S. The best M-therm trigonometric approximations of Besov classes of
periodic functions of several variables / A.S. Romanyuk //Izv. RAN. Ser. Mat. - 2003.—
Vol. 67, Ne2. - P.61-100. (in Russian).



THE BEST M-TERM TRIGONOMETRIC APPROXIMATIONS ...

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Romanyuk A.S. The best trigonometric approximations of classes of periodic multivari-
ate functions in the uniform metric / A. S. Romanyuk // Mat. Zametki. — 2007. - Vol. 82,
Ne2.— P.247-261. (in Russian).

Romanyuk A.S. Approximative characteristics of classes of periodic multivariate func-
tions / A.S. Romanyuk. - Kyiv: Inst. Math. NAN Ukr. - 2012. - Vol. 93. (in Ukrainian).

Fedorenko A.S. The best m-term trigonometric approximations of classes of functions
Lg’p / A.S.Fedorenko // Fourier series: theory and applications. Kyiv. Inst. Math NAN
Ukr.— 1998. - P.356-364. (in Russian).

Fedorenko A.S. On the best m-term trigonometric and orthogonal trigonometric approxi-
mations of classes of functions Lgﬁp / A.S.Fedorenko // Ukrainian Math. - 1999. - Vol. 51,
Ne12.— P.1719-1721. (in Ukrainian).

Fedorenko A.S. The best m-term trigonometric and orthogonal trigonometric approx-
imations of classes of functions Lf@byp / A.S.Fedorenko //Dopovidi NAN Ukr.— 2000. -
Vol. 7.— P.27-32. (in Ukrainian).

Konsevych N. M. Approximations of Lgm classes of multivariate functions by trigonomet-
ric polynomials in the uniform metrics / N. M. Konsevych // Theory of approximation of
functions, and its applications. Inst. Math. — 2000. — Vol. 31. - P. 260-268. (in Ukrainian).
Konsevych N. M. Estimates of the best M-term trigonometric approximations of classes
Lg’p of periodic multivariate functions in the space L, /N.M. Konsevych // Ukrainian
Math. - 2000. - Vol. 52, Ne 7. - P.898-907. (in Ukrainian).

Shkapa V. V. Estimates of the best m-term and orthogonal trigonometric approximations
of classes of functions L?,p in the uniform metrics / V. V. Shkapa // Differential equations
and related questions. Kyiv. Inst. Math. NAN Ukr. - 2014.- Vol. 11, Ne2.— P.305-317.
(in Ukrainian).

Shvai K. V. Estimates of the best orthogonal trigonometric approximations of the gen-
eralized multivariate analogues of Bernoulli kernels and classes Lg"l in the space L4
/K. V.Shvai // Differential equations and related questions of analysis. Kyiv. Inst. Math.
NAN Ukr. - 2016. - Vol. 13, Ne1. (in Ukrainian). (in print).

Korneichuk N. P. Extreme problems of the theory of approximations / N. P. Korneichuk. —
Moscow: Nauka, 1976. (in Russian).

Galeev E. M. Order estimates of derivatives of the multidimensional periodic Dirichlet a-
kernel in a mixed norm /E. M. Galeev // Matem. Sbh.— 1982. - Vol. 117 (159). - P. 32-43.
(in Russian).

NatansonI.P. Theory of functions of real variable /I.P.Natanson.— Moscow: Nauka,
1974. (in Russian).

K. V.SHvAr,

INSTITUTE OF MATHEMATICS,

NATIONAL ACADEMY OF SCIENCES,

3, TERESCHENKIVS'KA STR., Ky1v, 01004, UKRAINE;

Received 11.05.2016

91



2Kypuasn 064uc/oBaabHol 2016 Journal of Computational
Ta MPUKJIQTHOI MATEMATHKA Ne 2 (122) & Applied Mathematics

UDC 519.642

ON OPTIMAL SELECTION OF GALERKIN’S
INFORMATION FOR SOLVING SEVERELY
ILL-POSED PROBLEMS

S.G.SoLoDKY, G. L. MYLEIKO

PE3IOME. [lns po3B’si3yBaHHS €KCIIOHEHIIHHO HEKOPEKTHUX 3374 PO3P00-
JIEHO €KOHOMIYHMI MPOEKI[IHII MeTO, IKUil MOJIArae y KOMOIHyBaHHI CTaH-
JapTHOro Meroma TixomoBa Ta mpunnmny HeB'si3ku Mopozosa. llpum mpomy
BCTAHOBJIEHO, IO 3AIIPOIIOHOBAHUI aIrOPUTM 3a0e3Iedy€e ONTUMAJILHUN TOPsi-
JOK iH(OpMAIHHOT CKIAIHOCTI Ha KJIACI JTOCTIIKYBAHUX 330a4.

ABSTRACT. An economical projection method is developed for solving expo-
nentially ill-posed problems. The method consist in combination of the stan-
dard Tikhonov method and the Morozov discrepancy principle. Herewith, it
is established that this approach provides optimal order of information com-
plexity on the class of problems under consideration.

1. INTRODUCTION

The implicit (a posteriori) choice of the regularization parameter without any
information on smoothness of a desired solution is usually assume to be the key
issue in the theory of ill-posed problems. It is well-known, there are a lot of
different rules of a regularization parameter choice among them we mention
discrepancy principle [6,8,9,20], Gfrerer’s method [3,19], the monotone error
rule |27|, the balancing principle [2,4, 14, 25| which sometimes is called the
Lepskij principle. Nowadays, it is sure the discrepancy principle is the most
common one.

In the present paper that is extension of the research started in [23, 24]
the authors develop economical projection method for effective solving severely
ill-posed problems. As a regularization the standard Tikhonov method is ap-
plied. Unlike to above-mentioned works, the regularization parameter is chosen
a posteriori, namely, according with the balancing principle. Moreover, it is es-
tablished that a proposed strategy maintains optimal oder accuracy on the
class of problems under consideration, as well as provides oder estimates of the
information complexity.

The organization of the material is as follows: in Section 2 we give the state-
ment of the problem. Further in Section 3 the regularization and discretization
methods are described. Auxiliary statements and facts are in Section 4. An
algorithm of the regularization parameter choice by discrepancy principle is

Key words. Severely ill-posed problems; minimal radius of Galerkin information; dis-
crapency principle; information complexity.
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presented in Section 5. The combination of proposed methods allows to estab-
lished optimal order accuracy for solving equations from the class of problems
under research. Finally, in Section 6, the authors establish the main result.
Namely, the order estimate for the minimal radius of the Galerkin information
is obtained.

2. STATEMENT OF THE PROBLEM
Following |23| we present the rough statement of the problem. Consider
Fredholm’s integral equation of the first kind

Aa(t) = £(0), te 0,1, 1)
with
1
= / a(t T)dr, (2)
0
acting continuously in Ly = L2(0,1). Suppose that Range(A) is not closed in

Ly and f € Range(A).

We also assume that a perturbation fs € Lo : ||f — fs5]| <0, 0 >0 is given
instead of the right-hand side of the equation (1).

The problem (1) is regarded as severely ill-posed problem if its solution has
substantially worse smoothness than a kernel a(-, 7) In such case it is nature to
assume that an exact solutions satisfies some logarithmic source condition, in
other words it belongs to the set

My(A) = {u:u=lnP(A"A) o, o] < p},

where p, p are some positive parameters and A* is adjoined operator to A. Such
problems are called exponentially ill-posed (see e.g. [5]).

Note, that the exact information about smoothness, namely, the parameter
p, is usually not available by practical experiment. For this reason the set

U M4 (3)

p€(07p1]

is considered in place of M,(A). Here p1 < oo is an upper bound for possible
values of p.

Within the framework of our researches we construct an approximation to
the exact solution 2 (1), which has minimal norm in Lo and belongs to the set
M(A). From now on, we assume that a parameter p is unknown.

Let {e;}°, be some orthonormal basis in Lg, and let P, denotes the orthog-
onal projection onto span{es,ea, ..., en}

m

Pup(t) = Y (g ci)eild).

=1

Consider the following class of operators (2):

o0
H = {A: A <q0, Y @dn¥m® <Al rs>0, (4)
n+m=1
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anm —/ / a(t, T)en (T)drdt,

Y < e_%,*y = (v0;71), n =1if n = 0 and n = n otherwise.
If the kernel a(t,7) of A has mixed partial derivatives and the inequalities

O tia(t; T 2
/ / [ ET ] dtdt < o0
hold foralli = 0,1,...,7r,5 =0,1,..., s then it is known (see e.g. [16]), A € HY*
for some v = (70,71)-

From now on, class of equations (1) with operators belonging to Hy® (4)
and solutions from M (A) (3) will be denoted by (Hy®, M(A)). In the present
paper we concentrate on the study of projection methods for solving equations
belonging to (HY°, M(A)), r>s.

A discretization projection scheme of equations (1) with the perturbed right-
hand side one can define by means of a finite set of the inner products

(Aej’ei)v (Zvj) €, (5)

(fs,ex), kew, w ={i: (7)€}, (6)

where © to be an bounded domain of the coordinate plane [1,00) X [1,00).
The inner products (5), (6) are used to call the Galerkin information about
(1). Here card(€2) is the total number of the inner products (5). In particular,

if Q = [1,n] x [1,m], then one deal with the standard Galerkin discretization
scheme, card(2) = n - m. Researches for various classes of ill-posed problems

where

related to such scheme of discretization were conducted in a number of works
among which we mention [7,17,18].

Definition 11. A projection method of solving (1) can be associated with
any mapping P = P(Q) : Ly — Lo which by the Galerkin information (5),
(6) about (1) provides a correspondence between the right-hand side of the
equation being solved and an element P(Aq)fs € L2, which is a polynomial
by the basis {e;}°; with harmonic numbers from wy := {j: (¢,j) € Q}. This
element is taken as an approximate solution (1).

The error of the method P(Q2) on the class of equations (Hy®, M,(A)) is
defined as

es (H°, M(A),P(Q)) = sup  sup sup |zt — P(Aq) 5.
AeH® zteM(A) fs:llf—fs511<6

The minimal radius of the Galerkin information is given by

R S M(A)) = inf inf S M(A Q)).
o (M M(A) = imf - nf es (P57, M(4), P(D))

This value describes the minimal possible accuracy (among all projection meth-
ods), while the Galerkin information amount are bound. Thus, Ry charac-
terizes information complexity on the class of problems (HY", M(A)).
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It is easy to see, that such studies belong to the range of problems from
Information Based Complexity Theory. The fundamentals of this theory were
introduced in monographs [28,29]. It should be noted that in recent years the
interest to such researches in the light of ill-posed problems is greatly increase.
In the work [18] first economical projection methods for solving moderately ill-
posed problems were constructed. The standard Galerkin scheme was employed
as discretization scheme. But first order estimates for complexity of moderately
ill-posed problems were obtained in [16,21,22]. The authors point to the fact
that optimal orders of such values are achieved under a modified Galerkin
scheme that is called hyperbolic cross. The complexity of severely ill-posed
problems began to be study relatively recently. These researches are highlighted
in the series of works, we mention [7,23,24].

In the present paper as opposite to above-mentioned one, an economical
projection scheme with a posteriori rule of regularization parameter choice will
be developed for solving severely ill-posed problems.

3. REGULARIZATION AND DISCRETIZATION STRATEGIES
To guarantee stable approximations we apply the standard Tikhonov method.
By means of this method the rugularized solution x,, is defined as the solution
of the variation problem

Lo(x) = || Az — f5|* + aflz|* — min. (7)

For a numerical realization of the standard Tikhonov method it is necessary to
carry out all computations with finite amount of input data. For that reason
the variation problem (7) is replaced by following

Ion(x) = [ Apz = f5) + a|z]|* — min,

where A, is some operator of the finite rank.

The idea to apply the hyperbolic cross to operator equations of the second
kind belongs to S.V. Pereverzev and implements in the series of works (see
e.g. [10-13]). The efficiency of the hyperbolic cross for ill-posed problems has
been demonstrated in [15,16,23]. Within the framework of our researches we
apply a projection scheme with 2 = I'¢, where

2n
T = {1} x [1;22] [ J @71 24) x [1;2077)9) ¢ [1;227] x [1;2°7]  (8)
k=1
is a hyperbolic cross on the coordinate plane by the basis {e;}°; involved in
the definition of the class HY®. Here for r > s the parameter a is an arbitrary
real number such that 1 < a < %, and for a = 1 we set 7 = s. To simplify
computations we assume that ak are integer numbers. An approximate solution
one can find from an operator equation of the second kind

axr + Ay Ayx = A fs.

On other words, we seek an approximate solution z = xgm of the form

Zoon = o A7 An) AL f5. (9)

95



S.G.SOLODKY, G.L. MYLEIKO

where go(A) = (o + A\)71, and

2n
An - P]_AP220,n + Z (PQI@ - P2k71) AP2(2n7k>u,~ (10)
k=1

Moreover we introduce following auxiliary elements

Ta = ga<A*A)A*f7 (11)

LTan = ga(A:;An)A:;f (12)

4. AUXILIARY RESULTS
In this Section we formulate some definitions and facts, and also the series
of auxiliary assertions which shell later need.
It is well-known (see e.g. [30]), that for any linear bounded operator A the
inequalities

l(al + A*A) Y| < ah, [|(od + ATA) A7) < 1o 13)
|A(al + A*A)"LA*|| < 1

hold.

Lemma 1. (see [30, p. 34]) If g to be bounded Borel measurable function on
[0;93], A€ L(L2,La), Al < 7o, then

A'g(AA%) = g(A" )", y
Ag(A*A) = g(AA™)A. (14)
Lemma 2. (see [20]) Let ||A|| < o < e~ Y2, Then for sufficiently small a €
(0,e=2P) it holds
14zo = f] <59 ' pValn ™" 1/a,
where x4 is determined by (11).
Lemma 3. (see [20]) Let | Al <o < e Y2, and a is such that
|Aze — fIl < d6,

where d > 0 is some positive constant. Then the estimate

2" — 2] < €M7P1/5
1s fulfilled. The constant & > 0 depends only on d, p and p.
Lemma 4. For any a > 0 and n € N the estimate

1/2

5
1AZa = Il < [[An0, = Pozn foll + (I(L = Pyan) £ +6%) 77 + 1714 = Al

holds, where xo and :E‘;’n is determined by (11) and (9), respectively.
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Proof. First off all, we note that

|27l = [ m™P(A*A)v]l < p sup [In"P1/A| < p. (15)
0<A<A2

Further, consider the decomposition
Azo — f = An‘ri,n — Py2n f5 + 51+ Sa,
where
S1:= = (I = Anga(AnAn) A7) (f = Pn f5)
Sz 1= (Aga(A"A)A" — Anga(ALAn) A7) T
Now we are going to bound each term S, S2. By (13), (14) we immediate find
151l < 11 = An(ad + AL An) T AGIIIF = Pozn foll <
< = (af + An A7) T AR AL = Poza) f + Pyzn(f = f5)| <
< (11 = P £ +8%).
It remains to estimate the norm of Sy. First, rewrite S as follows
Sz = (Aga(A"A) A" — Anga(A;An)Ay) =
= a(ad + A AX) T (AA* — A A% (al + AAY) L f =51 459,
where
51 = (ol + A AX) T (A — Ay) A (o + AA*) ! Axt,
Sy 1= a(ad + A A% H A, (A" — A%) (af + AA*) ™ Azt
Further, we bound norms of 5; and 5. By (13), (14) and (15) we obtain
5] < afl (o + An A7) IIA = Aull]| (af + A*A) ™ A" Allfl2T|| <

< pllA— A,
5211 < all (@f + An A7) Aul|A° = A3 (o + AA) ™" A7) <
p
< = — .
< 2a— 4

Thus,
- - 5p
1521l < [I51ll + [I521] < -~ [14 = Ax]l-
Summing up the above bounds, we finally get
1Aza = fIl < | And = Paon fsl|+
1/2  5p
+ (10 = Pan)fIP +0%)' 4 224 = A,
The lemma is proved. o

Lemma 5. The two-side estimates
2% < card(TL) <2-2%"n, r=s, (16)
7]122‘m < card(I'y) < 77222”‘, r> s,

. _93(1—a) _9l—a
are hold, with m =1+ 113%, n2 = %_gﬁ
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Proof. From (8) it follows

2n
card(T'%) = anrd(Qk)7
k=0

where
O = (2F=1;2F] x [1;2@n=R)a] -k =1,2,... 2n
T x [1; 220, k=0 ’
and we obtain
1 2n ( "
a\ _ o2an ko(2n—k)a
card(I') = 2°9™ + 3 Z 272 .
k=1

Further, consider two cases. It is obvious that for » = s it holds

1 & 1

card(I'L) = 27" + 3 ; 22n = 221 (1 4-n) = 22" (1 + n) .
Hence,
2%y < card(T}) < 2-2%"n.
When r > s the sequence {card(Qj)}2", is the geometric progression with the
quotient 2'7%, and the relation
1 2n
a\ _ o2an - k(1—a)
card(I'y) =2 (1 + 5 Z 2 >
k=1

is hold. It follows that

2n

1 1 1— 2(17a)(2n+1)
ay _ ~92an k(l1—a) | _ ~92an
card(I';) = 2 <1+22 ) 52 <1+ ey .

k=0

Further, we obtain lower and upper bounds for the bracketed expression:
1— 2(1—0,)(2n+1) 9 _9l-a (1 + 2(1—a)2n) 9 _9l-a
1—20-a) 1—2l-a 1ol

1— 2(1—a)(2n+1) 1— 23(1—(1)

> —_.
Lt a2 1 o

Thus, finally we get

1 _ 23(1—&) 2 o 21—0,
(1 + | 22" < card(T%) < ﬁ?‘m.

1—2l-a 1-2
The statement of the lemma is proved. O
It is known (see. [21]), that for any A € HY® the inequality
A= Anl < ers(n) (17)
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is fulfilled, where

712r+1/2\/772—2rn, r—s
g n)= T .
r,s( ) 7 (1 + 1_221157T) 2—2nas’ r>3

5. ERROR ESTIMATE OF THE ALCORITHM
5.1. Algorithm (Discrepancy principle as stop rule). Let us fix 6 € (0,1)
and o € (0, 1]. We are going to choose the regularization parameter o according
with the rule

a€Ng(d)={ ara=ay :=afd™, m=0,1,2,..., «ac (6% a0}, (18)
and the discretization parameter n as follows
4
ers(n) = 57)5. (19)

Now, we describe proposed algorithm with the discrepancy principle as a
stop rule concerning to studied problem.

1. Input data: A € HY®, fs, 0, p.
2. To construct A,, (10) and Py2» fs we compute the inner products (5), (6).
3. The cycle: m=1,2,..., M, a = ay, = agf™.

An approximate solution xgmvn (9) is computed by solving the equation

amal, o+ A Al = A AT .

m=om,n

The cycle is running as long as stop rule conditions will be meet.
4. The stop rule (the discrepancy principle)

1Anz0,, i — Paen fs]| < d6, (20)
|Anad,, = Poen fs]| > do, (21)
with m < M, d>+/2+1, and xiM,n is determined by (9).

Introduced projection method (10), (18)—(21) we denoted as P'.

Lemma 6. Let aps such that the conditions (20) and (21) are satisfied with
d > /241, and the parameter n in (10) is chosen as (19). Then there are the
constants di,ds > 0, that the two-side estimate

di0 < HAwOéM - fH < d20
1s fulfilled.
Proof. First, note that by (17) and (19) it holds
)
Tla- A <s,
(I = Pyn) fI| < 0. (22)
If aips meets the condition (20) then

[ Angan, (A7 An) A5, f5 — Pozn fi| < db,
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and applying Lemma 4 we obtain
|Aza,, — fll < d6+ V262 +6 = (d+ V2 +1)s.
At the same time, kipping in mind (21), for & = ar—1 we have
[ Angans—, (AnAn) A, fs — Pozn f5]| > db. (23)
Owing to the inverse triangle rule it holds
1AZays s — F1| = 1 AnGany o (A5 A ALSs — Pofoll - (V2413 (24)

By spectral decomposition of the operator A we get

[e'e) ~ - )\2 2
Ao —S1° = 32 AN [’f - 1} _

apn + )\i

—2p 2

- aM lIl )‘ ( 7¢k)
; (or + /\2)
> 0203, 5 In" A 2(v, )2
Z (anr—1 +)\2)
Hence,

HAmaM - sz > 92”‘41@1»171 - fH2 (25)

Substituting (23) and (24) in (25), we finally obtain

1Az ay, — fIl = 6(d — V2~ 1)s.
Thus, the lemma is proved with di = 6(d — /2 — 1) and da = 0(d + /2 + 1)4.
5.2. Error estimate of the algorithm P’.

Theorem 1. Let |A| < 4o < e~ /2, the parameters of reqularization apy and
discretization n are chosen as in (20) and (19), correspondingly. Than the
estimate

|2f =22 | <énP1/5 (26)

holds, where the constant ¢ > 0 only depends on ~y,d1,ds, p and p; x aM, 18
determined by (9).

Proof. 1t is obvious that

apng, n|

1)
‘ < H:U - wazu” + HxOéM xOéM,nH + HxaM,n - xOcM,n”‘

||°(U]L - 'rocM,
Owing to 3 for the first term we have
”x]L — Lay H < gln—p 1/5

By applying (13) the last term is immediately bounded

)
1 * A 1 g%
|Zansn = Tay, nll = Il + AL AR) T AL(f = f5)I < NG

Finally, we need to estimate the second term. First, consider the decomposition
Tony — Tayym = (an ] + A*A) T A* Azt — (apr + AL A,) 1AL Axt =
= Tle + Tgl‘T,

(27)
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where
Ty = (an] + A"A) TATA — (an] + AL An) T AL A,,
Ty := (an ] + A% A,) TTAL (A, — A).
y (13), (19) and (17) we have

I < et 20
2\/anr 5p 5p \Janr

It is remain to estimate ||71]|. Due to (14), we rewrite T} as follows
Ty = an (apl + A*A)H(A*A — A% A) (apl + AXA) =T + T,
where
Ty := apr (ay I + A*A) A" (A= A,) (o] + AL A,
Ty = an (apD + A*A) V(A" — A%) Ay (angD + ALA,)

Further, we estimate the norms of T and Ts. Owing to (13), (19) and (17) the
norm of T is immediately bounded as

— 2 0
1T < ——F—=
50 /oM
Now, we are going to estimate the norm of T5. By (14) we have
To = apr (o + A*A)H (A" — AY) (o] + A AL A,

Applying (13), (19) and (17), we obtain

_ 2 9
el < .
P/
Hence,
73] < Tl + Tl < o2
1 1 2 T —
2L
Thus,
6 o

|Zar — Tanrmll < 5\/—

Summing up the above bounds we finally get
1 0 17 9
6_9 <EemP1/5 4
\/7 2 /anu 10 \/7
Further, if ajs is chosen as in (20) and the inequality aps > 6 holds then for
sufficiently small 0 we have

HxT - xaM n” < gln_p 1/5 + <

Ty — a0 <¢ln _p15+ \f<c11np15
T (o5 ExL2

with & = £+ 1f
Otherwise, if aps < 6 then by Lemma 2 and Lemma 6 we get

18 < ||Azay, — [l <79 pv/anr P L anr < gt py/ans In TP 1/6.
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Thus,
_ 177_1/) _ o
0
|z — Topnll <EMTPL/0+ 1—0371111 P1/§ =¢éIn"P1/0,
-1
where ¢o = & + %V‘th. The theorem is proved with ¢ = max{¢é, é2}. O

6. MINIMAL RADIUS OF (GALERKIN’S INFORMATION. OPTIMAL ORDER
ESTIMATE

Theorem 2. For sufficiently small 6 the estimate
Ruvs (HD®, M(A)) < e5 (HZ;SM(A),P‘) < ¢, In"P N2
is fulfilled, where ¢, > 0 depends only on v,r,s,d1,d2, p and p. Moreover,
5_%(ln 5_1)1"“%, r=s,
card(I'yy) = )
delta™s, r > s.

Proof. Rewrite the right-hand side of (26) by N, where

cn2, r=s,
] ¢220n r>s
2 ) )
’ 1723(1—(1) ’ 9_91-a
1 < Cl S 27 1 + H_al-a_ S C2 S 1—ol=a (See Lemma 5) Further, we

consider two cases.
First, let 7 = s. Owing to (16),(19) we have

5—1 _ 4 n—1/222rn — 4(0/1)7T Nrn—%—r (28)

dpC1 dpcy ’
with ¢ = 712" T1/2. It is easy to see that In N = In ¢ +2nln2+1nn. It follows
n < BN Kipping in the mind the last inequality, from (28) we obtain the

— 2In2-
lower bound of 51

4(c))7"(2In2)/247
dpcy

For any p > 0 there are some Ny that for all N > Ny it holds In N < NH#.

Hence,

> NT(In N)~1/2,

4(¢))7T(21In2)/2 47

51> NTN,u(fl/2fr) —
o dpcCy
_HA) MV
HpCa

There are always exist p such that (1 — p)r — 1 > 0, and the estimate (26)
we can rewrite as follows

" =20, nll < paIn 7P NZ. (29)
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Now, we are going to consider the case r > s. Using the same arguments as
above, by (16) and (19) we have
Acy) ™

4
o= _—— = —=—N°* 30
DpC2 DpC2 ’ (30)

_ 2"
2 =1 (1 + 71 — 2a5r> .

In this case the estimate (26) we rewrite as follows
ot — a3, | < cpaln? N (31)

Taking into account the definition Ry s (Hy*, M(A)), and also the relations
(29) and (31) we have

2asn

where

Rys (HY*, M(A)) < |la' —2f,, .|l < ¢ In P N>,
where ¢, = max{cp1,¢p2}-
It is remain to express the amount card(I'?) by ¢. Let consider the two cases.

First let r = s, then

card(I'}) ;= N = 2%"p = (\/772_25”)_%711‘*'% = 5_-%(111 5_1)1+%.
2) Now let r > s, then
card(T) 1= N x 220" — (27205m) =% = 53

Thus, summing up obtained estimates of card(I'%), we have

1
s

5_%(1n6*1)1+%, r=s
card(I'y) =< ) :
6 s, r>s
The statement of the theorem is completely proved. d

Below we formulate a result giving the order estimate of the minimal radius
of the Galerkin information.

Theorem 3. The two-side estimate

In"? N** < Ry (H5®, M(A)) < ¢pIn P N**

op+1
holds. The indicate optimal order is achieved under the algorithm P (10),

(18)-(21).

The lower bound for Ry s is established in [26], and the upper estimate was
obtained in Theorem 2.

Remark 4. Comparing results of Theorem 3 to that of [26], where the balancing
principle was applied as stop rule, we can conclude that both approaches are
achieved an optimal order of accuracy. Moreover, the proposed algorithm allows
to provide order estimates on more wide classes of problems. Herewith, we
reduce the amount of the Galerkin information (on the logarithmic multiplier)
when r = s.
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NUMERICAL SOLUTION OF LORD-SHULMAN
THERMOPIEZOELECTRICITY FORCED
VIBRATIONS PROBLEM

V.V.STELMASHCHUK, H. A. SHYNKARENKO

PE3IOME. Mu po3srasmaemo Mozess Tepmorn €3oesektpuku Jlopaa-Ilymsmana
(LS). Odma nmowarkoBo-kpaiiosoi 3amaai LS-repmon’e3oerekrpukn dbopmystro-
€ThCd BIMOBiIHA BapialiiiHa 3amava. Jlasi po3risaaoThCs BUMYTIEHI KOJIH-
BaHHS MIPOEJEKTPUKA 1 BapiarmiiiHa 3a/1a4a NEPENUCYEThCS Y CHEIlaJIbHOMY
BUIVISl ISl IHOTO OKPEMOro BHUHAKY. [lOBOAUTHCS KOPEKTHICTH OCTAHHBOI
Bapiamiiinol 3amaqi. 3 BUKOpHMCTAHHSAM JucKperum3ariil [ajgpopkina Oymyernes
qrce/IbHA CX€Ma JjIs pO3B‘si3yBaHHs €l Bapiamiiaol 3amaqi. [Iuramms 30ixk-
HOCTI I1i€] CXeMU TaKOXK PO3IJIAHYTI B Lill cTarTi. 3penrTtor, IPOBOAUTHCSH
YKMCE/IbHUN €KCTIEPUMEHT, KUl J100pe 1TI0CTPpy€e BIUIMB TapaMeTpa 'Jacy pe-
makcanii" Ha OTpuMaHi pO3B‘A3KM.

ABSTRACT. We consider the Lord-Shulman (LS) model of thermopiezoelec-
tricity. Variational formulation is constructed for the initial boundary value
problem of LS-thermopiezoelectricity. Then forced vibrations of pyroelectric
specimen are considered and the variational problem is rewritten in the special
form for that particular case. Well-posedness of the latter variational prob-
lem is proved. Then using Galerkin semidiscretization a numerical scheme
for solving this variational problem is built. The questions of convergence of
this scheme are also covered in this article. Finally, a numerical experiment
is performed, which perfectly illustrates the influence of "relaxation time"
parameter on the obtained solutions.

1. INTRODUCTION

Nowadays piezoelectric and pyroelectric materials are widely utilized in vari-
ous modern devices such as sensors, actuators, transducers, etc [14]. The classic
theory of linear thermopiezoelectricity was introduced by Mindlin [12]|. The fur-
ther study of the theory was performed by Nowacki [13]. The main drawback of
the classic theory is the assumption of infinite speed of propagation of thermal
signals in the piezoelectric specimen. To overcome this, Lord and Shulman [10]
proposed a modified theory of thermoelasticity (LS-theory), where the clas-
sic Fourier’ law of heat conduction is replaced by Maxwell-Cattaneo equation
with introduction of so-called "relaxation time". Chandrasekharaiah was the
first researcher to apply the LS-theory to thermopiezoelectricity [5]. Later a
set of generalization theories for thermoelasticity and thermopiezoelectricity

Key words. generalized thermopiezoelectricity; Lord-Shulman model; PZT-4 ceramics;

thermoelectromechanical waves; harmonic forced vibrations; Galerkin method; finite element
method.
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was developed, for example Green-Lindsay, Chandrasekharaiah-Tzou, Green-
Naghdi, etc. A good review of the existing generalization theories can be found
in [1], [6], [8], [9]. Different methods were used by researchers to obtain the solu-
tions of the generalized thermopiezoelectricity problem, see [2], [3], [7], [15], [20].

Forced vibrations of pyroelectrics is the special case of the thermopiezoelec-
tricity problem and was studied under the classic (Mindlin‘s) theory in [11], [21]
and [22]. In our previous work [19], we utilized our finite-element-based numer-
ical scheme for solving forced vibrations problem under classic thermopiezo-
electricity theory and developed an adaptive algorithm for obtaining solution
with a preset level of accuracy. The goal of the present research is to construct
a similar FEM-based numerical scheme for forced vibrations problem under
LS-thermopiezoelectricity theory.

2. PROBLEM STATEMENT

The theory of thermopiezoelectricity describes the coupled interaction of me-
chanical, electrical and thermal fields in pyroelectric material.

Suppose the piezoelectric specimen occupies a bounded domain €2 in Eu-
clidean space R% d=1,2, or 3 with continuous by Lipschitz boundary I' with
unit external normal vector n = {n;}%,, where n; = cos(n,z;). According
to the classic theory (see [12,13,16,17]), we need to find elastic displacement
vector u = u(z,t), electric potential p = p(zx,t) and temperature increment
6 = 0(x,t), which satisfy the following equations:

puy — oij i = pfis (1)
D;%k + Jk,k =0, (2)
p(TgS/ — w) + Qi = 0, (3)

namely, equation of motion, differentiated Maxwell‘s equation and generalized
heat equation respectively, where f; is a vector of volume mechanical forces
and w represents volume heat forces. Here the constitutive equations for stress
tensor

Oij = Cijkm([€km — Qkm0] — ekij Bk, (4)
electric displacement vector
Dy, = epijcij + XemEm + mi0, (5)
and entropy density
pS = CijkmCkmEij + T Er + %9 (6)

are used.

Vector Ji is the electrical current density, generated by a free electrical charge
density. We assume that pyroelectric material is not an ideal dielectric, and the
electric current runs through the pyroelectric specimen and satisfies standard
Ohm‘s law, i.e.

Jk = ZikmEm (D). (7)
Heat flux vector ¢ = q(z,t) is assumed to satisfy the standard Fouriers law:
G = —Aijt ;- (8)
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Strain tensor e, and electrical field vector Ej are assumed to satisfy the
relations
Ekm = Ekm(U) = %(uk,m + Um,k), (9)
Ey = Ex(p) = —pu;
where comma, in the subscript stands for the partial derivative by the spatial
variable, i. e. g = —0g/0xy.

The other symbols in the above equations represent the material properties
of pyroelectric medium: c¢;jxn, is an elasticity coefficients tensor with common
properties of symmetry and ellipticity, that is:

Cijkm = Cjikm = Ckmigj, (10)
CijkmKijKkm > CoKijKkm, CO = const > 0, V/ﬁj = Kj; € R,

«j is a thermal expansion tensor with similar properties

Qij = Qji,

11
;&5 = i, = const > 0, V§; € R, (11)
ekij ia a piezoelectricity tensor with properties:
€kij = Ckjis (12)
Xij is a dielectric permittivity tensor with properties

Xij&i&j = Xo&iis Xo = const >0, V¢ € R,
i, are the pyroelectric coefficients, which are assumed to satisfy the following
inequality, mentioned in [13]

XkmYkYm + 2Tyeé + pco€® >0, Y€y € R, (14)

Zkm 18 the electrical conductivity tensor with common properties of symmetry
and ellipticity, A;; is a symmetrical elliptic heat conductivity tensor, p, ¢, and
Ty represent a mass density, specific heat and a fixed uniform reference tem-
perature of a piezoelectric specimen, respectively. Here and everywhere below
the ordinary summation by repetitive indices is expected.

To take into account a viscosity effect in pyroelectric materials, we modify
the constitutive equation (4) for stress o;; by adding the term proportional to
strain velocity. Therefore, the stress-relation now looks in the following way:

0ij = Cijkm[Ekm — Uemb] — ekij i + GijkmElpm» (15)
where a;jkm, is a viscosity coefficients tensor with common properties of sym-
metry and ellipticity.

To characterize the interaction of piezoelectric specimen with the environ-

ment, we must consider the boundary conditions. The boundary conditions for
mechanical and heat fields are:

u;=0 on Ty x][0,T], Ty CT,mes(Iy) >0, (16)
04515 = 5‘@ on Fo‘ X [O,T],Fg =T \ Fu,

0=0 on Tyx][0,T], Ty C T mes(Ty) >0, (17)
qin; = Q on Fq X [O,T],Fq =T \ Fg.
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Note that nonuniform boundary conditions on parts I'y, and 'y can be always
transformed into uniform ones.

Similarly, the boundary conditions at the interface between the pyroelectric
specimen and an ideal dielectric can be described in the following way:

(D}, + Jg] k=0 on Ty, Iy CT. (18)
Many pyroelectric materials and devices are operated under high electric field,
which is applied through surface electrodes. We suppose that the electrode
has a constant electric potential p. on its surface, and is soft enough, so that it

does not transfer any mechanical loadings. In this case we consider the following
boundary conditions

p=0 on T, x[0,T], T, CT,mes(I'y) >0 (grounded electrode), (19)
and
Te (20)
p=const on I'e;, T.=T\(TzNT,),
where I defines the external electrical current.

In order to terminate the formulation of initial boundary value problem of
classic piezothermoelectricity, we consider the initial conditions

{ J Dy, + Ji] nidy =1,

uli—o = wo, u'|i=0 = vo,pli=0 =po, Oli=o =00 in Q. (21)

The aforementioned mathematical model of thermopiezoelectricity was consid-
ered in [16,17], where its well-posedness is proved. Also a finite element based
numerical scheme for solving this problem was constructed and the results of
numerical experiments are described in [4,18].

In present work, instead of (8), we use modified Fourier‘s law (also known as
Maxwell-Cattaneo equation):

TG + ¢ = —Xijf 5. (22)

Here the parameter 7 > 0 is so-called "relaxation time". This assumption
ensures finite speeds of heat wave propagation and was firstly introduced by
Lord and Shulman in [10] and was firstly applied to thermopiezoelectricity
theory by Chandrasekharaiah in [5]. Also, for convenience, similar to how
Chandrasekharaiah did in [5], we introduce artificial coefficients b;; in the way
that the following condition is held:

TobijAjm = Oim, where 0;, are the elements of the unit matrix, (23)

and they satisfy ellipticity conditions:

bijyiy; >0 Vyi,y; € R. (24)
Then the modified Fouriers law can be rewritten in the following form:
7hijd; + bijai = ~Tg '0,5. (25)

Using Maxwell-Cattaneo equation (22) implies, that for Lord-Shulman theory
a heat flux q is an additional independent variable. Therefore, the initial con-
ditions (21) must be rewritten into:

uli—o = wo, u'|i=0 =vo,pli=0 = po, Oli=0 =06, qli=o =go in Q. (26)
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Thus, the equations (1)-(3), (5)-(7), (9), (15) and (25) together with bound-
ary conditions (16)-(20) and initial conditions (26) define the Lord-Shulman
mathematical model of thermopiezoelectricity (initial boundary value problem
of LS-thermopiezo-electricity).

3. VARIATIONAL PROBLEM
Let us introduce the spaces of admissible elactic displacements, electric po-
tentials, temperature increments and heat fluxes respectively:
V={veH]v=0 on I',},
X = {§ € H'(Q)]¢=0 on I'y, £=const on Fe}

Y ={ne H(Q)n=0 on Ty}, (27)
z ={¢e[L* )]},
and notations
P=VxXxYxZ & =VxXxY, G=L*Q), H=G"% (28)

Here symbol H™(€2) means a standard Sobolev space.
After applying the principle of virtual works to initial boundary value prob-
lem of LS-thermopiezoelectricity, we obtain the following variational problem:

given Yo = (uo, po, o, q0) € ®, vo € H and (I,r,p) € L*(0,T; ®);
find = (u,p,0,q) € L?(0,T;®) such that
m(u(t),v) + a(u'(t),v) + c(u(t),v) — e(p(t),v)—
—(0(t),v) =<1(t),v >,

xX(P'(t),8) +e(§, (1) + 2(p(t), &) + m (0 '(t),ﬁ) =<r(t),§

s(0'(t),n) +m(n,p'(t)) +v(n,u' () — =< u(t),m (29)
7b(q'(t),¢) +b(q(t), ¢) + 9(¢, 9(15)):
m(u'(0) —vo,v) =0,  c(u(0) —uo

x(p(0) —po,§) =0 V€ X,

s(0(0) —bo,n) =0 Vney,
b(q(0) —qo,¢) =0 VCeZ

The introduced bilinear and linear forms are as follows:

m(u,v) fpu,vzdx = fpu vdz, a(u,v) f%gkm&g( Yerm (v)dz,
c(u,v) fcljkmslj( )skm( Ydz, <lv>:= fpfividx—I— [ Gividr,

V(&) = ?f@jkmakmﬁijv)dw, ' ”

e(§,v) == ?ekijEk(ﬁ)Ez’j(U)diU Vu,v €V,

X0.6) = X BB, () = [ 5n B0 B, (30)

<r,&>=I&pr, Vp&elX,
m(n,€) = [nmpEp(€)dz, s(0,n) = [ pe,Ty *Onda,
Q Q

<, >i= [Ty pwnde — [ Ty hndy Vi, 0 €Y,
Q r

b(g.¢) = S{bijqz-cjdx, 9(¢,m) = (12“ Ty '¢Gmpdr Vq,¢ € Z.
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Now suppose the harmonic loadings with angular frequency w > 0 are applied
to the piezoelectric specimen:
1(t) = (I +ila)e™ ™",
r(t) = (r1 +irg)e”™", (31)
M(t) = (}ul + i.LLQ)e_ZWt’ Vie (0>T]

Then we can look for approximate solutions of problem (29) in the form of the
following expansions:

u(z,t) = (uq(z) + iua(z))e ™
p(a,t) = (p1(z) + ipa(x))e ™™, (32)
0(z,t) = (01(x) + 162(x ))e_m,
q(z,t) = (qu(2) +iga(z))e ™",
where w1 (x), ua(x), pi(x), pa(x), 61(z), O2(z) and g1(z), g2(x) are the un-

known amplitudes of mechanical displacement, electric potential, temperature
increment and heat flux respectively.

After substitution of (31) and (32) into (29) and neglection of its initial
conditions, we obtain the variational problem for forced harmonic vibrations of
piezoelectric specimen:

given w > 0, (l1,l2,71,72, 11, p2,0,0) € W' = &' x @/;

find 1 = (u1,p1,01,q1,u2,p2,02,q2) € W = ® x ® such that

—wzm(ul,vz) + wa(ug, ’1)2) + c(ul, ’02) — e(pl, ’Uz)*
—y(01,v2) =< l1,v2 >,

—wzm(u2, ’Ul) — wa(ul, 'vl) + C(Uz, ’01) — e(pg, ’Ul)—
—y(02,v1) =< l2,v1 >,

wx(p2,&1) +we(&r, uz) + 2(p1,&1) + wr(f2,61) =< 711,61 >, (33)

—wx(p1,&2) —we(&2,ur) + 2(p2,§2) — wm(01,&) =< 12,82 >,

ws(02,m) + wm(n, p2) +wy(m, uz) — g(qr,m) =< p1,m >,

—ws(01,m2) — wn(n2,p1) — wy(n2, w1) — g(q2,n2) =< p2,m2 >,

wtb(q2,C1) +b(q1,¢1) +9(¢1,601) =0,

—wtb(q1,C2) + b(g2,C2) + 9(C2,602) =0

Vw= (1’1:5177717Cla’v2,§277727C2,) ew.

Having added all the equations of the problem (33), we introduce the bilinear
form II, : W x W — R and linear form x,, : W — R in the following way:

I, (¢, w) = —w?[m(uy, v2) — m(uz,v1)]+
+wla (ul, vl) + a(uz,v2)] + [c(u1,v2) — c(uz,v1)]+
(p2,v1) — e(p1,v2) + e(&1, uz) — e(§2, u1)]+
Y(02,v1) — y(01,v2) + (11, u2) — y(n2, wr)l+
m(02,81) — m(01,&2) + (01, p2) — 7(n2, p1)]+
X(p2,&1) — x(p1,&2)] + w  2(p1, 1) + 2(p2, &2)]+ (34)
[5(927771) — s(61,m2)]+
+w 1 g(¢1,01) + 9(Ca,02) — g(q1,m) — g(g2, m2)]+
+7[b(g2,¢1) — b(g1,C2)] + wtb(gr, C1) + b(Qza ¢2)]
VY = (u1,p1,01,q1,u2,p2,02,92) €
Vw = (v1,&1,m1,C1,v2,82,m2,C2,) €

+le
+|
+|
+|
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< Xy W >= — < lg,v1 > +w < r, & >+ < pr,m >+
+ <li,v9 > +w_1[< ro, &9 > + < U2,M2 >] (35)
Vw = (v1,§1,m,C1,v2,82,m2,C2,) € W.
Then variational problem for forced harmonic vibrations of pyroelectric can
be rewritten as follows:
givenw >0, x, € W =@ x &/;
find = (u1,p1,01,q1,u2,p2,02,q2) € W = ® x ® such that (36)
(¥, w) =< xw,w > ¥V w=(v1,&1,M,C1,v2,82,7m2,C2) € W.

4. WELL-POSEDNESS OF THE VARIATIONAL PROBLEM
Theorem 1. Let us define the bilinear form k(-,-) as follows:

k(6,n) = / Ty ' AVOVndz, (37)
Q
where A = {\;;} is matriz of thermal conductivity coefficients. Then the below
equality is held:
(1+w*r?)[b(q1, q1) + b(gz, g2)] = k(61,61) + k(62,62), (38)

where qi1,qz2,61,02 are the solutions of variational problems (33) and (36),
defining amplitudes of heat flur and temperature increment correspondingly.

Proof.
The modified Fourier law
7q +q=—AV0o (39)
is rewritten for the case of harmonic vibrations:
—iwr(q1 +ig2)e ™ 4 (q1 +iga)e ™ = —A(VO; +iVhs)e ™ (40)

The expression (40) is then splitted into real and imaginary parts. As a result,

we obtain:
q1 +wTq2 = _Aveh (41)
g2 —WTq1 = —AVGZ.
After multiplying equations of (41) by T, V6, and Ty 1V, respectively and
integration over the domain ) we get;:

9(q1 +wTqz2,01) = —k(01,61), (42)
9(q2 —wTq1,02) = —k(02,62).

Then two last equations of the variational problem (33) are considered and
a substitution of admissible functions {1 = g1 + w7rq2 and (2 = g2 — wTqy is
performed respectively:

wtb(q2,¢1) +b(q1,¢1) +9(¢1,01) =0, ¢1 = q1 + wrq2, (43)
—wtb(q1,¢2) +b(q2,¢2) + 9(¢2,02) =0, {2 = g2 —wTqs.

After simplifying the first equation of (43) with taking into account the relations
(42) we obtain:

wtb(q2,q1 + wrq2) + b(q1,91 +wTq2) + g(g1 + wTq2,01) = 0, (44)
b(q1 + wTq2,q1 + wTq2) = k(61,61).
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Similarly, simplifying the second equation of (43) with taking into account the
relations (42) we get:

—wrb(q1,q2 —wTq1) + b(q2, g2 — wTq1) + (g2 — wTq1,02) = 0,
b(g2 — wTq1,q2 —wTq1) = k(62,02).
The last equations of the relations (44) and (45) can be rewritten in the fol-
lowing way:

b(q1,q1) + 2wTb(q1, g2) + W2T2b(q2, g2) = k(01,61),

(45)

46

W*T?b(q1, q1) — 2wTb(g1, 2) + b(q2, g2) = K(62,62). (46)
After summarizing these 2 equations of (46) we obtain:

(1+w?72)[b(q1, q1) + (g2, g2)] = k(61,61) + (02, 62). (47)

O

Let us introduce a scalar product on the space W in the following way:

2

((y7 ’LU)) Zl[a(u'u U’L) + Z(p27 gl) + b<q17 CZ) mk<97” 7’]Z>]
Ny 48
Vy = (u1,p1,01,q1,u2,p2,02,q2) € W, (48)

Vw= (’UlaflvnhClav2,§2;772,C27) ew.
We also introduce a norm generated by the scalar product (48):
Iyl = (v,y) Vy € W. (49)

Then the following estimations are easy noticed:

T (y, w)| < My (w)|[[yll] - [lwl]];
Mi(w) = C maz{w™1,w,w?}, Yy,w € W,
and
| < Xy w > | < Ma(w)|[xwll« - [[[w]]],
Ms(w) = C maz{w™' 1}, Yw € W.
Here and everywhere the symbol C means a positive constant value, which is
not dependent on solutions of variational problem (36).
Consider now the expression for I, (w, w):

(51)

H (w,w) = —w?[m(ug, uz) — m(uz, uy)]+
twla(ur, u1) + a(uz, uz)] + [c(ur, u2) — c(uz, u1)|+

+le(p2, u1) — e(p1,uz) + e(p1,uz) — e(p2, u1)]+

+[y(02, 1) — v(01,u2) + (01, u2) — (02, u1)]+

+[m (02, p1) — 7(01,p2) + (01, p2) — 7(02,p1)]+
+[x (p2,p1) X (p1,p2)]+
+w L z(p1,p1) + 2(p2, p2)] + [8(02,01) — s(61, 02)]+
+w ' g(q1,01) + 9(g2,02) — g(q1,01) — g(qa, 02)]+ (52)
—1—7[219(612, q1) — b(q1,q2)] +w[b(gr, q1) + b(g2. q2)] =

= > lwa(us,u;) + w ™ 2(pi, pi) + W b(qi, qi)] =

1=

—_

2

= Z [wa(uia u'L) + w_lz(pia pl)+
=1

0 (5b(gi: @2) + gk (0, 0))] 2 alw) - [[[w]]?,
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where a(w) = min{w™t,w} Vw e W.
Since the statements (50 - 52) are held and they are actually the conditions
of Lions-Lax-Milgram theorem, the following theorem is then proved:

Theorem 2. For each w > 0 and 7 > 0 variational problem (36 ) has a unique
solution ¢ € W, which satisfy the relation:

1911 < o™ (w) Ma(w)l [ |+- (53)

5. GALERKIN DISCRETIZATION
Galerkin scheme makes a transition of the solution of variational problem
(33) from space W := ® x & to its finite-dimensional subspace W, := ®j, x &y,
¢y, C @, dim Wy, = N(h) < +oo. Thus, discretized variational problem (36)
looks in the following way:

giwen angular frequency w >0, X, € W,

approzimations space Wy C W, dim W), < 4-00;

find vector vy = (U1p, Uz, P1n, P2n, O1h, O2n, Q1n, G2n) € Wh
such that TL,(Yp, @) =< Xw,p > V p € W),

(54)

Since problem (36) is well-posed, the same applies to its discretized counterpart
(54).

In the space W we select some basis functions {w;};~,. For each natural
number m > 1, h = 1/m a sequence of approximation spaces W}, and operators
of orthogonal projection Prj, : W — W}, are defined so that a set {w;};~, is a
base of Wj,, (¢ — Prpv,w)) =0V ¢ € W,V w, € Wy

Now variational problem (36) is replaced by a sequence of the following
problems:

given w >0, x, € Wand h >0, Wy, C W, dim W}, = m < 4o0;

find vector vy, € Wp, such that (55)
I, (Yn, w) =< Xw,w > Yw € W

Theorem 3. Let ¢ € W be a solution of problem (36) with parameter w >
0. Then a sequence of Galerkin approzimations {1pp} C W is unambiguously
defined by the solutions of problems (55) and has the following properties:

o= dllw < @~ M) inf |[¢ = wllw ¥ b >0 (56)
weWp,
lim [ — ¢l = 0. (57

Proof. The correctness of the inequality (56) is based on the fact that
I, (¢ = ¢p, w) =0V w € Wy,

and the estimation

O[Hw - 1/)h|‘12/1/ S Hw(1/1 - ¢h71/} - @bh) = Hw(w - 1/)h71/1 - w) S
< My(W)[l = dullw |l — wilw ¥V w € W
Taking into account the density of sequence of spaces {W}} in the separable
space W
}lbir%Hw — Pryw|lw =0V we W.
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Therefore, basing on the equality
inf — =|lv—-P
a1 = wllw =11 = Prohw
and (56) we can conclude the correctness of (57), when w > 0. O

Theorem 4. on the convergence of FEM approximations.

Let 1 € W be a solution of problem (36) and exists a natural number k > 1
such that € WN[HF Q)2 | Let approzimations 1y, be defined by solving
problem (55) in the spaces Wy, C W, which are constructed with making use of
piecewise-polynomial functions of FEM and have the following property:

for each ¢ € W N [HFY(Q)PHD & > 1 there exist ¢, € W), and C =
const > 0 such that || — opllma < C - KEFL"™0llkr1.0, 0 < m < k, where
h s the diameter of finite element mesh and k is the greatest degree of full
polynomial of d variables, which is precisely defined by basis functions of Wp,
on each finite element.

Then the convergence of sequence ¥y C W is characterized by the estimation

1 = wnll < C - RE[|¢llksr.0, (58)
where C' = const > 0 is not dependent on values we are looking for.

Proof. The estimation (58) is implied from the inequality (56), the equiva-
lence of norms || - ||w and || - ||1,0 on W and the density properties defined in
the theorem body.

14 = ¥nllw < o™ Mi(w) 1 —wl = [[¥ —wlle < C-h¥|[Y]k10

inf
weWy,
O
Let us now pay a deeper attention to the aforementioned selection of finite-
dimensional subspace Wj, € W. Taking into account the definition of W}, that
iSWh:VhXXhXYhXZhXVhXXhXYhXZh,WheI‘e

VicV, XpCX, YyCY, Z, C Z,

dimVy, < +o0, dimX; < 400, dimY), < +oo, dimZ, < +oo. (59)
we can write the expansions of solution amplitudes as following:
X v
Uagh = Z Ua¢i (x)v
/=0
N X
Pah = Z Pa(bz (.I),
v (60)

N

hot = 5 @) (1),
5

qdoh = Z Qa(bZZ(.T}),Oé - 17 27
=0

where @) (z), ¢ (), ¢} (x) and ¢Z (z) are the basis functions of spaces V, X, Y
and Z respectively. Then we obtain the system of linear equations for finding
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250 1|
200 10|
« 150 ; 8
& E“ 6
100
.
50
2
0 0
0 2 4 6 8 10 ] 2 4 6 8 10
Lx10°m Lx10°m
Fic. 1. Amplitude Fic. 2. Amplitude
of temperature 6, of temperature 0

nodal values of the unknown amplitudes:

wA —[~w?M + C] 0 ET 0 YT 0 0
[~w?M + C] wA -ET 0 -YT 0 0 0

0 E wlz wX 0 i gl 0 0
—-E 0 -X wlz -—-nr 0 0 0

0 Y 0 I 0 S —w IGT 0
-Y 0 —II 0 -S 0 0 —w IGT

0 0 0 0 w i@ 0 w B B

0 0 0 0 0 wl@ —rB w 1B

[U1,Us, Py, P2,01,03,Q1,Q2]" =
= [—Lz, Lq, w_lRl, w_1R2, w_lFl, w_le, 0, O]T .
Here the elements of the matrices and vectors are computed using the bilin-
ear and linear forms defined in (30), for example A = {a;;} = {a(qﬁy,d)}/)}.
The matrix of the system of equations (61) is positively defined, but not the
symmetric one. More precisely, it can be represented as the sum of positively
defined symmetric matrix and a skew-symmetric one.

(61)

6. NUMERICAL EXPERIMENTS
We consider a piezoelectric bar with length L = 1078%m made of PZT-4
ceramics.A harmonic thermal loading with angular frequency w = 3 - 10%rad/s

is applied to the right edge of the bar. So, the boundary conditions for thermal
field are:

61(0) = 0K, 61(L) = 273K, 65(0) = 0K, 65(L) = 0K. (62)

On the left edge of the bar the boundary conditions for mechanical and electric
fields are homogeneous and of Dirichlet type :

u1(0) = 0m, uz(0) = 0m, p1(0) =0V, pa(0) = OV. (63)

On the right edge of the bar the boundary conditions for mechanical and electric
fields are homogeneous and of Neumann type :

o1(L) =0N -m~2, 0o(L) = 0N -m~2, J1(L) =04, Jo(L) =0A.  (64)
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o N S (=2}
T T T

2,
T=10"s r=10"s

px107°, Jm4st

Lx10°m

Fic. 3. Amplitude of heat flux component go for the PZT-4 bar
for relaxation times 7 = 10719,8.10~1 5.107 10711, 10~ 25

We take the coefficients of PZT-4 as in [20]:

p = 7500[kg/m?] e = 15.1[C/m?

c, = 350[J /kg - K] T =27x107%C/K - m?]
A=11[W/m- K] X = 6.46 x 107?[C? /N - m?]
c =115 x 10°[N/m?] a=3.13 x 107°[K 1]

Also we take z = 5 x 10712[Q~! - m™1], @ = 40[m? - s71] and Ty = 298[K].
As mentioned in [20], the value of the relaxation time 7 for PZT-4 cannot
be found in the literature. However, the relation time 7 is determined for
different type of materials, ranging from 10719 for gases to 107!* for metals.
Therefore, in our numerical experiments we will use the values of relaxation
time 7 = 10710,8 . 10711, 5. 107,10, 10725, For discretization by spatial
variable we divide the interval [0, L] into N = 256 finite elements with piecewise
linear solution approximations on them.

Fig. 1 shows that under these boundary conditions and angular frequency
w = 3-10% ad-s~! the calculated temperature increment ; is changing linearly
along the bar, regardless of the value of relaxation time 7. Fig. 2 depicts the
calculated amplitude 05 of the temperature increment. It is also not dependent
on the value of relaxation time 7.

On the other hand, as Fig.3 shows, the amplitude of heat flux g2 is depen-
dent on the parameter 7. It worth mentioning, that the amplitude calculated
with 7 = 10725 is almost identical to the one obtained as a solution of the
classical thermopiezoelectricity problem for forced harmonic vibrations (when
no modified Fourier law is taken into account).

7. CONCLUSIONS
The harmonic vibrations of the pyroelectric materials have been studied un-
der generalized Lord-Shulman thermopiezoelectricity theory. The variational
problem for this special case has been formulated and its well-posedness has
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been proved. Then the discretization of the problem using Galerkin-method has
been performed. The finite element method has been utilized to construct the
bases of approximation spaces of the discretized problem. The rate of conver-
gence of FEM-approximations has been determined. After the discretization we
obtain the system of linear algebraic equations with positively defined matrix in
its left part. Therefore, we can be sure that the solution of that system always
exists. The numerical experiment of applying a harmonic thermal loading to
the pyroelectric bar has been set up and studied. The results of the experi-
ment showed the significant influence of the "relaxation time" parameter on
the nodal values of solution amplitudes.
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BOUNDARY VALUE PROBLEM FOR THE
TWO-DIMENSIONAL
LAPLACE EQUATION WITH TRANSMISSION CONDITION
ON THIN INCLUSION

Yu. M. SyBiL, B. E. GRYTSKO

PE3IOME. PosrigmyTo 3amady mis piBHsiHHS Jlamaaca B 0OMeKeHiil J1BOBU-
wmipHiit Jlinmuresiit 06/1aCTi 3 TOHKUM BKJIIOYEHHSIM, HA IKOMY 3a/[aHa TPAHC-
MiciiiHa rpaHmYHa yMOBA, TOOTO YMOBA, IO MICTHTH AK CTPHOOK HOPMAJIBHOI
MOXiHOT, TaK i rpaHuYHe 3HAEHHs IykaHol dyHknii. /JoBemgeno ekBiBajeHT-
HICTB 33/1a4i y audepen iagabaoMy hOPMYIIOBaHHIL Ta BiMOBLIHOT Bapiariiaol
3amadgi. Jlocsipkeno nuTaHHd iCHYBaHHS Ta €QUHOCTI PO3B’A3KY IIOCTABJIEHOL
3amaqi y BiamoBiguux GyHKIioOHAILHUX IpocTopax. Ha ocHOBI iHTerpassHOro
MOJaHHS PO3B’dA3KYy BUXiAHA AudepeHIiajibHa 33/a9a 3BEIE€HA 10 CHCTEMU
rPAHUYHAX IHTErpaJIbHUX PiBHAHDL. [l0OyH0BAaHO AJIrOPUTM YHUCEIHHOIO PO3-
B’SI3yBaHHSI OTPUMAHOI CHCTEMU IHTErPAJIbHUX DIBHSHb METOZOM KOJIOKAIi.
IIpeacrasmerno ancespHi pe3yabraT HAOIUKEHOTO PO3B A3yBAHS JIESTKUX KOH-
KPETHUX IPDAHUYHUX 3a/a4.
ABsTRACT. We consider boundary value problem for Laplace equation in
bounded two-dimensional Lipschitz domain with thin inclusion. Transmission
boundary condition upon it consists of the jump of normal derivative and the
meaning of boundary value of seeking function. We prove the equivalence
of initial boundary value problem and connected variational problem. As a
result we obtain existence and uniqueness of solution of the posed problem in
appropriate functional spaces. Based on the integral representation formula
the considered boundary value problem is reduced to the system of bound-
ary integral equations. We construct the algorithm of numerical solution of
obtained system by collocation method. Our approach is illustrated by some
numerical examples.

The numerical results show that the proposed methods give a good accu-
racy of reconstructions with an economical computational cost.

1. INTRODUCTION

Boundary value problems for the second order elliptic equations with trans-
mission boundary conditions in nonsmooth domains are important class of
boundary value problems and were considered by many authors [1]- [4], [7,8].

We consider a special case of the transmission conditions when they are posed
on an open Lipschitz curve. From the mathematical point of view such kind of
problem describes stationary temperature field in domain with thin inclusion
when the temperature passing through this inclusion is continuous and the heat
flux is discontinuous and proportional to the boundary value of temperature.

Key words. Laplace equation; transmission condition; variational problem; open curve.
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In oder to obtain convenient mathematical model for this physical problem it’s
useful to present thin objects as inclusion or crack like an open curve. As a
result we get essentially unregular domain and need to introduce corresponding
trace maps and appropriate functional spaces [1,6].

In present paper we use a variational formulation of the posed boundary value
problem with transmission condition which gives us opportunity to obtain the
existence and uniqueness of solution.

2. FUNCTIONAL SPACES AND TRACE OPERATORS

Let Q; C R? be a bounded connected Lipschitz domain. This means that
its boundary curve ¥ is locally the graph of a Lipschitz function [5,6]. Let us
note that ¥ can be piecewise smooth and have corner points. Q, = Q, UX.
We suppose that S is an open Lipschitz curve with the end points ¢; and cg,
S =SU{cr,co}t and S C Q1. We denote = Q, \ S and consider S as a part
of a some closed bounded Lipschitz curve o = S U Sy, 3o C Q4.

Since Y and S are Lipschitz almost everywhere we can define outward point-
ing vector of the normal 7, x € 3 or x € S. Depend on the direction of 7,
x € S, we consider S as a double sided curve with sides Sy and S_.

In Q4 we consider the Laplace operator

and connected bilinear form

2. 9u v
a(u,v) = (Vu, Vv),0,) = /Q+ {; Oz; Ox; } e

We use the Hilbert spaces H'(Q,) and H'(Q, L) of real functions with
norms and inner products

||u|?5(1(9+):/Q {|Vu|2+u2}dx, (u,v)Hl(Q+):/Q {(Vu,Vv) + uv} dz,
+ +

lulif .2y = lullfa,) + 1 Lulliy ;)
(u,v) g1y ,) = (W 0) g1(ay) + (Lu, L)y,

The trace operators 'Y(J)r,z . H'Y(Q,) — HY?(X) and ’yfz : HY(Qy L) —
H~Y2(%) are continuous and surjective [5,6]. Here ’yffzu € H V(%) =
(H'2(%))" and coincides with 8‘% for u € C*(Qy).

Let us denote by C§°(£2) the class of infinitely differentiable functions with

compact support in Q. We introduce the Hilbert spaces H'(Q2) and H'(Q, L)
of real functions with norms

||Uqul(Q) - /Q {|Vul? + u?} da, (1)
HU||12L11(Q,L) = ||u||§{1(9) + ||LU||2LQ(Q)7

121



YU. M. SYBIL, B. E. GRYTSKO

where derivatives - € L(12) are defined as

(8“@) = o= ()
axi ’ L2 6 ’ 8.%'1 LQ(Q)

for all p € CF°(Q).
We consider some trace maps in 2. We denote 'ygts and 'yfcs the restrictions of

trace maps 73:20 and 'yfczo on S respectively [9]. Then we have ’ya—LS s HY(Q) —
H'Y2(S) and ’yfs CHY(Q,L) — HY/%(9).
We introduce the space
HY} Q) ={uec HY(Q): Vojfsu = 077(—{2“ =0}

and denote dual space H1(Q) = (H}(Q)). We also have that H}(Q) is a
closure of C§°(Q2) in the norm (1).
In what follows we use the next trace maps: [yo,5] = ’y({s — 0.5 71,5 =

wff s~ Vs Analogously as it was obtained in [9,10] for R3 we can show that
2 —-1/2
o.s]: H'(Q) = Hop*(S), byus) : H'(Q, L) — Hog*(S),

where H(%Q(S) = {g € HY2(S) : pog € H'/?(Xy)}. Here pyg is extension by

zero of the function g on Sp. The norm in H(%Z(S) is given as

191 1725y = lIP0gll 1117255

-1/2 _ 1/2
Hog 1*(8) = (HY2(S)), H7V2(S) = (Hy'(5)).

We have the first Green’s formula for bounded domain with an open curve
which in presented case for u € H'(2, L) and v € H(Q) has the following
form:

a(u,v) = (Lu,v) Ly0) + (Vg4 0,510) + (71,514, 79 510) + (i gw 15 50)- (2)

Here (-, ) are relations of duality between Héé2(5’) and H-1/2(S), H'/2(S) and
HO_OI/2(S), H'Y2(2) and H~/2(2) respectively.

Let Q; C Q4 be a Lipschitz domain bounded by the closed curve ¥y. Q; =
0 U, Q2 = Q4 \ Q1. We denote by u; the restriction of u € H'(Q) to €,
i =1,2. It’s obviously that u; € H'(Q;), i =1,2.

Lemma 1. The trace map v ¢ : H'(4) — HY2(S) is continuous and sur-
jective.

Proof. Let g € H'/2(S) be an arbitrary function. We denote by pg € HY/?(%)
the extension of g on ¥o. The trace map gy, HY(Q) — HY?(Xp) is con-
tinuous and surjective. Thus there exists function u; € H'(Q;) with trace
V&ZOUI = pg and

1291l 1172 (559) < llunll gagayy- (3)
Analogously there exists the function us € H'(£s) that ’)/SZEOUQ = pg. Thus we
have function u € H'(Q,) where u; are the restrictions of u to Q;, i = 1,2.
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Then from (3) we obtain

||g||H1/2(s) = pgel}{l/f;(zo) ||pg||Hl/2(20) < CHul”Hl(Ql) < C||“HH1(Q+)-
Here ¢ - some positive constant. ([l

3. BOUNDARY VALUE PROBLEM WITH TRANSMISION BOUNDARY
CONDITION AND IT’S VARIATIONAL FORMULATION

Let us state the following boundary value problem in domain 2.
Problem 7. Find a function u € H'(£2, L) that satisfies

Lu=—-Au=0 in Q,
Mo,slu=0,  [nslu+ Xy gu=f,
Toxt = g-

Here f € HO_OI/2(S), g € H'?(X) and X\ € C(S) are given.

A partial case of the problem T when ’V(J)f st = 0 we denote as problem Tp.

We can connect with problem T the next variational problem.

Problem VTp. Find a function u € Hj(Q) = {u € H'(Q4) : ygyu = 0}
that satisfies

b(u,v) = 1(v)

for every v € Hg(Q4).

Here

b(u,v) = (Vu, Vo)) + (Mo.s% 0.59) La(5)
L(v) = {f,79.50)- (4)

Lemma 2. If A € C(S), A(z) > 0, x € S, then bilinear form b(u,v) : H}(Q4) x
H}(Q4) — R is continuous and HE(Q)-elliptic.

Proof. Since trace map v, g : Hg (1) — H/2(S) is continuous we have
|(Mo.5% Y0.50)L2(5) | < Mg stll () 170,60 22(5) <

< Mg sull 2y v, svllazes) < Mellull g 1ol a2y
where M = max, g |A(x)].

[(Vu, Vo) 00| < [IVull 00 IVUlly@,) < llullgr ool ey
Thus we obtain
[b(u, v)| < (Me+ Dllullg o 1oz -
If A(x) >0, z € S, then using Friedreich’s inequality in H3(Q+) we can get
b(u,u) = [[ull?, ) + IN*25 sull7,05) = clullfp o,y

Thus b(u,v) is Hi(Q4) - elliptic. Here ¢ - some positive constants which don’t
depend on u and v. O

Theorem 1. Problems Ty and V1y are equivalent.
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Proof. Let u be a solution of the problem Tp. It means that u € H'(£2, L) and
[Yo.slu = 0, vdgu = 0. Thus u € H}(24). From the first Green’s formula

(2) we have b(u,v) = I(v) for every v € H¢(Q4). Thus u is a solution of the
problem V.

Let now u € H}(Q4) be a solution of the problem VTj. Then for every
v € HY Q) we have

(Vu, Vo) ry0.) = (F = M5t 70,50)- ()
By definition (Lu,v) = (Vu, Vo)1, q,) for every u € H'(Q4) and v € Hj(Qy).
Here Lu € H 1(Q4) = (HE(Q4)). If v € C°(Q) from (5) we can get the
following relation:
(Vu, Vo), @,y = (Lu,v) = 0.
It means that Lu € H~1(Q) = (H}(Q))" and Lu =0 in Q.

Since u € H}(Q4) it follows that [yp,s]u = 0. Then from the first Green’s
formula (2) for arbitrary v € HZ(Q4) we can get:

(lr,slu = f 4+ Ayg sw:79.5v) = 0.

The trace map v, ¢ : Hi(Q4) — HY2(S) is surjective. Thus ([y1.s]u — f +
M5 g) = 0 for arbitrary g € H'Y2(S). Tt gives us that [y s]u + Mo.st = f
and as a consequence we obtain that function u is a solution of the problem
To. O
Theorem 2. If A € C(S), AM(z) > 0, x € S, then problem VT has a unique
solution for arbitrary f € H&]l/z(S).

Proof. Lemma 2 gives us that the bilinear form b(u,v) : H (Q4)x Hi (Q4) — R
is continuous and H} (4 )-elliptic

It’s easy to show that the functional [ : H}(Q4) — R given by (4) is contin-
uous. Since the trace map 7, g : H} () — HY%(S) is continuous we have:

)] = KF. 5,509 < 1y vros stilinsacsy < el oass gy ol gy
where ¢ - some positive constant which does not depend on v. Then by the
Lax-Milgram Lemma we obtain what was to be proved. ]
Theorem 3. If A € C(S), A(z) > 0, x € S, then problem T has a unique
solution for arbitrary f € H&Jl/z(S) and g € HY/2(Z).

Proof. Let function w € H'(Qy4) satisfies Lw = 0 in Q4 and 7dyw = g. Then
[70,5]w = 0 and [y1,5Jw = 0. As a corollary of theorem 1 and theorem 2 we

obtain that the problem Ty has a unique solution for arbitrary f € H&)l/g(S)
if A € C(S), \M(z) >0, x € S. Tt means that there exists a solution ug of the
problem Ty with boundary condition [y1 slug + Ay guo = f — Ayg gw. Then
it’s easy to verify that the function u = ug — w € H'(2) is a solution of the
problem T'. ([

Let us note that our approach remains true when S = (J;"_; S;, where S; are
open Lipshitz curves without common points.

124



BOUNDARY VALUE PROBLEM FOR THE TWO-DIMENSIONAL ...

4. SYSTEM OF BOUNDARY INTEGRAL EQUATIONS
Let Q(z,y) = ln ‘x i be fundamental solution of the operator L = —A.

Then the solutlon u of the problem T with condition Yot = ’yatzu has the
following integral representation

u(z) =Vr(z) + Vapu(z), x € Qy,

where 7 = [y slu, 1 = [71,x]u,

/Q:cy ydsy, Vep( /wa

Using boundary condltlons we can reduce problem 7" to the following system
of boundary integral equations:

{ T+)\KT+)\’yafSVg,u: 1
Yox VT + Ksp =g,

where

Kr(z) = / QU y)T(W)dSy, i Venla / Qla, y)uly)dS,, =€ S,

Ksu(x /me Sy, ’)/OEVT /Qxy y)dS,, =€ X.

We use collocation method for solving of obtained system (6). Let us denote
by Ng and Ny number of boundary elements of the second order given upon
curves S and X respectively. Finally we derive the following system of linear

algebraic equations:
An A12> f _(f
Ay Ax) \i 9]

All = 51] + )‘('171) /Q(l"my)dsy ) Z?] = 1aN57
Sj

Here

A12 = )\(:CZ)/Q(xlay)dSy ) i = 17NS7 j: 17N27
E]

A21 = /Q(«Twy)dsy ’ 1= 17N27 j: 17NS7

A22 - /Q(xlay)dsy ) Z)] = 1)N27
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7f::(/7—17”'77—]\7s)7 /7:(/1’17'”7/’LN2)7

f:(f(xl)v”' 7f('rNs))7 §:(g(x1),--' 7g(xNz:))7
x; — collocation points on S or X.
Approximate meaning of searching solution of the problem T we can get
from the next expression:

Ng Ny
w(z) =S 7 / Qa,y)dsy + > p / Q(z,y)ds,.
=1 S, =1 2,

5. NUMERICAL EXAMPLES
Example 1. We consider the domain €2 bounded by circle ¥ of the radius
R =2 and with open curve S = {(z1,22) : 2 = 21, —1 < 21 < 1} (see Fig. 1):

Fig. 1

The obtained numerical result for given meaning of A, f and g is presented
in Fig.2a and Fig. 2b.

FiG. 2. A=1,g=1, f =5, Ny, = 800, Ng = 160
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If we take another meanings of functions g and f we can get the following
results (see Fig. 3a, Fig. 3b, Fig. 4a and Fig. 4b):

_—1 -08 06 -04 -02 0 02 04 06 08 1

b)

FIiG. 4. A=1, g = 79, f = 1029, N5, = 800, Ng = 160
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Example 2. We consider the next domain where S consists of two parts as
it presented on Fig.5

Ficg. 5

Numerical result for given meanings of A, f and g for this example is pre-
sented in Fig. 6a and Fig. 6b.

“plotab.od —— 0.6+

: 0.4

0.2

-0.4-
_0_6.

-0.8

-1

1 08 -06 04 02 0 02 04 06 08 1

Fic. 6. A=1,g=1, f =1, Ny = 640, Ng = 320
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EXPONENTIALLY CONVERGENT METHOD
FOR DIFFERENTIAL EQUATION IN BANACH
SPACE WITH A BOUNDED OPERATOR
IN NONLOCAL CONDITION

V.B. VASYLYK

PE3IOME. Po3srisgmaerbca ABOTOYKOBA HEJIOKAJIbHA 3ajad4a s JudepeH-
IIaJIbHOTO PIBHSHHS TIEPIITOTO MOPSIKY 3 HEOOMEKEHIM OMEePATOPHUM Koedi-
mieaToM B 6aHaxoBoMy mpoctopi X. B memokambHii yMOBI MicTUTHCS 0OMexKe-
Huil oneparopuwmii koedimient. [lobynoBano Ta 0OrpyHTOBAHO HOBHII €KCIIO-
HEHIAJIBHO 301KHUI METOJ[ y BUMAIKY, KOJU Ooneparopuuii kKoedimient A y
PIBHSIHHI € CEKTOPiaIbHUM | BUKOHAHHI YMOBHY ICHYBAHHS Ta €MHOCTI PO3B’s13-
Ky. Leit meTon rpyHTYETHCH Ha 300 pakeHH] OrrepaTopHuX BYyHKIH 32 JOIOMO-
roio iurerpasa Jaudopma-Komri 3108k rimep60/in, 10 OXOILIIOE CIIEKTP OITe-
paropa A, Ta BigmoBimmilt kBaapaTypHiii Gopmysi, MO MICTUTH HEBEIUKY
KUIBKICTh pe30sibBeHT. EdeKTuBHICTH 3aIIPOIIOHOBAHOIO METOMY JIE€MOHCT-
PYETBHCS 33 JOMOMOTOI0 YHCEIBHUX PO3PAXYHKIB.

ABsTRACT. The two-pointed nonlocal problem for the first order differen-
tial equation with an unbounded operator coefficient in a Banach space X
is considered. The nonlocal condition involves a bounded operator coeffi-
cient. A new exponentially convergent method is proposed and justified in
the case when the operator coefficient A in equatuion is strongly positive
and some existence and uniqueness conditions are fulfilled. This method is
based on representations of operator functions by a Dunford-Cauchy integral
along a hyperbola enveloping the spectrum of A and on the proper quadra-
tures involving short sums of resolvents. The efficiency of proposed method
is demonstrated by numerical examples.

1. INTRODUCTION

Problems with nonlocal conditions arise in many applications particulary in
the theory of physics of plasma [12], nuclear physics [9], waveguides [7] etc. The
nonlocal problems for a differential equation with various nonlocal conditions
are also interesting from theoretical point of view and are ones of the important
topics in the study of differential equations.

Differential equations with operator coefficients in some Hilbert or Banach
space can be considered as meta-models for systems of partial or ordinary differ-
ential equations and are suitable for investigations using tools of the functional
analysis (see e.g. [8,11]). Nonlocal problems often are considered within this
framework [1-3,18,19].

Key words. Nonlocal problem; differential equation with an operator coefficient in Banach
space; operator exponential; exponentially convergent methods.
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In this work we consider the following nonlocal two-pointed problem:

uy + Au = f(t), te0,T]

u(0) + Bu(T) = up, 0<T, 1)
where B : X — X is a bounded operator, f(t) is a given vector-valued function
with values in Banach space X, ug € X. The operator A with domain D(A) in
Banach space X is assumed to be a densely defined strongly positive (sectorial)
operator, i.e. its spectrum X(A) lies in a sector of the right half-plane with the
vertex at the origin and with a resolvent that decays inversely proportional to
|z| at the infinity (see estimate (2) below).

Discretization methods for differential equations in Banach and Hilbert spa-
ces were intensively studied in the last decade (see e.g. |5,10,13,14,16,17] and
the references therein). Methods from [5,10,14,16,17| possess an exponential
convergence rate, i.e. the error estimate in an appropriate norm is of the type
O(e™N"), a > 0 with respect to a discretization parameter N — oo. For a given
tolerance € such methods provide optimal or nearly optimal computational
complexity [4]. One of the possible ways to obtain exponentially convergent
approximations to abstract differential equations is based on a representation
of the solution through the Dunford-Cauchy integral along a parametrized path
enveloping the spectrum of the operator coefficient and choosing a proper quad-
rature for this integral. In such way we obtain a short sum of resolvents. Since
the treatment of such resolvents is usually the most time consuming part of any
approximation this leads to a low-cost naturally parallelization techniques. Pa-
rameters of the algorithms from [5,10, 14] were optimized in [20,21] to improve
the convergence rate.

Exponentially convergent method was constructed recently for nonlocal m-
point problem for the first order differential equation with an unbounded co-
efficient in Banach space in [3]. But unlike this work there were considered
the case of scalar coefficients in nonlocal condition. The aim of this paper is
to construct an exponentially convergent approximation to the problem for a
differential equation with two-pointed nonlocal condition with a bounded oper-
ator in abstract setting (1). The paper is organized as follows. In Section 2 we
discuss the existence and uniqueness of the solution as well as its representation
through input data. A numerical method for the homogeneous problem (1) is
proposed in section 3. The main result of this section is theorem 1 about the
exponential convergence rate of the proposed discretization.

2. EXISTENCE AND REPRESENTATION OF THE SOLUTION

Let the operator A in (1) be a densely defined strongly positive (sectorial)
operator in a Banach space X with the domain D(A), i.e. its spectrum 3(A)
lies in the sector. Additionally outside the sector and on its boundary I'y the
following estimate for the resolvent holds true

11— ) < -2

14z 2)
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Let us assume that operator B is bounded in Banach space X, i.e. ||B] <
¢ < 0.
The hyperbola

Lo = {2(§) = pocosh§ —ibysinh{ : € € (—00,00), by = potan}  (3)

is called a spectral hyperbola. It has a vertex at (po,0) and asymptotes which
are parallel to the rays of the spectral angle ¥. The numbers pg, ¢ are called
the spectral characteristics of A.

A convenient representation of operator functions is the one through the
Dunford-Cauchy integral (see e.g. [8,11]) where the integration path plays an
important role. We choose the following hyperbola

Iy ={z(§) = aycosh& —ibysinh¢ : € € (—o0,00)}, (4)

as the integration contour which envelopes the spectrum of A.
One can reduce problem (1) to homogeneous using the following way. Let
u = v + w, where v is a solution to the problem

v+ Au= f(t), te€l0,T)]
u(0) = 0.

Namely it has a representation

o(t) = /O oA f () dr. (5)

Then for w(t) we obtain the problem
wy +Aw =0, tel0,T]

T
w(0) + Bw(T') = ug — B/ e AT f(1Ydr = @y, 0<T.
0

Note that exponentially convergent method for approximating v(t) from (5)
was developed in [6] (see also [4]). So, we can consider homogeneous problem
(1) (/(t) = 0).

According to the Hille-Yosida-Phillips theorem [22] the strongly positive op-
erator A generates a one parameter semigroup T'(t) = e~*4 and solution to (1)
(homogeneous case) can be represented by

u(t) = e u(0). (6)
Combining the nonlocal condition from (1) and (6) we obtain
u(0) + Be™Tu(0) = up, (7)

from where we have
u(0) = [I+ Be_ATT1 uo,

in the case when [I + Be_AT]_1 exists. Here I is an identity operator. So,
using (6) we obtain

u(t) = e~ [T + Be4T] ™ . (8)
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Let us looking for existing conditions for [I + e*ATB] ~'. We have
|r+e T8 < (1= e B|) T <1 - B <e < oo

in the case
1Bl < 1. 9)

Remark 5. [t is possible to obtain weaker conditions than (9) in the case when
the operator A is positive definite and selfadjoint A = A* > \ol, Ao > 0. For
example if B = A then we have using spectral integral representation

| Be ATH—H/ e TAdE, || < e_l/ [dB| = .
T T

Therefore, for T > e~ ! we have
—11-1
Hp+gﬂ3}wgp_wgmnml<p_f] T

T —e

3. NUMERICAL APPROXIMATION
Our aim in this section is to construct an exponentially convergent method
for the solution to homogeneous problem (1) with assumption (9). Additionally
we assume that the operators A and B are commutative: AB = BA.
Using the Dunford-Cauchy representation of u(t) (see [11]) analogously to [4]
we obtain
1

ulty=— [ e *[I+ e*ZTB]_1 (21 — A) lugdz (10)
2mi Jr,

Representation (10) makes sense only when the function e [I + e~*7 B] s
analytic in the region enveloped by I';. Let us show, that condition (9) guaranty
this analyticity [8].

Actually, the analyticity of e=* [I + e*ZTB] ! might only be violated when
e *TB = —1I, since in this case the function becomes unbounded. It is easy to
see that for an arbitrary z we have

|1+ Be™ || > 1 — || B >0,

provided that (9) holds true.
We modify the representation of u(t) to obtain numerical stability for small
t as follows (see [4]):
_ 1
u(t) = / ¢ [[+e "B [(z[ — A)7! = =T updz. (11)
2 I z

T

After discretization of the integral such modified resolvent provides better con-
vergence speed than (10) in a neighborhood of t =0 (see [4,6] for details).
Parameterizing the integral (11) by we get

/ F(t,&)de, (12)
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with
f(taé) = FA(taé.)um

Fa(t, &) = e O/ (&)[T + Be *OT) 1 [(z(é) T— At - 2(15) I] 7

2 (€) = aysinh & — iby cosh €.
Supposing ug € D(A%), 0 < a < 1 it was shown in [4,6] that

2O [ (2 — A — 1| w
o O%(©) | (7 = ) = 1]l

ar \ar

br 2\
<(1+MKL <) emarteosh&—aldly gag 1l ¢ e R, t > 0.

The part responsible for the nonlocal condition in (12), can be estimated in
the following way

H (r+ Be—z@)T)‘lH <(-|B) =0

Thus, we obtain the following estimate for F(t, ) using commutative prop-
erty of operators A and B:

b 2\¢
FLOI < QU+ MK L () et el geu), €€ R, e20. (13

ar \ar

Further, we have to estimate a strip around the real axis where the function
F(t,€) permit analytical extension (with respect to £). The analyticity of
function F(¢,& + iv), in the strip

Ddl = {(§7V) 1§ € (_00700)7’V’ < d1/2}7

with some d; could be violated if the resolvent or the part related to the nonlocal
condition become unbounded. To avoid this we have to choose d; so that for
v € (—di/2,d1/2) the hyperbola set I'(v) remains in the right half-plane of the
complex plane. For v = —d;/2 the corresponding hyperbola is going through
the origin (0,0). For v = d;/2 it coincides with the spectral hyperbola and
therefore for all v € (—dy/2,d1/2) the set T'(v) does not intersect the spectral
sector.
The above requirements are fulfilled when (see [4])

P1
dy = arccos | ———= | — ¢, (14)
(v%+%>
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— _p ; — _bo
where cos p = TR sin o = TR And for ay, by

2
COS (%1 + <p) cos <arccos (W) /2 + (p/2>
= po = Po )
cos p Ccos

. [(d
by = \/pg + b3 sin <21+<p>

cos (%1 + (p) cos <arccos (W) /2+ <p/2> |

= Po = Po
Ccos cos

For a;y and by defined as above the vector valued function F(¢,w) is analytic in
the strip Dy, with respect to w = & + v for any ¢t > 0.
Similarly to [15] (see [4]), we introduce the space HP(Dy), 1 < p < oo of all
vector-valued functions F analytic in the strip
Dg={2€C:—-00 <Rz < 00,|]z| < d},

equipped by the norm
lime—o(fp, 0 IF(IPIdz) P if 1 < p < o0,
|1 Fllerp,) = a .
lime—o sup;eap, (o) |17 (2| if p = oo,
where
Dy(e) ={z € C:|Re(z)| < 1/e,|Im(2)] < d(l —€)}
and 0Dg(e) is the boundary of Dy(e).
Similarly to [4] we have estimate for ||F (¢, w)]|

IF ()l (p,,) < [A%u0l[[C- (e, @)

+Culp.a)] [ e = Ol A%uo]

—0o0

with
C(p,0) = 2 [C1(p,0) + C- (0]

«

Ci(p, ) = (1 + M)QK tan <d2 +<pid21> Qdcow
Po COS (71 +eox %)
Note that the influence of both the smoothness parameter of ug given by o and
of the spectral characteristics of the operator A given by ¢ and pg is accounted
by that fact, that the constant C(¢, a) from (15) tends to oo if & — 0, p — 7/2
or p1 — 0 (in this case due to (14) di — § — ).
We approximate integral (12) by the following Sinc-quadrature [4,6,15]:

2m Z F(t, 2(kh)) (17)

135



V.B.VASYLYK

with an error

[l (F5 )| = Jlu(t) — unn (2]

< ult) — g S0 Ft k) + 5 3 F b, 2(kR))]
k=—o00 |k|>N

6—7rd1/h

<l T R
~ 27 2sinh (7dy /h) H'(Day)

, Cle.ahlA"u|

5 > exp[—artcosh (kh) — akh]
T

k=N+1

o —ndi/h
< lA%u| { ¢ + exp[—ast cosh (N + 1)h) — a(N + 1)h}},

a sinh (7d;/h)
where the constant ¢ does not depend on h, N, t. Equalizing the both exponen-
tials for ¢ = 0 implies
2mdy

= = a(N +Dh,

- 2md;
h= \/ a(N+1) (18)

With this step-size the following error estimate holds true

or after the transformation

c Tdio
mmf,h)usaexp(— . <N+1>>|1Aauou, (19)

where the constant ¢ independent of ¢, V. In the case ¢ > 0 the first summand
in the argument of exp[—artcosh (N + 1)h) — (N + 1)h] from the estimate
for ||nn(F, h)|| contributes mainly to the error order. Setting in this case h =
¢1In N/N with some positive constant ¢; we remain, asymptotically for a fixed
t, with an error

”nN(F7 h)H <ec e—ﬂ'le/(Cl In N) +e—cla1tN/2—clalnN:| HAO[Ul)H? (20)

where ¢ is a positive constant. Thus, we have proven the following result.

Theorem 1. Let A be a densely defined strongly positive operator and ug €
D(A%), a € (0,1), then the Sinc-quadrature (17) represents an approzimate so-
lution of the homogeneous nonlocal value problem (1) (i.e. the case when f(t) =
0) and possesses an exponential convergence rate which is uniform with respect
tot > 0 and is of the order O(efc\/ﬁ) uniformly in t > 0 for h = O(1/v/'N)
(estimate (19)) and of the order O (mam{e*”dN/(Cl InN) e’q“’tN/Q’Clo‘lnN})
for each fized t > 0 when h = ¢1In N/N (estimate (20)).
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TABL. 1. The error for x = 0.5, ¢t = 0.5.

E1,N €2.N

8 | 0.4686576088595737062¢-1 0.1900886270925846e-2
16 | 0.934021577137014178¢-2 | 0.852946984325721275711e-4
32 | 0.1546349721567053042¢-3 | 0.810358320985172283872¢-5
64 | 0.0159641801061596051e-3 | 0.01035505780238307696e-5
128 | 0.735484912605954949¢e-5 | 0.91841759148488051333e-6
256 | 0.146908016254907436e-7 | 0.24806555113840622551¢-7
512 0.8577765610e-8 0.1165963141e-8

1024 0.7339799837e-11 0.1591565422e-11

TABL. 2. The estimate of ¢

N c
2.372652515388745588587496
8 | 1.120148732795449515627946
16 | 1.458741976765153165445005
32 | 1.527648924601130131250452
64 | 1.476794596387591759032900
128 | 1.499935011373075736075927
256 | 1.506597339081609844717370

e

4. NUMERICAL EXAMPLE
We consider the problem
ou B 9%u
ot 0x?’
u(0,t) = u(1,t) =0,

u(z,0) + Bu(z, 1) = uo,

with
ui(x,t) 0.2 0.1
(@, t) = ( u;(q:,t) ) B = ( 0.1 04 ) (21)
(A + 0.2¢"™ ) sin(rz) + 0.1e 4™ sin(27z)
uo(®, ) = < 0.le ™ sin(mz) 4+ (1 + 0.4e~4™) sin(2mz) ) (22)

It is easy to check that exact solution is

ua, 1) = ( sin () ) , (23)

sin(27x)

The error of computation is presented in Tabl. 1.
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Due to Theorem 1 the error should not be greater then ey = O (efc‘/ﬁ> .

The constant c in the exponent can be estimated using the following a-posteriori
relation:

c=1In (EN) (V2—=1)7IN"Y2 = In(uy) (V2 —1)"INTYV2

€N

The numerical results are presented in Tabl. 2. Note that the constant can be
estimated as ¢ = 1.5 when N — oo.
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INTERPOLATION FORMULAS FOR FUNCTIONS,
DEFINED ON THE SETS OF MATRICES WITH
DIFFERENT MULTIPLICATION RULES

L. A.YANOVICH, M. V. IGNATENKO

PE3IOME. Posrisimaerbcs 3ama9a inTeprosiii GyHKIHT Bi MATPUIT y BUAIAI-
Ky MHOKeHHs 3a npasuiamu Mopaana, Axamapa, ®pobeniyca, Kponekepa i
Jlammaca. OTprMaHo HOBHIT KJIaC IHTEPHOISIHIHIX MHOrOWIeHiB Jlarpan:xka
i Heiorona ¢dikcoBanoro cremenst st dyHKINH, BU3HAYEHUX HA MHOXKHHAX
CKIHYEHHHUX 1 HECKIHYEHHUX MATPHUIlb. BKa3aHO BUIJIfA OIEPATOPHUX ITOJIIHO-
MiB, ISt IKUX i (OpMysH iHBapiaHTHI.

ABsTrRACT. We consider the problem of matrix functions interpolation in the
case of Jordan, Hadamard, Frobenius, Kronecker and Laplace multiplication
rules. We give a new class of Lagrange and Newton interpolation polynomials
of fixed degree for functions, defined on the sets of finite and infinite matrices.
The type of operator polynomials, for which these formulas are invariant, is
indicated.

1. INTRODUCTION

Let X be a set of square or rectangular matrices of the fixed size. The
operator F': X — Y where Y is a given set, is called a function of the matrix.
In particular, Y may coincide with X, may be some other set of matrices, a
numerical set, a function space and others.

Approximation of functions of the matrix variables is a part of a more general
problem — interpolation of operators [1-4].

General form of the interpolation formulas is determined by the structure
and properties of elements of the set X, on which the interpolated function
F (A) is given, as well as the interpolation nodes. A number of interpolation
formulas on the sets of square and rectangular matrices was obtained in the
works [1, 2; 5-8].

Along with the commonly accepted operation of matrix multiplication, the
other matrix multiplication rules are also used and can be applied in mathe-
matics and its applications. Such an approach is also effective at constructing
of interpolation methods for functions of matrices. In this paper the interpo-
lation formulas, using both the ordinary matrix multiplication and the matrix
multiplication by Jordan, Hadamard, Frobenius and others, are obtained.

Key words. Interpolation; matrix functions; interpolation matrix polynomial; interpola-
tion formula of Lagrange and Newton type; matrix multiplication by Jordan, Hadamard,
Frobenius and Kronecker, Laplace discrete convolution.
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2. INTERPOLATION FORMULAS WITH MULTIPLICATION
OF SQUARE MATRIX BY JORDAN

Let X be a set of square matrices of the fixed size, the operator F': X — X.
The Jordan product A o B of two matrices A and B from X is defined by the
following rule: Ao B = % (AB + BA). It is commutative, but not associative.
So, if the Jordan product contains more than two matrices, then in some cases
it is required to indicate the execution order of the multiplication in the given
product for uniqueness.

Let us first consider interpolation formulas of Lagrange type of the arbitrary
order, which are constructed on the basis of such rules of multiplication of
square matrices. Here are three variants of the formulas for constant matrices.
We denote by l,x (A) the product

lnk (A) = Bk:O o) (A - Ao) ¢} Bk:l o...0 Bk,k—lo
o(A—Ag_1)oBgro(A—Apt1) 0o Brpy10...0Bpp_10(A—Ay) 0By,

where Ay (k= 0,1, ...,n) are interpolation nodes, By, = By, (k,v =0,1,...,n)
are arbitrarily given matrices. Let the order of execution of multiplication oper-
ation in [, (A) be determined in advance. We introduce the matrix polynomials
of the form

Lon (A) = " F(Ag) o {I,} (Ar) o Lk (A) } (1)
k=0

Lo (A) = " {F (Ap) o} (A} o L (A), (2)
k=0

in which first the multiplication operation in the curly brackets is performed.
Since l;kl (Ag) o Lk (Ay) = 0 (k,v =0,1,...,n), where d, is the Kronecker
symbol, than for the formula (1) in the nodes Aj the interpolation conditions
Loy, (Ag) = F (Ag) are met.

These conditions are satisfied for the formula (2), if the associator

{F(A), Ly (A)) s Ly (A)} = 0.
It takes place in virtue of the equality
{F(A), Ly (Av), b (A)} =
= (F(A) olyy (A)) 0 lny (A)) = F (Ay) 0 (I (Ay) 0l (A))) =
= (F(A)) ol (A))) olw (A)) — F (A,) = 0.

It follows that (2) is the interpolation formula.
It is easy to check that the matrix polynomial of the n-th degree

Ly (A) =Y F(Ag) o ek (A) (3)
k=0

where

()= T B{(A=A)o(a,—4)"} B,
v=0,v#k
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B, (v =0,1,...,n) are arbitrary invertible matrices, also satisfies the conditions
L, (Ax) = F(Ag) (k=0,1,...,n), at that the product of matrices, indicated
in curly brackets, on B, and B, ! can be understood as the ordinary or in the
sense of Jordan. In the both cases Iy (Ay) = 0 I (k,v =0,1,...,n).

The interpolation polynomials (1)—(3) are exact for the matrix polynomials

Py, (A) = Dyo{l) (A) ol (A)},
v=0

Puo(A) =Y {Dyol} (A)} oln, (A), Pu(A)=)_D,ol, (A),
v=0 v=0

respectively, where D, are arbitrary square matrices. As already mentioned,
the interpolation conditions for the formula (2) are satisfied, if and only if
associator

{F(Ak) , lgkl (Ag) s Lok (Ak)} =0 (k=0,1,....,n).

This imposes additional conditions on the operator F' and the interpolation
nodes.

If n =1, and By, (k,v =0,1) are the identity matrices, then the formula
(1) with the nodes Ap and A; is reduced to the equality

Lo (4) = F (A0) + [F (A1) = F (49)] o { (41 — 40) "o (A— 49)} . (4

It is exact (invariant) for the polynomials Pp; (A) = Do{(A1 —Ap)to A}+C’,
where D and C are arbitrary matrices.

In the particular case, when A; — Ag = I, the linear interpolation formula
(4) takes the form

Lo (A) = F (Ao) +
+ % [(F (A1) — F (Ao)) (A — Ao) + (A — Ao) (F (A1) — F (4o))]

and it will be invariant for the matrix polynomials P; (A) = DA+ AD + C,
where D and C are arbitrary fixed matrices.
Here is another formula of the linear interpolation with the multiplication
by Jordan:
Li(A)=F(Ag) + (A— Ag) o B+

+[F (A1) = F (4o) — (41 — Ag) 0 Bl o { (41 — 49) "o (A= Ag) },

where B is an arbitrary given matrix. This interpolation formula is exact for
polynomials of the form

P (A) :Do{(A1 —Ag)_loA}—i—BoA—i—C.
One of the quadratic interpolation formulas of the kind (3) has the form
Lo (A) = Lot (A) +{(A = A1) o (A2 — A1)~ o [{(A— Ag) o (A2 = 49) " } o

o (F (A2) = F (A1) = { (A= Ag) o (A1 = Ag) '} o (F (A1) = F (40))]
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where, as before, at the beginning matrices in the curly brackets are found, and
then in the usual order — in square brackets; Lo; (A) is the matrix polynomial of
the first degree (4). For it the following equalities Lo (4;) = F (A;), (i = 0,1, 2)
are valid.

Example 2.1. It is not difficult to show that the interpolation polynomial

Lig (4) = F (A0) + { (A = Ag) o (A1 = 40) "} o [F (41) = F (Ao)],

where the function F (4) = A2, and the nodes

1 2 0 2
AU - |: 3 4 :| bl A]. - |: 3 3 :| bl
has the form

1 [1 4], 11 4 6 8
LlO(A):gA[(s 7]+2[6 7}14[12 18]

Next, we consider the formulas of the linear and quadratic interpolation
on the set of square functional matrices, which are determined by the matrix
Stieltjes integrals. Let X = C (T") be the set of continuous on T' = [a, b] square
matrices; F': X — X, Ay (t), A1 (t) be interpolation nodes from X.

On the set of matrices with the Jordan multiplication, the interpolation
polynomial of the first degree with respect to the nodes Ay (t) and A; (¢) has
the form

Lio (4) = F (4o) + /T {14(7) = 4y (] 0 [41 (7) = Ay ()] "} o
odr P [Ag () + X (7,) (A1 (-) = Ao ()]

In the formula (5), as before, first the multiplication operation in the curly
brackets is carried out. This formula is invariant with respect to the polynomials

P1 (A) = K() + /T {A (t) o [Al (t) - Ag (t)]_l} oK (t) o} [Al (t) - AO (t)] dt,

(5)

where Ko, K (t) are some given matrices.
Example 2.2. The interpolation matrix polynomial of the form (5) with

respect to the nodes Ay (t) and A; (t) for the function F' (A) = f; A2 (t) dt takes
the form

b
Lo (4) = F (Ao) + / G[A(7), Ao (1), Ay (7)) dr,
where
G[Aa Ao,Aﬂ =
= % {(A — Ag) (A1 — Ag) ™" + (A1 — Ao) T (A - Ao)} (A2 A2)+

+ % (A7 - 47) {(A — Ao) (A1 — Ag) "+ (A1 — Ap) T (A - Ao)} :

Next, we consider the interpolation polynomials of the arbitrary degree for
functions of two matrix variables. Let F (A, B) be a function of two variable
square matrices A and B, the interpolation nodes {A,, B,} (v =0,1,...,n) are
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given, where A,,, B, are some square matrices. We introduce the following no-
tations: r; = r; (A4, B) is the vector with matrix coordinates {A — A;, B — B;};

Tk = 1k = Tu (Aky Br) = 11 (Ag, Be) (L k= 0,1,...,n).
The vector 7y has coordinates {Ax — A;, B — B;}. It’s obvious that ry =
ri (A;, B;) = 0. Assume that

(rl,rlk) = (A — Al) o (Ak — Al) -+ (B — Bl) o (Bk — Bl) (l, k=0,1, ,n) ,

(rus i) = (A, — A))* + (B — By)?
and, accordingly, we denote

I (A, B) = (10, 70k) - ("h—1,Tk—1k) (Tht15 Th+1,k) - (Tm, Trk) X

X [(Poks T0k) -+ (Th—1> "o 1) (Tt L Tht 1) - (P )] ™
Since I (Ay, By) = 0k, 1, then the matrix polynomial

L1, (A, B) sz A,B) F (A, By), (6)

where the product of the matrices Iy (A, B) and F (Ag, By) on the right side of
(6) may be usual or in the sense of Jordan, is also the interpolation polynomial
for the function F' (A, B) with respect to the nodes (Ax, Bx) (K =0,1,...,n).

We give a slightly modified version of the interpolation formula of the form
(6). We introduce the notations

n

k(AB)= [ (A B), k(A B) = (ry,r8) 0 (rug, k)
v=0,v#k

Since I,y (Ag, Bx) = I, lx (Ay, B,) = 0, then I}, (A,, B,) = 6, 1. Thus, the

formula

Z F (Ag, By)

k=
is the interpolation polynomial of the degree not higher than n, for which the
equalities L, (A,,B,) = F (A,,B,) (v =0,1,...,n) are true.

Next, we consider formulas of the other form for the linear interpolation
of functions of two matrix variables on the set of constant matrix with the
multiplication by Jordan. Let F' (A, B) be a function of matrix variables A and
B; (Ai, B;) be interpolation nodes (i = 0,1, 2).

We introduce the following notations:

lo(A,B) =[(A— A1) o (B; — By) — (A} — Ay) o (B — By)] o D71,
I, (A,B) = [(A— Ag) o (By — By) — (A — Ag) o (B — By)] o D71,
I3 (A, B) =[(A— Agy) o (By— By) — (Ag — A1) o (B — By)] o D71,

where

= (A()—Al)o (Bl —Bg) — (Al —AQ)O(Bo—Bl).

144



INTERPOLATION FORMULAS FOR FUNCTIONS, DEFINED ...

Note that the relations ; (A;, Bj) = 8;;1; lo (A, B) + 11 (A, B) + 12 (A,B) = I
take place. It is not difficult to verify that for matrix polynomial of the variables
A and B of the first degree of the form

il (A, B) = l~0 (A, B)OF (A(), BO)+Z~1 (A, B) oF (Al, Bl)+l~2 (A, B)OF (AQ, Bz)

i (7)
the interpolation conditions L; (A;, B;) = F (4;,B;) (i =0,1,2) are carried
out.

3. INTERPOLATION FORMULAS WITH MATRIX MULTIPLICATION
BY HADAMARD
Let A = [a;;] and B = [b;j] be some matrices of the same dimension. The
matrix C = A - B of the same size with elements c;; = a;;b;; is called the
Hadamard product of the matrices A and B. It is commutative, associative
and distributive with respect to the addition of matrices. The role of the
identity matrix for such rule of multiplication carries the matrix J, all elements

1

of which are equal to one. By A=1= [a} we denote the matrix that is inverse
ij

in the sense of Hadamard for the matrix A = [a;;] with the elements a;; # 0.
By the definition, the n-th degree of matrix A = [a;;] in the sense of

Hadamard, which is denoted as Aﬁ, is the matrix A;L:[a?j], where A" = J
for n = 0. The function f () = Y 3o, ax2z” of the matrix A = [a;;], analytical
in a neighborhood of each element of this matrix, is defined on the set of ma-
trices with Hadamard multiplication by the formula f (A4) = > 2, axA* and,
accordingly, it is the matrix f (A) = [f (a4j)].

Here are the special cases of interpolation formula [8] of the form

Lon (A) =Y F (AR) - 1 (Ag) - Lk (A) =

Lo (A) = (A — Ag) - oo (A= Aj_) - (A= Appr) - oo (A— Ay),

matrices [,k (Ax) do not have zero elements, matrix A and nodes A of the
same dimension, fil;- are elements of the matrix F'(Ay) (k=0,1,...,n). It is
obvious that the equalities Lo, (4;) = F (4;) (i =0,1,...,n) hold.

Consider the linear case of the interpolation formula (8). Let the interpo-
lation nodes Ay = [a%}, A = [a}j} be such that all elements of the matrix

Ay — A = [agj — al-lj] are different from zero. Then for the formula

Lot (A) = F(Ag) - (Ag — A1) (A= A)) + F (A1) - (A1 — Ag) ™' - (A — 4y)
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or, what is the same thing, for the formula

1 0
aij—a-» aij—a~
Loy (A) = F(Ao) - | g— 1| + F(A) - | +—5 |,
ag; — a;; a;; — ag;
where A = [a;;] is current matrix variable, the interpolation conditions

L01 (Al) =F (Az) (Z = 0, 1) are fulfilled.

During the construction of interpolation formulas, based on the Hadamard
multiplication of square matrices, it is useful to introduce yet another analogue
of the inverse matrix. Let A = [a;;] be a square matrix and a;; # 0. By A1
we denote the matrix, for which A - A = ACD . A = . where I is the
identity matrix in the ordinary sense of the same dimension as the matrix A.
This matrix will be A = diag {ai“} .

We give formulas of the linear interpolation with the ordinary and the Hada-
mard multiplication. Let A = [a;;] be some square matrix that has nonzero
diagonal elements. Then for the linear interpolation formula

Lot (4) = F (4o) { (A9 — AV - (4= ap) b+
+ P (A { (A1 = 4) - (A= Ag)},

or for the same formula in another form

: Aii — aj; . i — ad.
Loi (A) = F (Ap) diag [aQ. — ﬂ + F (Ay) diag |:a,1, = aff] ’

equalities L10 (Ao) =F (Ao), L10 (Al) =F (Al) hold.

We consider the case n = 2 of the interpolation formula (8). The quadratic
interpolation formula with respect to the nodes Ag = [a%}, A = [a}j] and
Ay = {a?j}, such that all elements of the matrices

Ay — A = [a% — CLilj] ,Ag — Ag = [a?j — a?j] JAL — Ay = [azlj - a?j]

are different from zero, is a matrix polynomial of the form

ai; — ay; ) (i — af;
Loz (A) = F (Ap) - ( ) ( )

0 1 0 2
(a - ab) (ot - a)

PP i ) IR | O )

o) () L) ()
for which the conditions Lgg (4;) = F (A;) (i = 0,1,2) are fulfilled.
Next, we give formulas of the quadratic interpolation with the ordinary and

the Hadamard multiplication. Let A = [a;j] be some square matrix that has
different from zero diagonal elements. For quadratic interpolation with the
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same restrictions on the nodes Ag, A1 and As, as in the previous case, we have
the formula

(ag; — a3;) (af; — af;)
| (@i — ag) (@i — aF;) | (@i — a) (aii — aj;)
F(A F(As)d
A diag [(aé‘_’a%)(ak —»ai) E L) dine (ai'_'a%)(a%'_'ai) ’
which satisfies the conditions Loy (A;) = F (A;) (i =0,1,2).
air a2

a1 a2
tiplication only in the sense of Hadamard for the function F (A) = A? with

respect to the nodes
1 2 0 0
AU—|:3 4:|7A1_|:2 3:|’

the interpolation polynomial

a;; —al) (a; — a2
Loy (A) = F (Ap) diag [( “) ( “ n)

Example 3.1. On the set of matrices A = with matrix mul-

Lot (A) = F (Ag) + [F (A1) — F (Ag)] - (A1 — Ag) ™1+ (A — A)

takes the form
. 7 5 . 0 0 o 7@11 5@12 . 0 0
L01(A)—[9 13} A [12 30]_[9@1 13a22} [12 30]'
For the constructed polynomial the interpolation conditions

Lo (o) = F (o) = | 5 3o | I (4 =P a0 = ¢ o |

are also true. In the case if the interpolation nodes A = aiJ, where o
(k=0,1,...,n) are different in pairs numbers, then the formula (8) takes the
form

L (4) =

N (A—a) (Ao i) (A i) (A= and)
_k:O (Oék_Oé())-..(Oék—Oékfl) (ak—akJrl)---(ak—an) F( kJ)

Next, we consider interpolation formulas for operators, defined on the set of
functional matrices. Let X = C (T') be the set of continuous on T' = [a, b] square
matrices; an operator F' : X — X and Ay (t), A1 (t) be interpolation nodes from
X. Suppose also that A = A (t), interpolation nodes Ay (¢), A; (t) are matrices
of the same order, defined on the segment [a, b], and operator F' (A) is defined at
the nodes Ag (t), A1 (t) and on the matrix curve Ag (¢)+x (7,t) (41 (t) — Ap (1)),
where the function

L 7>t
) ={ g 725 v@n=0 x0=1 (@snr<o.
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One of the linear interpolation formulas on the set of continuous on the
segment [a, b] matrices can be written using the Stieltjes integral in the form

b °
Lo (A) =F(Ao)+/ [A () — Ao ()] - [A1 (1) — Ao ()] - dox
X F[Ag (t) + x (7, 1) (A1 (£) = Ao (1))],

on condition that all elements of the matrix A; (t)— Ay (¢) are different from zero
on [a, b] and in this formula integral exists. The equalities L1 (4;) = F (A;)
(i =0,1) are true.

In the space C™ [a, b] of rectangular matrices A(t) = [ai;(t)] of the dimen-

sion px g, for which the derivative A(™)(t) = [al(-;n) (t)] of order m is continuous

on the [a, b], we consider the matrix polynomial of the first degree

= k=0"1
where B = B(t), C; = Cj(t), Di(t,s) (j=0,1,..n; k=0,1,...,m) are fixed
(p X q)-matrices.

We denote by o01;(t) and H;(t) the matrices

o1:(t) = Ap(t) + A1(t;) — Ao(t;), Hi(t) = A(t) — Ao(t) — A(ti) + Ao(ts),

where t; (i =0,1,...n) are given points of the segment [a,b]; Ao (t) and A (t)
are interpolation nodes such that the matrices A; (¢;) — Ao (¢;) are reversible in
the sense of Hadamard.

For the formula

Li(A) = F(Ao)+

P (A) =B+ zn: A(t;) - Cj + i b Dy(t,s) - AP (s)ds (9)
j=0

i ; A9 = o)) [Aa() — Aaa] ™ [Flow) = Flanl+
1 < [t
+ Y ;/0 OF[o1i(-) + 7 (A1(+) — o1i(1)) 5 Hi ()]dr

the conditions Li(4;) = F(4;) (i=0,1) hold, and it is exact for matrix
polynomials of the form (9).

Really, the equation Ly (Ag) = F' (Ap) is satisfied, since the second and third
terms in (10) become zero. Execution of interpolation condition at the second
node is also easy to verify, taking into account that in this case the integral in
(10) can be calculated exactly.

Let F (A, B) be also a function of two matrix variables A and B; (4;, B;) be
interpolation nodes (i = 0, 1,2). We introduce the following notations:

10 (A, B) = [(A— A1) - (By — Ba) — (Ay — Ag) - (B— By)] - D1,
11 (A, B) = [(A— o) - (Bz — Bo) — (A2 — Ao) - (B — Bo)] - D1,

ls (A, B) = [(A= Ag) - (Bo— B1) — (Ag— A1) - (B=By)] - D 1.
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Here the matrix D~ is reversible in the sense of Hadamard for
DZ(Ao—Al)-(Bl—BQ)—(Al—Az)'(Bo—Bl);

A, B are independent variables, interpolation nodes (A;, B;) and values
F (A;, B;) (i =0,1,2) are rectangular matrices of the same dimension.
For the interpolation formula

L1 (A, B) = lio (A, B) - F (Ao, Bo) +

+1l11 (A, B) - F (A1, B1) + 12 (A, B) - F (A2, Ba) (1

the conditions L1 (A;, B;) = F (A;, B;) (i = 0,1,2) are satisfied. The formula
(11) is invariant with respect to matrix polynomials of the form

P (A,B) = l19 (A,B) - Co + 11 (A,B) -C1+ 9 (A,B) - Cs. (12)

At that in the equation (12) arbitrary rectangular matrices C; are of the same
dimension as the matrices F'(4;, B;) (¢ =0,1,2).

Example 3.2. Let A = [a;5], B = [bjj] (i,j = 1, 2) be square matrices of the
second order. The interpolation formula (11) for the function F (A, B) = (AB)?
with respect to the nodes

1 1 0 2 1 2
AOZ[l 1]7302[0 1};141:[0 _1},

1 1 01 01
AR P IS E
takes the form

Lll [A, B] _ [ 8 — 8(111 + 4b11 1 + 4b12 :| '

—11 + 11(121 + 10()21 7 + 4@22 — 2b22

For Li; [A, B] the interpolation conditions

@)
Ne)

L11 [Ag, Bo] = F (Ao, Bo) = [ 09 ] ;
4 5)
L1 [A1,B] = F (A1, By) = [ B } )

L11[Ag, By = F (Ay, By) = { 280 153 ]
are true.

Note that in [1, 46 p.| the matrix I' is constructed as a sum of the powers of
the Hadamard matrices, which plays an important role in the construction of
the set of interpolating polynomials in the Hilbert space and in the justification
of a number of the results obtained on this set.
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4. INTERPOLATION FORMULAS WITH MATRIX MULTIPLICATION BY
FROBENIUS
Suppose that the matrices A = [a;;] and B = [b;;] have the same dimension.
Their product in the sense of Frobenius is defined as

AOB =" aijbi;.

This operation is commutative, and its result is a scalar. Interpolation for-
mulas for functions of matrices may be also constructed on the basis of such
multiplication rule.

Let interpolation nodes Ay (k=0,1,...,n) be different stationary or func-
tional matrices, and F' (Ay) be given fixed matrices, which dimension may differ
from the dimension of Ay, or some other mathematical objects over the field of
real or complex numbers. Then in the case of rectangular matrices of the same
dimension (including square matrices) for the formula

"\ Lk (A)

Ln (F; A) = F(Ar), (13)
k=0

where
Ink (A) = [(A = Ag) O (Ar — Ao)] ... [(A— A1) O (Ap — Ap—1)] X

X [(A = Ap1) & (A = Apg1)] - [(A = Ap) O (A — An)]
the equalities Ly, (F;A,) = F(A,) (v =0, 1, ..., n) take place.
If the interpolation nodes Ay such that tr (Ax — A,) # 0 (k,v =0,1,...,n),
then on the set of square matrices for the similar formula
Lo (Fiay =3 A
o Ink (Ax)

where
Lok (A) = tr (A — Ag) tr (A — Ag) - - - tr (A — Ap_y) tr (A — Ax_1) X
xtr (A — Agaq)tr (Ag — Agaq) - tr (A — Ap) tr (A — Ay)

the same interpolation conditions are fulfilled.

Obviously, the equation (13) remains an interpolation, if [,; (A) is replaced
by any number function ¢, (A) of matrix function arguments such that
¢nk (Ak) 75 0 for k = 0, 1, )

In particular, if n = 2 and n = 1, then the formula (13) takes the form
[(A— A1) & (Ao — A1) [(A— Ag) O (Ao — Ag)]
[(Ao — A1) & (Ao — A1)l [(Ao — A2) ¢ (Ao — A2)]
[(A = Ap) O (A1 — Ag)] [(A—A2) O (A

[(A1 — Ao) ¢ (A1 — Ag)] [(A1 — A2) & (A1 — Ap)]
(A~ A9) O (A2 — Ag)] (A — A1) O (A2 — A))] (As)

[
(45 = A) & (Az — Ag)) [(As — A1) O (As — Ay)]

LQ(F7A):

F (A()) +

A2)) F(A)+
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and
L (A=A O (A9 — Ay)
L A) = T AN 6 (Ag — Ay - Ao T 14
(A—Ay) O (A1 — Ay) F(AY)
(A1 — Ag) & (AL — Ag)~
respectively.

Example 4.1. The interpolation formula (14), based on the nodes

1 2 0 2
w=ls i) a= 53]
for the function F (A) = A2, has the form

1 1 4 119 0

Example 4.2. Let A = [ T Tz T3 ] be a functional matrix and
T21 T2 T23
1
0

1 0 2 1 0
AO_{?) 5 0]’ Al_[Z 5
be the interpolation nodes. Then
(Ag — A1) O (Ao — A1) = (A1 — Ag) & (A1 — Ag) =2,
and the interpolation formula (14) takes the form
1 1
L (F;A) = 5(“3 + x91 — 3) F' (Ap) — B (13 + 221 — 5) F (A1),

and, therefore, we get that Ly (F; Ag) = F (Ao), L1 (F; A1) = F (A4y).

Next, we consider a formula of the linear interpolation, similar to (7) and
(11), with the multiplication in the case of Frobenius. We introduce the follow-
ing notation:

loo (4, B) = % (A= A1) O (Br — Ba) — (A1 — A2) & (B — B,
1 (4,B) = & [(A~ 40) & (B2 — Bo) — (4> — 40) & (B~ Bo)],
I (A, B) = 3 [(A— 40) & (Bo — B1) — (Ao — A1) & (B~ By)),

where D is the numeric value, which is calculated by the formula
D = (Ag — A1) ¢ (B1 — Bg) — (A1 — A2) < (Bo — By) -
The interpolation formula
L11 (A, B) = loo (A, B) F (Ao, By) +
+111 (A, B) F (A1, By) + 122 (A, B) F (A2, By)

satisfies the interpolation conditions L1; (4i, B;) = F (A4, B;) (i = 0,1,2).
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Example 4.3. Let A = [a;;] and B = [b;;] be square matrices of the second
order. We construct interpolation formulas of the form (7), (11) and (15) for
the function F (A, B) = (AB)? on the nodes

11 0 2

1 2 11 01
e[t 4] me [ 2wt )|

In the case of the formula (7) we have

1
L1 [A, Bl = —
1[4, B] 2% X
—38 + 91a11 — 156a19 + 22a91 + 123a9s + 122b17 — 144b15 4 16bo1 + 246b9o
1440 4 32a11 — 388a12 + 206a21 — 192a22 + 58b11 — 328b12 4 176b21 — 378baa
—102 + 940,11 — 16(112 — 52(121 + 126(122 + 16b11 + 8b12 — 64b21 + 168b22
128 + 211@11 - 364@12 + 138@21 + 131(122 + 82b11 — 136b12 + 24b21 + 262b22 ’

Using the rule (11), we get that

Lii[A, B = 8 — 8a11 + 4b11 1+ 4b12 } .

—11 + 11asy 4+ 10b21 7 + 4ass — 2bos

Finally, for the formula (15) the value D = —3, and the required polynomial
has the form

Ly, [A,B] =

4 (=44 2a11 — a12 + 2a22 — by1 — 2b1a + 2ba1 + 5bao)
—40 + 20a11 — 21ais + 22a21 + 20a92 + b11 — 20b19 + 20b91 + 39b9s

35 — 4aqy + 4ag — 4age + 4b11 + 4b1a — 4bay — 12bg9
19 + 4a11 — 14a12 + 24a1 + 4azz + 10017 — 4b12 + 4boy — 2bao |-

1
3

We note that all formulas, obtained in this example, have a different form,
but for them the same interpolation conditions

0 9
Lll [A()vBO] :F(AOaBO) = |: 09 :| )

L1 [A,B] = F (A1, By) = [ _4 ; } ;

8 5
L1 [Ag, By = F (A2, By) = { ]
are fulfilled.
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5. KRONECKER MATRIX MULTIPLICATION AND CORRESPONDING
MATRIX POLYNOMIALS
If A = [a;5] and B = [b;;] are some matrices of the dimensions m x n and
p X g, respectively, then the Kronecker product of these matrices A ® B is a
matrix of dimension mp X ng, which is defined by the formula

anB algB alnB
A ® B = ang CLQQB CLQnB
amlB amaB ... amnB

In general, the Kronecker product of matrices, in contrast to the Jordan mul-
tiplication, non-commutative, but has the property of associativity. The Kro-
necker multiplication is distributive with respect to the addition of matrices.

Let X be a set of square matrices, an operator F': X — Y, where Y is also
a set of square matrices of the fixed dimension, interpolation nodes Ay € X
(k=0,1,...,n) and there are inverse matrices (4; — Aj)_1 (i # j). In addition,
the dimension of matrices of the set Y coincides with the dimension of square
matrices of the form (A—A,)® I

We introduce the notation

e (A) =[(A—Ag) @ 1] .. [(A = Ap1) @ I][(A = App1) @ 1] . [(A = Ap) @ 1]
Then for the polynomials

Lon (A) =) F(Ap) ;' (Ar) e (A), (16)

WM:
S ()

Lo (A) = > 1k (A) I (Ax) F (Ay) (17)
=0
the equalities Lo, (Ar) = Lno (Ak) F (Ay) are true, because

L (AR) e (Ay) = Ik (A)) 1 (Ak) = o

Here and further the orders of matrices F' (Ay) are consistent with the order of
the interpolation fundamental square matrices [, (A). If we select the expression

e (A) = [T @ (A— Ag)] .. [ © (A— Ap )] [T @ (A= Agyy)] - [[® (A — Ay)]

for the function I (A) in (16) and (17), we come to some other kind of these
formulas.
The formulas Ly, (A) and Ly (A) are exact for the matrix polynomials

Py, (A ZBkl (Ag) 1y (A) Zlk ' (Ag) By,

where B, (v =0, 1, ...,n) are arbitrary matrices from the set Y, respectively.
We comnsider formulas of the linear interpolation

Lot (A) = F (Ao) + [F (A1) = F (40)] [T @ (41 — 40) | [T @ (A - 4g)],

Lo (A) = F (Ag) + [(A — Ag) ® I] [(Al —A) '@ I} [F' (A1) — F (Ao)].
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The formula Lo (A) is exact for matrix polynomials of the form Py (A) =
A® B+ D. Really,

Lyg [Pro; A] = Ag®B+D+[(A — Ag) ® I] | (A1 — Ao) " @ T| [(A1 — Ag) ® B] =

=Ag®@B+D+(A—Ag) (A —Ag) (A — Ay) ® B =
=A)®@B+ D+ (A—Ay) ®@B=Py(A4).
Similarly, the formula Lg; (A) is exact for matrix polynomials of the form
Py (A)=B® A+ D.

We consider the application of the Lagrange—Sylvester formula to construct
the corresponding interpolation formulas, using several properties of the Kro-
necker multiplication for this. One of the important properties of this multipli-
cation for the given problem is that the spectrum of the Cartesian product of
matrices is clearly expressed through the spectrum of its factors.

Suppose that the matrix C has the form C = A ® B, and square matrices
A and B of the orders p and ¢ have the eigenvalues \; (i = 1,2,...,p) and p;
(J=12,..9), respectively Then [9] the matrix C' has pq eigenvalues A;u;
(i=1,2,. ,p, =1,2,...,9).

If the eigenvalues /\Z,u] are different, then for the matrix C' the Lagrange—
Sylvester formula takes the form

= kMV) s
k=

1 Uy )\kﬂu

where

w©@= T TI © rumh),

lkl/ (Akul/) = H H (Akuu - )\iﬂj) )
i=1,i#k j=1,j7v
I, is the identity matrix of the pg-dimension.
We give the trigonometric variant of the Lagrange-Sylvester formula for the
Kronecker product of matrices C = A ® B:

p q
lkl/

—1v lk‘l/ ()‘k,uy)

()‘kuu)_ (_)‘kMV) .
2sin (Agfiy) sinC )

M
M

Ipg +

" (F()\kuu) +F(—)\kﬂu)
2

where

Ik (C) = H H (cos €' — cos (Aiptg) Ipg)

i=1,i#k j=1,j#v
B p q
lew (Akp) = H H (cos (Appi) — cos (Aipy)) ,

i=1,i#k j=1,j#v
and I, is the identity matrix of the pg-dimension as before.
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6. INFINITE MATRIX AND SOME INTERPOLATION FORMULAS

Operators of the discrete convolution, as well as continuous, are widely used
in the solution of many mathematical and applied problems [10-12]|. Discrete
convolutions can be applied to the interpolation problem of functions with many
variables and infinite matrix variables.

Matrix A = [a;;] with real or complex elements a;; is called infinite, if 4,5 =
1,2,... or at least one of the indices ¢ or j has infinite number of the values.
Addition and multiplication of the infinite matrices A = [a;;] and B = [b;]
is defined the same way as in the finite-dimensional case. In contrast to the
finite matrices, the product AB = [¢;;] may not exist, since the series ¢;; =
> peq aikbrj (i, =1,2,...) may be divergent or nonsummable for all or only
for the several ¢ and j values. Moreover, if there is the existing product BA, the
product AB may not exist. In general, the multiplication of infinite matrices
is not associative: (AB)C # A (BC).

On the set of infinite matrix A, on condition that the matrices A* (k > 2)
exist, for entire functions f (z) (z € C) the matrices f (A) may be determined
by the usual rules.

The theory of infinite matrices, as one of the sections of mathematical analy-
sis, and its applications are interconnected with the theory of separable Hilbert
spaces, including the coordinate Hilbert space [s.

We consider some formulas for the interpolation of functions, given on the
set of infinite sequences, which we denote by [. Each element z (infinite-
dimensional vector) from [ is defined by its coordinates: = = {zg}re, =
{xo, 1, T2,...}, where x; (k=0,1,...) are complex numbers or complex ran-
dom values with given distribution laws. Here the addition of elements of the
set and its multiplication by a number are determined by the usual rules, and
the product x * y is given by the discrete convolution of the Laplace according

to the rule
oo

k

x*y:{zxk—uyu} )
v=0 k=0

the product z * y also belongs to [. For this multiplication rule the sequence
I =1{1,0,0,...} is the unit, and in this case the set [ is a commutative algebra.
Let F' be operator, mapping the set [ into [, and the elements zo = apl,
x1 = a1l and 2 = al, where I is the unit element in I, o; € C, aj # «; for
j#i(i,7 =0,1,2), are taken as the interpolation nodes. Then simplest on [

formulas are formulas of the linear and quadratic interpolation

Ly (F;x) :F(ﬂso)—l—alim][F(xl)—F(:po)] x (x — x0),
Ly (F;x) = o al)l(ao - a2)F (xo) * (& — 1) * (x — 22) +
1
(051_050) (041 _a2)F(x1) (.f—l‘o)*(l’-ﬂ?g)—f—
1

(042 - ao) (a2 _ al)F(xQ) * (.’E —1‘0) * (.ZL' — x1)7
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respectively, for which Ly (F;xz9) = F(x9), Li(F;x1) = F(z1) and
LQ (F; {L'Z) =F (l’z) (Z = O, 1, 2).

For the same system of interpolation nodes x; = ;I on condition that o #
a;, j #i (i, =0,1,2,...,n), the Lagrange formula of the n-th order is written
in the analogous form

ank ) F (o), (18)

where

(x—apl) (x—al) - (x —ag_1I) (x — agy1l) -+ (z — anl)
(g — o) (o — an) -+ (e — ag—1) (g — 1) -+ (g — )

I is the unit element of the algebra [. It’s obvious that L, (F;zx) = F (xg)
(k=0,1,...,n).

Let us consider a slightly different variant of (18). By {"*™ we denote the
set of m x m-matrices of the form X = [z"], where % are elements from I,
ie. Y = {xzj}k (1,7 =1,2,...,m). Here the operations of addition and
multiplication of ma,trlces by a number are ordinary, and the multiplication of

matrices X = [2¥] and Y = [y¥] from [™*™ is carried out according to the
rule:

wnk (x) =

C=XxY = [cij],

where ¢ = " 2™ %y ie. 2™ * y* means the product of sequences 2%
and %/ also in the sense of the Laplace convolution given above. This set of
matrices with indicated rules of multiplication also form an algebra.

We consider the formula of the form (18), in which the interpolation nodes

T, are m X m-matrices

xil :C,EQ :c,%m
21 22 2m
T T T
T, = v v s (r=0,1,...,n)
xml wm2 mm

with the elements 27 from 1. Tt is required of nodes x,, that the matrices x, —x
are reversible in the ordinary sense.
Let the interpolation nodes be matrices of the form

T, =x,1 = [ﬂcfjj,O,Q ] (i,j=1,2,....m; v=0,1,....,m) .

Then for an operator F': ["™*™ — [™*™ and the formula

ank x F (Zy),

where
O () = Lo () % lpg () % - x b o1 (@) * lg g () %2+ % Ly (2)

Iy (x) = (x —Ty) * (Tfy — :il,)_1 =(x—Ty) * (zg — :101,)_1 I (k,v=0,1,...,n)
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the interpolation conditions L, (F;Z) = F (#;) (k=0,1,...,n) are fulfilled.
These conditions take place by virtue of the equalities Wy (Z,) = O, I, where,
as before, dp,, is the Kronecker symbol.

Example 6.1. Let A and B be infinite rectangular matrices of the dimen-
sions 2 X co and oo X 2, respectively:

[ D11 b1z T
ba1  bao
a a a . .
A a11 a12 aln ]’ B : :
21 @2 -+ Q2p -
bnl bn2

S11 Si2

Their product is a (2 x 2)-matrix AB = [ So1 S

], where the elements

Sij (1 <1,j <2) are given by series

o0 o0 oo oo
S = E aiibi1, Si2 = g a1ibi2, S21 = E az;bi1, S22 = E a2ibja.
i=1 i=1 i=1 i=1

For the existence of the product AB it is required that these series are con-
verging in some sense. For example, if the elements of matrix A and B are
random values or processes, then one of the variants of the convergence may be
the convergence of mathematical expectations of the summands of these series.
We consider an example with this type of convergence.

Suppose that

0 = mw4i—2 (£), as = (21'1_2)!WM+2 )
‘ _(—17)1+i 4i—2 , _(_17)1_2' 4i+2
M=t 9 o o0

where W (t) is standard Wiener process, £ (¢) is a random Gaussian process with
zero mean value and variance o = o (t). We assume that these processes are
stochastically independent. We remind that the k-th moments of the processes
W (t) and £ (t) are given [13] by the equalities

k | Q-1 k=2
E{W (t)}_{ 0, k=2v+1,

_f Quv=1)Ne¥, k=2
E{{k(t)}{ 0, kE=2v+1

(v=0,1,...). In this case, the series £{S;,} (j =1,2; v =1,2) converge.
Since

E{Sll} = iE {alibil} = sin (tO‘ (f,)) 5 E {522} = i E{agibig} =to (t) COS (tO’ (t)) 5

then the mathematical expectation of the trace of matrix AB has the simple
form
E {tr (AB)} =sin (to (t)) + t3¢> (t) cos (to (1)) .
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Construction and research of interpolation operator polynomials in the Hil-
bert spaces, which theory in some cases is interconnected with the infinite
matrix theory, are considered in the articles [14-15].
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ON THE APPLICATION OF MULTIPARAMETER INVERSE
EIGENVALUE PROBLEM AND NUMERICAL METHODS
FOR FINDING ITS SOLUTION

O.S. YAROSHKO

PE3IOME. Y po0oTi 3/1i#iCHEHO OTJIsi/T BITOMUX MTPUKJIA B IPAKTUIHAX 3aCTO-
CyBaHb 00epHEHOI 3aati Ha BJIACHI 3HAYEHHS Y PI3HUX HAYKOBUX Ta IH2KEHED-
Hux cdepax gociaimkersb. KpiM TOro, mpeacTaBieHo iCHy04l YHCeIbHI MeTOI
Ta pI3HOMAHITHI TeXHIKM BiJIIyKaHHS PO3B'SI3Ky 0DEpPHEHOI CIIEKTPAJIHHOI 3a-
nadi.

ABSTRACT. This survey collects the known examples of practical application
of inverse eigenvalue problems in different scientific and engineering areas.
It also provides an overview of the existing numerical methods and different
techniques for finding the solution of the inverse eigenvalue problem.

1. INTRODUCTION
An inverse eigenvalue problem is a subject of interest of different authors.
There are numerous examples of practical application of this problem and of
the analysis of its partial cases. In this article we try to make an overview of
the most known and interesting examples of practical application of this type
of problems.
Let A (c) be an afinne family

n
Ae) = Ao+ ) crAr, (1)
k=1
where ¢ € R", and {Ax} are real symmetric matrices of dimension n x n.
Let’s also denote the eigenvalues of the matrix A (c) as {\; (¢)}], where
AL () < ... < A\ (o).
The following problem is known as the general inverse eigenvalue problem:
Problem 1. Provided real numbers A\] < ... < X} find c € R" such that the
eigenvalues of (1) satisfy the condition X (c) =X, i=1,...,n.
One of the partial cases of the Problem 1 is the additive inverse eigenvalue

problem:
Problem 2. Let the linear family (1) be defined as Ay = exe}, k=1,...,n
where ey 18 a k-th unit vector such, that

A(c) = Ay + D,whereD = diag (cx,) (2)

Key words. Inverse eigenvalue problem; inverse spectral problem; Sturm-Liouville problem;
eigenvalue; eigenvector; numerical method; iteration procedure; Newton-like methods.
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Provided the real values \] < ... < X} find ¢ € R"™ such, that the eigenvalues of
the matriz (2) satisfy the condition \; (¢) = Xf,i=1,...,n.

Another partial case of general problem, that is considered in this survey, is
the multiplicative inverse eigenvalue problem:

Problem 3. Given a real symmetric matriz A and its eigenvalues \] < ... <
XY, find an additive diagonal matriz D = diag (cx), ¢ € R"™, such that the result
matriz AD has the given eigenvalues.

Both additive and multiplicative inverse eigenvalue problems have been for-
mulated by Downing and Householder (1956).

It is known that the inverse eigenvalue problems arise in different scien-
tific areas, including systems of identification, seismic topography, geophysics,
molecular spectroscopy, structural analysis, mechanic systems simulation and
so on. Some of the partial cases of inverse eigenvalue problem appear in factor
analysis, educational testing problem, etc (see [1] and the cited references).

2. EXAMPLES AND PRACTICAL APPLICATION OF THE INVERSE
EIGENVALUE PROBLEMS

The classical example of inverse eigenvalue problem is the problem of finding
a solution of inverse Sturm-Liouville problem. The continuous problem has been
investigated by, for example, Borh, Gelfand, Levitan and Hald. The discrete
analog can be found in the survey [3], a more detailed overview is presented
below.

Let’s consider a boundary problem [3]:

—u’ (2) +p () u(z) = Mu(z),

u(0) =u(mw) =0.

The task is to find the potential p (x) by using the given spectrum {\!}7°. In
order to build the discrete analog, the authors [3] use a uniform mesh, defining
h = 4, up = u(kh), pr = p(kh), k =1,...,n, and make a suggestion that the
values {\}}]° are known. By using the finite differences for the approximation
u”, the following equation is received:

—Ug+1 + 2up — Ug—1
2
where A¥ is an eigenvalue from the set {Af}7.

Thus,it is obtained the additive inverse eigenvalue problem (2) with the ma-

trix

+ Drur = )\;Uk,k = ]-7 sy MUY = Up+1 = 07

Ao = (3)

and D = diag (pg).

Another well known example is the inverse spectral problem which arises in
the analysis of string vibrations. A reference to this example can be found, for
example, in [1], [3]. Let’s briefly explain the content of this problem.
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Consider the corresponding boundary problem |[3]:

—u" () = Ap (2) u (),
u(0) =u(m) =0.

It is needed to find the density function p (x) > 0, under the condition that
the fixed eigenvalues {\; }7° are known. In order to proceed to the discrete ana-
log of this problem, the transformations, similar to the case of Sturm-Liouville
problem, are performed. As a result, the following equation is obtained:

Au = X/Du,i=1,...,n,
or, if reformulating a bit:
D7 Au = Nu,i=1,...,n,

where D = diag (p (kh)) > 0, and the matrix A is defined by the correlation
(3).

It can be easily seen that the obtained problem is the multiplicative inverse
eigenvalue problem.

It is also possible to rewrite this problem in the form (1), where Ay = 0,
A = ekag, k=1,...,n, and the a;‘g is a k-th row if the matrix A.

There are several inverse spectral problems with a matrix of a specific struc-
ture. For example, the problem of reconstructing the Jacobi matrix from the
given spectral data. Briefly speaking, the inverse eigenvalue problem with the
Jacobi matrix consists in defining the elements of the matrix from the given
spectral data. This problem plays an important role in different applications,
including vibration theory and structural design [10]. In some cases only a
limited number of eigenvalues of the Jacobi matrix is provided. For example,
four or five, as in the problem, presented in [10].

An interesting partial case of the general inverse spectral problem is the
inverse Toeplitz problem (see [6]). According to the author, it is important,
that although the Toeplitz matrices have such special structure, the question
of solvability is opened for the case n > 5.

An inverse eigenvalue problem with a symmetrix matrix arises, for example,
in the applied physics and the theory of control. This problem is investigated
in the survey [9] and the cited references.

The other areas where the Problem 1 arises are nuclear spectroscopy and
molecular spectroscopy. In practice the formulation of such problem often in-
cludes less parameters that there are eigenvalues. In such cases it makes sense
to consider the problem formulation in least squares:

min > (A (¢) = A2,
cER™ 4
=1
An important type of problems arising in the engineer researches can be
described with the following formula

mince gm f(C) by <N (C) <wu,i=1,...,m,
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where f (c) is a real-valued function of purpose, [ and u are fixed lower and
upper boundaries of eigenvalues of matrix A (c¢), which is defined by the cor-
relation (1). It’s interesting to mention that the solution of the given problem
often includes multiple eigenvalues, because the minimization of the function
of purpose can simultaneously conduct several eigenvalues to the same bound-
ary. This is why it’s very important to choose the numerical method of solving
the inverse spectral problem so that it correctly handles the case of multiple
eigenvalues.

3. NUMERICAL METHODS FOR SOLVING THE INVERSE
EIGENVALUE PROBLEMS

There is the rich literature dedicated to the question of numerical methods
for finding an approximate solution of the inverse spectral problem. One of
the creators of this theory is Friendland, who developed four quadratically
convergent numerical methods together with his colleagues [3]. One of the
methods, presented in [3], is, basically, the Newton method for solving the
following system of nonlinear equations:

Ar(e) = Af
fc)= =0,
An (€) = A,
where M = [\, \5]T € R, and A(¢) = [M(¢), ..., A (€))7 is the vector of

unique eigenvalues of the matrix A (c). Each \; (¢) is a real-valued function,
differentiable in some neighborhood of the point ¢*, if ¢* is the solution of
Problem 1.

Note, that each iteration of this method involves solving a full spectral prob-
lem for the matrix A (c).

Two other methods from [3] are considered to be the modifications of the
Newton method, where the calculation of eigenvectors is simplified. This means
that instead of calculating the exact eigenvectors, or in other words, solving
the corresponding spectral problem, the approximation of these eigenvectors
is calculated. The fourth method from [3] originally is based on the work of
Biegler-Konig, (see [4] and the cited references), and uses the idea of calculating
the determinant.

Based on the methods developed by Friedland and others [3], there have
been constructed new methods for solving some inverse eigenvalue problems
by other scientists. For example, in the paper [6] there are presented two
methods for finding the solution of an inverse singular problem: one of the
methods is continuous, the other — discrete. The discrete method generalizes
the iteration process, originally proposed by Friedland for solving an inverse
spectral problem. The new method converges locally under the condition of
existence of the problem’s solution.

Different authors have investigated this methods. Ones of the firsts who
used it, where Downing and Householder — for solving the additive and the
multiplicative inverse spectral problems. For a long time this method was also
used by the physics in the nuclear spectroscopy calculations.
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Instead of calculating the exact eigenvectors of the matrix A (¢) on each iter-
ation of the method, it is possible to approximate them by using, for example,
the inverse iteration. On this idea the Method II [3] is based.

The Method III is built on the idea of using a matrix of exponentials and
the Cayley transform.

As explained by the authors in the survey [6], from the geometric point of
view, the Method III [3] can be interpreted as the classical Newton method.
This means that the geometry which is involved in the Method III, is closely
bound to the geometry of the Newton method for the nonlinear equations with
one variable. Consequently, the Method III can be generalized to the iteration
process for calculation the approximate solution of the inverse singular problem.

Investigation of the methods, described in [3|, can be found in other various
articles, for example —in [1|. As it is stated by the author [1], in case of a matrix
of big dimensions, the Method IIT has an obvious disadvantage: constructing
an inverse matrix on each step is an expensive operation. These expenses can
be decreased by using the iteration procedures (inner iterations). Because of it,
usually the Method III, as the other methods of this type, is too expensive in
such sense that the number of performed iterations (inner iterations) is much
bigger then the number of iterations needed for convergence of the Newton
method (outer iterations).

In order to calculate the solution of the classic additive and multiplicative
inverse eigenvalue problems the Newton-like methods are also fine to use.

Among the known methods of this type it is worth mentioning the algorithm
suggested by Kublanovskaya [2]. This algorithm calculates the solution as a
zero of the function

)\1 (C) — )\1
H(c) = : ;
An (€) = An

where A1 (¢) < ... < A\, (c¢) are the eigenvalues of the matrix A (c), and A\; <
... < Ay are the given eigenvalues.

As an alternative to the Kublanovskaya method, there is another algorithm
presented in [2]. This one is also a Newton-like method and it calculates the
solution of the initial problem, as the zeros of the function

det (A (c) — M\ 1)
P(o)= z
det (A (c) — A1)

In order to reduce extra expenses of the exact iteration methods and to in-
crease the effectiveness, the scientists Chan, Chung and Xu (see [1] and the
cited references) suggested in inexact Newton-like method, which is used for
the matrices of big dimensions. The inexact Newton method stops the inner
iteration process before it converges. Thus, it is possible to decrease the total
number of both, inner and outer, iterations, by choosing a proper stop condi-
tion.
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In the paper [1] another approach is put forward — an inexact method of Cay-
ley transform for the inverse eigenvalue probelm. This methods also minimizes
the extra expenses and increases the productivity.

Based on the differentiation theory and on the @ R-decomposition of a matrix,
Li suggested a numerical method for solving the inverse spectral problems,
which works for the case of unique eigenvalues (see [4] and the cited references).

In the same paper [4] there is examined the formulation and local convergence
of a quadratically convergent method for solving the general inverse eigenvalue
problem provided that its solution exists. The proposed method is based on
the mentioned (JR-decomposition of a matrix and the ideas of Li and Dai
(see |4] and the cites references). As it is stated by the authors, this method is
applicable for the case of unique eigenvalues as well as for multiple eigenvalues
of the matrix.

One more approach to building a numerical method for solving an inverse
spectral problem is suggested in the survey [9]. This approach is based on the
analysis of analyticity of eigenvalues and eigenvectors of matrix of the prob-
lem. The examination of analyticity of spectral problems has a long history
(see [9] and the cited references). However, according to the author, relatively
small attention has been paid to the examination of analyticity of matrix spec-
tra in the case when the matrix analytically depends on several parameters.
Thereby, in [9] a new method is proposed. This is another modification of
the known Newton method and allows to find the approximate solution of an
inverse eigenvalue problem with a real symmetric matrix, which depends on
several parameters.

Recently another approach type of methods — the gradient methods — gained
the attention of scientists. For example, a variation-gradient method for solv-
ing multiparameter eigenvalue problems has been developed by Klobystov and
Podlevkyi (see [5], [7]). The proposed method was later modified and extended
to the inverse spectral problem by Podlevskyi and Yaroshko (see [8]). The
idea of these methods, for both direct and inverse multiparameter eigenvalue
problems, is to replace the spectral problem with an equivalent variation prob-
lem and applying the iterative method to find the solution of this variation
problem. The mentioned method is based on the gradient procedure and the
Newton method.

Let’s consider the following multiparameter spectral problem in the Euclidian
space E":

TNzx=Ar—MBiz—- — ApBnzx =0, (4)

where A = {1, ..., \p, } € E™ — are spectral parameters, ¢ = (x1,...,2,) € E",
and A, By, ..., B, — are some linear operators that act in the Euclidian space
E",

Let’s place in correspondence to the spectral problem (4) the variation prob-
lem of minimization of a functional:

F(u) = 3 IT ()l Yu={r,\} € H. (5)
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The problem (5) consists in finding such set of parameters A = {\1, ..., A, } €
E™ and the corresponding vector z € E™ \ {0} on which the functional F (u
reaches its minimal value:

F(u) - min,u e U C H, (6)

where U is a set of points u = {x, A}, that satisfies the equation (4), H is an
Fuclidian space.

It can be shown that the spectral problem (4) and the variation problem (6)
are equivalent. This means that each eigenpair {z, A} of the problem (4) is a
point of minimum u = {x, A} of the functional (5), and vice versa.

This result allows us to build the gradient procedure for the numerical solving
of the problem (6) and, therefore, the problem (4):

U1 = up — v (ug) VF (ug), k=0,1,2,... (7)

The formula (7) describes the whole class of methods, which differ one from
another only by the choice of the step v (ug).

In our method we suggest calculating the value v, = v (ug) on each step of
the iteration process by the formula:

= )
IVE (ur)ll7
To conclude, the iteration process can be written in the form:
F (ug)
U1 = U — —————— VF (ug) . (8)
IVE (ur)

So far we have described the method for solving the direct eigenvalue prob-
lem. Let’s explain the algorithm of solving the inverse spectral problem, which
is based on the described gradient procedure.

Consider the inverse eigenvalue problem (1) with the real matrices Ay,
Ay, ..., Ay € E™", and where the pairs {)\k,azk};nzl are the eigenpairs of the
matrix A (p). Here A = {\1,.., A} € E™ 2F € H = E"\ {0}, k = 1,...,m,
and F is a real Euclidian space.

Using the definition of the eigenvalue and the corresponding eigenvector, we
can build the system of m equations for finding the parameters p1, ..., pm:

(Ao = MI) 4+ p1As + .. + pmAm) 2 =0,

9)
((Ag — A\ d) + p1Ar + ... + P Ap) 2™ = 0.

Now lets transform this system by introducing the matrix operators A, B; :
H-H H=0 E"" (i=1,..,m.),
(Ao — M) 0 —A; 0
A= ;. Bi= -
0 (Ag — A\ 1) 0 —A;

T
Lox?, ,:Um) € H, we get

Ax = (Ao — M)z, (Ao — XaI) 22, ..., (Ao — M) 2™)

In case x = (a:
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BiX = (—Ai.’L'l, —Aia:z, veey —AZ{L'm) .
Now it is possible to pass from the problem (9) to the problem in the form
(4) in the space H

T(p)=Ax —p1Bix— ... — pBpx = 0. (10)

Therefore, we retrieved the problem of finding the set of parameters py, ..., pm,
such that the equation (10) has a non-trivial solution x € H\ {0}.
In correspondence to the problem (10) we put the variation problem:

F (u) — min,u € U C H,
u

where F(u) = 3 |T () x|}, Yu={x,p}€ H=Ho E™.

As expected, the task is to find the set of parameters p = {p1,...,pm} € E™
and the corresponding vector x € H\{0}, on which the functional F' (u) reaches
its minimal value.

In order to solve the variation problem we use the iteration process (8).
Consequently, we obtain the solution of the initial inverse eigenvalue problem.
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