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DYNAMICS OF TERNARY STATISTICAL EXPERIMENTS
WITH EQUILIBRIUM STATE

M.L.BERTOTTI, S.0O.DOVGYI, D.KOROLIOUK

PE3IOME. BuBuaroTbca creHapil AUHAMIKE MOAe/l TPHHAPHUX CTATUCTHIHIX
ekcriepuMenTiB. BakyimBoro 0cob6mBicTIO MOT€ € yMOBa OAIaHCy 1 HASBHICTH
CTAIiOHApHOTO CTaHy piBHOBaru (p). Lle J03B0JIAE€ BUKOPUCTOBYBATH PI3HATICBI
PIBHAHHS /IS IPUPOCTIB IMOBIPHOCTEI! 19 BUBUYEHHA AUHAMIKH Moges. [la-
eTbcd KJjacudikalis crieHapiiB eBoJomil Mo/esi, siKi 3HAYHO BiAPI3HAIOTHCI
OJWH BiJ] OHOTO B 3aJI€KHOCTI BiZ 06/1aCTi 3HAUYEHH OCHOBHHIX TMapaMeTPiB
momedti Vo 1 po.

ABsTrRACT. We study the scenarios of dynamics ternary statistical experi-
ments model. /par An important feature of the model is a balance condition
and the presence of steady state (equilibrium). This allows to use difference
equations for increments probabilities to study the dynamics of the model.
/par We give a classification of scenarios of the model’s evolution which are
significantly different one from another depending on the domain of the values
of the model basic parameters V and po (see. Proposition 1).

1. BUILDING A MODEL

We consider statistical experiments (SE) with persistent linear regression [1]
with additional alternatives.

The basic idea of the model construction is to choose a main factor that
determines the essential state of SE, supplemented by additional alternatives
in the way that, the aggregation of the principal factor and its complementary
alternatives completely describe the dynamics of CE on time.

The basic characteristic of the main factor and of the additional alternatives
are their probabilities (frequencies): Py of the main factor and P;, P, of the
additional alternatives, for which the balance condition takes place:

Po+Pi+P=1. (1)

The dynamics of SE characteristics is determined by a linear regression func-
tion which specifies the values of SE characteristics in the next stage of obser-
vation, for given value probability at the present stage.

Consider a sequence of SE characteristics values which depends on the stage
of observation, or, equivalently, on a discrete time parameter k > 0:

P(k):= (Py(k), P (k), Px(k)), k>0,
and their increments at k-th time instant:

AP(k+1):=P(k+1)— P(k), k>0,

Key words. Binary statistical experiment, persistent regression, stabilization, stochas-tic
approximation, exponential statistical experiment, exponential autoregression process.
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Linear regression function of increments is given by a matrix which is generated
by directing action parameters:

AP(k+1)=-VP(k), k>0, (2)
where

= [an§ 0§m7n§2]7

~ (3)
mm:2vma an:_Vn’ OSHSQ, n#m

<) <

The directing action parameters Vg, V1, Vo satisfy the following inequality:
Vil <1, 0<m<2. (4)

An important feature of SE is the presence of steady state p (equilibrium),
which is determined by zero of the regression function of increments :

@'p =0, (5)
or in scalar form:
Vmp::ﬁmopo—kffmlpl—kffmng:o, 0<m<2. (6)
Of course, the following balance condition takes place:
po+p1+p2=1. (7)
Next, we consider the fluctuations probabilities relative to equilibrium value
Po(k) := Pu(k) — pm , 0<m<2. (8)

The basic assumption. SE dynamics is determined by a difference equation

for the main factor probabilities ﬁo(k), and by the probabilities of additional
alternatives P;(k) and P (k)

AP(k+1)=-VP(k), k>0, (9)
or in scalar form:
AP (k+1) = Voo Po(k) + Vit Pu(k) + V2 Pa(k) , 0<m <2, k>0. (10)
Also the initial values have to be fixed:
P(0) = (Bu(0), P1(0), 2(0)).
Remark 1. Considering equations (5) - (6) and the balance condition (7), we
have explicit formulas for equilibrium:
pm =V, L)V, 0<m<2,
Vo=V e vt v
or in other form:
po=ViVa/V . pr=WWVo/V | po =WW1/V,
V=WV + VoVo + V1.

The validity of the formulas (11) and (12) can be easily confirmed by their

substitution in equations (6) - (7). This is obvious the additional condition:
V #0.

(11)
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Remark 2. The dynamics determination, by linear regression function (9) -
(10), in regression model of statistic experiments, does not envolves the balance
condition (1), and the equilibrium (7) with additional restrictions:

0<Ppk)y<l, 0<m<2, k>0; 0<p, <1, 0<m<2

for solutions of difference equations (12), or, equivalently (20), and equations
(5) - (6) for equilibriums.

2. THE MODEL INTERPRETATION

The model of SE is constructed in several stages. First, the main factor
should be chosen, characterized by probability (or frequency, concentration
etc.). So there exist supplementary alternatives, whose probabilities are com-
plement to the main factor probability. In particular, having only one alterna-
tive, the binary models of SE are considered in the works [1,2,3] (see also [4,5]).
The presence of two or more alternatives brings more difficulties in the analysis
of SE.

With a full set of characteristics CE, the probabilities of the main factor and
of additional alternatives satisfy the balance condition (1) or, equivalently, the
balance condition (9), the dynamics of the probability of the main factor Py,
as well as of supplementary factors P, P> is given by the following difference
equations for the probabilities of fluctuations for all £ > 0:

APy(k +1) = ViPi(k) + VaPa(k) — 2V Py (k) |
APy (k + 1) = VoPy(k) + VaPa(k) — 2V Py (k) | (12)
APy (k+1) = VoPy(k) + ViPi(k) — 2Va Py (k) .

The increment of probabilities fluctuations of the main and supplementary fac-
tors

AP,(k+1):=Pn(k+1)—Ppk), 0<m<2, k>0,

is determined by the values of guide action parameters 1 Vy, V1, Va.

Remark 3. The fluctuations of probabilities in (7) - (8) satisfy the balance
condition:

Py(k)+ Pi(k)+ Py(k) =0, k>0, (13)
and by formula (8) one has:
APy (k) = APn(k), 0<m<2, k>0. (14)

The equation (12) characterizes two basic principles of alternatives interac-
tion: stimulation (positive terms) and containment (negative term).

3. THE MODEL ANALYSIS
The existence of equilibrium point for the fluctuations increments regression
function (5) provides the possibility to analyze the dynamics of CE (by k — o0)
in view of the possible guide parameters values which satisfy the constraint (4).
The dynamics of the main factor probability is described by several scenarios.
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Proposition 1. The main factor probability Py(k), k > 0, determined by the
solution of the difference equation (12), as well as by the basic assumption
(9), with equilibrium (11), changes with increasing k — oo by the following
scenarios:

Attractive equilibrium: Vo >0, 0 < pg < 1:

Jim Po(k) = po; (15)

Repulsive equilibrium: V) <0, 0 < pg < 1:

=, 0 o

Dominant equilibrium: py & (0,1), Vp <O0:
Jim Po(k) = 1; (17)

Degenerate equilibrium: py ¢ (0,1), Vo > 0:
lim Py(k) = 0; (18)

k—oo
Remark 4. Of course, the main factor dynamics scenarios can be formulated
by domain of values of the guide parameters Vo, Vi, Va.

Remark 5. Similar scenarios for additional alternative dynamics take place by
considering the values of parameters Vi, p1 abo Va, ps.

4. ANNEXES

Attractive eguilibrium: Repulsive equilibrium:
0 (pg <1 PU{-I[')—',DU , k—= o .PU{;()—"[L PU(U) > Po.
0, P, (0) <pg.,

k=

po =1 Repulsive degradation: Attractive domination:

Pylk)—0 , k>0 Polk) =1 , k=

pg < 0 Attractive degradation: Repulsive domination:

Py(k)—0 , k—=w Pyk) —1 , k-

F1G. 1. Table of scenarios
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0<py <1
Attractive Equilibriuim
Vo=>0, V>0, V>0

Py —>|¢—FP,

0 Po '

L3

M ‘i

0< Po < 1
Repulsive Equilibrium
Vo<, V<0, V<0

Py
}

Sl

Po

(=

Po=>1
Attractive Dominance
V<0, V>0 V,>0,
V=0

0

P2 P

T

Po <0
Repulsive Dominance
Vo<0 ¥V, >0V, >0,

V<0

po<0
Attractive Degradation
Vo>0, V<0, V; <0,

V>0

el L=

Po

=]
=
o9 —

po=>1
Repulsive Degradation
V>0,V <0, ¥, <0,
V<0

A
o9 —

Fra. 2. Tlustration of P; limit behaviour

BIBLIOGRAPHY

Koroliouk D. Bi-component binary statistical experiments with persistent linear regres-
sion /D.Koroliouk // TVIMS. - 2014. - Ne 3. - P.31-42.

Koroliouk D. Equilibrium processes in biomedical data analysis: Wright-Fisher model
/ D. Koroliouk, V. S. Koroliuk, N. Rosato // Cyb. and Syst. Anal.— 2014— Ne6.— P. 80-86.
Bertotti M. L. Stochastic behavioral model, / M. L. Bertotti, D. Koroliouk, V. S. Koroliuk
// Preprint UniBZ. - 2014. (in Pubblication).

Arato M. Linear stochastic systems with constant coefficients. A statistical approach
/ M. Arato.— New-York: Springer, 1982.— 304 p.

Skorokhod A. V. Random Perturbation Methods with Applications in Science and Engi-
neering / A.V.Skorokhod, F.C. Hoppensteadt, H. Salehi.— New-York: Springer, 2002.—
501 p.

M. L. BERTOTTI,

FrREE UNIVERSITY OF BOZEN-BOLZANO, FACULTY OF SCIENCE
AND TECHNOLOGY, P1azza UNIVERSITA’ 5, 39100 BOZEN-BOLZANO, ITALY;

S.O.Dovayr,

D. KOROLIOUK,

INSTITUTE OF TELECOMMUNICATIONS AND GLOBAL INFORMATION SPACE
UKR. AcAD. Sci., 13, CHOKOLOVSKIY BOULEVARD, Kiev, 03110, UKRAINE

Received 20.05.2015



2Kypuasn 064uc/oBaabHol 2015 Journal of Computational
Ta MPUKJIQTHOI MATEMATHKA Ne2(119) & Applied Mathematics

UDC 517.988

INVARIANCE AND UNIQUENESS OF SOLUTIONS
TO POLYNOMIAL INTERPOLATION PROBLEMS
IN EUCLIDEAN SPACE

O.F. KASHPUR, V.V.KHLOBYSTOV

PE3IOME. B poboti po3risimyTo po3B’si3aHHd 3amadi iHTeprmossamii ¢yHKIHT
6araThoX 3MiHHHMX B yMOBax HeJoBu3HadeHOCTi. OmepKaHO yMOBH iHBapiaHT-
HOT PO3B’SI3yBAHOCTI Ta €IMHOCTI PO3B'sI3KY MTOCTABJIEHO! 33,1ai.

ABSTRACT. In this paper we consider solving of the interpolation problem
as applied to many-variable function in the case of under-determinacy. The
condition for invariant resolution and uniqueness of this problem is obtained.

1. INTRODUCTION

The fundamentals of general theory of operator’s interpolation in abstract
Hilbert spaces have been established in [1-3]. Then the authors also derived the
conditions of invariant solvability for interpolation problems in the event when
the solution is available at some or other operator’s values in the nodes. The
issue of convergence of interpolation processes and estimated accuracy of inter-
polation for the case of differential operators in Hilbert spaces are considered
in [4].

Let X,Y be Hilbert spaces, u - a Gaussian measure on X such that its
first moment is equal to zero, B - the correlation operator of this measure (B
belonging to trace-class ones), and KerB = ) [5, 6]. Assume also that II,, be
the set of operator polynomials P, : X — Y of n-th power in the form

I, = {Py(x) : Py(x) = Lo+ L1z + -+ Lyz"},
where Ly € Y, Lyz® = Ly(z,z,...,z), and Ly(z1,x2,...,2;) is the k-linear

k
continuous symmetric operator form. Now introduce the scalar product on the

set II,, [2]:
Py(Ll)’P7(12) ZE // L(l)v,’u,...,v )
( ) k=0 X X(( F ( b k)

L;(f) (’Ul, U2,y .-, Uk))yu<dvl)ﬂ(dv2) . ,[,L(d’l}k),

where (-,-)y is the scalar product in the Y-space, while LI(CI) and L;f) are k-
linear continuous symmetric operator forms corresponding to the polynomials

PV, P e 11, and ||By|| = (P, Py)Y/2.

Key words. Hilbert space, Euclidean space, operator, interpolation polynom, invariance of
solution.
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2. FORMULATION AND TREATMENT OF THE INTERPOLATION PROBLEM
IN HILBERT SPACE
For the operator F': X — Y set by its values F(x;) in the nodes x;,i = 1,m
we have to find the unique operator polynomial P, € II, that satisfies the
interpolation conditions

P.(z;) = F(z;),i =1, m. (1)

Introduce the following notation: I' = || Zzzo(xi,:vj)pmf;:l,()o =1,(-) is

the scalar product in the X-space, I'" is the Moore-Penrose pseudo-inverse
matrix with respect to I', and E is identity matrix.

In [1-3], in the event of fulfillment of the necessary and sufficient conditions

for solvability of operator interpolation task, such as
e
(E-TTHF =0,F ={F(z;)}",. (2)

the following unique interpolation polynomial of n-th power with minimal norm
is constructed:

Po(z) =< F.T* Y {(z, 2"}y >, (3)
p=0

_
where < &, 8 >= Y1, i, a; € Y, 3 € Ry, i.e. Py(z) is a solution to the
extremum task

1P| = min [|Qu]| = (<< TPy, By >>)2,Q, € TIL, Py = (Po(a))7y

and IT. is the set of interpolation polynomial of n-th power.

We call an interpolation task invariantly solvable if it has a solution at ar-
bitrary F. Then, obviously, the matrix I' in (2.2) has to be nonsingular. Ac-
cording to |7], an interpolation problem is invariantly solvable in Hilbert space
if the interpolation nodes z;,7 = 1, m are different and the condition

m<n+ 1. (4)
is met.

In practice, we often deal with approximation of many-variable functions.
When such function is represented by a set of its values, one of approxima-
tion methods consists in polynomial interpolation. But there another problem
arises: the conditions for existence and uniqueness of the interpolant are to be
established.

In the tasks of object’s identification based on its responses to input signals,
of particular interest is the case when the information available is not sufficient:
for example, the number of conditions is less than dimension of the space of
polynomials used for seeking the solution in Euclidean space. This problem
will be called underdetermined.

This work focuses on treatment of the interpolation problem as applied to
many-variable functions in the case of under-determinacy, and on analysis of
conditions for invariant resolution and uniqueness of the final result.
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3. SOLUTION OF THE INTERPOLATION PROBLEM IN EUCLIDEAN SPACES

To begin with, apply the above results of treatment of the interpolation
problem to the case of Euclidean space Fy. Consider the interpolation of the
function f : Eo — Ry set by its values in nodes v; = (x;,v;),4 = 1,m. Let us
represent the solution in the form of interpolant with minimum norm:

n

T Ao +yy) Y >, (5)
p=0

—
where f = {f(y)}",, [ = HZ;‘:O(%%‘ + yiyj)pH;”f;:l. If inequality (2.4)
holds and all nodes ~; are different then I't = I'"! (see [7]). In this work for
the Euclidean space we obtain a stronger result for invertibility of the matrix
I' as compared to (2.4).

First we construct the solution to this problem based on the general in-
terpolation theory of multivariable functions [8]. The required interpolation
polynomial P, (z,y) will be written as

|

Py (z,y) =<

Py (x,y) = apo + a10r + a1y + a20r? + a1y + appy® + -+ (6)

+ anox" + an—l,lxnily + 4+ aOnynv

and a;; € R1,4,k = 0,n are unknown coefficients. Denote by p = (n+ 1)(n +
2)/2 the dimension of space of n-th power polynomials defined in Fy. To get
the unique solution to the interpolation problem, we have to find the nodes
vi € Ea,i = 1,p such that the determinant of the system of linear algebraic
equations for a;p

Pn(’)/l) :f(yz)vzzlvp (7)

is always nonzero.
As shown in [9], it happens if for interpolation nodes we take the following
system of points:

(.%'(), yO)v (37173/0)7 R (xn—hyﬁ)y (.’L'n, y0)7
(.Z'(), yl)v (37173/1)7 ceey (xn—hyl)

(.Z'(), y’n—1>7 (3717 yn—l)a
(.f(), yn)v
Ti # Tj,Yi 7 Yj as L F J.
Such selection of nodes gives us single-valued a;j, and the interpolation poly-
nomial (3.2) is feasible and unique.
Now apply the system of nodes (3.4) to set up the interpolant (3.1). Since
the solution to the problem in this case is unique, interpolation polynomials in

(3.2) and in minimum norm (3.1) are coincident. Consider next the entries of
the matrix I

10
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n n
D ()P = (@ +7) =
p=0 p=0
= 1+ 37 + Gy, + () + 207,575 + (0:;)°+
+- (flfj)n + n(@@)"‘lyiﬂj + -+ nTT; (yi@j)n_l + (yzyj)",
where (7;,7;) are the points of set (3.4). Introduce a set of vectors s; defined
as follows:

si = (1, T, Uiy Ty V2T, T2) -+ oy To s VT Gy, /T T,
i=1,p

(9)

and, in conformity to [9], are linearly independent. Then the matrix I' takes
the form of Gram’s matrix

(s1,81) ... (s1,8p)
r=( ... ... .. (10)

($pss1) - (spssp)
which is nonsingular. Since any subsystem of vectors (3.5) is also linearly inde-
pendent and the matrix I' is invertible, our interpolation task will be invariantly
solvable and have a single solution in the form of an interpolating polynomial
with minimum norm (3.1), where I'" = I'"!. Based on the above, the following
theorem may be suggested.

Theorem 1. Let the function f: Es — Ry be set by its values f(~;),i = 1,m.
If the interpolation nodes v;,1 = 1,m are so selected that the subsystem of
vectors from (3.5) is linearly independent (representing, for example,a subset
of points (3.4)), then an interpolation problem with two-dimensional function
1s wnvariantly solvable and has a single solution with minimum norm under the

condition m < p, where p s the dimension of space of polynomials in n-th power
defined in Fo.

Thus, with Theorem 3.1 taking into account, for the function f : Fs — R;
we obtained better results compared to inequality (2.4) (see [7]).
Example.Consider the derivation of an interpolational polynomial with min-
imum norm (3.1) of the second power P(z,y). The interpolation nodes are
selected from the set of points (3.4), so that
M= (0)0)772 = (170)773 = (_170)7
Y4 =(0,1),75 = (1,1),
Y6 = (O> _1>
Based on formula (3.5), the vectors s; will be written as
s1 =(1,0,0,0,0,0),s2 = (1,1,0,1,0,0),s3 = (1,-1,0,1,0,0),
11
s4 =(1,0,1,0,0,1),s5 = (1,1,1,1, \/5, 1),s6 =(1,0,—1,0,0,1) (11)

Since the vectors s;,¢ = 1, m are linearly independent, the matrix I' defined
by formula (3.6) is invertible. So we come to the conclusion that in order to

11
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construct the interpolant (3.1) we may select any subsystem of vectors (3.7),
meaning that the interpolation problem is invariantly solvable and has a unique
solution in the event when m < 6 (m is the number of nodes from set (3.4)).
Compared to inequality (2.4), where m < 3, we obtain a better result.

As noted above, in practice we may encounter problems where the number
of interpolation nodes and the function values in these nodes are less than p.
In this case the interpolation task treated in classical manner [8] has nonunique
solution.

If for solving this problem (at m < p) we use an interpolant with minimum
norm from |1-3] and take the subsystem of vectors s; from (3.5) for construction
of the matrix I', then the solution will be invariant and unique. For our example
we take m = 4 and the subsystem si, s2, 53,54 from (3.7). In this case the
matrix I" is invertible, the interpolation polynomial P (7y) will be written as

2 4
Py(y) = Pafar,y) =< F.D71> {(miz + yiy) Yoy >= 3 1i(2) F(%)
p=0 i=1

that satisfies the conditions Py(7;) = f(7i), where {;(y) = l;(z,y) are Lagrange
fundamental polynomials of the second power, {;(7y;) = 6;j, 0;; is the Kronecker
symbol, i,j = 1,4, l1(z,y) = 1 —2? — 1/2y — 1/242, la(x,y) = 1/2x + 1/222,
Is(z,y) = —1/22 + 1/222%, l4(x,y) = 1/2y + 1/23°.

Now let us perform comparative analysis of the structure with two inter-
polants: that corresponding to the classical approach [8], and that suggested
here for m = p. We choose the system of nodes from the set of points (3.4).
In constructing the polynomial (3.2), the problem transforms into search for
solutions of linear algebraic equations (3.3) with inverse matrix of general
form. In the first case for the solution we use the Gauss method requiring
Q(m) = 2m3+O(m?) arithmetical operations. In the other case for construct-
ing the polynomial (3.1) we have to define the vector

n
r-t Z{@ﬂ? +7y) L =
p=0

which is equivalent to solving the system

n
Pz =S (@ + 7)Y = Ua.y) (12)
p=0
where [(x,y) is the two-variable polynomial of n-th power. The solution to
system (3.8) with its symmetric nonsingular matrix I" will be sought by the
square-root method demanding Q(m) = 3m? + O(m?) arithmetic operations -
with the constant at m? twice less than by the Gauss method.

Thus, when comparing the two methods for constructing the interpolation
polynomial for the function f : EFs — Ry we may conclude that when m = p
(m is the number of nodes, and p - dimension of the space of second-power
polynomials in E9) and the interpolation nodes selected correspond to system
(3.4), then interpolants (3.1) and (3.2) are coincident, but the polynomial with

12
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minimum norm is preferable due to less number of arithmetic operations, so
that its formula is easier for applications.

If m < p then for construction (3.2) under conditions (3.3) with nodes (3.4)
the classic approach [8] does not ensure uniqueness of solution. On the other
hand, polynomial interpolation (3.1) is invariant and unique. In fact, we have
obtained a consistent formula making it possible to construct the interpolant
of rather simple configuration.

The above results can be extended to the function of many variables f :
Fyx — Rip, where Ej is k-dimensional Euclidean space. Let the solution of
interpolation problem be sought in the space Ily, where Ilj, is the space of k-
variable polynomials of n-th power. Then, as noted in [8], we always can (find
a system of nodes (x;,, Tiy, ..., %, ) € Ej such that the task of interpolation of
multivariable function will have a single solution while the system of vectors s;
can be written as

4! 1z .
R : J1pJ2 L pdk g i
SZ_{<]1']2']]§'> $i1xi2 x%?]l +]2+ + (13)

n

Fi=g0=1}  i=Tp
§=0

where p = (n+ k)!/nlk!. Then we may speak of generalization of Theorem 3.1.

Theorem 2. Let the function f : Ey — Ry be given its values f(v;),i = 1,m.
If the interpolation nodes 7y; choose so that the relevant subsystem from vectors
(3.9) are linearly independent then in the space I, interpolation problem of
k-variables function with the condition P,(v;) = f(v),i = 1,m, P, € Iy, is
invariantly solvable and its has a unique solution with minimum norm under
the condition m < p, where p - the dimenston of the space Il,.

BIBLIOGRAPHY

1. Makarov V. L. Foundations of polynomial operator interpolation theory /V.L. Makarov,
V. V. Khlobystov. — Kyiv: Institute of Mathematics, National Academy of Sciences of
Ukraine, 1998.— Vol. 24. (in Russian).

2. Makarov V.L. Interpolation of operators /V.L.Makarov, V.V.Khlobystov, L. A.Ya-
novich. - Kyiv: Naukova Dumka, 2000. (in Russian).

3. MakarovV.L. Methods of operator interpolation /V.L.Makarov, V.V.Khlobystov,
L. A. Yanovich. - Kyiv: Institute of Mathematics, National Academy of Sciences of
Ukraine, 2010. - Vol. 83.

4. Khlobystov V. V. On interpolation approximation of differentiable operators in Hilbert
space / V. V.Khlobystov, T. N. Popovicheva // Ukrainian Mathematical Journal. - 2006. -
Vol. 58, Ne4. - P.554-563. (in Russian).

5. GikhmanI.I. Theory of stochastic processes /I.I. Gikhman., A. V. Skorokhod. — Moscow:
Nauka, 1971. (in Russian).

6. YegorovA.D. Approximate methods for computation of continual integrals / A.D. Ye-
gorov, P.I. Sobolevsky, L. A. Yanovich. — Minsk: Science and tecnics, 2010.— Vol. 24. (in
Russian).

7. ChapkoR. On the interpolation of a function on a bounded domain by its traces
on parametric hypersurfaces /R.Chapko, C.Babenko, V.Khlobystov, V.Makarov.—
// International Journal of Computer Mathematics. — 2014. - Vol. 91 (8). - P. 1673-1682.

13



O.F.KASHPUR, V.V.KHLOBYSTOV

8. BabenkoK.I. Foundations of numerical analysis /K.I.Babenko //RC "Regular and
chaotic dynamics". - 2002. (in Russian).

9. BerezinI. S. Methods of computations /I. S. Berezin, N. P. Zhidkov. — Moscow: Fizmatgiz,
1962. - Vol. 1. (in Russian).

O. F. KASHPUR,
TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KY1v,
4D, GLUSHKOVA STR., KyIiv, 03187, UKRAINE;

V. V.KHLOBYSTOV
INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES,
3, TERESCHENKIVS'KA STR., KyIv, 01601, UKRAINE

Received 20.05.2015

14



2Kypuasn 064uc/oBaabHol 2015 Journal of Computational
Ta MPUKJIQTHOI MATEMATHKA Ne2(119) & Applied Mathematics

UDC 519.8

CONTINUOUS PROBLEMS OF OPTIMAL
MULTIPLEX-PARTITIONING OF SETS WITHOUT
CONSTRAINTS AND SOLVING METHODS

L.S.KORIASHKINA, A.P.CHEREVATENKO

PE3IOME. Posrisimaerncs HenmepepBHA JiiHiiHA 331a49a ONTUMAJIHBHOTO MYITH-
IJIEKCHOTO PO3OUTTSI MHOYKUH y IBOX BapiaHTax: 3 (iKCOBAHMMU IEHTPAMH i 3
ix po3mimenuaM. OIHCAHO METOAM PO3B’SI3aHHS TAKUX 331349 po30uTTs. s
3a7a4i 3 (PIKCOBAHMMHU IEHTPAMHU ONTUMAJIbLHUN PO3B’A30K 3HAMWIEHO aHAJIi-
TUYHO y BUTJISII XaPAKTEPUCTUIHUX BEKTOP-(PYHKIIIH M IMHOXKUH BUIIUX 0~
PAOKIB, IO CKJIAQIAI0TH ONTUMAJIbHE MYyJIbTUILIEKCHE PO3OUTTS 33aHOI MHO-
xkuau. J[OCTiIKeHO [1edKi BJIACTUBOCTL ONTUMAIBHAX MY/IbTHUILIEKCHIUX PO3-
ourTiB. Po3B’s3aHHs 33129l ONTUMAJILHOTO MYJIBTUTLIIEKCHOTO PO3OUTTS MHO-
JKUHU 3 PO3MIIIEHHSM [IEHTPIB 3BOAUTHCS 10 PO3B’sI3yBAHHS CKIHIEHHOBUMIp-
HOI 33724l Mirimizamii Hermaakol dyukiii. HaBemeno pesysnpratn po3s’a3amus
TecTOBUX 337a4. [IpogeMOHCTpOBaHa MOXKJIMBICTH TIOOYI0BH diarpaM BopoHo-
ro BHUIUX MOPAIKIB y pe3yabTaTi (hOpMYIIIOBAHHS Ta PO3B’SI3aHHS HEIlEpPepPB-
HEX 33/1a9 MYJIbTUILIIEKCHOTO PO30OUTTs MHOYKWH 3 IIEBHAMU KPUTEPIAMU SKOCTL
po36uUTTSI.

ABSTRACT. We consider the continuous linear problem of optimal multiplex-
partitioning of sets in two versions: with given coordinates of service centers or
with their placing in a given region. The methods of solving such partitioning
problems are described. For the problem with fixed centers the optimal so-
lution was found analytically in the form of characteristic vector-functions of
subsets of higher-order, which compose the optimal multiplex-partitioning of
a given set. Some properties of optimal multiplex-partitions are investigated.
The solution of the problem of optimal multiplex-partitioning of set with
placing centers is reduced to the finite-dimensional problem of non-smooth
function minimization. The results of the test problems are presented. We
demonstrate the possibility of construction of higher order Voronoi diagrams
via formulating and solving continuous problems of multiplex-partitioning of
sets with some criterion of partitioning quality.

1. INTRODUCTION
The problems of optimal organization of service or manufacturing networks,
including "Optimal set partitioning (OSP) problem", "Facility location prob-
lem", "Continuous Location-Allocation Problem", are actively studied over the
past 50 years [1-15]. The main problem that can be solved using OSP models
and methods is the arrangement of given region into several subregions served
by only one service center. The criterion for choosing the optimal partition

Key words. sets partitioning of the k-th order, optimal multiplex-partitioning of set,
Voronoi diagrams of higher orders, continuous problems of optimal sets partitioning, non-
differentiable optimization.
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may be the minimization of costs of service provision or obtainment. The ma-
jority of models of partitioning problems are discrete. In [3] it is shown that
the discrete models and problems of partitioning - placement on a plane are
NP-complete problems. The discrete problems of optimal sets partitioning and
their solving methods are studied, in particular, in [3,11].

The problems, in which the partitioned set is continuous, in scientific liter-
ature are called continuous problems of sets partitioning. Such problems are
explored in [1,2,4-10]. Different formulations of continuous problems of op-
timal sets partitioning are presented in [14,15]. There is described an unified
approach, which underlies the methods and algorithms for solving such prob-
lems.

We present the mathematical formulations of problems of optimal partition-
ing of a given region into subregions, each of which covers customers that have
the same k nearest service centers among N existing (or possible) centers. It
is agssumed that customers from each subregion can be served by any of the
closest k centers.

The first mathematical models of continuous problems of optimal multiplex-
partitioning of sets were presented in [16]. There was also substantiated the
choice of name for a new class of partitioning problems. It was indicated that
the order of partition can be pointed in the name of new partitioning prob-
lems. Similarly with computational geometry during the construction of a set
of points that have the same set of k nearest centers among N existing (possi-
ble) ones the Voronoi cell of k-th order is obtained. The set of all such possible
cells associated with N generator points (centers) is called Voronoi diagram of
k-th order [17].

The name of a new class of problems takes into consideration the fact that
the partitioning of customers (consumers) is carried out so that each subset is
served by two, three or more service centers. There is an english term "duplex"
(triplex» ) that in Russian (Ukrainian) translation means "which is designed for
two (three) families", "multiplex" is a complex, compound. Thus, the name
"problems of optimal multiplex -partitioning of sets" is total for all new OSP
problems. Among them the problems of optimal duplex-partitioning of sets
(continuous problems of optimal partitioning of sets of the second order), the
problems of optimal triplex-partitioning of sets (continuous problems of optimal
partitioning of sets of the third order) may be separated. For more detailed
specification of multiplex-partitioning problems the words "continuous linear"
can be added in its name considering accepted terminology of the theory of
OSP problems [14,15], where the first word means that the partitioned set is
continuous, the second one indicates the property of functional and restrictions
of the problem.

The difference between "multiplex-partitioning” and "multiple partitioning"
is also denoted in |16]. In the first case the partitioning is associated with
N homogeneous points called centers and the set is divided into subsets of
points, which have the same set of k nearest neighbors among N centers. In
the second case a regular partitioning of a given set is carried out for sev-
eral times. It happens, for example, while solving multistep (multistage) OSP
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problems, where service centers have different categories and customers must
be partitioned for each category separately [18]. We also deal with multiple
partitioning while solving multiproduct OSP problems, when each service cen-
ter can provide multiple services (produce several items) and the partitioning
of clients is performed for each service (product) separately [14,15].

The methods of solvig continuous linear problems of optimal multiplex-
partitioning of sets are based on the following general idea (similar to presented
in [14,15]): initial problems of optimal partitioning of sets are mathematically
formulated as infinite-dimensional optimization problems and reduced to aux-
iliary finite-dimensional nonsmooth maximization problems or to nonsmooth
maximin problems using the Lagrange functional and after that modern effi-
cient methods of nondifferentiable optimization [19] are used to get their numer-
ical solution. The feature of this approach for linear OSP problems is that the
solution of initial infinite-dimensional optimization problems can be obtained
analytically in explicit form and, at the same time, the obtained analytical
expression can include parameters presented as optimal solutions to the above-
mentioned auxiliary finite-dimensional optimization problems with nonsmooth
objective functions.

The purpose of the article is to describe solvig methods of optimization
problems of partitioning of a given region into subregions that cover customers
with the same k nearest service centers among NN existing (or possible) centers.

The articles [20,21] describe a unified approach to the construction of Voronoi
diagrams that is based on the formulation of continuous problems of opti-
mal partitioning of sets from an n-dimensional Euclidean space into subsets.
The development of the theory of continious problems of optimal multiplex-
partitioning of sets gives an opportunity to construct the Voronoi diagrams of
higher orders and their different generalizations. We will demonstrate it below.

2. THE MATHEMATICAL FORMULATIONS OF CONTINUOUS
LINEAR PROBLEMS OF OPTIMAL MULTIPLEX-PARTITIONING
OF SETS WITHOUT CONSTRAINTS

Let © be a bounded Lebesgue measurable closed set in the space En;7; =
(Ti(l), ...,Ti(n)) from €, for all i = 1, N, are some points, called "centers" (they
can be fixed or subjected to determination).

We introduce the following notations: N = {1,2,..., N} is a set of all centers
indeces; M (N, k) is a set of all k-elements subsets of the set N, [M (N, k)| =
Chk =L, o = {4, 5% ...,jt}, 1 =1, L are elements of the set M(N, k). We
associate each element o; from the set M(N, k) with some subset Q, of points
from Q, [ = 1,L. In its turn, subset {),, is associated with a set of centers
{Tji,Tjé, e Tji}.

The collection of Lebesgue measurable subsets €25, , {5,, ..., s, from Q C E,
(among which can be empty) will be called as a partition of the k-th order of
the set {2 into disjoint subsets Qg , Qgy, ..., Qo , if

L
U 9. =9,
1=1
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mes(Qy, N Qo) =0, 05,05 € M(NE), i#4, i,j= 1,L,
where mes(-) means Lebesgue measure.
The subsets 4, Qg,, ..., {25, of the set Q we call as subsets of the k-th order

of this set. Suppose Zg’k is a class of all possible partitions of the k-th
order of the set () into disjoint subsets 2, Q5 ..., 26,

L
SNk = {w = (U 2y} | U =
=1

mes(Qy, NQy,) =0, 05,05 € M(NJE), i # j, i, = 1,L}.
Problem A1l-k: Find

F({le,...,QaL}) — min ,
{0,026, yeSOF

L

F({le,...,QgL}) :Z/Z(c(m,n)/wi—l—ai)p(x)dm
l:lQol 1€0]
where z = (M, .., 2M) € Q; 7V = (1,....7,....,7n) € QV, coordinates

Ti(l), - 7"

- of a center 7;,i = 1, N, are fixed; functions c(x,7;) are bounded

defined on Q x Q measurable at = for any fixed 7; = (Ti(l), ...,Tl-(n)) from Q

for all i = 1, N; p(z) is bounded measurable function integral on the set Q ;
w; >0, a; >0, 1 =1, N, are given numbers.

The partition of the k-th order w* = {27 ,..., Q5 } of Q C E, that affords
minimum to the functional F', is called optimal solution of the problem
Al-k.

If the centers 73,4 = 1, N in the problem A1l-k are not fixed in advance and
there are some centers to be placed in a given set 2 C E,, along with finding its
partition of the k-th order w* = {0 , Q% ..., }, then we will have a new
problem of optimal multiplex-partitioning of sets.

Problem A2-k: Find

IR QNF({Q(H,...,QUL},{n,...,TN}),
AR L4 S ’ Tl TNy €
1 ? L Q EARRS]

where

Fw,m™) = F({Qal, v Qo 1o {11, --"TN}> B

L
:Z/Z(C(ﬂv,Ti)/wi+ai)p($)dI’ (1)

1:1Qo'l 1€0y

all functions and parameters are the same as in the problem A1-k; coordinates

TZ-(I), ceey Tl(n)

An allowable pair (@*,7V) = ({Q* Qx

of the centers 7;,4 = 1, N, are unknown in advance.
..,Q;L},{Tf,fg,...,q*v}) that af-

fords minimum to the functional 1 is called optimal solution of the problem
A2-k.

o1 o2 °

18



CONTINUOUS PROBLEMS OF OPTIMAL MULTIPLEX-PARTITIONING ...

3. THE SOLVING METHOD OF THE PROBLEMS OF OPTIMAL
MULTIPLEX-PARTITIONING OF SETS WITH FIXED CENTERS
By analogy with solving method of continuous linear OSP problems [14]
first we write the initial problem A1l-k as a problem of infinite-dimensional
mathematical programming with Boolean variables.
Let W = {Q0,, ., oy, ..., Qo } 18 some partition of the k-th order of the
set ). For each point z € €,,,l = 1, L, we introduce LN-dimensional vector
M(z) = (M (2), ..., \yy(z)), which coordinates are determined as follows:

1 QO’ ) bl .
Aﬁ(:c)z{’ z€Qy Lica i=T,N,l=T1,T, 2)

0, in the other cases

where o7 € M(N, k), op = {j}, 4}, ..., 7§} is the set of centers Ty Ty e Tl
indeces associated with a subset {2,,. Using these functions we introduce char-

acteristic functions of the subsets {15,, [ = 1, L, forming the partition of the
k-th order of the set 2:

()= b T8 & ) = ﬂ A(z),1=T1,L
Xl - 0’ .T}GQ\QO—Z, Xl - 7 I - Y 9

i:l, ’iEUl

Therefore, the vector-function A (z) = (X (z), ..., Ay (z)) defined on the set
Q with coordinates matched to 2 will be called as characteristic vector-function
of the subset €2, included into the partition of the k-th order of Q (by analogy
with the way as characteristic vector for a subset of a finite set in discrete
mathematics is given).

Let us rewrite the problem A1-k in terms of characteristic functions of sub-
sets that form the partition of the k-th order of the set €.

Problem B1-k. Find min I(A(+)),

A(-)erk

0

L N

100) = [ Yo(3 (el /i + a¥i(@)) pla)da

q =1 =1

N N . .
= (11, ..., EOX..xN=0 tor.
T (T1y o0y TN) is given vector
N
Along with the problem B1-k we will consider the corresponding problem

with variable values A\.(-), i = I, N, [ = 1, L, from segment [0; 1].
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Problem C1-k. Find min I(A(+)),

A(-)erk
L N
100) = [ 32(3 (el /i + a¥i(@)) pla)da
Q =1 =1
where
If = {M@) = V@), N (@), o Ao (@)
N (@) = (A (@), 0, Ay (2)); 0 < Ni() < 1,
N
i1=1,N, Z)\i(x) =k, l=1,La.e forzxzc Q},
i=1
™ = (11,...,7n) € QV is given vector.

Obviously, I'f C T'¥. Tt is easy to show that the set I'¥ is bounded closed
convex set from the Hilbert space LYV (Q) with the norm

1/2

IO = (/ EL: i N@)*)
Q

=1 n=1

The space LIV (Q) is reflexive. Fig. 1 depicts elements of the set I'? corre-
sponding to one of the points x € (2.

Asp
1

H

1

n

FIG. 1. The element of the set I'? corresponding to each point z €

The functional I(\(-)) is linear continuous about A(-) on I'} at any fixed
N N
T e QY.
The following statements are true.
Statement 3.1. At any fixed 7V € QY bounded closed convex set 'Y from
the Hilbert space L& (Q) is slightly compact and contains at least one extreme
point.
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Statement 3.2. There is at least one extreme point among the set '} of
points, in which linear on A(-) functional I(A(-)) reaches its minimum about
A(+) on the set I'} at any fixed 7V € QV.

Statement 3.3. The extreme points of the set T'¥ are characteristic functions
of the subsets of the k-th order Q,...,€;, that form a partition of the k-th
order of the set  at any fixed 7V € QV.

The convex (linear) continuous functional I (A(-)) reaches its lower bound on a
closed bounded convex set I'} from the Hilbert space L& (Q) by the generalized
Weierstrass theorem. Consequently, the problem C1-k has a solution.

Thus, there is at least one extreme point of F’f among the set of optimal
solutions of the problem C1-k, and extreme points of T'¥ are characteristic
functions of subsets of the k-th order €2,,,...,€,, forming a partition of k-th
order of the set €. A set of optimal solutions of the problem C1-k contains
optimal solution of the problem B1-k. That is the solution of the last one
reduces to the solution of the problem C1-k.

For the problem C1-k we form the Lagrange functional that includes restric-

N
tions > A(z) = k,l=1,L:
i=1

N

- / i [i elar, ) /s + ailo(@) M) + (@) (30 M) — k) | o =
Q

=1 =1 =1
L N
= [ S {Slcto i)+ aota) + (@) z) ~ o)
Q =1 =1

The functional W(A(+),¢o(-)) is determined on the Cartesian product A x @,
where

A=\ elfNQ): 0<MN(@)<1,VzeQ, i=1,N, I=1,L};

@ = {(g(), U3 () 5 () 1 Ph() € La(Q), 1 =1,L}.

The pair (A(+), 1ho(-)) is called Lagrange functional W (A(-), ¢o(-)) saddle
point on set A x @, if VA(:) € A,Viby(-) € @ the following inequality holds

W(AC), %)) < W), do(-) < WAL, do(-)-

For each = € 2 we introduce a function about (LN + L) variables:

L N

Q@) wo(w)) = S { 3l 7) i + ai)ple) + (@) N (@) — k(@) }.

=1 =1

determined on the Cartesian product of sections A, x ®, of the sets A and ¢
at z € Q.
It is easy to prove, that in order to the admissible pair </\(-)7 1/10(-)> EAXD

would be a saddle point of Lagrange functional W (A(-),vo(-)), it is necessary
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and sufficient for the following equality to be hold: a. e. for z € Q

Q(S\(x),@/}o(w)): max  min Q(\(x),vo(x)).

o () €L A(z)EAL
That means, that for each fixed 2 € Q the pair (A(z),4o(x)) must form the
saddle point of function Q(A(z),vo(z)) on the set A, X D,.

Let x is arbitrary fixed point of set (. Because of the separability of function
Q(A(z),vo(z)) about its parameters the following equality holds:

. NS _
o  min Q(A(),o())

L N

= max  min S {3 ((e(w ) /wi + ai)p(e) + vh(@)N (@) — k(@) } =

Yo(2)EDP5 AN(z)EAL =1 il

L
=3 e {37 wmin_ (e )i+ aidp(e) + vh()N(a) — k(o) |
— oxezizlgixg

The point (A(z),10(x)) will be a saddle point for function Q(A(z),(x))
¢,

on the set A, x then and only then, when the following conditions are
performed:

1) Q(A(x),4o(x)) = Ner QA(@), do(x));

T

o N . _
2) WO — g & Y A@) -k=0 WI=TL
0 i=1
The function Q(A(z),vo(z)) gets a minimum value at arbitrary fixed vector
Yo(x) in all admissible vectors A(x) € A,

Ae={=0L 2k o a0 )0 < M < 1,i=1,N,1=1,L},

in the point S\(x), which components are calculated by the formula: for each
i=1,N,1l=1,L

A L if (el ) fwi + a)p(a) + ()
@) =30, if (ele,m)fw; + a)p(a) + ()

a€[0;1], if (e(z,7:)/w;i + a;)p(x) +¥i(z) = 0.

<0,
>0

(3)

Taking into account the fact that among all solutions of the problem C1-k
we are interested only in those that are extreme points of the feasible set of
problem’s solutions, then because of an arbitrary choice of value a € [0; 1] for
equalities we can assume that a particular case of 3 is the following formula:
foreachi=1,N, | =1,L

) 1, if (c(z, ) /wi + a;)p(z) +¥h(x) <0,
)\i(:c) =<0, if (c(z,m)/w; + ai)p(x) + 1/}6(%) >0, (4)
OV 1, if (c(x,7:)/w;+ ai)p(x) +Ph(z) =
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At tho(x) = Yo(z) coincidently with constraints 3, including 4, the following
equalities are performed:

N
Y X(z)—k=0 VI=1,L (5)
=1

It follovys from 5 that for each fixed I = 1, L among components of the vector
M(z) = (M (2), ..., \y(z)) in 4 exactly k components must be equal to 1. Let
o = {jt, 48, ...,jfc} is the index set, for which the following inequalities hold:

(e, j1 ) /wy + aj )p(x) +dh(x) <0, jh, € or,m =1k
(c(z, 1) Jwi + a;)p(z) + dh(x) >0, i e N\ oy. (6)
Then 4 can be written in the next form:

2 1 if i € oy
MN(z) =<7 ’ 7
i) {Q itieN\a. (™

And thus, because of the arbitrary choice of point €  and number [ =1, L
the formula 7 determines the value of the characteristic vector-function of the
subset {5, of the k-th order in the point z € {2 associated with a set of centers
{Tji,Tjé, vy Tji}' That means that the formula 6 and 7 indicate the conditions

of appurtenance of points x to the subset of the k-th order Q,,, [ =1, L.
We consider the system of inequalities :

f(c(l’,Tji)/wji +a;1)p(x) + 1%(:6) <0,
(e, 7)1y + ag)o(a) + Gi(@) <0,

(el )y + a )ole) + ) <0
\_(C(xaTi)/wi + az)p(x) - T/Jé(fﬂ) <0,7€eN \ oj.

The system 8 is solvable, since the problem C1-k (as well as B1-k) has a
solution. Summing in 8 each of the first k inequalities with each ¢-th inequality
from the group N \o; we obtain the following expressions: for each [ = 1, L and
JEo

(c(@, 75)/wj + aj)p(x) < (c(z, ) /wi + a;)p(z), Vie N\oy.

Under the assumption that p(x) > 0 almost everywhere for x € Q we can
write the formula for calculation of the characteristic functions of subsets of
the k-th order Q7 , | =1, L that form an optimal multiplex-partitioning of {2
as follows:
for each [ = 1, L the point = belongs to 7, if the following inequalities hold

c(z,75)/wj + aj < c(x,73)/w; +a;, Vj€oand Vi e N\ oy.

Thus, the following theorem is true.
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Theorem 1. In order a possible partition of the k-th order
T = {0, .., Y end”

g1

of the set Q) is optimal for problem A 1-k, it is necessary to fulfill an inequalities
a.e. for x € QF

c(z, 7)) /wj +a; < c(x,73)/w; +a;, YjE€oandVie N\oj, l=1,L. (9)

Corollary 1. Let in the problem A1-k function p(xz) > 0 a.e. for x € Q,
ot ={,,., 0, € Eg’k is optimal partition, points x € § belong to the
boundary between the non-empty subsets of the k-th order €0~ and O, , (m #
I;m,l =1,L). Then there is a subset of indices ¢ = {j1,...,3r}, 1 <7 < k such
that (¢ C 07)&(¢ C o) and for each j € o1\ ¢ and i € oy, \ € the equality sign
n 9 1s achieved, i.e.:

c(x,1j)/w; +aj = c(z, 1) /wi +a;, Vi€ o \¢andVie o\ (10)
Proof. Let x € Q is arbitrary fixed point, which belongs to the boundary

between the non-empty subsets of the k-th order Q5 ~and Q7 , (m # l;m,l =
1, L). Because of x € €2 the following inequalities system has a solution:

o(z,75)/wj + aj < c(x,73)/wi + ai, Vj € o and Vi € N\ oy,
and by the fact that x € Q  the following inequalities are true:
c(x, 1) /wj + a; < e(x, i) /wi +a;, Vj € opand Vi €N\ oy
It follows that
C(“TvTj)/wj +a; < clx,m)/wi +a;, YjEomNoy, Vi e N\ opy;

c(x, 1) /wj +aj < c(z,7)/wi + a;, Vi€ omNoy, Yie N\ o
Let ( =omNoy, ¢ ={j1,..,Jr}, 1 <r < k. ThenVp e o\ c(z,7)/w,+
ap < c(z, 1) /wi+a; VieN\o.
On the other hand, since p € N\ o, then Vi € oy, c(z,7)/wp + ap >
c(x, ) /w; + a;, among them all indexes i € oy, \ . And thus, Vi € g, \ ¢ and
Vp € o7\ ¢ the following double inequality is true:

c(z, 1) /wi + a; < c(x, ) /wp + ap < c(x, 73)/w; + a;.

It is possible only when Vi € 0., \ ¢ and Vp € o7\  and the equality 10 holds,
ie.:
C(‘T7 Tp)/wp + ap = C(IL’, TZ)/wz + a;.

The corollary 1 is proved.

Corollary 2. Let in the problem A1-k function p(xz) > 0 a.e. for x € €,

ot = {9,,. 0 ) € Zg’k is optimal partition, points x € Q are corner

points of the partition, i.e. x belongs to the boundary between several non-
empty subsets of the k-th order ¥, ~ m € {li,ls,...,01s}; 1 <1, < L, ¢ =

om?

1,s; s > 2. Then there is a subset of indices ¢ = {j1,..., jr}, 1 <1 < k such
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that ¢ C () oy, and for eachi € o, \ (,p = 1,2,..., s there are indices j, from
q=1s
the set oy, \¢, Yg#p, q=1,2,...,s, at which equal sign in 9 is achieved, i.e.:

c(x, ij)/wjp +aj, = c(z,mi)/w; +a;, Yq#p, q=1,2,..,s. (11)
The proof of the Corollary 2 is analogous to the proof of the Corollary 1.

Remark 1. The necessary condition 9 is a sufficient condition of optimality
for the problem A 1-k because of I(A(+)) linearity.

The Figures 2a, 2b are illustrations of the validity of the Corollary 1 and
Theorem 1 in the case of optimal duplex and triplex partitioning of a square
area with seven centers. Hereinafter, in order not to overload the figures the
subsets of the k-th order are denoted as a set of indices o; = {ji,jé, ...,j,i} of
appropriate centers.

The implementation of the Corollary 2 for optimal triplex-partitioning of a
square area with the same centers can be traced on the Fig. 2c. Let us describe
this Figure in details. Let the point z € € is a corner point of the partition,
which lies on the border between the following subsets: 9?123}, ?237}, &57},

?135}. The intersection of all indices sets corresponding to mentioned subsets

of the third order is the set ¢ = {3}. The center 73 is really the closest one to

a fixed point & among all seven predetermined centers. The remaining centers,

which indices make up a set |J oy, \ ( ={1,2,5,7}, are in the same distance
q=1,s

from the point = (the shortest one without taking into account the distance

between the center 73 and z).

Fia. 2. Tllustration of the equalities 10 (a, b) and 11 (c) for
points of the boundary between subsets

Thus, from the Theorem 1 we see that the optimal solution of B1-k is reached
on the vector-function A\*(z) = (AL(z),...,A\L(z),..., \E(z)), each component
A{(x) of which is calculated by the formula: a.e. for x € Q

1, if e(x,n)/wi + a; < ez, 15)/wj + aj,
)\iz(x) = simultaneously with Vi € gy, j € N\ oy, (12)
0, in other cases l=1,L, i=1,N.
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The functional of the problem B1-k at A(-) = A*(+) is noted as follows:

IO () = /lmliri(Z(c(:r,Ti)/wi + a,))p(x)dx. (13)
Q ) 1€0]

Remark 2. Assume that for a certain point x € € there are several sets of
indices, for ezample, o = {ji, 5, ...,j,lc} and oq = {41,753, .-, i}, under which
system of inequalities 9 holds. It is possible only when these several indices sets
have nonempty intersection and on the set of indices oy A\ ogq (A is symmetric
difference) an equal sign in the inequality 9 is achieved. Then the solution
of the problem C1-k will consist of not one extreme point, but at least two
ones. It is easy to see that the value of the functional 10 is the same for both
extreme points. Since for the visual interpretation of the solution 12 and for
the method implementation the selection of the certain extreme point (hence, the
set Q) partition) is very important, then the ambiguity can be eliminated using
conventional techniques: from several sets of indices 0y Nog, where c¢(x, T;)/w;+
aj = c(x, 1) /w; + a; is achieved, the smallest index is chosen.

Usually, while formulating the OSP problems as a function ¢(z, 7;) a partic-

n .
ular case of Minkowski power distance c(z,7;) = |lz — 7ll, = ¢/ > (27 — Tij)p
j=1
is selected: at p =2 — Euclidean, at p = 1 — Manhattan (taxicab geometry), at
p = o0 — "domination" metrics (Chebyshev metrics).

The partitions of the 1-t, 2-d, 3-d order of the square area 2 C FEs with
centers 7;, ¢ = 1,2,...,8 in case, when the function ¢(x, ;) in the functional 1 is
Minkovsky distance at p = 8; w; =1, a; =0, © = 1,8, are presented on the Fig.
3. For each subset €2, included in the multiplex partition of Q (at k = 2,3)
it is defined a pair or a trio of indeces of corresponding centers. It is easy to
notice that in the duplex partition only 14 (Fig. 3b) from L = C3 = 28 subsets
Q515 Qoys vy Qo , which compose optimal €2 partition of the 2-d order, are non-
empty. In the triplex partition (Fig. 3c) many subsets of the 3-rd order also
were empty. The number of empty subsets included in the multiplex partition
of the set depends not only on centers’ location 7;, ¢ = 1, N, its number, but
also on the selection of metrics [16].

Remark 3. If in the problem A1-k function c(z, ;) is Euclidean metric, a; =
0, w; = 1, i = 1,N; p(z) = 1Vx € Q, then the optimal solution
determined by vector-function X(-) = X*(+) as 12 turns out Voronoi diagram of
the k-th order known in the computational geometry [17], i.e. such partition of
set Q into subsets Qq, ..., that:

L

UQZ- =Q; mes(UNQ;) =0, Vi#j, i,j=1,L,

i=1

Qm:{xEQ: VieTy clx,1)<clzn), iGN\Tm},

where Ty, = {17",45,...,4'}, m =1, L, are all possible k-element subsets of the
set N of indeces.
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Fia. 3. The optimal partitions of k-th order of a square with 8
centers: a — k=1, b—k=2; c— k=3

Let us examine this fact to the problem A1-2 (duplex OSP problem without
constraints and with fixed centers) under initial data: c(x,7) is Euclidean
metric, a; =0, w; = 1,i =1, N; p(z) = 1 Vo € . Under these conditions the
formula 12 can be written as follows:

A () = {1, ife(z, ) < c(z, 7;), simultaneously withVi € 07,5 € N\ oy,
* 0, in other cases.
The optimal partition for this problem is shown on the Fig. 4. Suppose
x € () is arbitrary fixed point. Let us consider, for example, indexes sets
o, = {7,8}, oo = {6,7}, o, = {6,8}. Then A(z) = {0,0,0,0,0,0,1,1},
Ai(z) =0, X* =0, Vi = 1, N, because only for indexes ¢ € o, condition is
performed:

c(z, ) < c(z,15), Vje{1,2,..,8}\ oy

Fia. 4. The Voronoi diagram of second order

Suppose now, o5 = {3,7}. On the Fig. 4 we can see, that there is no point
x € €1, for which at given centers 7;,% = 1,2, ..., 8, ratios would be carried out:

c(x,m3) < c(x,15), Vie{l,2,..,8}\ 0s.
c(x,m7) < ez, 15), Vi e{l,2,...,8}\ 0s.

Therefore, the subset of the 2-nd order 237 included in the duplex partition
of the set €1 is empty.
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Thus, by solving the problems A1-k of optimal multiplex - partitioning of
sets under different parameter values of the objective functional, we can get a
higher order Voronoi diagrams and their generalizations: additively weighted
(3 at least one i : a; # 0,7 = 1, N), multiplicatively weighted (3 at least one
j @ w; # 1, obviously Vj : w; # 0,7 = 1,N), additively and multiplicatively
weighted (simultaniously 3 at least one i and at least one j : a; # 0, w; #
1, 4,j = 1,N).

For the problem B2-k, which is equivalent to A2-k but written in terms
of characteristic functions of subsets that constitute the partition of the k-th
order of a given set €1, the following theorem holds.

Theorem 2. The optimal solution of the problem B2-k has the following form:
fori=1,N,l=1,L and almost all z € )

AL (z) = L, if e(z, 7)) Jwsi + a; < (2, Toj) /waj +aj, 1 € 0y, j €N\ oy,
™ 0, n other cases,

in the capacity of Ty1, ..., ToN the optimal solution of the problem

G(r) — T}{IneigN, (14)

is chosen, where
G(r) = min c(x, ;) /w; + a;lp(x)dx. 15
)= | i Sl i+ ot (15)

Hence, with a help of the Theorem 2 solving the continuous problem of
optimal multiplex-partitioning of sets is reduced to a finite-dimensional mini-
mization problem 14 solving with non-differentiable function 15 by any known
method of non-smooth optimization [19].

In article we present only the results of solving some problems of multiplex-
partitioning of sets with centers placing. Fig. 4, 5, respectively, demonstrate
the results of solving the optimal duplex and triplex partitioning of square
area with centers placing under parameters: c¢(z,7;) is Euclidean metric, a; =
0, w; = 1,i = 1, N; p(z) =1V € Q. To solve finite-dimensional problem 14
with non-differentiable function 15, the algorithm of pseudo-gradients was used
with space dilatation in the direction of the difference between two successive
gradients; this algorithm is close to Shor’s r-algorithm [19].

Due to the fact that the Shor’s r-algorithm provides a search of non-differen-
tiable function local minimum, and the problem 14 is multiextremal, then under
different initial approximations various local solutions of the problem A2-k can
be obtained. For example, in the case of solving this problem for N =15, k =
2,3 except of the optimal solutions depicted in the Table 1, can be obtained
the solutions presented in Fig. 5.

The identification of the properties of optimal solutions of the problem A2-k
under certain initial data is the direction of further research.
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FiG. 5. The local solutions of the problem A2-k at N = 15 :
a—k=2;bc—k=3

4. CONCLUSION

Thus, the solutions of continuous linear problems of optimal multiplex-parti-
tioning of sets without restrictions with fixed centers and with their placing are
obtained. In the latter case, the optimal solution of the multiplex partition-
ing problem contains unknown parameters that are obtained in the process of
solving the finite-dimensional nonsmooth function minimization. The results
of computational experiments are presented. The considered mathematical
models can be attributed to the so-called minisum problems of partitioning-
placement in terms of a quality criterion of multiplex-partitioning by analogy
with the objectives of location-allocation problems of the graph theory [11,22].

We can consider a different form of the functional of multiplex-partitioning
problem, for example:

L
13 ({Qal, o Qa,;}) = Z max(c(x, 7;)/w; + a;)p(x)dz.
1€0]

I

In this case, the multiplex-partitioning problem is not linear and refers to
the so-called minimax problems of partitioning-placement [11,22]. The devel-
opment and substantiation of methods of solving these problems is one of the
directions for further research in the theory of multiplex-partitioning of sets.
We only note that even with this criterion the problems of optimal multiplex-
partitioning of sets include as a particular case the continuous OSP problems
studied in details in [14]. It is interesting to compare the solutions of the prob-
lems of optimal multiplex-partitioning of sets with different quality critera.

It can be assumed that while solving the problem with placement of centers
™ = (1,75, ., 7v) € QY the functional Fy ({le,...,QaL}> will provide
such their optimal location,that will be the solution of the optimal multiple
covering of set Q@ C E,, by circles with these centers [23].
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TABL. 1. The optimal solutions of problems Al-k and A2-k

Centers

number
N

The partition of the k-th order of the set Q

With fixed coordi-
nates of the center

With the optimal location of centers in the set 2

k=2

k=3

11

12

15
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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REGULARIZATION OF ILL-POSED PROBLEMS
IN HILBERT SPACE BY MEANS OF THE IMPLICIT
ITERATION PROCESS

O.V.MATYSIK

PE3tOME. B poboti noBemena 36iKHICTH METOLY 3 arlOCTEPIOPHUM BUOOPOM
qucsa itepariit y BuxigHiil HOpMi rigsbepToBOro mpocTopy B pasi caMmocmpsi-
2KEHOI'0 OIlePaTopa, B IPUILYHIEHH], 10 MOXUOKKA BHOCATHCS Y IPABY YaCTUHY
piBusiHHsT. OTPUMAHO OINHKY TTOXUOKW METOMY 1 OIHKY JIJIsi allOCTEPIOPHOTO
MomeHTy 3ynuHKr. OTpuMaHi pe3yapTaTi MOXKYTh OyTH BUKOPHCTAHI B TeOpe-
TUYHUX JOCJILIZKEHHAX IPU PO3B’sI3yBaHHI JIHINHUX OIepaTOPHUX PIBHAHD, a
TaKOXK IIPU BUPIINIEHH] IPUKJIATHAX HEKOPEKTHUX 33Ja¢, fKi 3yCTPidaoThbCcd
B OMHAMIN i KiHeTwIl, MaTeMaTHIHI# ekoHOMimi, reodi3uri, crekTpockormii,
crCTeMax IIOBHOI aBTOMATHUYHOI OOpOOKM Ta iHTepIperariil eKCIIepUMEHTIB,
JIarHOCTHUIN TIJIA3MHU, CeMCMOJIOTIT, MeIUITHIHI.

ABSTRACT. The article substantiates the convergence of the method with a
posteriori choice of the number of iterations in the original norm of Hilbert
space in case of a self-adjoint operator on the assumption of existing errors in
the equation right-hand member. There has been secured error estimate of
the method and the estimate of a posteriori stopping moment. The results ob-
tained can be used in theoretic research while solving linear operator equations
as well as in solving applied incorrect problems which occur in dynamics and
kinetics, mathematical economics, geophysics, spectroscopy, systems of full
automatic procession and interpretation of experiments, plasma diagnostics,
seismology, medicine.

1. INTRODUCTION

The article calls attention to the implicit iteration method of solving ill-
posed problems, described by iteration equations of type I in Hilbert space.
The method represents a family of iterative schemes depending on parameter
k.

The comparison of the suggested implicit method with the well-known ex-
plicit iteration method xp415 = @ns + a (ys — Azps), 05 = 0 [1-8] demon-
strates that the degrees of their optimum estimates coincide. The advantage
of explicit methods lies in the fact that explicit methods do not require any
operator inversion. They require only the calculation of the operator value on
progressive approximation. In this sense the explicit method of [1-8] is pre-
ferred to the suggested implicit method. However, the recommended implicit
method has a very important advantage. In the explicit method of [1-8] step

a is constrained from above by the in equation 0 < « which may

< A
4l A]

Key words. Regularization, iteration method, incorrect problem, Hilbert space, self—con-
jugated and non self—conjugated approximately operator.

33



0. V.MATYSIK

actually necessitate a great number of iterations. In the implicit method un-
der consideration there are no restraints from above on the iteration parameter
b > 0. It follows from this that the optimum estimate of the implicit method
under consideration can be obtained as early as at the first iteration steps.

2. PROBLEM STATEMENT
One deals with solving the equation

Az =y (1)

with the unbounded linear self-adjoint operator A operating in Hilbert space,
on the assumption that zero belongs to the spectrum of this operator, though,
generally speaking, it is not its characteristic value. According to the suggested
hypotheses the problem of solving the equation (1) is incorrect. If the solution of
the equation (1) really exists, then a new implicit iteration method is proposed
for its finding:

(A% + B) Tyt = Bap + A% Yy 20 =0,k € N, (2)

where F is a unit operator, while B is a bounded auxiliary self-adjoint operator
which is chosen for enhancing conditionality. Let’s take operator B = bE, b > 0
as B. Usually the right-hand member of the equation is known with a certain
accuracy 9, i.e. we know ys, for which ||y — ys|| < d. That is why instead of
(2) it is necessary to consider the approximation

<A2k + B) Tn1,6 = Brps + Azk*ly(;, z9s =0,k € N. (3)

In what follows, the convergence of the method is understood as the state-
ment that approximations (3) fit arbitrarily close the exact solution of the
operator equation in case of the suitable choice of n and sufficiently small . In
other words, method (3) is convergent if

I ('f - ):o.
lim (inf [l — zp6]]

If b > 0, the convergence for method (3) is proved in case of an accurate
and approximate right-hand member of the equation, and on the assumption
that the accurate solution of the equation is sourcewise representable, that is
x = A%z, 5 > 0, there has been obtained a priori error estimate

bs \ * n\ 3%
_ <z — — < | = 2]4:(7) 0,
o = nl < o = all + o — anall < (5= )+ 26 (5

n > 1 [9]. This error estimate has been optimized:

s(1—2k)
___Ss 1 2s
o=l e < 1+ 28) () 77 27 R s e 5
and a priori stopping moment has been found

2(s+k)
__2s (S8 2sF1 2k 2k
Nopt = 27 2s+1 z b”ZH25+15 2s+1 .

It is evident that the optimum estimate does not depend on iteration param-
eter b, but ngy does depend on b. Consequently, for reducing the calculating
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procedure one should take b satisfying the condition b > 0 and proceed from
the assumption that n., = 1. For that purpose it is enough to choose

2(s+k)
28  /8\ T 2541 _ 2k 2k
bopt — 22s+1 % HZH 2s+1 ) 25+1 |

The article [10] proves that provided b > 0, the iteration method (3) con-
verges in the energy norm of Hilbert space ||z]4 = /(Ax, x), when one chooses
the number of iterations n from the condition X/né — 0 at n — oo, § — 0.
Without knowing the sourcewise representability of the exact solution, it is in
the energy norm that there has been found a priori stopping moment 714, =

b2~ T |z||?*6=2* and the conditions when the convergence in the en-
ergy norm results in the convergence in the original norm of Hilbert space H.
In case of non-unique solution of the equation (1) the article [10] also proves
that process (2) comes to the normal solution, i.e. the solution with a minimum
norm.

3. RULE OF STOPPING DUE TO INFINITESIMAL RESIDUAL

When there is no information about the sourcewise representability of the
exact solution, method (3) becomes ineffective, as it is impossible to get the
error estimate and find the a priori stopping epoch in the original norm of
Hilbert space. Nevertheless, one can make method (3) quite effective if one
uses the following rule due to infinitesimal residual [3 — 4]. Here and in what
follows, we shall consider that A is a bounded linear self-adjoint operator.

Let us set the stopping moment level € > 0, € = b1, by > 1 and the moment
m of stopping the iteration process (3) by condition

| A5 = g5l > e, (n < m), [ Az — ysll <. (4)

Let us suppose that at initial approximation zg s the residual is large enough,
that is, larger than stopping level, ie. |[Azos—ys|| > €. In what follows
method (3) with stopping rule (4) is convergent provided

lim (inf |z — xm,(;u) —0
—0 \'m
Let us show the possible application of rule (4) to method (3). Consider the
1 b
collection of functions g,(\) = — |1 > 0. By using the results of

A k)
[9] it is easy to show that at b > 0 for g, (\) the following conditions hold

n\ 1/(2k)
sup gVl <2k (5) T an > 0.M = Al (5)
—M<A<M
sup |1 = Agn(A)| < 1,n >0, (6)
—M<A<M
1 —Agn(A) = 0,n — o0,V € [-M, M], (7)
bS S/k’
sup ‘)\25<1 — Agn(N)| < <2k> Jkn > 5,0 <s < oo. (8)
—M<A<M n
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One finds valid

Lemma 1. Let A be a bounded operator, A = A*. Then for any w € H
(E — Agn(A)w — 0,n — 0.

M
Proof. By using the integral expression of operator A = [ AdE), where
-M
M = ||A|| and E) is the spectral function of operator A, we get

M
(B~ Aga ()w= [ (120,00 dErw =
—-M
M 0
— [a=rg) B+ [ - 2gu(N)dByo =11 + L.
0 —M

Let us break up the first of the integrals obtained into two integrals

€0 M

h= [ a0 dBw + [ (1= 20,0) dEse
0 €0
bTL
Since 1 — A\gn(\) = e < q"(g0) < 1 for all A € [gg, M], we get
M M
/(1 — Agn(N)) dE)\w|| < ¢"(20) /dEAw < q"(g0)|lw]| — 0,n — oo.
€0 €0

On the basis of condition (6) we have

€0 €0
/(1 Age(N) dEswl| < /dEW < Bl — 0, 20— 0,
0 0

because of the properties of spectral function [11]. Similarly to that, I — 0,
n — oo. Consequently, (E — Agn(A))w — 0, n — co. Lemma 2.1 is proved.
There occurs

Lemma 2. Let A be a bounded operator, A = A*. Then for any ¥ € R(A)
there exists correlation n®/* | A% (E — Agn(A))¥|| — 0 at n — o0, 0 < s < 0.

Proof. Since (8) is true, then

/K[| A% (B — Aga(A)|| <n*/F sup A1 - Aga(N)] <
—M<A<M

< ns/k75n_s/k = Vs>
bs

2k
cording to which convergence Bpu — Bu at n — oo for all w € H is realized

s/k
where v5 = > . Let us use Banach-Steingaus theorem [11, p.151], ac-
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only when this convergence occurs in some compact subset in H and ||B,||,
n=1,2,..., are limited by the constant independent from n.
Let us take subset R(A) as a compact one in R(A) = H. We suppose that

1
s1 =5+ 7 Then for every ¥ = Aw € R(A) we have

n/¥ || A% (B — Aga(A))9]| = n/* [| 4P HH(E — Aga(A))w =

S S —(s1—s) _
= n*/F|| AP E — Agn(A)w|| < vsin™ * |Jwl| = 7s [w]| n ) — 0,

n — 00, as s1 < co. Lemma 2.2 is proved.
There is validity in

Lemma 3. Let A be a bounded operator, A = A*. Provided for some sequence

n, <M = const and Yy € R(A) at p — oo we get wy = A (E — Agy, (A)) Jo —
0, then ¥, = (E — Agn,(A)) g — 0.

Proof. Due to (6) sequence ¥, is bounded ||9,|| < 1,p € N. That is why out of
this sequence in Hilbert space we can extract a weakly convergent subsequence
Up— — ¥, (p € N' C N), then AY,— — AV, (p e N').

But by the data w, = AY, — 0,p — o0, consequently, AY = 0. Since zero is
not the characteristic value of operator A, then ¢ = 0. Hence,

||"9p”2 = (ﬁpy (E - Agnp(A)) 790) = (ﬁpaﬁO) - (ﬁpyAgnp(A)ﬁo) =
= (ﬁpvﬁO) - (Aﬁpygnp(A)ﬁO) =

= (ﬂpa 190) - (wpagnp (A)"g(]) - (197190) = Oa (p € N,) )
since ¥ = 0,w, — 0,p — oo and by the data (5)

np\ 1/(2k) 7\ 1/(2k)
Jow, ()] < 26 (2) " < <b>

Thus, every weakly convergent subsequence of the bounded sequence 1, men-
tioned above tends to zero according to the norm. Consequently, the whole
sequence ¥, — 0,p — oco. Lemma 2.3 is proved.

If A is a bounded non self-adjoint operator, lemma 2.3 which is analogous to
lemma 4 proves its validity.

Lemma 4. Let A be a bounded non self-adjoint operator. If for some sequence
n, <N = const and Yy € R(A) at p — oo we have

wp = A*A(E — A*Ag,, (A*A)) 99 — 0,
then ¥, = (E — A*Agy, (A*A)) 99 — 0.

For proving lemma 2.4 it is necessary to go over to operator A = A*A and use
lemma 2.3.
Let us use the proved lemmas for proving the following theorem.

Theorem 1. Let A be a bounded operator, A = A*, and let the stopping moment
m = m(8) in method (3) be chosen according to rule (4). Then xp 55 — T at
d — 0.
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Proof. In [9] we find that , 5 = A~ [E — (CB)"] ys, where
C = (A% 4 B)A
That is why
Tps—x=A[E—(CB)"ys —x =
= AT E—(CB)"] (y5 — y) ATHE - (CB)"y - ATy =
= A E - (CB)"(ys —y) — (CB)"z =
= gn(A)(ys —y) — (E — Agn(A))z,
consequently,
Awns =y = Arns — Av = —A(E — Agn(A))x + Agn(A)(Ys — y)-

Let us consider

(9)

Arps —ys = —A(E — Agn(A))z + (y — ys) + Agn(ys —y) =

10
= —A(E = Aga(A))z — (E — Aga(A)) s — 0) 1)
On the strength of lemmas 2.1 and 2.2 we have
I(E' = Agn(A))z| — 0,7 — oo, (11)
on = n'/CR) || A(E — Agn(A))z| — 0,n — . (12)
What is more, it follows from (5) and (6) that
1/(2k)
—)| <
lon(A)(ws —wll < 2k (3) 6, (13)
1B = Agn(A)] < 1. (14)
Let us use stopping rule (4). Then
| Az, 5 — ys|| < b16, by > 1
and from (10) and (14) we get
IACE — Agm(A))z|| < [|Azm,s — ysll + [I(E — Agm(A))(ys — y)Il < (15)

< (b1 +1)6.
For any n < m ||Az, s — ys|| > ¢, that is why
[ACE — Agn(A))z| = [[Azn,s — ys|| = [(E = Agn(A))(y — ys)|| = (b1 — 1) 6.
Thus, for Vn <m
IA(E — Agn(A))z| = (b1 — 1) 0. (16)
From (12) and (16) at n = m — 1 we have

Om—
m - HA(E B Agm—l(A))xH > (bl —1)4

or (m—1)Y/hs < % — 0,0 — 0 (because from (12) o,, — 0, m — 00). If
in this case m — oo at § — 0, then using (9), we get
[2m.s =zl < (B = Agm(A)) zl| + llgm(A)(ys — y)|| <
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1/(2k)
< |[(B — Agm(A)) z|| + 2k (%) §—0
at m — 00,0 — 0, since from (11)
(E — Agm(A))z|]| — 0, m — oo.

Provided for some 6 — 0 the sequence m(d,) turns out to be bounded,
Tp(5,),6n — T,0n — 0 is relevant in this case as well. Actually, from (15) we
have

|A (B — Agps,)(A)) x| < (b1 +1) 6, — 0,8, — 0.

Hence, according to lemma 2.3 we get that

(E — Agp(s,)(A)) © — 0,0, — 0.

As a result

m(5,) 1/(2k)
[ m(@n)80 =l < [[(B = Agm(s, (A) ]| + 2k { — 8 — 0,8, — 0.

This proves theorem 2.5.

4. ERROR ESTIMATE
We have

Theorem 2. Suppose the conditions of theorem 2.5 are fulfilled, operator A is
positive and x = A**z,5 > 0. Then the following estimates hold

(25+ 1)b [( El )5}

<1
mE T -1

2s 1
[, — || < [(br +1) 6]+ || 2] 257 +

2
ok @s+ )b [ |lz] 1#5
+yeEn {1 LT [(bl —1)s

1
o) > (17)
} 5
Proof. Since x = A%z, then
HA(E — Agm—1(A))z| = [A*THE - Agm—1(A))z| =

Tzt (25 +1)b ] 2
A db|| < [T
(A2k 4 b) 4k(m — 1)

By using (16 we get

(2s+1)b } H .

6 =09% |

Hence we have

m<1+

(2s+1b [l ]
4k (by — 1)d ’
With the help of moment inequality let us estimate

I(E — Agm(A))z]| = [|A*(E — Agm(A))z|| <
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2s
< [|AZFL(E — Agn(A))2]| 77 [[(B — Agm(A))2]| 75 <

< JA(E — Agm(A))a|| 757 ||2]| 557 < [(by + 1)5] 2557 ||z 7551
Then
|25 — 2| < [[(E — Agm (A))z]| + [lgm(A) (s — v)|| <

1
< [(by + 1)8] 25T ||2]|Z41 + 2k (%)zk 5 <

-

2k
_2s 1 2k (2s+1)b IEA| 25+1
< [(by + D) 2|75+ s S+ { L

This proves theorem 3.1.
2s
Note 1. The estimate procedure (17) is O (5T+1) and, as it follows from

[3], it is optimal in the class of problems with sourcewise representable solutions.

Note 2. The knowledge of order 2s > 0 of sourcewise representability of
exact solution, which 1s used in theorem 2, is not required in practice as it does
not hold for the rule of stopping due to infinitesimal residual. Theorem 2 states
that the number of iterations m, supporting the optimum error order. Bul even
if the sourcewise representability of the exact solution is missing, stopping due
to residual provides the convergence of the method, as it is shown in theorem 1.

Conclusion. The paper studies some properties of the suggested implicit
iteration method of solving ill-posed problems: it proves the convergence of the
method with the a posteriori choice of the iteration number in the original norm
of Hilbert space. It also presents the obtained error estimate of the method and
the estimate of a posteriori stopping moment.

BIBLIOGRAPHY

1. LavrentievM.M. On some ill-posed problems of mathematical physics /M. M. Lav-
rentiev. — Novosibirsk : SO AS USSR, 1962.—- 92 p. (in Russian).

2. Bakushinski A. B. A general method of regularizing algorithm development for the linear
ill-posed equation in Hilbert space / A.B.Bakushinski //Computational mathematics
and mathematical physics journal. - 1967. - Vol. 7, Ne3. - P.672-677. (in Russian).

3. Vainikko G. M. Iterative procedures in ill-posed problems /G.M. Vainikko, A.Yu. Ve-
retennikov. — Moscow: Nauka, 1986.— 178 p. (in Russian).

4. YemelinI.V. To the theory of ill-posed problems /I.V.Yemelin, M. A.Krasnoselsky
// Reports of the USSSR Academy of Sciences.— 1979.— Vol. 244, Ne4.— P. 805-808. (in
Russian).

5. YemelinI. V. Rule of stopping in the iteration procedures of solving ill-posed problems
/L V.Yemelin, M. A.Krasnoselsky //Automatics and telemechanics.— 1978.— Ne12.—
P.59-63. (in Russian).

6. Denisov A. M. Introduction to the inverse problem theory / A. M. Denisov. - M.: Moscow
State University, 1994. — 207 p. (in Russian).

7. Lavrentiev M. M. Operator theory and ill-posed problems /M. M. Lavrentiev, L. Ya. Sa-
veliev. — Novosibirsk: Institute of mathematics publishing house, 1999.—- 702 p. (in Rus-
sian).

8. Samarsky A. A. Numerical methods of solving inverse problems of mathematical physics
/ A. A.Samarsky, P. N. Vabishchevitch. - M.: Editorial URSS, 2004. - 480 p. (in Russian).

40



REGULARIZATION OF ILL-POSED PROBLEMS IN HILBERT ...

9. Matysik O. V. The implicit iteration method for solving linear equations with an un-
bounded operator / O.V.Matysik //Brest University Vestnik. Series 4. Physics. Mathe-
matics. — 2013.— Ne1.— P. 77-83. (in Russian).

10. Matysik O. V. On the approximate solution of linear equations with an unbounded op-
erator in Hilbert space /O.V.Matysik //Brest University Vestnik. Series 4. Physics.
Mathematics. — 2013.— Ne2.— P.87-92. (in Russian).

11. Lyusternik L. A. Elements of functional analysis /L. A. Lyusternik, V.I. Sobolev.— Mos-
cow: Nauka, 1965.- 520 p. (in Russian).

O.V.MATYSIK,

APPLIED MATHEMATICS AND PROGRAMMING TECHNOLOGIES DEPARTMENT,
BREST STATE UNIVERSITY NAMED AFTER A.S.PUSHKIN,

21 KOSMONAVTOV BOULEVARD, BREST, 224016, BELARUS

Received 08.07.2015

41



2Kypuasn 064uc/oBaabHol 2015 Journal of Computational
Ta MPUKJIQTHOI MATEMATHKA Ne2(119) & Applied Mathematics

UDC 519.6

GENERALIZATION OF THE KHOVANSKII'S METHOD
FOR SOLVING MATRIX POLYNOMIAL EQUATIONS

A.M.NEDASHKOVSKA

PE3IOME. Po3risiHyTO airoput™ po3B’s3yBaHHs ITOTIHOMIAJIbHAX MATPUIHUAX
piBH#IHB. 3anpOIIOHOBaHL peKypeHTHI (hopMysin 06uncIeHHs HAOJIMKEHUX PO3-
B'SI3KIB 17151 piBHAHB cTenens: n. Jlocaimkeno 361K HICTH METOIY JJIst PiBHSIHD
apyroro crenend. HaBemeHo pe3ynpTaTy UnCeIbHUX €KCIIEPHUMEHTIB, IO MiJ-
TBEP/RKYIOTH CIIPABeJINBICTD TEOPETUIHUX BUKJIAIOK.

ABsTrRACT. The article deals with the algorithm for solving the polynomial
matrix equations. Recurrent formulas for calculating approximate solutions of
equations of degree n are proposed. The convergence of the method for equa-
tions of the second degree has been researched and the results of the numerical
experiments that confirm the validity of the calculations are provided.

1. INTRODUCTION
The method reduces itself to the consistent application of a certain matrix
operator to the given vector and occupies a special place among various gen-

eralizations of continued fractions. In a simpler form, this method has been
P

considered by Euler. He used it to calculate the approximate expression xd.
Here z is a known number, p and ¢ are integers.

Fuler’s method has also been considered by Laurie, Kraft and Muller. But
the possibility of practical use of the method hasn’t been considered in these
works. Later Khovanskii applied this method to the approximate value of the
roots of some degrees and to find approximate solutions of polynomial equations
over the field of real numbers.

In particular, the scheme of finding the roots of the equation

2 =u (1)

has been considered in [1].
It has been shown that the solution of equation (1) can be found as the
fraction £2  where valid values P, and Q,, are interconnected by relations

o
<£Z):<61l Z)(ézj) (n=1,2,...). (2)

Here a is a free parameter.

The equation (2) implies that
& _ aPp_1 +uQp-1
Qn Pn—l + aQn—l ’

Key words. Polynomial matrix equations; generalization of the Khovanskii’s method; the
convergence of the method.
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that is b,
P, a—Q:‘:l +u

= . 3

Let limit lim P"‘ll exists and is finite. We denote it as . Than from (3)
n—oo ¥n—
we receive
_ar+u
 z+a
or

22 = u,z = +Va.
So, if the limit lim 5"*11 exists, then it may be equal to /u or to —/u.
n—oo ¥n—

Accordingly, if u < 0, then the process (2) diverges.
A similar scheme has been proposed in [1] for solving the quadratic equation
2?2 +pr+q=0:

(8)-(5 i) oman

From (4) it follows that

Pn1 _
Pn o aanl q (5)
Qn - P + a4+ '
Qn—l p

Let the limit lim SH
n—oo wn—1

(5) we receive

exists and is finite. We denote it as . Then from

axr —q
r=———
rT+a—+p

—p++/p?—4q
5 .

In [1] the conditions for the convergence of the iterative formulas (3) and (5)
have been analysed.

or

2? +pr+q=0m319=

2. THE COMPUTATIONAL SCHEME OF THE METHOD
Let us try to generalize the scheme proposed in [1] and apply it to solving
the matrix equation

Ap X"+ Ap 1 X" 4 Ay o X" 2 4 4 X AX +A=0.  (6)

Here matrices Ag, A1, Ao, ..., Ap_9, Apn_1, Ay, € R™*™ are given coefficients of
equation (6) and X € R™*™ is an unknown solution.

Suppose, that X is a non singular matrix and let us denote Yy = X 1. ...
After the right multiplication of the equation (6) with X ! we receive

An X" b Ay 1 X2 4 Ay o X" ApX + AL+ AYy =0 (T)

Let Y1 = YoX ! = (X_l)2 and let us right multiply the equation (7) with
Xt

Aan—Q + An_lX”_3 + An_QXn_4 + ...+ A+ A1Yg+ AgY: = 0.
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Accordingly, after (n — 2) the right multiplication of the equation (6) with
X! we get

AnX2 4+ A, 1 X4+A, o+ A, 3Yo+...+AY, 5+ A1Y, 4+ AyYn_3=0, (8)

where

Yo= (X)L vi= (X )2 Y= (X2

We introduce the parameter, a non singular matrix L € R™*™ and left
multiply equation (8) with L :

LAX?+ LA, 1 X+ LA, o+...+ LAY, 5+ LAY, 4+ LAY, 3=0.(9)
Obviously the equation (9) is equivalent to
LAX?*+ (LA, 1 +K —K)X + LA, o +...+
+ LAY, 5+ LAY,_4+ LAyY,_3=0.

Here K € R™*™ is a non singular matrix.
And it is evident that

LAX>+ KX =(K — LA, 1) X — LA, o—...— LAY, 4 — LAgY, 3
or
(LA,X + K)X = (K — LAp_1) X — LAy_o— ... — LA Yp_4 — LAY, _s.
Then, assuming det (K — LA,,_1) # 0 we get
X =(LAX +K) ' (K~ LAy 1) X — LAp 5 — ...~

(10)
— LAY, 4 — LAOYn_;»,).
Now let us consider the obvious equality
LA XX '+ KYy = LA, + KY
or
(LA, X + K)Yy = LA, + KY). (11)
Then from (11) we get
Yo = (LAX + K) ' (LA, + KYp). (12)
Applying similar transformations, we receive formulas for Y1, Ys,...,Y,_3 cal-
culation:
Vi = (LAX + K) ' (LA,Yy + KY3) ;
Yy = (LAX + K) ' (LAY, + KY3) ; 13)

Yo 3= (LAX + K) ' (LAY, o+ KY,_3).
Then, on the basis of the formulas (10),(12) and (13) we get an approximate
calculation algorithm for solving the polynomial matrix equation (6):

1. Set the accuracy € > 0;
2. Set the initial approximation, a non singular matrix Xy € R™*"™;
3. Set the counter n = 1;
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4. Calculate
v — <X(o)*1)1 YO (X(o)*l)Q,

YQ(O) _ (X(o)71>3,m7yn(o_)3 _ (X(o)ﬂ)n—z;
5. Calculate
Y™ = (LA, XD 4 K)”
Y™ = (LAX(D 4 K)~
Y™ = (LA, X 4 k)~

1 LA, +KYO(n—l)) :

LAn}/O(n) +KY1(7L*1) ,
LAnY'l(n)_i_KYZ(”*U ,

1

1
: (14)
V%= (LA X0+ ) (LAY kYY)
X(n):(LAnX("flﬂ-K) —1x

X((K— LAy ) XD~ LAy 5= — LAY,

6. Verify the condition HX(”) — X1 H < e. If this condition is not satis-
fied, , set the counter n =n 4+ 1 and go to step 5, or else return X

3. THE CONVERGENCE OF THE METHOD FOR EQUATIONS OF THE SECOND
POWER
Let us consider the equation

A X%+ A1 X + Ayg = 0. (15)
Like the equation (6) we left multiply (15) with a non singular diagonal matrix
L=1-E L ecRmm:
LAsX? + (LA + K —K)X + LAy =0
or
(LAsX + LA, + K) X = KX — LA. (16)
Here K = k- E, K € R™*™ is non singular diagonal matrix.
Assuming that det (LA2X + LA + K) # 0 from (16) we get
X = (LAX + LA, + K) ' (KX — LA)
or as a recurrent formula

XM — (LA2X<”—1> L LA+ K>_1 (KX(”_” — LAO) (n=1,2,...). (17)

Let A and B be real, square m X m matrix with det B # 0. Further mul-
tiplication operation B~'A will be written in the form of a matrix fraction
A

Inasmuch
KX — LA kX — 1Ay kX — 1Ay B

X = = = =
LAX + LA+ K 1A X +1A1+kE  [X +1A7T A + kA
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—pAo X ATA A - (AT A+ AT+ pA)
X+ Ay A+ Ayt X+ Ay Ay + kAt ’
then

v _p_ AT AL+ EAT 4 LA, 8
X+ Ay A + AT

Let P= Ay Ay + %Agl and Q = L Ag. Then (18) can be written as

P+Q
X=F-—
X+ P
or as an infinite matrix continued fraction
P
X—E— +QP+Q . (19)
P+ E— P+E—..

The matrix continued fraction (18) also can be presented in a compact Prynh-
sheym’s form

P+Q P+Q P+Q
\P+E |P+E |P+E

Let us consider the continued fraction with real elements. It is evident that

X=E- (20)

aq

as| as| an| _
o +|b2+\b ++\b +...=

as

—|1+|b2+|b+ A+l (21)

a ’ a3 ‘ an

a1
_h byby bp—1bn

bob —
= R TR

Suppose that the matrix (P + E) is non singular and in (20) we perform
transformations similar to (21):

X — F— P+Q|  P+Q|  P+Q| _ P+Q|
[P+E ~ [P¥E ~ [P+E ~ " [P¥E
_p_ PHR)UPHQ)| (B H(PHQ)|
N _ P+Q| ” P1Q) e
TPrE T T PrE T (22)

_p_ PEIPQ)  (P+E)EP4Q)|

B |E |E

(P+E)~2(P+Q)| (P+E)~2(P+Q)|

5 2

In [2] Vorpitskyi’s sufficient convergence sign has been generalized. It can be
used to analyse the convergence of matrix continued fractions of the form (22):

Theorem 1. Matriz branch continued fraction

i Akl’ + i Ak1k2 + Z Akle kl
|E |E

k1=1 ko=1 k1=1

is absolutely convergent if the condition

1 .
| Ak kg ;|| < R(z:1,2,3,...;ki: 1,2,...,n)
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18 true.

Let us apply Theorem 1 to the continued fraction (22). It is obvious that
the branched continued fraction (22) will be convergent, if the condition

[P+ B) 2P+ < 23)

is satisfied.
Substituting the values of P and () in the formula (23) we get sufficient
condition for the convergence of the matrix continued fraction (22):

k - Ak Al
<A21A1 + 7A;l + E) <4A21A1 + A7+ kA0>

<1.
I =

4. COMPUTATIONAL EXPERIMENTS
To test the effectiveness of the practical application of recurrent formula
(14), a series of numerical experiments has been conducted in the FreeMat
environment.
Ezample 1. Let us consider the polynomial matrix equation

A2X2 + A1 X + Ay =0, (24)
with
1 00 1 2 3 —-13 —-13 —-14
Ay = 01 0 |,A = 2 3 4 |, A= —16 —18 -—18
0 0 1 3 4 5 —20 —21 -23

Put I =1,k =1 and initial value

Xo =

S O =
O = O
= o O

then using the recurrent formula (17) we obtain the following results

TaBL. 1. Example 1

€ Number of Approximate solution, X, Norm of residual
iterations, n

—8.9203 —-9.9203 —9.9203
0.1 15 —0.5083 0.4917 —0.5083 0.0848
8.9038  8.9038  9.9038
—-8.9079 —-9.9079 —-9.9079
0.01 19 —0.5065 0.4935 —0.5065 0.0056
8.8948  8.8948  9.8948
—8.9069 —9.9069 —9.9069
0.001 22 —0.5064 0.4936 —0.5064 0.0007
8.8941  8.8941  9.8941
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These results show convergence of the iterative process (17) to the solution
of equation (24),

—8.9070 —9.9070 —-9.9070
X =1 —0.5064 0.4936 —0.5064
8.8942  8.8942  9.8942

with a decrease of ¢.
Ezample 2. Now let us consider the polynomial matrix equation

A X2+ A1 X + Ag =0, (25)
with coefficients
1 000 -1 0 2 1
0100 0 10 2
A= go10|M= 0 04 1 |

00 0 1 0 00 =5

-8 -8 —10 -9
Ay = -9 —11 -9 -—11

-11 —-11 -16 -—-12

Let [ =1,k =1 and initial value

Xo =

O = OO
o o O

10
0 1
0 0
0 0
and we use the recurrent formula (17). We get the results from Table 2.

TABL. 2. Example 2

€ Number of Approximate solution, X, Norm of
iterations, n residual
—8.3232 —9.3232 -9.3232 —9.3232
5.7750 6.7750 5.7750 5.7750
0.1 12 2.4210 2.4210 3.4210 2.4210 0.0610
—0.2323 —0.2323 —-0.2323 0.7677
—8.3335 —9.3335 —9.3335 —9.3335
5.7775 6.7775 9.7775 D.7775
0.01 15 2.4216 2.4216 3.4216 2.4216 0.0070
—0.2288 —0.2288 —0.2288 0.7712
—8.3323 —9.3323 -—-9.3323 —-9.3323
5.7773 6.7773 5.7773 5.7773
0.001 18 2.4216 2.4216 3.4216 2.4216 0.0008

—0.2293 —-0.2293 —-0.2293 0.7707
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These results show convergence of the iterative process (17) to the solution
of equation (25),

—8.3325 —9.3325 —-9.3325 —9.3325
90773 6.7773 57773 5.T773
24216 24216  3.4216  2.4216
—-0.2292 —-0.2292 -0.2292 0.7708

X:

with a decrease of ¢.

5. CONCLUSIONS

The article deals with the modification of the method that was proposed by
A.N. Khovanskii [1] for solving polynomial equations defined over the set of
real numbers. Obtained computational scheme allows us to construct approx-
imate solutions of the equation (6), that are considered over the ring of non
commutative matrices. Sufficient conditions for the convergence of the iterative
process for the equation of the second degree and software implementation of
the method were presented. A number of numerical experiments confirm the
applicability of the proposed scheme were conducted.
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SPECIAL ESTIMATORS FOR CORRECTING
SOME SOLUTIONS OF INTEGRAL EQUATIONS

B.OSTUDIN, YA.GARASYM, A.BESHLEY

PE3IOME. Y po060Ti IpoBeeHO aHAJI3 9UCeIbHOr0 PO3B’I3yBAHHS IBOBUMID-
HOT'O IHTerpaJIbHOTO PIBHAHHS TEOPil MOTEHIialy Ha HE3AMKHEHIX [MOBEPXHIX.
Ha mpukiaal anaiizy KOHKpeTHOI MOIeIbHOI 33/1a9i TTOKa3aHO, 9K, BPAXOBYIO-
au crrerndiky MOYATKOBUX JIAHUX, BUPIMIATH MPOOIeMy CIIeriaabHOTO 300pa-
KEHHsl CaMOr'0 IHTerpaJibHOrO PiBHsAHHHA. Take 300parKeHHsI J03BOJISE IIPU
mo0y10Bi BiAMOBIAHOI HAOIMKEHOI CXEeMU CYTTEBO CIPOCTUTH BUKODWCTAHHS
anpiopuol indopmaril mpo XxapakTep MOBEIIHKHA MIYKAHOro po3B’a3Ky. Ocran-
HE BLOIrpa€ BaXKJIMBY POJIb y IPOIEC] peastiziariil Pi3HUX MIPOIELYP yTOIHEHHS
OTPMMYBAaHUX HAOJIMKEHNX DPO3B’SI3KIB HA OCHOBI CIEI[aJbHO ITOOYIOBAHIX
OIiHIOBa4iB. Y POOOTI TIPE/ICTABIEH] PE3Y/IbTATH YUCETHHUX €KCIIEPUMEHTIB.
ABsSTRACT. The numerical solution of two-dimensional integral equation on
unclosed surfaces is analyzed in present paper. Such equations with weak
singularities in the kernels are considered in potential theory. General prob-
lem of integral equation solving, and besides that special representation of
considered equation, are exemplified by the model task, taking into account
the specificity of initial date. In the process of appropriate numerical scheme
constructing such a representation gives the possibility to essentially simplify
the use of a priori information on desired solution. The last is important for
objectifying various correction procedures of obtained results on the basis of
special estimators. The results of numerical experiments are presented.

1. INTRODUCTION
In previous paper [2] with a similar research object various aspects of numer-
ical schemes construction for solving integral equations of the first kind were
considered. In this connection we had to deal with two-dimensional equations
in the form as

(Ao)(M) = //O‘(P)|M — P|7'dSp =U(M), M € S, (1)
S

where, in general case, S is an open Lipschitz surface; M and P are the points of
Euclidean space R3. In present article, by solving one typical model problem, we
analyze the proposed schemes adaptive possibilities for maximal taking account
of desired solutions specificity in order to receive the results with preassigned
accuracy. The equations of type (1) have been used in mathematical modelling
of some boundary value problems in electron optics [3]. Ordinary generalization
of (1) is an assumption that S is formed by the aggregate of m surfaces, so

Key words. Two-dimensional integral equation, weak singularity, rational representation,
numerical scheme construction, correction of obtained results, special estimators.
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that S := (J;~; S;. In this case, we interpret o(P) as a desired total charge
distribution density on S, that is o(P) := {o;(P), P € S;}";.

It is possible to research the solvability of integral equation (1) in various
functional spaces. However, it should be taken into account the specificity of
investigated physical phenomenon. In this connection, the modelling of elec-
trostatic field in the substantially spatial setting foresees the account of desired
charge distribution density o(P) behavior near the contour of unclosed surface
S. As to right hand side of (1), we consider that U(M), M € S, is the given
boundary value of potential on an electrode which is actually simulated by a
surface S (U(M) = const). At last, the solvability of (1) can be expressed by
the following inequalities |4, 6]:

M1l o2y < 140l m1r2gs) < mallolyo1va ) (0 < ma < ma),

where H'/2(S) is a trace space, H&)IQ(S) is dual space with respect to Héé2(5).
Note that S is an open surface treated as a component of some close surface
Y. In addition, HééQ(S) is different from H'/2(S), and in the case of smooth
S, relevant norm may be defined as

—-1/2

2 2 2
HUHH&@(S) = ||UHH1/2(S) +lp ‘7”L2(5)7

where p(M) is the distance from M € S to the smooth edge 05S.

2. THE NUMERICAL SCHEME FOR MODEL PROBLEM TESTING

Let us consider the calculation problem of plane-parallel condenser electro-
static field. From mathematical model point of view this condenser can be rep-
resented as a surface S, which is an aggregate of two parallel identical plates
S1 and S3 situated symmetrically with respect to a coordinate plane XY, so
that S := 51 |J S2. The distance between them equals 2h. Suppose that U; and
U, are the given potential values on S and Sa, respectively. The electrostatic
treatment of problem (1) means that U; and Uy are arbitrary constant. As we
mentioned in [2], this problem is not trivial, and the results of calculation are
especially sensitive with respect to variation of output data.

With a view to analyze integral equation (1) let us use such \S; representation

Sii={(@.,2)7 €R|@y) € [FL1% 2= (-1 1=T2 h>0}. (2)
According to (2), we can represent S in the form of congruent components

combination:
2 4
s=U(U su)-

=1 k=1
Taking into account subdivision of S and S, integral equation (1), in its turn,
can be formally represented as

2
>3/ ‘”k<P>|P—M\‘1dSp=U<M>={Ul’ ves

4
I=1 k=17 Uz, M€ S,
lk
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where oy (P) := oy (x,y) is the restriction of o(P) onto Sy;

M := (z0,y0,20 = £h) "5 (z,9), (z0,%0) € [-1,1]%.

Then, applying in (3) some changes of variables, we realize the conversion
from integration over S to integration over its congruent constituent Si;. As
a result, we get the system of eight linear integral equations with respect to
unknown density o;(z,y)(j = 1,8), according to the chosen group of surface S
Symmetry:

Z//O'j 2, Y)Glizjl+1(2, Y5 20, Yo; h)dxdy = U(M;), (i=1,8). (4)

JlAl

-
Here, Ay == [0,1]%; M; := ((—1)7"_1$0, (—1)5_1y0,(—1)p_1h) € Spg; in this
case i :=4(p—1)+2(r—1)+s, and ¢ := 2(r — 1) + s with p,r,s = 1,2; M;
are the points of collocation; (xg,yo) € A1. The point of integration is

Pi= ((—1)"*1@«, (—1)m1y, (—1)Hh)T € Sik;

in this case, j :=4(l—1)+2(n—1)+m, and k := 2(n—1)+m with [,n,m = 1,2;
and finally
Gliejj+1 (2, y; 0, yos h) == | P — M|~
It is easy to see that the system of integral equations (4) may be written in
the form of matrix operator equation
Az =T, (5)
where
7= (01(2,9), 02(2,9), ..., os(2,9)) T,
U = (U(M1),U(Mz),...,U(Ms))";
and A := (Aij)?,j:p in this case, A;; is an integral operator that acts by the
rule

AZJU] // Uj z,y G|z ]\Jrl('r Y; $0,y0,h)d$dy

Since an initial integral equatlon has an Abelian eighth order group of sym-
metry [7], then, we can split (5) into eight independent integral equations

A7 =T, where A == F-A-F1,5 := F, U := FU. Here, I := (Fij)§,j=1

is known matrix of Fourier transform [2,7]; A’ := (A})%_,, in this case,

Ajoi( // z,y)Ri(z, y; 20, Yo; h)dzdy,

Ri(xa Y50, Yo, h) = Z FijG|i—j\+1(x7 Y520, Yo, h)a
j=1

8
Z 103 (T, y), U'(M;) = ZEjU(x,y).
j=1
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Solving every of independent integral equations, as the final result, it is possible
to reproduce o;(z,y).

Then, without loss of generality let us consider one special case of integral
equation (5) presentation. Namely, taking into account the antisymmetry of
boundary values of potentials on condenser plates (U := U; = —Us), and in
accordance with this similar properties of (5) solutions, it is possible to represent
(5) in the form as

(AU $an0 // € y l‘ » Y5 x07y0ah)dxdy = U(x()?yo)v
(6)

(o0, %0) € (0,1)?,

where
2

i{th? [~ 1)+

=1 p=1 k=1

(1P 4 (=) ]

(]~
—
|
[
~
—

R(x,y; 70,903 h) =

NI

+ [y + (-]}

It is easy see that integral equation (6) is an equation with weak singularity
in the kernel. In addition, (6) has mentioned singularity only in one item of
the sum R(az,y;xo,yg; h), where k =1 =1, p = 2. Moreover, in the process of
numerical scheme constructing it is necessary to take into consideration special
behavior of desired solution only on Sy;.

It is known [5] that desired solution o(z,y) has singularities in the neighbor-
hood of S11 corner point and at the points which border on a straight edge of
S11. In the first case, the charge singularity is proportional to p~%7034 and,
in the second case, the charge singularity is proportional to p~%%, where p
is the distance from the vertex and straight edge of Si1, respectively. These
singularities can be expressed by the following weight function

(1—a)+(1—y)
[(1—a)(1—y)]"?

This function is applied for mentioned singularities isolation in the notation
of charge distribution density o(z,y). But such accounting of desired solution
characteristics is rather complicated from practical point of view. So, we apply
the different method, based on progressive analysis and correction of obtained
results.

Using the collocation method under the condition of piecewise-constant ap-
proximation of desired density o(x,y), two-dimensional integral equation (6)
was reduced to the following system of linear algebraic equations

Ny 2
Z% /

7j=11i=1

(y = 0,2966).

- Y+

N,L J
/ ZE >y Ys $0>90>h)d33dl/ - U(‘T"an())
_T

?JJ
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where H, := N;', H,:= N, (N,, N, eN);

Ny

Cwe{Zei-n)"

xoe{%(%—l)} :

i=1
0i; are approximate values of desired density o(z,y) at the points of collocation
(20, y0). In this case, we used uniform subdivision of S1; onto elements, that is
H, = Hy, and N; = N,,.

3. A POSTERIORI ERROR ESTIMATION OF (6) NUMERICAL
SOLUTION UNDER THE CONDITION OF Al IRREGULAR
PARTITION ONTO ELEMENTS

In numerical solving of integral equation (6) the problem of obtained results
error estimation is actual from practical point of view. Taking into account
a priori information of desired density special behavior, the method based on
experience proved to be the most acceptable. Let us note that stable results ob-
taining is also important problem independently of S1; uniform or nonuniform
partition onto elements.

Let 0.(P) be a numerical solution of integral equation (6) that belongs to the
chosen approximation space. It generates approximate potential value at arbi-
trary point @ between charged condenser electrodes simulated by appropriate
surfaces:

U:(Q) = (Ao:)(Q).

In addition, general error function ey of integral equation (6) approximate
solution may be represented as [1]

ey = Ao — Ao, = A(o — o.) = Aey,
where e, is a solution of such integral equation
(Aes)(M) =U — (Ao-)(M), M € Sm. (7)

Integral equation (6) solution has irregular behavior near the contour of
unclosed surface S (essentially in the neighborhood of its corner points) [5].
Therefore, the reproduction of error function ey, specified the level of boundary
values satisfaction, is established onto elements D¢. These elements appear in
the process of surface S sequential nonuniform partition (in the present case,
its congruent component Sii). On D€ the function ey may reach maximum
values. Moreover, on D° the function e, is approximately equal to its value at
checking point T" (see fig.1, fig.2):

U—- (AJE)(T)

/ T — P|~'dSp
De

eq(T)
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Fig. 1. Nonuniform partition
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Fig. 2. Nonuniform partition in progress
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Fig. 3. Checking elements D;

Selecting the furthest strategies of obtained results correction, it is possible
to use various methodologies. Let us consider the method, different from pro-
posed in the paper [2], which is sufficiently effective for two-dimensional integral
equations numerical solution. The main idea of this strategy consists of the fol-
lowing. In the process of domain A nonuniform subdivision let us consider not
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only one special element D° but some set of elements where the desired function
errors are inadmissible. Taking into account the symmetry of obtained results
it is advisable to select such elements not far from the part of plate contour
(for example, on the last horizontal layer). Let Dy, Ds,..., Dy (N € N) be
above mentioned elements (see fig.3). Then, if we use piece-wise approxima-
tion of e, and equation (7), it is possible to find solution error on every element
Di, (Z = 1, N)

U — (Ao.)(T3)

/ T, — P|~'dSp
De

Let us denote by ey, the solution error e, on the element Dy (k =1, N), that
is e, = e, (T}). Then, it needs to calculate the value &:

er(Ti) =

At that time for the completeness of domain /A; subdivision process the
following condition must be fulfilled

lesll 1009 < TOL Ver, & = T,W. (8)

§

If the condition (8) is fulfilled only for certain elements Dy and appropriate
errors eg, then it is needed later on to eliminate such elements out of previous
defined checking. Let us note that the disposition of elements Dy does not
strictly allocate, so its sampling must be realized in various ways. In this
connection, it is always necessary to control the obtained results of calculation.

4. THE ANALYSIS OF NUMERICAL EXPERIMENTS
Ezxample 1. Hlustration of calculation stability and analysis of results relia-
bility Using piece-wise approximation of o(P) (charge distribution density) for
N, = N, = 40 (the number of collocation points is 1600) we obtained the
following results:

Axis Z

Axis Y 0 0 Axis X

Fig. 4. Charge distribution density. N, = N, = 40
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Let us note, that uniform subdivision of S1; can be selected so that there
exists a point of collocation which will be present at the next division area. For
example, the following divisions of N, = N, = 6, N, = N, = 18 contain the
collocation point with coordinates (0.75 0.75). Justification of approximation
schemes stability and hence the approximate solution results of integral equa-
tion solving are shown in the Tabl. 1. Approximative values of density o(x,y) at
the checking points are not much different from the values which were obtained
in the previous step of division.

Tabl. 1. Charge distribution density. Hlustration of calculation stability

. . N, = N,

Point of collocation (x,y) g T3 L 51
(0.250,0.250) 0.0531427 | 0.0519844 | 0.0515285
(0.250,0.917) 0.2005168 | 0.1459617 | 0.1482432
(0.917,0.250) 0.2005168 | 0.1459617 | 0.1482432
(0.917,0.917) 0.3955893 | 0.2588432 | 0.2699086

Absolute error ey of reproduced boundary values for N, = N, = 40 is

represented in the following figure:

0.014
0.012
0.01

N 0-008

s

% 0.006
0.004

0.002

Axis Y

Axis X

Fig. 5. Absolute error of boundary values. N, = N, = 40

Example 2. Nlustration of nonuniform partition approach. The comparison
between approaches Nonuniform partition is applied for better approximation
of charge distribution density function and decreasing error function, especially
near the contour of unclosed surface. Two parameters are important for this
approach: the first one is initial partition of the surface, and the second is the
number or steps of nonuniform partition; these parameters affect to the results
of calculation. Absolute error of reprodused boundary values is shown in the
Fig.6, in the case when initial partition is N; = N, = 2. The number of
iterations (steps) for nonuniform partition is 9.

The results in this figure reflect the impact of initial partition parameter
to the error function: error was reduced near the contour of surface but was
not decreased onto others elements. So, next figure displays the results of
calculation with different initial partition.
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“-.\,'
NI

”/‘“\-\::“,////'¢/ X
= '('}\.A

O

Fig. 6. Absolute error of reproduced boundary values. Nonuniform partition

Axis Z

Axis Y 0

Fig. 7. Absolute error of boundary values. First partition (/V; = N, = 8)

The Fig. 7 presents an absolute error of boundary values for the first partition
N; = Ny = 8 and the number of iteration for nonuniform division is 6.

The following two tables represent comparing of surface partition approaches
(uniform and nonuniform) and summarize obtained results. The tables contain
values of error function at checking points near the contour and comparison of
these tables concludes that nonuniform partition is more effective for solving

integral equations of such type.

Tabl. 2. Uniform partition

y/x 0.85 0.95 0.995 | 0.9995

0.85 | 0.00303 | 0.00124 | 0.08051 | 0.09443

0.95 0.02228 | 0.10008 | 0.11801
0.995 - - 0.15808 | 0.17186
0.9995 - - - 0.18295

The Tabl. 2 represents N, = N, = 8. The number of collocation points is 64.
In the Tabl. 3 initial partition IV = N, is equal to 2. The number of steps
for nonuniform partition is 4. The number of collocation points is 79.
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Tabl. 3: Nonuniform partition
y/x 0.85 0.95 0.995 0.9995
0.85 | 0.00385 | 0.01239 | 0.04937 | 0.06633

0.95 - 0.02971 | 0.04802 | 0.07266
0.995 - - 0.110306 | 0.13008
0.9995 - - - 0.14557

So, by the example of the concrete model problem solving it is shown how,
taking into account the specificity of initial data, to solve the problem of integral
equation special representation. In the process of appropriate numerical scheme
constructing such a representation gives the possibility to essentially simplify
the use of a priori information on desired solution. The last is important for
objectifying various correction procedures of obtained results on the basis of
special estimators. With the help of proposed estimators the effective solution
of initial integral equation were received.
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ARITHMETICAL COMPLEXITY OF MODIFIED FULLY
DISCRETE PROJECTION METHOD FOR THE PERIODIC
INTEGRAL EQUATIONS

E.V.SEMENOVA

PE3IOME. Posrisgmaerscs 3aa1ua CKOPOUeHHsT 06CATY IH(OPMAIIITHIUX 3aTpaT
pU PO3B’sI3aHHI MEPIOIUIHUX IHTErPATbHUX PIBHAHL 3 MIHIMAJIBHOIO ITOXHO-
K010. [ls mpOro ImpOMOHYETHCH Aesika MOMU(MIKAId MOBHICTIO MUCKPETHOTO
npoekmiitnoro Meroxy. Jlosenemo, mo s mMomumdikariist 36epirae Haiikparry
TOYHICTh YUCETHHOTO METO/Iy B METPHIl COO0EBCHKUX MPOCTOPIB 3 00CATOM
apudmernarnnx aiit N log N 3a mopaakom.

ABsTRACT. The reduction of arithmetical operations for the solving of pe-
riodic integral equations with minimal error bound is considered. For this
some modification of a fully discrete projection method was proposed. It was
proved that such modification guarantees the best possible accuracy of the nu-
merical method in the metric of Sobolev spaces with the order of arithmetical
operations N log N.

1. INTRODUCTION
Periodic integral equations are frequently found in various problems of nat-
ural sciences that can be described by a boundary value problems such as
Laplace or Helmholz equations. To illustrate this, we rewrite Dirichlet problem
for Laplace equation on the simply connected domain 2. So it takes the form

AG(X)=0, XeQ, (1)

G(X) = g(X), X el =09, )

where I" is a smooth boundary of domain 2 and function g is continuous. As
it is well-known (see [8]), the problem (1) has a unique solution under quite
natural condition on I'. Solving (1) by direct method, using the representation

of the function G(X), X € Q in the form of a simple-layer potential, we derive
to a boundary integral equation

Su =g, (3)
oG

where S is a single layer operator with logarithmic kernel and u = o is
a normal derivation on the boundary. Note that by so-called Cauchy data
(G]r, g—g‘r) we can easily find the function G(X) for X € Q. Thus for solving

boundary value problem (1) it is necessary to solve periodic integral equation
of the first kind (3). It is such kind of problem that will be the object of our
investigation. Periodic integral equations are well-known and various aspects
of their solving in the metric of Sobolev spaces were investigated, for example,

Key words. Periodic integral equations, fully discrete projection method, GMRES.
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in [2], [4], |7]. The most widely-used approaches for numerical solving of periodic
integral equations are fully discrete collocation and projection methods that
applied together with selfregularization principle. In the paper we will consider
modification of a fully discrete projection method that was firstly proposed
for solving the integral Symm equation (see Example 1) in [4] and extended
on the class of pseudodifferentional equation in [12]. Moreover we introduce
some additional projection in the method to reduce amount of arithmetical
operations.

2. STATEMENT OF THE PROBLEMS
In the space L2(0,1) we consider the following integral equation

Au(t) = f(t), te]0,1], (4)

where f is 1- periodic function and operator A has the form
q 1
A:}j&”A%Mw:/m@a—@%@@mg@. (5)
p=0 0

Let’s denote by C® = (C°°([0,1]?) the space C™ of smooth I-biperiodic
functions of both variables. Suppose that a, € C*([0,1]?), p=0,..., ¢, and

ag(t,t) # 0,Vt € [0,1]. (6)

Moreover assume that k,(t) is 1 - periodic function with known Fourier co-

efficients l%p(n) by trigonometric basis for each p = 0,...,q. Additionally we
suppose that for some o € R and 8 > 0 the following inequalities

cooln|® < |ko(n)| < coln|®, n € Z/0, (7)
|ko(n) — ko(n —1)| < en®?, nez, (8)
lkp(n)| <en® P, neZ p=1,...,4q, (9)

hold true, where ¢, cg, cgo > 0 and

{1l nezfo
B= 1, n=0

Denote by H* and HM 2, —oco < A\, Ay < oo, Hilbert spaces of 1-periodic
functions and 1-biperiodic functions with the norm

1/2
[ullr, = (Z Inlzhlﬂ(n)F) < 00,

nez

1/2

lalaae = | D KPHP2ak, D | < oo
(k,l)ez?
respectively. Here

1 1 1
u(n):/o e_n(t)u(t)dt, a(k,l):/o /0 e_r(t)e_i(s)a(t, s)dtds
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are Fourier coefficients of functions u(t) and a(t,s) by trigonometric basis
{er}{2° ., where ex(t) = €™ t € [0, 1].

In general case in the space H? = Ly(0, 1) operator A is compact and problem
is unstable. But for considered class of equations (4) with (6)-(9) it is possible
to choose appropriate pair of spaces to regularized problem. As it was shown
in |7, Theorem 6.3.1], operator A under our assumptions creates isomorphism
between H* and H*~® for any A\ € R. That is why if f € H*® the equation
(4) has unique solution u € H*. Let’s consider more precisely the structure of
(4). Following |7, Ch.6|, we rewrite the equation (4) in a such way

q
Au = Du + Z Aju=f, (10)

p=1
where Du = fol ko(t — s)u(s)ds, Ay = A = ao(lt’t) fol k(t — s)(ao(t,s) —
ao(t,t))u(s)ds, A, := A, = % for p=1.q and f := f = ao(J:f,t)' Note

that D € L(H*, H*®) is performing the isomorphism between the spaces H*
and H*~® and operators Ay, € L(HN H=*8) p = 0,..,q are compact on the
pair of spaces H*» and H*~®. Further we will deal with equation (10) instead
of (4).

Thereafter for all A < p there are constants cy,cy > 0, such that for any
v € H* the following inequality

Allvlix < JAv[x-a < Kllvlla (11)

holds true.

Further we assume that exact solution of equation (4) belongs to some
Sobolev spaces, namely u € H* for some > a+1/2 and ||Jul[, < 1. Then due
to conditions (11) we have that f € H*~ and || f|[,—a < ¢}

Note that classical elliptic pseudodifferential equations are included in the
class of equations (4) with conditions (6)- (9) (see for detail [6]). Below we
rewrite the examples of some equations that satisfy the conditions (6)- (9).

Ezample 1. The typical example of equation from the class under consider-
ation is an integral Symm’s equation

1 1
Au(t) ::/0 ko(t — s)u(s)ds —I-/O ai(t, s)u(s)ds = f(t), (12)

ko(t — s) = log |sinm(t — s)], (13)
[y (t)—(s)|
log m, t 7é S
ay(t,s) =
log([y'(t)/n]), t=s
As it is known, the kernel a; (¢, s) of operator A; presents the C°°-smooth and
1-biperiodic function and Fourier coefficients kg have the view

~ o, nE€Z)0
ot ={ 2, "<
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It is evident that conditions (6)-(9) are satisfied for ag(t,s) = ki(t,s) = 1,
a = —1 and any § > 0.
Ezxample 2. The integral equation

1
/0 j2(t) — x(s)*log |z (t) — a(s)lu(s)ds = f(t), te[0,1],

arises for solving biharmonic Dirichlet problems in the bounded domain with
smooth Jordan boundary (see for more detailed information, for example, [1], |7,
Ch. 6]). Rewrite the equation in the form

1 1
/ ko(t — s)ag(t, s)u(s)ds +/ ai(t, s)u(s)ds = f(t),
0 0
where
ap(t,s) = \93(752)——3:(8)|2 for t#s, ao(tt)= |2 (?F,
sin® w(t — s) T
ay(t,s) = |z(t) — az(s)]2logM for t#s, ai(t,t)=0,

|sinm(t — s)]
ko(t) = sin® 7t log | sin 7rt|.
The Fourier coefficients ko are known and have the following view ko(0) =
—% log2 + %,
l%o(jzl) = ilogQ — 1%’
A 1
ko(n) = Al = 1)’

It is easy to see that conditions (7)-(9) satisfied for « = —3,3 = 1. Thus,
the equation under consideration is also included in the investigated class of
problems.

To make more precise the smoothness properties of functions a,, p =0,...,q,
we introduce in consideration the space of Gevre function of Roumieu type
(see [3, p.112]):

G o :{a e 0> Ha||%w2 =

> 14
. Z ‘&(k,l)|262n2(\k\1/n1+|l|1/n1) < 00}7 m, 1 > 0. ( )

k,l=—o0

Note that with ;1 = 1 by (14) it follows that function a(¢,s) has analytic
continuations in both variables into the strip {z : z = t +is,|s| < 2} of
complex plane. Further suppose that a, € Gy, ,,0 =0, ..., ¢q, for some 71 > 1
and 12 > 0. It should be noted that condition (14) doesn’t restrict the class
of equation under consideration but allows to take better into account the
smoothness of kernels a,. At first such assumption for a, was proposed in
the paper [4], which considered particular case of mentioned class of periodic
integral equations, namely Symm integral equation.

In the paper we state the aim to reduce the amount of arithmetical operations
of fully discrete projection method for solving (4) with conditions (7)-(9) and
(14). For that we propose modification of the method that should not influence

In| > 2.
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on the best error accuracy of solution for a priori case of choosing regularization
parameter.

3. AUXILIARY STATEMENTS
For further presentation of our results we will use the following notations.
Let’s introduce n-dimensional subspaces of trigonometric polynomials

In = {UN : uN(t) = Z Ckek(t)}7

keZn
N N

Denote by Py and Pq orthogonal projectors

Pyu(t) = > a(k)ex(t) € T,

k€EZ N

Poya(t,s)= Y a(k,Dep(t)ei(s) € Tn x T,
LkEQN
where pn is some domain on coordinate plane restricted by square
(=N/2,N/2] x (=N/2,N/2]. Also denote by Qn and Qn,n interpolation pro-
jectors, such that Qnu(t) € Ty, Qn.na(t,s) € Ty X Ty and on the uniform
grid it holds true
(QNu)(]N_l):u(]N_1)7 j:1727"'7N7
Qv Nna)GN"INTY) = a(GNTINTY), ji=1,2,... N.
It is well-known (see, for example, |7, Ch.8]), that

N\
o= Pyl < ()l A<uwe s, (16)

_ 1
lu—Qnullx < ex N #ully, 0<A<p, p>g, uweH”, (17)
1
where ¢y, = (%)A_M Vus and 7y, = (1 +23075 ﬁ) 2

Moreover, for any vy € 7Ty according to inverse Bernshtein inequality it
holds

N\*
foxtlo < (3) oxlh A< (18)
4. DISCRETIZATION OF OPERATOR A), p=0,...,q

Note that operator D has simple structure and doesn’t need any additional
discretization. Thus we need to discretize only operators A, for each p =
0,...,q,. This will be done further.

Let’s consider the following domain of coordinate plane
1

M\ 7
DEZ{@M:WWW+UUW<(2>”,hZZQiLi2~} (19)

Note that D7} C D}, for all 1 > 1.
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Assume that the discrete information about kernels a,(t,s) and right hand
side f is given in the knots of uniform grids (%, JMQ) , where j1,72 = 1..M.

Let’s approximate the kernels a, in the following way
ap, v = Ppm Qurarap, (20)

where PDX} is ortoprojector on span of vectors {e;, e;} such that (i,j) € DJ}.
Then the operators Ay )/ can be approximate by

1
Ap vu(t) = /0 kp(t — s)ap nm(t, s)u(s)ds. (21)

where function a, s has the form (20). To find the approximative properties
of operator (21) we state the following auxiliary lemmas.

Lemma 1. Let a € Gy, 5, for m1 > 1, then for VA1, A2 and

M>2 <max{)\1, )\2}771)771
2

it holds true

M A1+A2 _9 M 1/m
o= Pogaloa< (5 ) e faly

Proof. We rewrite the norm of element a — PDX} a in the following way

la=Ppmal}p, < 1Y- D0 akDer(els)I3, x =

|k|>01:(k,1)g DL

=D D KPMUPak 1P =

|k|>01:(k,l)¢ D7}

=Y D EPMIPRalk, D) ey e, = S,

[kI>01:(k,1)¢ Dy

— eE2m(k"+IY™) fyrther it is worth to estimate the norm of Sj

where ef !
depending on values k and [.

At first we consider the case then |k| < &, |I| < &L and (k,1) ¢ D}}. In the

1/n:
view of fact that maxy, o |k3|2>\1|l|2>\2€];l = (%)2(/\1+’\2)6_4771(%) 2

Si= 3 3T MPPeack DPe e, =

k| <2 [1|<2L:(k,1)¢ D}

_ <M>2()\1+/\2) 6747]2(%)1/771
2

we have

lall3, -

Let consider the element S for the case |k| < %, | > % and (k,1) ¢ DT},

then
Si= Y kP> 1Palk, D) Pey e
k<& [l|>2L: (k)¢ DYk
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1
n . . Uit
Since the function 22e~2™*™ has the maximum in the point z; = (ﬂ) ,

72
then for all
M A m
=M < 2771>
2 72
it holds true

2
‘”2)\26—2772\”1/771 < <]\24> 2672772(%)1/”1.

With account of this we have

Sp= Y [ePheme N P, 1)[Pe R, lef, <

|k|<2f 1> (k)¢ DY}
M 200 +2) s (MY )
§<2> e (3 al}

For the third case when |k| > %, I < %, (k,1) ¢ DT, the estimation of S;
can be found similar to the second one, namely we get

Sp= 3 [kPreTmk 3T e agk, e,
k| > 2L o<|l|]<X:(kl)¢D}t
M2y
<(3) el

And in the last case when |k| > & |i| > &L the element S; can be easily
estimated as in the cases above, namely we have

S = Z Z \k:|2>‘1|l\2>‘2€,;l|d(k,l)|2e;l

|k|>2L ji|> 2L
M 2(A1+A2) _4772(M)1/771 9
S 7 € 2 HaHT]l,nQ
for M > (Llax{/\l«b}m n
- n2 .

Summarizing all cases considered above, we arrive to statement of lemma.

Lemma 2. Let a € Gy, p, for m > 1, then for A1, o > 1/2 and

M <9 <max{)\1, )\2}7’]1)”1
2

it holds true

)\14‘/\2 9 (M)l/'ql
la = Ppn @ ala n < a <2> e TP l[alln: o

where c1 =2z + 1; z1 = Zl()‘lv )\2) =T\ + o + YA VAo
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Proof. Due to simple transformation we have
lla = Ppm Qurarallx, a, < [1Ppm(a — Qarara)ll x, + (1= Ppmalla, a,-

For the further estimation we need the previous result, that was obtained in
Lemma 2 [10]. Namely, for A1, A2 > 1/2 it holds true

A1+
_ M\1/m
la — Qar,pral|a re < 21 <2> e=2m(%7) lalln -

Using inequality above and lemma 1 we have

la = PpnQuaralln x, < lla =P allx o, + [1Ppn (Quraa —a)lln a, <

M Y M\ AR oy
21 <> 6_2772(%) n1 HaHﬂ1,n2 + () 6—2772(%) 1

<
2 2

HaHmm =

M A1+A2 B ML/
<a(3) O ol

what was to be proved.
For the further analysis we need following results

Proposition 2. [7, Lemma 6.1.3] Let k(t) be 1 - periodic function such that
k(n)| < con® n € (22)
Then for any A > % it fulfils

< o2 My allvlan—as
A—a

/1 k(t — s)v(t, s)ds
0

where co is some constant and v(t,s) is 1-biperiodic function in Sobolev space
H)\,A—a'

Proposition 3. [7, Lemma 6.1.1] For any A, A2 > %, u,a € HM?2 4t holds
true
”auHM,M < Z2Ha||>\17)\2Hu||>\1,)\27
where 2 = z3(A1, Ag) = 2N 242y 4y
Further we need the following additional bounds. Namely using the propo-

sitions 2, 3 and integral representation of A, it is easy to find that for any
A1 >1/2 and A\g > 1/2

HAPH)\L)\Z < 23”“;0”)\1)\27 (23)

where 23 := 23(A1, A2) = 2MF1yy 20(A1, A2) is some increasing function. Now
we are ready to prove the error of approximation for the operator
A, € L(H* H%) by A, n. The corresponding result is formulated in the
lemma 3.
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Lemma 3. Let A, has the form (5) for all p = 0,...,q and the conditions
(6)-(9) are fulfilled. Moreover we assume that a, € Gy, y,, p = 0..q for m > 1

and ng > 0. Then for all A > max{%, % +a} and M > 2 (Z—; max{A, A\ — a}>771
it holds true

M 2 —a B M 1/711
Ay — Ap mrliar—a < c2llally . <2> e—2m ()

where ¢y = ¢1¢92* " yy_o20.

Proof. Taking into account Lemma 1, the Propositions 2 and 3, we have
1
(A= Apan)iaa = I [ Folt = 5)ay = Pogy Qassan)(t s)u(s)dslso <
0

< o2y ol (ap — Py Quraray) (1, 8)u(s)[r-a <

< 2" ys_azallay — Ppm Quamaplas—allu(s)|x <

M 2A—a —opo (M 7%
<a(hy) O ol

which was to be proved.

Corollary 3. From Lemma 8 follows that
q 22—« 1
M o (M\aT
I3 Ay = Aparllne < ealat Dmaxllagl ) () e
p=0
Now we are ready to propose fully discrete method for solving equations
under consideration.

5. FuLLy DISCRETE PROJECTION METHOD
Taking into account representation (10), we approximate A as follows

q
Au=D+P> AunP, (24)
p=0
where [ = N7, for some 0 < 7 < 1. Note that our approximate variant of A
is distinguished from respective approximation from [12] by using additional
projections Py and Ppm . Such projection helps to bound the amount of arith-
metical operations. The right-hand side of equation (4) we approximate as
following
N :=QnN/,

where N > M. The main idea of the fully discrete projection method (FDPM)
for equation (4) consists in solving the equation

q
Apuy = Duy + P> Ay mPuy = Qnf, (25)
p=0
where Ay s has the view (21) and uy € 7y is considered as approximate
solution of (4). Note that by virtue of (7) and (8), it holds true A,y €
LH H°8) p=0,...,q.
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Lemma 4. Let the conditions of Lemma 3 be satisfied and f € H*~. Moreover

operator Ay has the form (24). Then for alll ~ N7, 7 € [ﬂ%iﬁ,l) and
max{a +1/2,1/2} < X\ < p it holds true
N A—p 1 M 2 —a
A= Asla<a () +ac(O ()
where
cs = 2(¢ + 1) max{|lapllu,u+p-a}es(p p + 8 — ),
cy=ca(q+1) m}?X{Hap”mﬂ?z}'
Proof. Due to simple transformation we have
a
A=Ay =(-P))_ Ajut
p=0

(26)

q q q
> Apn =D Ay | P+ P> A - P
p=0 p=0 p=0

Consider each summand separately.
By virtue of the fact that A, € L(H*, H*=**8) for p = 0..q and taking into
account (16) and (23) we find that

q

=Y Al (5) 13X Apulass <

p=0 p=0

l

A—p+p
: <2> (g+1) ml?x{HapHu,u-i-ﬁ—a}ZS(H’M+ﬂ—Oé).

Because of | = N7 and N™A—#=0) < NA# for 7 ¢ [uﬁﬁ)\ﬁ’ 1) , one can

derive the estimate

q A
N 12
=) S Ao < (0 Dmallaplss-adaatin+5-a) (5 )
p=0

Similar estimate holds for third summand from (26), namely

q q
17i( ZAp I=P)u)ln-a < 1Y Apllr-pa-all(l = P)ulr-a <

=0 p=0
l A—p—pB

< <2 (¢ + 1) max{[lapr-pr-a}zs(A = 0,2 — @) <
N

< <2> (-+ 1) mac{lagla-sa-a}2(A = B, A = ).
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The second summand from (26) we estimate with help of Lemma 3:

q q
12> Apar =Y Ap)Pillar—a <
p=0 p=0

—2772(M)1/n1 M e
< ea(g -+ D maxt gl e 2 ()

Combing the corresponding bounds we get the statement of the lemma.

Lemma 5. Let the conditions of Lemma 8 are fulfilled. Then for any \ €
(max{a +1/2,1/2}, 1) and for sufficiently small N and M such that

N A=p . MmN\U/m (M 2A-a c
3 (2> +ege2m(7) (2> < 5)‘

it holds true
[v[lx < dallAmv|r-as

where dy = cl,
A
Proof. Using the inequality (11) and lemma 4 we have

1 1
iy = FllAvlI-a < 5 ([Avllx-a + (A = Arr)vllx-a) <

A A
1 Apv||az 2
< A_“H A= e < Ml
=g () e )

which was to be proved.

The estimation of accuracy for FDPM on the class of problems (4)-(9) with
nonperturbed input data is established in the following assertion (see for detail
[10]).

Theorem 1. Let the conditions (6)- (9) are fulfilled, and operator Ay has the
form (24). Then for any X € (max{1/2 + a,1/2}, 1), p > a+1/2 and for all

M,N: M >2 (%max{k,A—a})nl,

27)
_ a\1/ _ ’ (
3 (%)A g ege 2 (F) (%)2)\ T2
it holds true
N A—pu 1 M 22—«
llu —un|[x < cs <2> + 06672772(%) " <2> , (28)

where c5 =1+ d)\Cl)( + dycg + d,\c;h“_a, cg = dxcy.

Proof. Using the inequality (16) and [|ul|, <1 we find

N\
o=l < = Pl + IPvu = unla < (5 )+ IPvu=uvll 29

Using Lemma 5 it is easy to find the bounds for second summand in (29),
namely
[Pvu—un|lx < dallAm (Pyu — un)|[rx—a <
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< dr([|(A = An) Prulla—a + |Avuny — APyul[x—a) <

< dA([[(A = Ap) Prulla—a + 1@Nf = fllx-a + [A(PNu — w)[[r-a)-
Taking into account the lemma 4, inequalities (11), (16), (17) and the fact that
|lul|p <1 we have

N\ M\ A

2
A— A—
Z N a /! N a
T Vu—a 5 + ¢y 5 .

Substituting the bound above in (29) we obtain the desired estimation.

Corollary 4. As follows from (16), the optimal error of recovering the elements
from uw € H*, X < p is the following

= wnllx < 27 lull,

where u, € T, is some approximation. From Theorem 1 follows that for M =<
log™ N we have ||[u —un||x < (%))\_M, that establish optimality of the method.

6. CALCULATION OF ARITHMETICAL OPERATIONS
Let construct the matrix corresponding to the element P, A, prPiun(t). Using

the fact that [ ko(t — s)e;(s)ds = ko(i)e;(t) we have

1
PA, mPun(t) = Pl/ kp(t — s)Qnrmap(t, s)Prun(s)ds =
0

1 —
= Pl/o kp(t —s) Z Qnrmap(m, k)en (t)ex(s) Z a(i)e;(s)ds =

m,keD}} €Ly
—— 1
“P Y G R)aen(t) [kt s)esi(s)ds =
m,keD} i€Z, 0

=B Z Q@ prap(m, k’)iﬂp(k’ +8) (i) emtrri(t) =
m,keD]} i€Z,

(30)

To obtain the matrix form of FDPM (25) one can make the following substitu-
tion
m+k+i—m
k+i—k

and as the result get

]DlAp MPZUN Z ZAp "L em(t)v

meZ; |i€Z;

where /\ R
AP = > Qumap(m =k, k — i)kp(k).
(m—k,k—3i)€DT} kE€Lpr 4y
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Thus, the equation (25) can be rewritten as the system of linear equations

q
Du+» AP =f, (31)
p=0
where 4 = {u(i) };cz, is Fourier coefficient of desired solution = {f()}iczy

is Fourier coefficient for right-hand side and AP = {AP"" }m i€z,

Proposition 4. Calculation of matriz AP requires NlogN arithmetical op-
erations (a.0.) by the order.

Proof. Since D, C Dj, for ;1 > 1, then the biggest amount of arithmetical
operations is needed for calculation of matrix AP! and we consider this case
below. Since (m—k,k— 7,) D}, then by the definition of the set D}, we have
that m — ¢ € Zys. Let | = m — 4 and calculate the amount of a.o. for element
Aﬁii near diagonal [. For that rewrite the element Aﬁ;:i in the following way

Ny =m = > Quarap(m—k,l=(m=k)ky(k) = > a(m—k)ky(k).
VAvVES kE€EZnr 1

Using FFT, we can construct the element Afrfm—l for all m € Zy4; with (M +
[)1log(M + 1) a.o. by the order. Because of [ € Zyy, the total amount of a.o.
for constructing elements of matrix AP! is M (M + 1) log(M + ). Taking into
account the fact that llogl ~ N for 7 € [uﬁ%iﬁ’ 1) we arrive to the required
result.

Let’s calculate the amount of arithmetical operations that is necessary to
construct all the elements from equation (31).

— For the element Qmp(i j) we apply the relation

M M
QMMap 7 j 2 Z Z ap llM 1 JloM™ )ei(llM_l)ej(lgM_l)
l1=11l2=1

that can be calculated for all i, j € Zys with the help of FFT by M?log M
arithmetical operations.
— the elements of the vector f can be calculated by the relation

quv Jes(IN7H)

with the help of FFT by NlogN a.o.
— the elements of AP for [ = N7 can be calculated by (N log N) a.o. (see
proposition 4).
Summarizing all items above, we can conclude that the total amount of a.o.
for constructing all elements from (25) is N log N by the order.

7. PERTURBED INPUT DATA
Following [7], suppose that instead of functions a,(t,s),p =0,...,q and f(t)
we are given only some their pertubations a,(t,s),p = 0,...,q, and fs(t) is
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such that in the points of uniform grids it fulfils
M 3
M7 ape(iM T iM ™) —ap(iM T jM Y| <6, p=0,...,q,
ij=1

N
NTO D IfHGNTY = FGNTHPY2 <6l fllu-a-
j=1

It is easy to show (see, for example, [7, p.100]), that mentioned estimations are
equivalent to

||QM,M(ap_ap,5)||0,0 < g D= 07"'7q’ (32)
1QN(fs = Flllo < 6llfllu—a (33)

respectively. Then taking into account perturbation of input data the FDPM
for equation (10) becomes

a
AM,EUN,E,J = DUN,E + B Z Ap,]V[,aB“N,s,& = QNf57 (34)
p=0
where A, v cv(s) = fol kp(t — S)PDX} Qmmape(t,s)v(s)ds and unes € Tn is
approximate solution.

We pose the problem to solve equations (4) and (10) with perturbed input
data as (32) and (33) with minimal amount of discrete information (i.e. set of
values for functions fs(t) and ap (¢, s) in the points of uniform grid). At the
same time arithmetical expenses should be less in comparison with methods
known earlier (see, for example, |7] and [12]).

To achieve the aim of our investigation at first we state some auxiliary esti-
mations.

Lemma 6. Let estimation (32) is satisfied then for any A > max{1/2, a+1/2}
it holds true

M 2)\—04
| AM — Anmelda—a < c7 (2> g,

where ¢7 = 002)‘70‘+1’)/,\,a22(/\, A— a)(q + 1).
It is easy to find that

q
(AM - AM,E)U = B(Z Ap,M - Ap,M,s)Plu-
p=0

Using Proposition 2, 3, inequalities (18) and (32) we have
[(Axr — Apre)vlla-a <

q 1
IR [ K= 9)Po Quinlape = )9 Pro(s)dslsa <
p=0 '

q
<02 M aze(M A = @) Y (1@ (ape — ap)|an—allPollx <
p=0
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M

2 -«
< (@t Da? o an0a-a) () el

which is the required result.

Lemma 7. Let estimation (32) is satisfied and Apre has the form (34). Then

for M such that
MNP 1
d)\C7 <2> e < 5 (35)

operator A is invertible between spaces H> and H** and the following holds
true
[ullx < 2dx[lAncullr—a- (36)

The lemma can be proved in a similar way as lemma 5 by using the statements
of lemmas 5 and 6.

Lemma 8. Let the conditions (6)-(9) and (32), (33) fulfil and a € Gy, 5., M1 >
1,m3 > 0. Then for all A € (max{1/2,a+ 1/2}, u) it holds true

N A—« M 2 —«
lunv —ungelln < cg <2> 0+ co <2> €,

where cg = 2dxc); and cg = c1ocr2dy with c19 < 2+ dx(cy + % + CyYp—a)-
Proof. Using Lemmas 7 and 6, inequality (18) and (33) we find

lun —unselln < 2da||Ame(un —unse)llr—a <
< 2dy|[Anun — Apreun||a—a + +2d5[|QN f — Q@ f5]Ix <

N A—a M 22—«
<mh<<2> M-t er () emNm>.

Using (28) and (27) we bound the norm of element uy as follows:

(37)

Junlix < Jlullx + flu —un|[x <
N A—p 1 M 22—«
<lultes () e (B <

Substituting the estimation above in (37) and taking into account (11) we derive
desired estimation.

8. SELECTION OF THE DISCRETIZATION LEVELS
Generalizing the results of the previos section we rewrite general estimation
of error for FDPM. By virtue of Theorem 1 and Lemma 7, the accuracy of
method (34) is estimated as

lv = unsellx < llu—unllx +[luy —unsels <

N )\_,U _ (M)l/m M 2 —«
< cs 5 + cge” P2 - +

N A—a M 2 —a
+ cg 5 6+ co - €.

(38)
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Further following the paper [12] we consider the problem to select such levels
of discretization N and M that minimize the error bound (38). Here we consider
only the case then smoothness of parameters u is known precisely (a priori case).

1. A priori selection of parameter. The problem of a priori selection of
discretization levels was described in detail in [12] for class of equations under
consideration. Here we slightly modify FDPM. However, as we can see below,
it doesn’t influence on the best accuracy of the method.

Further we denote by [¢] the integer part of number ¢ and formulate the
theorem that establishes a priori rule for choosing discretization parameter.

Theorem 2. Let the conditions (6)-(9) fulfil and input data are perturbed as
(83) and (32). Then for any A € (max{1/2,a + 1/2}, ), p > a + 1/2 with
choosing the discretization parameters according to rule

— 1 C13 m
M= |2 —1log 3 39
[ (2772 o8 ) , (39)

N [2 () ] (10)

the error bound of the method (34) has the form

B=X _a) €1
[ — ungselly < c110i—a + crpe logMm A=) 13 (41)
€
where
A—p A—«a c6 1 771(2)\—01)
e = (eg) ey, ez = (>
c13 \ 212
and

_a
c13 = 10 m;lX{HaHmﬂIQ}'

Proof. Direct substitution (39) and (40) in (38) gives the statement of theo-
rem.

Remark 4. It is evident that condition (35) fulfils with choosing M according
(39) for sufficiently small €. Let’s check that condition (27) also holds true.
From (39) it follows that

()"

Cc13€ =¢&.

Then taking into account the relation above and (40) we can conclude that
condition (27) takes place sor sufficiently small €.

2. Fast solving of FDPM (34). Following [6] for fast solving (34), we pro-
pose to use GMRES. Such approach for solving problem under consideration
has been detailed in [6] and here we only rewrite main points. Denote by

q
Sy =D+ P, Z Ap B
p=0

It is evident that Sy is invertable operator (see lemma 7) that acts in 7. Thus
according to theory we can apply GMRES with operator Sy and right-hand

75



E.V.SEMENOVA

side fn with respect to the space H*. The procedure concludes in constructing
sequence up, that satisfies the condition for n =1,2,...

SNUpr — = min Syu —
|| NUny fNHoz ueICn(SN,fN)H N fNHm

where IC\, (SN, fn) is well-known Krylov space. As the stopping rule we consider
the discrepancy principle

[Sntny = fnlla < 6| flla, (42)

where u,,,, is n-iteration of GMRES that we consider as approximation for uy.
Now we are ready to establish the accuracy of GMRES approximation for
our class of problems.

Theorem 3. Suppose that N, M — 0. Let n be the first number for which the
condition (42) fulfils. Then the accuracy of GMRES applied to equation (34) is
the following

N A—a
fuvae = uly <203 (5 ) vl (43)
Moreover we have that n = O(log(N)).

Proof. Using Lemma 6 we have that

lunse = un,lx < dal[Ane(unse = uny)llx—a < dillfn = Arreun,[[r-a-
Further applying the inequalities (18) and (42) one can obtain

N )\—OZ
fuvse = ula <203 (5 ) vl
what was to be proved.

Remark 5. As we can see from Theorem § the accuracy of FDPM method in
combination with GMRES is the following

B=A 1
llu —un,|[x < O((SLQ + e logM (A=) g)

Such accuracy of FDPM in the case of € = 0 is optimal by the order (see [11]).

Remark 6. For the realization of GMRES we need at every iteration to com-
pute a matriz-vector product Sy fn. Due to the structure of Sy as (34) and
relation (30), the calculation can be performed by l- M? operations. Since M =
O(log N) (see corollary 4), then due to N = llogl forl = N7, 1 € [ﬁ, 1)
we have that constructing of matriz-vector product Sy fn requires Nlog N a.o.
Moreover, as it is known, for realization of GMRES O(nl) floating-point oper-
ations must be computed at the n-th iteration, i.e on the n-th step we need
O(NlogN) a.o. Thus total amount of a.o. for solving (10) is limited by
O(Nlog N) by the order.

Remark 7. Let us suppose that € > ¢ and calculate the amount of necessary
discrete information for equation (4) to implement the proposed method (34)
with the accuracy (41). It is evident that in that case M does not exceed the
magnitude O(log(N)). So, for the discretization of Ay, less than O(log? N)
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values of kernels apc(t,s) in the points of the uniform grid should be used.
Note, that in the monograph [7] for the realization of the fully discrete projection
method (34) at M = N the order of discrete information was estimated as
O(NlogN) .

10.

11.

12.
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COMBINED NEWTON-KURCHATOV METHOD UNDER
THE GENERALIZED LIPSCHITZ CONDITIONS FOR
THE DERIVATIVES AND DIVIDED DIFFERENCES

S.M.SHAKHNO

PE3IOME. oBemeno j0KaIbHYy 30iKHICTH KOMOIHOBAHOTO iTeparifiHoro mpo-
necy, moby10BaHOTO Ha, OCHOBI MeToxy HbioTOHA i MeToy iHIHHOT iHTEpTIOJISI-
nii KypuaTosa, a7 po3B’si3yBaHHs HeJIIHINHIX OIlePATOPHUX PIiBHAHDL B OaHa-
XOBOMY HPOCTOPI 33 y3arajabHEHUX yMOB JIimmiuigg Ajsl MOXiJHUX IepIIoro
MOPSAAKY 1 TOMIIEHNX PI3HUIIL MEPUIOTO Ta APYTOro MOpSAAKYy. BusHadeHo
pazmiyc Kymi 30iKHOCTI i MBHIKICTH 301KHOCTI METO/Iy, 3HANIEHO 00/aCTh
€IMHOCTL PO3B’A3KY HEJIHIIHOTO PIBHIHHS.

ABSTRACT. The local convergence of combined iterative process, built on the
basis of Newton’s method and Kurchatov’s method of linear interpolation, for
solving of nonlinear operator equations in Banach space under the generalized
Lipschitz conditions for the derivative of the first order and divided differences
of the first and second order is proved. The radius of the convergence ball
and convergence order of the method are determined, the ball of uniqueness
of the solution of nonlinear equation is found.

1. INTRODUCTION
In this study we are concerned with the problem of approximating a
locally unique solution z* € D of equation

F(x) + G(z) = 0, (1)

where F' is a Fréchet-differentiable nonlinear operator on an open convex subset
D of a Banach space X with values in a Banach space Y, and G: D — Y is a
continuous nonlinear operator.

Let x,y be two points of D. A linear operator from X into Y, denoted
dG(z,y), which satisfies the condition

0G(z,y)(z —y) = G(z) - G(y) (2)

is called a divided difference of G' at points « and y.

Let z,y, z be three points of D. A operator 6G(z,y, z) will be called a divided
difference of the second order of the operator G at the points x, y and z , if it
satisfies the condition

0G(x,y,2)(y — z) = 0G(z,y) — 0G(x, 2). (3)

Key words. Banach space, Newton’s method; Kurchatov’s method; Combined iterative
method; Divided difference; Local convergence; Convergence order; Generalized Lipschitz
condition.
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A well-known simple difference method for solving nonlinear equations
F(z) = 0 is the Secant method

Tpy1 = Tp — (0F(p_1,2,))  F(2,),n=0,1,2,..., (4)

where dF(x,—1,xy) is a divided difference of the first order and xg,z_; are
given.

Secant method for solving nonlinear operator equations in a Banach space
was explored by the authors [5,14,15,19,30] under the condition that the divided
differences of a nonlinear operator F' satisfy the Lipschitz (Holder) condition
with constant L of type

10F (z,y) = 0F (u,v)|| < L(llz — ull + [ly = vl})-

In [11] it was proposed one-point iterative Secant-type method with memory.
In [29] it was explored the Kurchatov method under the classical Lipschitz
conditions for the divided differences of the first and second order and it was
determined the quadratic convergence of it. The iterative formula of Kurchatov
method has the form [4,5,18, 29|

Tpi1 = 2p — (6F (22 — Tp1,2n-1)) ' F(2,),n =0,1,2,..., (5)

where dF(u,v) is a divided difference of the first order, zg, z_1 are given.

In paper |20| Potra investigated the three-point difference method with con-
vergence order 1.839. .. for classical Lipschitz conditions for divided differences
of the first and second order [20]

Tp1 = Tn — A F (),

(6)
Ap = 0F (zn, xp—1) + OF (xp—2,2p) — 0F (xp—2,2n-1), n =0,1,2,.. .,

o, x_1,T_2 are given. This method first has been proposed for scalar nonlinear
equations by Traub in [30].

Regarding the local convergence of Newton method, Traub and Wozniakowski
in [31] and Wang in [33] gave the best estimate of the radii of convergence balls
when the first derivatives are Lipschitz continuous around a solution.

Besides, there are a lot of the works on the weakness and/or extension of the
hypothesis made on the nonlinear operators; see works of Argyros, Ezquerro,
Hernandez, Rubio, Gutierrez, Wang, Li [5,12,13,32-35| and references therein.
In particular, Wang introduced in [33] the notions of generalized Lipschitz con-
ditions or Lipschitz conditions with L average, where instead of constant L it
is used some positive integrable function.

The center Lipschitz condition with L average in the inscribe sphere makes
us unify the convergence criteria containing the Kantorovich theorem and the
Smale a-theory, while the radius Lipschitz conditions with L average unify
the estimates of the radii of convergence balls for operators with Lipschitz
continuous first derivatives and analytic operators [10,32,33].

In our work [|27] for the first time we have introduced a similar generalized
Lipschitz condition for the operator of the first order divided difference and
under this condition the convergence of Secant method was studied and was
found that its convergence order is (1 + +/5)/2. In the paper [26] we have
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introduced a generalized Lipschitz condition also for the divided differences
of the second order and we have studied the local convergence of Kurchatov
method (5).

Note that in many papers such as [1,2,7,16,21]|, the authors investigated the
Secant and Secant-type methods under the generalized conditions for the first
divided differences of the form

[(OF (z,y) = 6F (u,0)))[| S w(llz =yl [lu—2l) Vz,y,u,0eD, (7)

where w : Ry x Ry — Ry is continuous nondecreasing function in their two
arguments. Under these same conditions in the work of Argyros [4] it is proven
semilocal convergence of Kurchatov method and in [22] of Ren and Argyros the
semilocal convergence of combined Kurchatov method and Secant method. In
both cases only the linear convergence of the methods is received.

In this paper, we study the local convergence of the combined Newton—
Kurchatov method

Tpg1 = T — (F'(z0) + 0G (220 — Tne1, Tno1)) (F(zn) + G(z0)),

8
n=001.2,..., ®)

where F'(u) is a Fréchet derivative, G (u,v) is a divided difference of the first
order, xg, z_1 are given, which is built on the basis of the mentioned Newton and
Kurchatov methods under relatively weak, generalized Lipschitz conditions for
the derivatives and divided differences of nonlinear operators. Setting G(z) = 0,
we receive the results for Newton method [33], and when F'(z) = 0 we get the
known results for Kurchatov method [26].

We first proposed the method (8) in the paper [28]. Semilocal convergence
of the method (8) under the classical Lipschitz conditions is studied in the
mentioned article, but there was determined the convergence only with the
order (1 +/5)/2.

In this article we prove the quadratic order of convergence of the method (8),
which is higher than the convergence order (1 ++/5)/2 for the Newton-Secant
method [5,8,9,23]

Tp4+1 = Tp — (F/(xn) + 5G([En_1,l’n))_1(F<l'n> + G((L’n)),

9
n=0,1,2,..., )

Method (9) was proposed in [9] and proved its convergence with the or-
der (1 ++/5)/2 under the classical Lipschitz conditions for the first derivative
F'(x) and bounded norm of the second-order divided difference 6G(x,y, z). The
same order of convergence was received in [5] with weaker conditions - classical
Lipschitz conditions for the first derivative F’(x) and the first-order divided
difference 0G(x,y).

Note that in the work [23] we have considered combined Newton-Secant
method (9) and we have proposed a methodology of studying the convergence
of combined methods for solving nonlinear equations with nondifferentiable
operator under the relatively weak, generalized Lipschitz conditions for the
first derivatives and divided differences of nonlinear operators. Under the same
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conditions in [24] it was studied the convergence of the combined two-step
method for the solution of nonlinear equations.

The results of the numerical study of the method (8) and other combined
methods on the test problems are provided in our works [25,28].

2. LOCAL CONVERGENCE OF NEWTON-KURCHATOV METHOD
Lets denote B(zg,r) = {z : ||x — zo|]| < r} an open ball of radius r > 0 with
center at point xg € D, B(zo,r) C D.
Condition on the divided difference operator d F'(z,y)

[0F(z,y) = 6F (u,0)|| < L(llz —ull + [ly = vl) Va,y,u,0 € D (10)

is called Lipschitz condition in domain D with constant L > 0. If the condition
is being fulfilled

16F (2, y) — F'(wo)|| < Lz = zoll + lly — xoll) Va,y € B(zo,7),  (11)

then we call it the center Lipschitz condition in the ball B(zg, ) with constant
L.

However L in Lipschitz conditions can be not a constant, and can be a pos-
itive integrable function. In this case, if for * € D inverse operator [F’(z*)] ™}
exists, then the conditions (10 ) and (11) for g = x* can be replaced respec-
tively for

1F" ()M (OF (2, y) — 6F (u, v)))|| <
(12)

lz—yll+llu—vl|
</ L(z)dz Vz,y,u,v € D
0

and
|F"(2*) M (OF (2, y) — F'(a"))| <
lz—*{|+[ly—z=|] (13)
S/ L(z)dz Vz,y € B(z*,r).
0
Simultaneously Lipschitz condition (12) — (13) are called generalized Lipschitz
conditions or Lipschitz conditions with the L average.
Similarly, we introduce the generalized Lipschitz condition for the divided
difference of the second order

IF" (@) " (OF (u, ,y) — 6F (v, 2,y))l| <
(14)

llu—vl|
< / N(z)dz Vz,y,u,v € B(z*,r),
0

where N is a positive integrable function.

Remark 8. Noie than the operator F' is Fréchet differentiable on D when
the Lipschitz conditions (10) or (12) are fulfilled V,y,u,v € D (the divided
differences OF (x,y) are Lipschitz continuous on D) and 6F (xz,x) = F'(x) Va €
D [3].

The radius of the convergence ball and the convergence order of the combined
Newton-Kurchatov method (8) are determined in next theorem.
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Theorem 1. Let F and G be continuous nonlinear operators defined in open
convex domain D of a Banach space X with values in the Banach space Y.
Lets suppose, that: 1) H(x) = F(xz) + G(x) = 0 has a solution z* € D, for
which there exists a Fréchet derivative H'(x*) and it is invertible; 2) F has
the Fréchet derivative of the first order, and G has divided differences of the
first and second order on B(x*,3r) C D, which are satisfying on B(xz*,3r) the
generalized Lipschitz conditions

p(x)
1H (2%) " (F'(z) — F'(z7))]| </ Li(w)du, 0<7<1,  (15)
7p(x)
1 l—ul+ly—ol
|H (%) (5C (. ) — G (u, )] < / Lo(z)dz,  (16)
0
fuvl
|H'(z*) " (6G(u, 2, y) — 6G(v,z,y))|| S/ N(z)dz, (17)
0
where 7 = z* + 7(x — x¥), o(x) = |lx — z*||, L1, L2 and N are positive

nondecreasing integrable functions and r > 0 satisfies the equation

%fOT Ly (u)udu + fo Lo(u)du + 2r fo w)du

=1. 18
1—([;1'4 du+f0 Lo(u)du + 2r 0 (u)du> 18)

Then for all zg,x_1 € B(z*,r) the iterative method (8) is correctly defined
and the generated by it sequence {xy, }n>0, which belongs to B(x*,r), converges
to ¥ and satisfies the inequality

[#nt1 — 27| <

{ 1 /p(:vn)L (u)ud p(wn)L (u)d
< U)u u+/ u)du+
p(rn) Jo ! 0 ?

lzn—2n-1]
+ N(u)dul||x, — xp— X
/ (wdulfen, — w01} 19)

p(zn) 2P($n)
X {1 - (/ Ll(u)du—i—/ Lo (u)du+
0 0
|zn—zn—1]| 1 .
4 / N()dulz, — i)}l — 7).
0

Proof. First we show that

1

0 =5

[ e, o= [ Latwd

82



COMBINED NEWTON-KURCHATOV METHOD UNDER ...

t
in h(t) = : N (u)du monotonically nondecreasing with respect to ¢. Indeed,

under the monotony of Li, Ly, N we have

(tlg/ob—tl%/otl)Ll(u)UdU_ <t1§ /t:2+<t1§_tlf> /Otl)h(u)uduz

> L(tl)(tlg /: +<tl§ B é) /Otl )udu = Ll(t1)<t1% /th —tl% /0“ )udu =0,
(7512 /{:2 _tll /Otl )Lz(u)du = (tlg /tlt2 —i—(é . tll> /Ot1 )Lg(u)du >

ZLQ(tl)(;Q /:2+(32 - tll) /Otl)du:LQ(t1)<t2t_2tl +t1(t12 - tll)) -0

for 0 < t1 < ta. So, f(t), g(t) are nondecreasing with respect to t. Similarly we
get for h(t).

We denote by A, linear operator A, = F'(zy,)+0G(2xy, — xp—1,Tn—1). Easy
to see that if z,,x,—1 € B(z*,r), then 2z, —xp_1,2,—1 € B(z*,3r). Then 4,
is invertible and the inequality holds

1AL H (7)== (I = H (") 7" A)] 7 <

< (1 - </0p(xn) Ly (u)du + /OQP(M) Lo (u)du+ (20)

l[&n—an—1]| -1
+ / N(u)dul||zy, — xn_1||>> .
0
Indeed from the formulas (15)-(17) we get

1T — H' (%) Al = || H (@)~ (F'(2%) = F'(wn) + 6G(a", 2%)—
—6G (T, ) + 0G (20, 70) — 0G (2T, — Tp—1, Tn1) ) <

p(xn) ,
< / Li(u)du + || H (z*) " (6G (z*, 2*) — 6G (2, )+
0
+0G (xp, zp) — 0G(Tp, Tp—1) + 0G(Tp, Tp—1) — 0G (2, — Tp—1,Tn—1))|| <
p(xn) 2p(zn)
< / Lo (u)du + / Lo(u)dut
0 0
+”H/ (SC*)_I((SG(xn, Tn—1, mn) - 5G(2$n — Tp—1,Tn-1, :En))(xn - xnfl)H <

p(zn) 2p(wn) 20 —n—1l
< / Li(u)du + / Lo(u)du —l—/ N(u)dul|z, — xp-1]|.
0 0 0

From the definition r (18) we get

T 2r 2r
/ Li(u)du + / Lo(u)du + 2r N(u)du =
0 0 0
(21)
1 r T 2r
=1- / Li(u)du —/ Loy(u)du — 2r N(u)du < 1.
" Jo 0 0
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Using the Banach theorem on inverse operator [17], we get formula (20). Then
we can write

|zn41 — 2| = [lon — 2" = AN (F(20) = F(2*) + G(an) — G"))|| =

- H_Agl(/ol(pf(x;)  F' ()T + 6G(n, )

—0G(2xy — Tp—1,Tn—1))(zy —2¥)|| < (22)
, o)
<||AJYH (2* || |H' (z / / u)dudT+
xn)
+|H (%) " (+6G (20, %) — 6G(22, — xn_l,xn_l))H> |xn — 2%
According to the condition (15)—(17) of the theorem we get
|H (%) / / wdudr + 6G(n, ) — Ay)| =
Tp(xn)
1 p(zn)
= / Li(uw)udu + | H' (z*) Y (0G (2, %) — 0G (0, 20) +
p(zn) Jo
+0G (zp, zp) — 0G(Tp, Tpn—1) + 0G(Tp, Tp—1) — 0G (2, — Tp—1,Tn—1))|| <

p(n)
s /0 Li(w)udu + ||H' (z*) "1 (6G (2, %) — 6G (20, z0)) ||+

+HH/(~%'*)71(5G($7L1 Tn—1, xn) - 5G(2$n — Tp—1,Tn—1, xn))(wn - -%'nfl)H <

1 /P($n) L ( ) d P($n) L ( )d
< U ) U u+/ u)du+
p(zn) Jo ! 0 ?

lzn—2n lH
+/ N(w)dulzn — 21
0

From (20) and (22) shows that fulfills (19). Then from (19) and (18) we get

|xnt1 — || < [|zn — 2% < ... <max{||xg— ", ||x=1 — 2|} <7
Therefore, the iterative process (5) is correctly defined and the sequence that
it generates belongs to B(x*,r). From the last inequality and estimates (19)
we get lim ||z, — 2*|| = 0. Since the sequence {z, }n>0 converges to z*, then

n—oo -

[2n = 2na|l < llzn — 27 + 201 — 27| < 2[zn-1 — 27
and lim ||z, —z,_1] = 0.
n—oo

The theorem is proven.

Corollary 5. The order of convergence of the iterative procedure (8) is qua-
dratic.
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Proof. Lets denote pmax = max{p(xo),p(x_1)}. Since g(t) and h(t) are
monotonically nondecreasing, then with taking into account the expressions

1 e _ I Liwudup(a,))
e fy Tt = S R s

o Ly (wudup(a,)
(PmaX)2

<

= Alp(xn)7

p(xn) p(zn) L d Pmax L d
/ Lo(u)du = fo 2(u)dup(n) < fo 2(w)dup(zn) =: Aop(zn),
0 P(l‘n) Pmax

Hxn_xnfln Hxnixn_l” N u du Xz — Tp—
| " (wdulfzn = 21|
0 ||~Tn - 1‘n—1H

f0||x0—a271H N(u)dungjn — xn71||

[0 — 21|

p(zn) p(n)
(1 - (/ Ly(w)du + 2/ Lo(u)du+
0 0
Hxn_xn—ln -1
+/ N()dulz, 2, ])) <
0
Pmax Pmax
< (1 - (/ Ll(u)du+2/ Lo(u)du+t
0 0

llzo—a—1l| 1
+/ N(u)dul|zg — x_1\|>) =: Ay,
0

from the inequality (19) follows

<

= A3||1‘n — xn_lH

and

|41 — 2| < Ag(Arp(wn) + A2p(zn) + Asllzn — zn-1]?)l|zn — 2"
or
lonr1 = 2*[| < Csllan — 2*||* + Callzn — zp—r|*[lon — ]| (23)

Here Ay, k =1,...,4,C3,Cy are some positive constants.
Suppose now that the order of convergence of the iterative process (8) is lower

2, therefore there exist Cs > 0 and N > 0, that for all n > N the inequality
holds

lzn — 2*|| > Cslan—1 — 2|

Since

len = 21l < (lon = 2™ + l2n-1 = 2*[)* < 4llzn-1 — 2",
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then from (23) we get

lzn1 — 2% < Csllan — 2*[|” + 4C4 |21 — 2*|*[|2n — 27|
(24)
< (C3 +4Cy/Cs)|lxn — 2*|* = Collzn — 2*[|.

But inequality (24) means that the order of convergence not lower 2. Thus,
the convergence rate of sequence {zy}n>0 to z* is quadratic.

Next theorem determines the ball of uniqueness of the solution z* of (1) in
B(z*,r).

Theorem 2. Lets assume that: 1) H(x) = F(z) + G(x) = 0 has a solution
x* € D, in which there exists a Fréchet derivative H'(z*) and it is invertible; 2)
F has a continuous Frechet derivative in B(z*,r), F' satisfies the generalized
Lipschitz condition

p(x)
1H (%) (F' () = F'(a")]| < /0 Li(u)du V€ B(a",r),

the divided difference 0G(x,y) satisfies the generalized Lipschitz condition

p(z)
||H’(x*)_1(5G(x,:p*) —G'(2")| < /0 Lo(u)du Yz € B(z*,r),

where L1 and Lo are positive integrable functions. Let v > 0 satisfy

1 [ "
/0 (r—u)Ll(u)du—i-/o Lo(u)du < 1.

r

Then the equation H(x) = 0 has a unique solution x* in B(x*,r).

Proof analogous to [23,24].

3. COROLLARIES
In the study of iterative methods the traditional assumption is that the
derivatives and/or the divided differences satisfy the classical Lipschitz condi-
tions. Assuming that Li, Ly and N are constants, we get from theorem 2.1
and 3.1 important corollaries, which are of interest on its own.

Corollary 6. Let’s assume that: 1) H(x) = F(z) + G(x) = 0 has a solution
x* € D, in which there exists Fréchet derivative H'(x*) and it is invertible;
2) F has a continuous Fréchet derivative and G has divided differences of the
first and second order 6G(z,y) and 0G(z,y,z) in B(z*,3r) C D, which satisfy
the Lipschitz condition

|H (%) 7 (F' () = F'(«" +7(x = 2%))|| < (1= 7)Laf|lz — 2],
[ (z%) "1 (6G (z,y) — 0G(u,v))|| < La(l|lz = ull + [y = v])),
1 (%) " (6G (u, 2, y) — 6G (v, 2,9))|| < Nlju — o],
where x,y,u,v € B(x*,r), L1, Lo, N are positive numbers and r is the positive
root of the equation
L1r/2 + Lar + 4Nr?

=1.
1—Lir—2Lor —4N7r2

86



COMBINED NEWTON-KURCHATOV METHOD UNDER ...

Then Newton-Kurchatov method (5) converges for all x_i,z¢ € B(z*,r) and
there fulfills

(L1/2 + LQ)H:BYL - JB*H + NHxn - xn—lHZ
1 (L1 4 2Ls |y — 2| + Nan — xn_1H2>

[€n1 — 2] <

Moreover, 1 is the best of all possible.

2
Note that the received r coincides with the value of r = 3L for Newton

1
method for solving equation F'(z) = 0 [20,31,33] and with » = 2/(3Ls +
/9L3 + 32N) for Kurchatov method for solving the equation G(z) = 0, as
derived in [29].
Corollary 7. Suppose that: 1) H(x) = F(x)+G(z) = 0 has a solution x* € D,
in which there exists the Fréchet deriwative H'(x*) and it is invertible; 2) F has

continuous derivative and G has divided difference 0G(x,z*) in B(z*,r) C D,
which satisfy the Lipschitz conditions

1 (")~ (F () = F'(@*)|| < Lalle = 27,
1 (%)~ (0G (2, 2™) = G'(a"))|| < Laflw — 27| ,

Ly +2Lsy°
Then the equation H(z) = 0 has a unique solution x* in the open ball B(x*,r).
Moreover, the given r is the best of all possible and does not depend on F and

G.

Note that the resulting radius of the uniqueness ball of the solution coincides

for all x € B(z*,r), where L1 and Lo are positive numbers and r =

2
with r = I for Newton method for solving the equation F'(z) = 0 [33] and
1

with r = Li for Kurchatov method for solving the equation G(z) = 0 [29].
2
4. CONCLUSIONS

In the papers [5,15,29] it was studied the local convergence of Secant and
Kurchatov methods in the case of fulfilment of Lipschitz conditions for the di-
vided differences, which hold some Lipschitz constants. In the work [33] it has
been justified the convergence of Newton method for the generalized Lipschitz
conditions for the Fréchet derivative of the first order. We explored the lo-
cal convergence of Newton-Kurchatov method under the generalized Lipschitz
conditions for Fréchet derivative of differentiable part of the operator and the
divided differences of the nondifferentiable part, in which instead of Lipschitz
constants some positive integrable functions are used. Our results contain the
known ones as partial cases.
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ABOUT MINIMAL INFORMATIONAL EFFORTS
BY SOLVING EXPONENTIALLY ILL-POSED PROBLEMS

S.G.SOLODKY, E.V.SEMENOVA

PE3OME. Posrasmaiorbes muTands iHGOPMAIINAHOI CKIAIHOCTI [ eKCIIO-
HEHIaJIbHO HEKOPEKTHUX 3ajad. Jloc/ipKeHHs BUKOHAHI JIid iHTerpajJbHUX
piBHaHb PpenrosbMa MEPHIOrO POAY 3 ONEPATOPOM CKIHYEHHOI IJIaIKOCTi.
3anporoHoBaHl MPOEKITHI CXeMu J03BOSIOThH IOCATTH ONTUMAIbLHUN TOPs-
JOK TOYHOCTI [iJIsl aIIOCTEPIOPHOTO BHOOPY IapaMeTPa Perysspu3aliil 3a IIpuH-
numom piBHOBarn. KpiMm Toro Takmit migxinm 36epirae MiniMagabHU 06CSAT
iHpOopMaIifinux 3aTpar.

ABSTRACT. The issue of informational complexity for exponentially ill-posed
problems is considered. The investigation is performed for Fredholm integral
equations of the first kind with finite-smoothness operators. The proposed
projection method allows to achieve optimal order accuracy for a posteriori
selection of regularization parameter by balancing principle. Moreover such
approach saves minimal volume of informational efforts.

1. INTRODUCTION

Nowadays for numerical method one of the most important issues is re-
duction of informational and computational efforts while saving approxima-
tion accuracy. These questions are studied in the framework of Informational
Based Complexity Theory founded by J. Traub and H. Wozniakowski (see
e.g. [18], [19]). The basic object of this theory is the information complex-
ity, i.e. minimal amount of discrete information required to solve the problem
with given accuracy. It was found that such amount depends on the smooth-
ness properties of the problem. Particularly, for ill-posed problems presented
by the first-kind operator equations Az = f the relation between smoothness
of operator A and solution x is of primary importance. In the case of moder-
ately ill-posed problems, when A and x are related by means of power function
(i.e. A and x belong to the same smoothness scale), different efficient numeric
approaches were proposed in [10], [12], [13], [14]. Owing to previous papers
the exact order estimates of informational complexity for wide classes of mod-
erately ill-posed problems (see, for example, [8]) were obtained. At the same
time, much attention is paid to severely ill-posed problems where the solution
has essentially worse smoothness in comparison with that of operator. Usually,
in these cases A and x are related by means of logarithmic function but the
corresponding equations are called exponentially ill-posed problems. For the

Key words. Severely ill-posed problems, minimal radius of Galerkin information, balancing
principle.
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first time severely ill-posed problems were considered by B.A. Mair [4]. After-
wards, these investigations were continued by T.Hohage [3], M.Y. Kokurin and
A.B. Bakushinski [2], S.V. Pereverzev and E. Schock [17] and also in [15], [16].
It should be noted that for a long time the issue of improving effectiveness of
numerical solving severely ill-posed problems (in sense of IBC theory) was not
considered due to its complicatedness. The first step was done in [6], where the
standard Galerkin discretization scheme was used to construct projective meth-
ods for solving different classes of problems including severely ill-posed ones.
However, it was found that this approach does not provide minimal amount of
computational efforts. Further investigations (see [16]) showed that amount of
discrete information can be reduced in comparison with [6] for exponentially ill-
posed integral equations with finite-smoothness kernels. It was done in [16] due
to a modification of Galerkin scheme. In the case of a priori choice of regular-
ization parameter it allowed not only to improve results of [6], but also provided
minimal order of information efforts for mentioned Fredholm equations. The
present paper is devoted to numerical solving exponentially ill-posed problems
as in [16] for the case of a posteriori choice of regularization parameter. It will
be shown that the absence of exact information about smoothness of solution
does not influence informational complexity of problems under consideration.

2. STATEMENT OF THE PROBLEM
Consider an integral equation of the first kind

Az = f, (1)

where Az(t) = fol a(t,7)z(r)dr, t € [0,1], is acting continuously in L =
L2(0,1). Suppose that Range(A) is not closed in Ly and f € Range(A).

Assume that instead of f we are given only fs € Lo such that || f — f5|| < 4.
Since, solution of problem (1) in general is not unique, we take solution of (1)
with minimal norm in Lo as element for approximation and denote it as .

Usually we call the equation (1) as severely ill-posed problem if its solution
has essentially worse smoothness than that of elements from Range(A). As
a rule in such case the solution z' is said to satisfy the source conditions of
logarithmic type and the corresponding equation (1) is called an exponentially
ill-posed problem. To describe the smoothness property of solution we consider
the set of smooth functions M,(A), which has the form

My(A) = {u: w=W(4"A) ", [Jo]| < p}, (2)

where p, p > 0 are some positive parameters and A* is an adjoint operator to A.
The exact information about smoothness, namely the value of p, is usually not
available by practical experiment. So it should be assumed that the minimal-
norm solution ! belongs to the set

M(A) := Upe(o,p1)Mp(A), (3)

prl}

where p; < oo is an upper bound for possible values of p.
For constructing an effective numerical method for solving (1) we also need to
describe smoothness properties of A. To this end let consider some orthonormal
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basis {e;(t)}° in L2 and denote by P, orthogonal projection onto linear span
of elements {e;(¢)}]" such that

m

Pru(t) = (u,e;)ei(t).

i=1

Further we introduce the class of operators

M, = {A: JAl <0, > @2 (0 m)* < vf}»

n+m=1

where r > 0, &%7 fo fo en(t)em(T)a(t, T)drdt, v0 < e 1y = (y0,71),n = 1
ifn=0andn =n otherw1se As an example of operator from the class
mentioned one can present integral operator A’ that has the same structure as
(1) with kernel a/(t,7) that has mixed partial derivatives up to order r by each
variables and for 4,5 = 0,1,...,r it holds true that

oitid (t; 7)1
//[ BT }dtd7'<oo.

It is known [7], that there is such set v = (y0;1) that A’ € HE. Further we
assume that A € H’ for some values of v with 7o < e !

Every projection scheme for discretization of equation (1) with perturbed
right-hand side can be associated with a set of following functionals

(Aejﬁei)a (Zvj) € Q> (4)

(f(57e]€)7 k€ w, wi{l(’b,j)GQ}, (5)

where €2 is a bounded domain in the coordinate plane. The inner products
(4) and (5) are called the Galerkin functionals about equation (1). We de-
note as Card(Q2) the total amount of indexes for (4). Note that in the case
of the Fredholm integral operator A the Galerkin functionals (4) and (5) be-
come the Fourier coefficients by basis {e;(t)}:2; for the kernel and right-hand
side correspondingly. In the framework of this paper it is assumed that dis-
crete information about equation (1) is given in the view of sets (4) and (5).
Thus the projection methods for solving (1) are more suitable and will be in-
vestigated further. The first projection methods for ill-posed problems were
proposed in [12] where rectangle Qp», = [1,n] X [1,m] was considered as do-
main 2. Further this approach was improved by [11] due to the reduction of
discretization domain @, (it was replaced by so-called hyperbolic cross) with
saving necessary accuracy of approximation. This idea will be used further for
constructing an economical projection scheme (see section 3).

Further we call any mapping P = P(Q2) : Ly — Ls as projection method that
by means of the set of Galerkin functional (4) gives an element P(Aq)fs € Lo.
This elements can be interpreted as approximative solution of (1). In general
such mapping can be nonlinear and discontinuous. Let define the error of
projection method P(£2) for solving (1 ) with A € H! and zt € M(A) in the
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standard way

es (Hg, M(A),P(Q)) = sup sup sup 2t — P(AQ) f5.
AeHL zteM(A) fs:l|f—F5]1<8

The minimal radius of Galerkin information we set as

Rug (ML M(A) = f ol e (H,M(4)P(@).
Card(Q) < N

where N is maximal amount of discrete information (4).

The value Ry s (HQ, M (A)) is very important one and describes the minimal
possible error (among the whole projection methods) on all classes of equations
under consideration with using not more than N Galerkin functionals. At
first the order bounds for minimal radius of Galerkin information for ill-posed
problems with Holder-type smooth solutions were found by S.V. Pereverzyev
and S.G. Solodky in [8]. Further for different classes of ill-posed problems
the similar bounds were established in [16], [10] and others. Among mentioned
papers we emphasize [16] where the minimal radius of Galerkin information was
found for solving severely ill-posed problems (1) with operators A € H! and
smooth solutions from (2). In other words, in [16] only a priori case for choosing
regularization parameter was considered. In the present paper we extend the
set of possible solutions up to (3). Thus, we need to introduce a posteriori
way for selecting regularization parameter and correct rule for discretization.
Besides we set the goal to save both the order for minimal radius of Galerkin
information and the accuracy estimation of the projection methods as it is
in [16].

3. METHOD FOR SOLVING
A modified projection scheme will be applied for economical discretization
of operator A. The point of such scheme is to take as discretization domain 2
the hyperbolic cross of the form

T = {1 [1;27) UK (2571528 x [1;974)  [1;27) 1527,

where 1 < b < 2, n € N. For simplicity of our computations we consider bn as
the integer number. Then by approximative operator to A we understand the
following finite-dimensional mapping

Ap = PiAPyn + > (Pyr — Pyeo1) APy (6)
k=1

Denote by N the total amount of integer pairs (4,7) € I'y . It is known (see
[16]) that N := Card(Ty,) = ¢'2""n for 1/2 < ¢/ < 3/2. The approximation
properties of (6) for the operator class H’, were investigated in [16] and we
rewrite them below. So, for any A € H, it holds true

147 An — A*A|| < Cr27, (7)
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C 2—brn
DA — “PA* AN Lyl <« 222
I(PreA = An) In (A" A) 0l < o ®)
where
22r+1 12r
C1 = v max{y1,70} [3 + ﬁ} G2 = mp(In2)~"—-6B(p),
1 (b—1)t-»
ﬁ(p)_p_1< bl,p _1>’

for p# 1, and f(1) =1In %.

Because the problem under consideration is ill-posed we need some regular-
ization method to guarantee stability of approximations. In the framework of
the paper we stabilize equation (1) following [1]. So, we construct an inverse
operator to (1) by means of so-called generating function g(A). The function
ga(A) is Borel measurable on the interval [0,72] and the following conditions
are satisfied

sip VA [galV)] <% )
0<)\§'y(2]
sup |1 —Aga(N)|InPA7L < xIn7P é, 0<p<pi, (10)

0<)\§'yg

where X, x« are some positive constants independent of «. Then as the approx-
imate solution we take

20 Ga (A Ap)AY Pon fs. (11)

a,n
There are many well-known regularization methods satisfying (9). In particular,
we can mention Tikhonov’s method (with go(A) = (a 4+ A)7!), Landweber’s
method (with go(\) = A1 — (1 — pA\)/?], 0 < p < 2), and Showalter’s
method (with go(\) = A71(1 — exp(—A/a))).
In the paper [16] the error bound for (11) was found. For completeness we
rewrite the stretch of proof.

Theorem 1 ( [16]). Let approzimate solution has the form (11). Then on the
class of equations (1) with A € HQ,:L‘T € My(A) for any p > 0 the following
holds true

ot — a2 5| < (12)
< xpln™P i + % [(5 + [(Pyn A — Ay) lnfp(A*A)*lvH] +(13)
+xpC3In7P || A*A — A} An[| 7, (14)
1 0 <1
where C3 =<’ <Ps .
1+4(5p)P, p>1

Proof. The error for (11) can be divided onto two terms
zl — To s =2l — go (A% AL AL Pon f5s =
= (27 — go (AL A AL Pon f) 4 go (AL AL AL Pon (f — f5).  (15)

94



ABOUT MINIMAL INFORMATIONAL EFFORTS BY ...

Owing to (9) we estimate the second term as following

* * *5
g0 (A% An) A% Pon (f — f5)]| < 2

Nk

The first term we rewrite as
ol —go (A% Ap) A% Pon Azt =
=zf - 9o (AZ A AY Apx + go (A2 Ap) AZ (Ay, — PgnA)gcJr =
= [lnfp(A:An)_lv — ga(AZ A, AL A, lnfp(A;An)_lv]
+(I — ga(A;‘LAn)A;’;An)(ln_p(A*A)_lv — ln_p(A;‘LAn)_lv) +

+

9 (AL AL A% (A, — Pon Azt (16)
Then by (9) we immediately get
e —Ga (A5 An) A7 Pon f| <

(I = ga(A}An) A5 Ap) (In7P(A*A) o — InTP(AF Ay) o) || <
< xpIn P g4 A2 |(Prr A = An)at| +
+x|[In"P(A*A)"to — In"P (A% AL) |
Using the following relation (see [5, Theorem 4])

1 1
In?-—In"? t‘ < C3ln™P|s —t| 7!,

< xplnPL 4 %H(An — Popn A)af|| +

s
where |s —t| < e”! for s,t € (0;e71], we have
lf —zg 5l <
<xpln?14 % [0+ |[(Pan A — Ap) In~P(A*A)~1o||] +
+xCapln ™ [[A*A — A7 A7,
that has to be proved. O

Remark 9. Let consider the function B(p) which is included in the bound (8).
The analysis of behavior of B(p) shows that it is continuous monotonically in-
creasing function. Thus we have that for all 0 < p < py the following inequality

holds true )
1 (b—1)t—Pr1
B(p) < B(pl) _ {p1—1 ( pi-p1 1) , D1 7'é 1,

lnbfbl, pr = 1.

To minimize the error bound (12) we take discretization parameter n accord-
ing to the rule
(brIn2)n270" = 6. (17)
The equality means that as discretization value n we take the number which
is rounded up to solution of (17). Taking into account (17) and remark 9 the
estimations (7) and (8) can be rewritten in the following way

| A% A, — A*A| < C16, (18)
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|(Pan A — A,) In"P(A* A)~Lo|| < Cyf, (19)
where Cy = y1p(In 2)*1%6(191).
Due to (18) and (19) the error bound (12) can be represented as follows

1 b
2t — ]l < xpIn™? o T+ C4)ﬁ +xCapln P(C16) 7. (20)

Obviously, that for ag = In(671)(C16)? we have
In"P(Cy6)" L =2PInP (ln(é_l)(ln(é_l)C%Q)_l) =2PIn""P (ln(é_l)(ao)_l) .

In this way for all a > «q it holds true that
o Ly 1. _
InPa!>In paol > 2—pln P(C9) L

Let denote by 1 () = C5In™? é and n2 () = C6%, where C5 = xp+xCsp2P
and Cs = x«(1 4+ Cy). Thus error bound (20) can be rewritten as follows
" — 2 51l < mi(a) +m(a), (21)

where the functions 71 (a) and 72(a) for a — 0o are monotone increasing and
decreasing convex functions respectively.

4. A POSTERIORI SELECTION OF REGULARIZATION PARAMETER
Fix some real number ¢ > 1 and define by Dj)s the set of possible values for
the parameter a:

Dy = {oi = ag(¢?)',i=1,2,..., M},

-1
where ag = In(671)(C10)%, M = [lggi%‘)q } . Then according to the balancing

principle (see, for example, [9]) selection of index iy for parameter « is realized
by the rule

iy =max{i: a; € D}, }, (22)
where
D]D ={a; € Dy : Hmim — xij7n|| <Admo(ej), Jj=1,...,4}.
Further we introduce the auxiliary values
o = max{a; € Dy mi(ay) < na(ay)},
a={a; € Dy m(ai) =m2(a)}.

Theorem 2. Let A € H) and =¥ € M(A). Then for the projection method
(11), (17), (22) the following error bound

2" =23 4l < 6am(a) (23)

takes place.
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Proof. Let check that o, < ay. Due to (21) it holds true that for all a <

s ) ) B
1260 = ol < Nl =2l + 12" =2l < mu(e) () +m(an) +a(a) <

< 2ma(a) + 2na(aw) < dma(a).
Consequently o, € D]J\r/[ and o, < ag.
Taking into account definitions of au and o, from (22) and (21) we have
l2F =20, Wl < N2t = af, ol + 20, 0 — 20, 0]l < 6m2(c).
It is evident that a, < & < qQa* then we find
ot — 22, |l < 6m2(as) = 6gna(ang®) < 6qma(&) = 6gmi(a),

which was to be proved. O

Theorem 3. Let A € H) and x¥ € M(A). Then error bound for the projection
method (11), (17), (22) is the following

2" = 25, I < 6grpIn~P 671, (24)
where Ky is some constant that does not depend on 9.

Proof. 1t is easy to find that

then from (23) we have
2
T 1+2p
|zt — $g+ W < 6gInPa! < 6gInP <065> Lo 6gr,In"P6t. O
’ C5

Remark 10. [t is well-known (see, for instance [17]) that for severely ill-
posed problems any approzimation method guaranteing accuracy O(In"P 6~1) is
optimal by the order on the whole set of solutions (3). Thus, theorem 3 shows
that our method (11), (22), (17) saves optimal order of accuracy.

5. MINIMAL RADIUS OF (GALERKIN INFORMATION
Now we are ready to prove the upper bound for Ry s (Hl;, M (A)) .

Theorem 4. Let A € H; and 2t € M(A). The parameters n and o for (11)
are chosen according to (17) and (22) respectively. Then for sufficiently small
0 the following inequality

Rys (H;, M(A)) < cpIn™P N*
holds true where ¢, = 6qky <T(1_27’;)_“) " and Vi :r(l—p) —p>0.

Proof. By virtue of (17) we have
brn2(2"n)""n L = 6.
Using the relation N = ¢2"n we get
()" (brin2) 'NTp T = 571 (25)
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By evident relation

and (25) we have

1 (d)7'NT S ()"N"(bIn2)"*  ()""N"(bIn2)" (26)
~ (In2)brn™1 = brln2(InN)*t1  p(InN)rHL
Starting with some N it is holds true that In N < N# then for any p > 0 we

have

N"(bIn2)" - N"(bln2)" _ rerp—p (CDIN2)" _
()rr(In N)r+1 = (¢)rp Nulrt1) (c)rr
pr=m—p (¢'bln2)"
B (c)rr

Taking into account the relation above from (26) we have

pra=m—p (bIn2)"

' (d)rr
Without loss of generality we suppose that p: 7(1 — u) — g > 0. Then taking
logarithm from inequality above one can find

N <5t

=) =B v st

2r
Hence, the error estimation (24) takes the form
|t — :ngII < 6grpInP 67t < ¢ InTP N,

Due to definition for Ry s (HQ, M (A)) we get
Ry (M}, M(A)) < ¢y In™P N?,

which was to be proved. O
Theorem 5. Let A € H and 2T € M(A), then
1 _ _
ST In"? N*" < Ry (H., M(A)) < ¢, In? N*",
r+1

where N < 6=+ In"+ 6. Indicated order O(In"? N?7) is achieved in the frame-
work of projection method (11) , (17), (22).

Proof. 1t is known (see, for instance [16] ) that for all p > 0 it fulfills
Ry s (HQ, Mp(A)) > &, In"P N?" where ¢, = 27P~L. By virtue of definition for
the sets M,(A) and M(A) the following inequality holds true

Ry (H;, Mp(A)) < Ry (’ny, M(A)) .
Due to Theorem 4 we immediately get statement of the theorem. O

Remark 11. From Theorem 5 it follows that our approach gives optimal error
bound with amount of discrete information in the form of Galerkin functionals

(4).
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Remark 12. Let consider the set M'(A) = Upep p Mp(A) C M(A). If we
assume that T € M'(A), then the relation (17) should be replaced by the fol-
lowing

(In2)br27bm =g, (27)
with saving bounds (18) and (19). As we can see below, such selection of dis-

cretization parameter allows to reduce amount of discrete information by loga-
rithmic multiplier.

Theorem 6. Let A € H) and xt € M'(A). The parameters n and o for (11)
are chosen according to (27) and (22) respectively. Then for sufficiently small
0 it holds true
1
op+1

where N =< 5_% Ins—1L.

In"? N*" < Ry (H:, M'(A)) < ¢pIn™? N,

Proof. The proving of the theorem completely repeats as ones for Theorems
4 and 5. O

Remark 13. Comparing Theorems 5 and 6 we can conclude that due to restric-
tion of the set of possible solutions we obtain reduction of amount of discrete
information by logarithmic multiplier (compare the values N in both theorems).
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DIFFERENCE METHODS
FOR SOLVING INVERSE EIGENVALUE PROBLEM

H.P.YARMOLA

PE3IOME. B po6oti po3risiHyTo obepHeHy 3aJatly Ha BjacHI 3HaveHHs. s
9HCeIHHOTO PO3B’3yBaHHS 33/1a9i 3ACTOCOBAHO METO]T XOP 1 MeTo 1 JIiHIHHOT
inrepnonauii (meron Kypuarosa). Ha sigminy Big merony Heiorona, ni itepa-
IiIHI TPOIECH BUKOPUCTOBYIOTD JIUIIE 3HAYEHHS OTIEPATOPA 3 ABOX MOMEPETHIX
ireparniii Ta He MOTPEOYIOTHh AHAJIITUYHO 33JJAHUX IMOXIJHUX. 3AITPOIIOHOBAHI
MEeTO7 33CTOCOBAHO [JIsI PO3B’ A3y BAHHS O0OEPHEHUX 333 HA BJIACHI 3HAYCHHS
pizHOro tmmy. Posrngmyri iTepamiiiHi mpormecw HOPIBHIOIOTBCE 3 METOIOM
Hpiorona 3a KibKicTIO onepariiil, oTpiOHUX /11 OOUMCTIEHHS TIePIIO] TTOIiTe-
HOI Pi3HMIY Ta HOXiAHOI meTepMiHAHTA.

ABSTRACT. In this paper an inverse eigenvalue problem is considered. Secant
method and method of the linear interpolation (Kurchatov’s method) are
applied for the numerical solution of this problem. Unlike Newton’s method,
these methods use only values of the operator at two previous iterations and
do not require analytical derivatives. Proposed methods are used for solving
different types of inverse eigenvalue problems. Considered iterative processes
are compared with the Newton’s method by the number of operations required
to compute the first divided difference and derivative of determinant.

1. INTRODUCTION

An inverse eigenvalue problem (IEP) is to determine a matrix from a given
spectral data. These problems arise in many applications, including control
design, system identification, structure analysis and so on. There are special
cases of inverse eigenvalue problems. Let’s consider the following problems.

General IEP. Let 4; = {a;k} be complex n x n matrices for i = 0,n and
A= (A,..., )T € C". Find the vector p = (p1,p2,...,pn) € C?, such that
matrix

A(p) = Ao+ ZpiAi
i=1

has eigenvalues A1, ..., A,. This problem involves classic partial cases of addi-
tive and multiplicative inverse eigenvalue problems.

Additive TEP. Let A be a given complex n X n matrix and
A= (A1,..., )T € C". Find the diagonal matrix D = diag(p1,p2,...,Pn),
p; € C, i =1,n, such that matrix A + D has eigenvalues A1,..., \,.

Multiplicative IEP. Let A be a given complex n x n matrix and
A= (A1,..., )T € C". Find the diagonal matrix D = diag(p1,p2,...,Pn),
p; € C, i =1,n, such that matrix AD has eigenvalues Ay, ..., Ay,.

Key words. Inverse eigenvalue problem, Secant method, Kurchatov’s method.
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There are a large of literature on conditions for the solvability of inverse
eigenvalue problems, different approaches and numerical methods for its solving
[1-3,6,8]. We use approach, which calculates the zeros of the nonlinear function

det(A(p) — M)

F(p) = ; , (1)
det(A(p) — Aul)

where A1,...,\, are given eigenvalues and \; # \; for ¢ # j.

Vector p = {p1,p2,...,pn}’ € C" is a solution of the inverse eigenvalue

problem if and only if
F(p) =0. (2)

In papers [1,8] the Newton’s method is used for solving systems of nonlinear
equations (2) with F'(p) as (1). It is known that the application of Newton’s
method requires the calculation of the first derivative of determinant at ev-
ery iteration. To calculate this derivative some authors use Trace-Theorem of
Davidenko or LU decomposition of matrix [1,7,8].

In this work we apply difference methods for solving inverse eigenvalue prob-
lem, including Secant method and method of linear interpolation (Kurchatov’s
method), assuming the existence of a solution. These methods do not require
analytical derivatives and can be applied to a wider range of problems.

2. ALGORITHMS OF DIFFERENCE METHODS
A well-known simple difference method for solving nonlinear equations is the
Secant method

pF = pk) — pp=1); pN) =L p(p®)) (3)

with convergence order . An other method is the quadratically conver-

gent Kurchatov’s method
p* ) = p®) — p(2p®) — pt=1); plh=I =L p(p®)), (4)

In formulas (3) and (4) F(z;y) is a divided difference of the first order of F' at
the points x and y. Convergence analysis of difference methods (3) and (4) for
solving nonlinear operator equations was conducted by the authors [4,5,9,10].

Let F' be a nonlinear operator defined on a subset D of a linear space X with
values in a linear space Y and let x, y be two points of D. A linear operator
from X into Y, denoted as F'(x;y), which satisfies the condition

F(z;y)(z —y) = F(x) — F(y)

is called a divided difference of the first order of F' at the points z and y. In the

case of systems of nonlinear equations the divided difference F(x;y) is n X n

matrix. Its elements are calculated by the following formula:
Fi(mlw"7$j7yj+1>"'7yn) _F‘Z’(wlw"axjflaij"ayn)

F(z;y)i; = 5
" i = Y

1,5 =1,n.
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From (1) and the last formula we see that to calculate the elements of vector
F and matrix of divided differences we need to calculate determinants of ma-
trices. To calculate the determinant we apply the LU decomposition of matrix,
as in [7,8]. Let D(A) be a matrix whose elements are functions of A\. Then for
a fixed value A = \,, we can calculate D = LU or PD = LU, where P is a
permutation matrix, det P = (—1)¢, ¢ is a number of permutations and

det D =det LdetU = H Ui (5)
i=1
or n
det D = det Pdet Ldet U = (—1) ] ] wis. (6)
=1

Algorithm of the Secant method for solving IEP.
1. Choose initial approximations p{~ and p(®.
2. For k = 0 until convergence, do:
(a) Compute LU decomposition of matrices D; = A(p) =N\, i =1,n,
D; = A(p') — NI, D; = A(p") — NI, (i,j = 1,n), where

k— k— k
pI: (pg 1)7"‘7 g 1)7 ‘g‘_t,_)lw"?pglk))?
p” = (pgk_l)v R 516__11)7 gk)7 tee 7p1(1k )

(b) Compute F;(p®)) = det(D;), i = 1, n by formula (5) or (6) and form
vector F(pk).
(c) Compute F;(p') = det(D}), Fy(p") = det(D; ), 4, j = T,n by formula
(5) or (6) and form matrix F(p*~1;p®*)) where
F(p(kfl);p(k))m - %7 (i,j =1,n).
p . — 3
J J
(d) Compute p*+1) by the formula (3).
Algorithm of the Kurchatov’s method for solving IEP.
1. Choose initial approximations p{~ and p(®.
2. For k = 0 until convergence, do:
(a) Compute LU decomposition of matrices D; = A(p) =\, i =1,n,
D; = A(p') — NI, D; = A(p") — M, (i,j = 1, n), where

=2 = pl Y, 2pl — p Y R plk ),
p" = 2pt = pit Y, o™ p ) P )y,

(b) Compute Fy(p*)) = det(D;), i = I, n by formula (5) or (6) and form
vector F(pk).
(c) Compute F;(p') = det(D}), Fy(p") = det(D; ), i,j = T,n by formula
(5) or (6) and form matrix F(2p®*) — p=1; p(:=1) where
(ol T (ol

k k—1
2(pl) — pl* )
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(d) Compute p*+1) by the formula (4).

Note, that matrices D;, D;, D;/ can coincide with each other. In this case
LU decomposition and determinant can be calculated only once and thus the
amount of computation is reduced.

Next we consider the computational complexity of proposed algorithms. Let
compute the amount of operations (multiplications and division) required to
compute divided differences. It is known that to get LU decomgosition of
matrix and compute its determinant by formula (5) it is need nih2n =3
operations [7,8]. In the same articles it is shown that to compute the first
derivative of determinant it is required n + n? — n operations.

To compute divided difference of determinant using LU decomposition it is

. 2n4+4n -3 , 2n3 +7n — 3
required ———— operations for Secant method and — s opera-
tions for Kurchatov’s method.

From these assessments we conclude that the difference methods are more
effective than Newton’s method by the amount of calculations in one iteration.
However, the number of iterations for difference methods usually is greater than

for Newton’s method, in particular for the Secant method.

3. NUMERICAL EXPERIMENTS

In this section we present results of Secant and Kurchatov’s methods and
compare with results of Newton’s method. We consider inverse eigenvalue
problems with distinct eigenvalues. All vectors will be written as row-vectors.
To apply the methods (3) and (4) we need to set the additional approxima-
tion p(~. To get good starting values it was chosen in the following way:
p(_l) = p(O) + 107%. The iterations of considered iterative processes were
stopped when [[p*+t) — p®)|| o < e or |F(p*+D))|o0 < &, e = 1077,

Example 3.1 Consider the general inverse eigenvalue problem [1]. Let

n =25,
2 —008 0 0
—0.03 2 —0.08 0 0
Ay = 0 —003 2 —008 0 ,
0 0 —003 2 —0.08
0 0 0 —003 2
1 0 001 —0.02 0.03
n —-0.03 1 0 001 —0.02
R=> rel =| 002 -003 1 0 001
=1 —0.01 0.02 —0.03 1 0

0 —-0.01 0.02 -0.03 1
and A; = rie;fp, 1=1,...,5, where e; — i-th unit vector. The given eigenvalues
are A= (0, 1 — 0,246, 3—0, 4).

Let 6 =0 and p(o) = (-2, —1,0, 1, 2). Then Newton’s method converge to
a solution

p* = (1.99279, 1.00257, 0.00237, —0.99786, —1.99987).
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Using the same starting point p(?), we found a different solution
p* = (—2.00240, —0.99800, 0.00236, 1.00271, 1.99533)

by Secant and Kurchatov’s methods.
Let 6 = 0.441. Then Newton’s method, methods (3) and (4) converge to a
solution

p* = (—1.56910, —1.43181, 0.49205, 0.51127, 1.99758)

with the starting point p(® = (=2, —1, 0, 1, 2). The received results are dis-
played in the Table 1.

TABL. 1. The numerical results for example 3.1

Iterations, k Hp(k) —p(k_l)Hoo HF(p(k))HOO
Newton’s method 10 5.73238 x 10710 | 8.07568 x 10~ 1°
Kurchatov’s method 10 9.88872 x 10~ | 4.12121 x 10715
Secant method 14 2.31415 x 10711 | 8.07565 x 10~ 1°

Example 3.2 Consider an additive inverse eigenvalue problem with distinct
eigenvalues [3]. Here n = 8,

0 4 -1 1 1 5 -1 1
4 0o -1 2 1 4 -1 2
-1 -1 0 3 1 3 -1 3
o =
5) 4 3 2 1 0 -1 6
-1 -1 -1 -1 -1 -1 0 7

1 2 3 4 5 6 7 0
The eigenvalues of the problem 3.2 are \* = (10, 20, 30, 40, 50, 60, 70, 80).

TABL. 2. The numerical results for example 3.2

Secant method | Kurchatov’s method
k 1P™ — p*[l Ip™ — p*[lso
0 8.68150 8.68150
1 2.31065 2.31079
2 1.10171 0.59989
3 0.23738 0.05708
4 0.02958 0.00171
5 0.00085 5.26419 x 106
6 | 4.20674 x 106 5.07569 x 1010
7 16.34913 x 10710

Proposed methods converge to a solution
p* = (11.907888, 19.705522, 30.545498, 40.062657,

51.587140, 64.702131, 70.170676, 71.318499)
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with the starting point p(® = (10, 20, 30, 40, 50, 60, 70, 80). The result was
obtained in 8 (Secant method) and 7 (Kurchatov’s method) iterations. The
nature of the convergence of the considered numerical methods is shown in
Table 2.

Applying difference methods (3) and (4) to this problem with the starting
point p(® = (10, 80, 70, 50, 60, 30, 20, 40) we find the following solution in 7
iterations:

p* = (11.461354, 78.880829, 68.353400, 49.878330,
59.168918, 30.410470, 24.834324, 37.012374).

So, difference methods can be applied for solving inverse eigenvalue problems.
Also these methods are simple in program implementation.
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