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NUMERICAL MODELLING OF TEMPERATURE FIELDS

DURING IMPULSE FRICTIONAL HARDENING

Ivan Chyr, Heorgiy Shynkarenko

Ðåçþìå. Ñôîðìóëüîâàíî ïî÷àòêîâî-êðàéîâó òà âiäïîâiäíó âàðiàöiéíó

çàäà÷ó, ÿêà ìîäåëþ¹ ïîøèðåííÿ òåïëà â ïðîöåñi ôðèêöiéíîãî çìiöíåííÿ

äåòàëi ðóõîìèì iìïóëüñíèì ïîâåðõíåâèì ïîòîêîì òåïëà. Íà ïiäñòàâi ðiâ-

íÿííÿ áàëàíñó åíåðãi¨ âñòàíîâëåíî óìîâè êîðåêòíîñòi âàðiàöiéíî¨ çàäà÷i.

Äèñêðåòèçàöiÿ îñòàííüî¨ ìåòîäîì ñêií÷åííèõ åëåìåíåòiâ äîïîâíåíà îäíî-

êðîêîâîþ ðåêóðåíòíîþ ñõåìîþ iíòåãðóâàííÿ â ÷àñi. Çíàéäåíî äîñòàòíi

óìîâè ñòiéêîñòi òà çáiæíîñòi öi¹¨ ñõåìè. Çàïðîïîíîâàíà ìåòîäèêà iëþñòðó-

¹òüñÿ ðåçóëüòàòàìè îá÷èñëþâàëüíèõ åêñïåðèìåíòiâ, âèêîíàíèõ ç âèêîðèñ-

òàííÿì ñåðåäîâèùà FreeFEM++.

Abstract. This pap er fo cuses on the pro cess of detail's frictional hardening

with a jagged to ol. We state initial b oundary value problem for heat conduc-

tion in detail under a dynamic impulse heat source and corresp ondent varia-

tional formulation. Conditions for well-p osedness of the latter were obtained

using the energy balance equation. Finite element space semi-discretization

with subsequent one step recurrent time integration scheme were employed.

Su�cient conditions for schemes stability and convergence were obtained. De-

scrib ed metho dology is illustrated with the results of numerical exp eriments,

implemented using op en source environment FreeFEM++.

1. Introduction

Machinery parts play an imp ortant role in the exploitation pro cess. They

contact b etween themselves, with other ob jects and environment. As the main

loading of those pro cesses is taken by details surface layers, those physical and

chemical prop erties are directly linked to machine's reliability [9].

Sup er�cial hardening of details results in increase of durability, toughness and

the time of their exploitation. We explore the pro cess of sup er�cial hardening

with highly concentrated energy source [11]. This energy source is generated

in the area of contact b etween the to ol and detail due to friction. During the

contact this area is characterized by high increase in temp erature and subse-

quently decrease during its absence [5]. As a result, a sp ecial �white� layer with

qualitatively b etter physical and chemical prop erties is formed.

This pap er considers the problem of heat transfer [2] in the workpiece b eing

pro cessed with serrated to ol. This will enable us to test general approach to this

kind of problems and apply it to the problems of coupled thermo-mechanical

�elds [8 ].

Key words . Heat equation, �nite element metho d, mixed problem, impulse moving source,

sup er�cial hardening.
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It should b e mentioned that the problem of heat transfer in technological

pro cesses related with hardening is actual and widely considered in technical

literature [7, 8].

Main feature of our problem is serration of the to ol that pro duces regime

of friction. This prop erty contributes in intro ducing sp eci�c features in the

formulation of initial-b oundary value problem and needs additional theoretical

reasoning during the pro of of correctness of its variational form.

So �rstly we formulate initial b oundary value problem of heat transfer for

detail [2]. Main sources of heat in- and out�ow are represented with b oundary

conditions for heat �ux in the area of dynamic contact and heat exchange with

environment on the rest of details b oundary. Then we formulate corresp ondent

variational problem with further Galerkin space semi-discretization. After a

little algebra we obtain appropriate Cauchy problem. Based on the prop erties

of the variation problem comp onents we show the uniqueness of its solution.

On the next step we build energy equation and derive apriori estimates from

the upp er limit of linear functional. Consequently, correctness of semi-discrete

problem is shown. To �nish this whole pro cedure, we show the correctness of

variational problem. This is done on the foundation of the b oundness of semi-

discrete approximations sequence and apriori estimate of linear functional.

Finally, a time discretization is applied to the semi-discrete problem. Fur-

thermore, su�cient conditions for convergence and stability of resulting one-

step time integration recurrent scheme are obtained.

Built numerical scheme was implemented with FreeFEM++ [4] using qua-

dratic �nite element approximation. Rates of convergence were veri�ed for the

simplest case of our practical problem that includes one contact and contactless

p erio ds. Afterwards scheme was applied to mo del the full pro cess. Resulting

data was analyzed and represented with graphs.

2. Statement of the problem

We assume that the workpiece is elastic b o dy which o ccupies the b ounded

domain 
 in euclidian space 
 � Rd(d = 1 ; 2; 3) with Lipschitz b oundary � .

Let us denote by x = ( x1; :::; xd) arbitrary p oint set of the closure

�
 = 
 [ �
and t is arbitrary moment in time from interval [0; T ]; 0 < T < + 1 :

Due to the application of internal heat sources f = f f i (x; t )gd
i =1 and surface

heat �uxes q̂ = q̂(x; t ) b o dy temp erature changes. These changes are relative

to given initial temp erature �elds u0 = u0 (x) and will b e denoted as u(x; t ) .

Also they satisfy the following heat equation:

�c v
@u
@t

� r :(� r u) = f in 
 � (0; T ]; (1)

where r :(� r u) = div (� r u); � = � (x) > 0 is workpiece density, cv = cv (x) >
0 is its co e�cient of sp eci�c heat capacity and � = f � ij (x)gd

i;j =1 represents

matrix of thermal conductivity co e�cients that is symmetric and p ositively

de�ned:

(
� km (x) = � mk (x);
� km (x)� k � m � � 0� k � m ; � 0 = const > 0; 8� k 2 R in 
 ;

(2)
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where Einstein summation notation applies.

Equation (1) is supplemented with b oundary conditions for interaction with

environment, in particular for contact with the to ol:

� n:(� r u) = � (u � û)(1 � � ) + q̂� on � � [0; T ]; (3)

where û = û (x; t ) is the temp erature of environment, � = � (x; t ) is heat

transfer co e�cient and n = f n i g
d
i =1 ; n i = cos (n; x i ) are outer unit normal

vector and resp ectively its comp onents.We also intro duce function � (x; t ) that

can accept two values: either 1 for all b oundary p oints in the contact area

b etween to ol and detail during the contact p erio d, or 0 in all other cases.

Thereby we formulate the following initial b oundary value problem:

8
>>>>>>>>>><

>>>>>>>>>>:

given � = f � ij (x)gd
i;j =1 ; � = � (x); cv = cv(x);

u0 = u0(x); � = � (x; t ); q̂ = q̂(x; t ); f = f (x; t );
� = � (x; t ); û = û(x; t );
f ind temperature f ield u = u(x; t ); such that
�c v

@u
@t � r :(� r u) = �c v f in 
 � (0; T ] ;

� n:(� r u) = � (u � û) (1 � � ) + q̂� on � � [0; T ];
ujt=0 = u0 in 
 :

(4)

In addition, we supp ose that the data of (4) satis�es the conditions

8
><

>:

�; c v ; � ij 2 L 1
�
0; T ; L 2 (
)

�
; u0 2 L 2 (
) ;

f 2 L 2
�
0; T ; L 2 (
)

�
; �; � 2 L 1

�
0; T ; L 2 (�)

�
;

û; q̂ 2 L 2
�
0; T ; L 2 (�)

�
:

(5)

3. Variational formulation

To formulate a variational problem, let us intro duce spaces of admissible

temp eratures V = H 1(
) , conjugated space V 0
and spaces H = L 2(
) .

Hereinafter we will use the following notation

u (t) = u (x; t ) � function x ! u (x; t ) ;

u0(t) = @u=@t� function x ! @u(x;t )
@t :

Let us multiply heat equation of system (4) by arbitrary function v 2 V
with successive integration over 
 . After utilization of Green's formula and

b oundary condition (3) we obtain

0 =
Z




�
�c vu0(t) � r :[� r u(t)] � f (t)

	
vdx =

Z



�c vu0(t)vdx

+
Z



(r v):[� r u(t)]dx �

Z



f (t)vdx +

Z

�
� (t)u(t)[1 � � (t)]vd


�
Z

�
� (t)û(t)[1 � � (t)]vd
 �

Z

�
q̂(t)� (t)vd
:

(6)

As the next step, we intro duce the following bilinear forms
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s(u; v) =
Z



�c vuvdx 8u; v 2 H; (7)

a(u; v) =
Z



(r v):[� r u]dx +

Z

�
�u [1 � � ]vd
 8u; v 2 V; (8)

and such linear functional

< l; v > =
Z



�c v fvdx +

Z

�
[� û(1 � � ) + q̂� ]vd
 8v 2 V: (9)

Thus the variatinal formulation of (4) can b e represented in the following

manner:

8
><

>:

f ind such heat distribution u (x; t ) that
s(u0(t); v) + a(u(t); v) = < l (t); v > 8v 2 V; 8t 2 (0; T] ;
s(u(0) � u0; v) = 0 :

(10)

4. Properties of the variational problem components

From de�nition of bilinear forms we can state the following

8
><

>:

symmetric continous bilinear form s (�; �) def ined by (3)

is H � elliptic and generates norm kukH = s
1
2 (u; u) 8u 2 H;

which is equivalent to k � k0;
 :

(11)

Second bilinear form has more complex structure that results is necessity of

additional con�rmation of its prop erties.

Theorem 1. Let conditions (5) and (2) are satis�ed.

Then bilinear form a(�; �) de�ned by (8) is continuous and the fol lowing in-

equality holds

ja(u; v)j � C
h
k� kL 1 (
) + k� kL 1 (�)

i
kukH 1(
) kvkH 1 (
) :

Proof. Using Cauchy-Bunyakovsky-Schwarz inequality and trace theorem [10,

p. 72-73] we obtain

ja(u; v)j � j
Z



(� r u) : (r v) dxj + j

Z

�
�u (1 � � )vd
 j

�
Z



j� r uj:jr vjdx +

Z

�
j�uv jd
 � f

Z



j� r uj2dx

Z



jr vj2dxg

1
2

+ f
Z

�
j�u j2jvj2d
 g

1
2

� k � r ukH kr vkH + k�u kL 2 (�) kvkL 2 (�)

� C
h
k� kL 1 (
) + k� kL 1 (�)

i
kukH 1 (
) kvkH 1 (
) ; 8u; v 2 H 1(
) :

This means that a(�; �) is b ounded and as a result continuous. �
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Theorem 2. Let conditions (5) and (2) are satis�ed.

Bilinear form a(�; �) de�ned by (8) is H 1(
) � el liptic, moreover the fol lowing

inequality holds:

a(u; u) � m0
minf 1; CF g

2
kuk2

H 1 (
) :

Proof. The latter estimation can b e obtained after utilization of Friedrichs in-

equality and the following transmutations

a(u; u) � � max

Z



(r u)2dx +

Z

�
�u 2(1 � � )d


� minf � max ; � 0g
� Z



(r u)2dx +

Z

�
u2d


�

� minf � max ; � 0g[1
2(

Z



(r u)2dx +

Z

�
u2d
 ) + 1

2(
Z



(r u)2dx +

Z

�
u2d
 )]

� m0

�
1
2

Z



(r u)2dx + CF

2

Z



u2dx

�
� m0

minf 1; CF g
2

kuk2
H 1 (
) :

�

Corollary 1. Let conditions (5) and (2) are satis�ed then fol lowing statement

holds:

8
><

>:

symmetrical continuous bilinear form a (�; �) f rom (2:4)

is V � elliptic and generates norm kukV = a
1
2 (u; u) 8u 2 V;

which is equivalent to k � k1;
 :

(12)

Finally, let us derive the upp er estimation of linear functional (9) . This

is done starting with application of Cauchy-Bunyakovsky-Schwarz inequality

and theorem [10, p. 72-73] ab out the trace of the function from H 1(
) on the

b oundary of 


j< l; v > j =

�
�
�
�

Z



�c v fvdx +

Z

�
� û(1 � � )vd
 +

Z

�
q̂�vd


�
�
�
�

� jj �c v jj1 ;
 jj f jjH jj vjjH + jj � jj1 ;� jj ûjjL 2 (�) jj vjjL 2 (�) + jj q̂jjL 2 (�) jj vjjL 2 (�)

� [ jj �c v jj2
1 ;
 jj f jj2

H + jj � jj2
1 ;� jj ûjj2

L 2 (�) + jj q̂jj2
L 2 (�) ]

1=2
[jjvjj2

H + 2 jjvjj2
L 2 (�) ]

1=2

� C maxf jj �c v jj1 ;
 ; jj � jj1 ;� ; 1g[jj f jj2
H + jj ûjj2

L 2 (�) + jj q̂jj2
L 2 (�) ]

1=2
jj vjjV

8v 2 V:

This reasoning results in the following statement.

Theorem 3. Linear functional < l; v > de�ned by (9) in continuous and sat-

is�es the fol lowing estimation

j< l; v > j � z0[jj f jj2
H + jj ûjj2

L 2 (�) + jj q̂jj2
L 2 (�) ]

1=2
jj vjjV 8v 2 V;

where z0 = C maxf jj �c v jj1 ;
 ; jj � jj1 ;� ; 1g:
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5. Galerkin semi-discretization

To calculate approximate solutions of variational problem (10) we select se-

quence of �nite element subspaces f Vhg � V such that dim Vh = N (h) = N !
+ 1 and

S

h> 0
Vh is complete in V . Then for any h > 0 we gain the following

semi-discrete approximations of the variational problem (10)

8
><

>:

given u0 2 V ; f ind u h(x; t ) 2 L 2 (0; T ; Vh) such that
s(u0

h(t); v) + a(uh(t); v) = < l (t); v > 8t 2 (0; T] ;
s(uh(0) � u0; v) = 0 8v 2 Vh :

(13)

Next we denote by f ' i gN
i =1 the basis of the space Vh . Consequently sought

solution of (13) will take form of the following linear combination

uh(x; t ) =
X N

m=1
Um (t)' m (x) (14)

with unknown co e�cients U1(t); :::; UN (t) . Substitution of (14) into (13) yeilds

such problem

8
>>><

>>>:

given u0 2 V ; f ind u h(x; t ) 2 L 2 (0; T ; Vh) such that
P N

m=1 U0
m (t)s(' m (x); v) +

P N
m=1 Um (t)a(' m (x); v)
= < l (t); v > 8t 2 (0; T] ;

P N
m=1 Um (0)s(' m (x); v) = s(u0; v) 8v 2 Vh :

(15)

This problem can b e transformed into Cauchy problem after consequent sub-

stitution of v = ' i ; i = 1 ; :::; N; into (15) . As a result, we receive the following

equations.

(
SU0(t) + AU (t) = R(t) 8t 2 (0; T];
SU(0) = S0:

(16)

Statements (11), (12) show that matrices S and A are Gramians of lin-

early indep endent functions f ' i gN
i =1 resp ectively to scalar pro ducts s ( � ; � ) and

a ( � ; � ) . Thus

8
><

>:

symmetrical matrices
S = f s(' i ; ' j )gN

i;j =1 ; A = f a(' i ; ' j )gN
i;j =1

are positively def ined:

(17)

Since data of the problem (4) satis�es regularity conditions (5) and (17)

holds, Cauchy problem (16) has unique solution.

6. Energy equation

Sp ecial kind of equation can b e obtained from (13) after assuming that v =
uh (t) : 8

><

>:

1
2

d
dt [s(uh(t); uh(t))] + a(uh(t); uh(t))

= < l (t); uh(t) > 8t 2 (0; T];
s(uh(0); uh (0)) = s(u0; uh(0)) :

(18)
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If we take into account (11), (12) , the latter system can b e reformulated in

such a manner

(
1
2

d
dt kuh(t)k2

H + kuh(t)k2
V = < l (t); uh(t) >;

kuh(0)k2
H = s(u0; uh(0)) :

(19)

The �rst equation of (19) can b e integrated over [0; t] to get such equality:

1
2

kuh(t)k2
H +

Z t

0
kuh(� )k2

V d� =
1
2

kuh(0)k2
H +

Z t

0
< l (� ); uh(� ) > d�

8t 2 [0; T]:
(20)

It should b e noted that the last equality is the basis for further pro of of

well-p osedness of (10). Futhermore, left part of (20) is natural (energy) norm

for this problem.

7. Apriori estimates and well-posendess of variational problem

Now we can apply Cauchy-Shwarz inequality to the right part of (20) to

calculate such an estimate

�
�
�
�

Z t

0
< l (� ); uh(� ) > d�

�
�
�
� �

Z t

0
jj l (� )jj � jjuh(� )jjV d�

� 1
2

Z t

0
[ jj l (� )jj2

� + jjuh(� )jj2
V ] d�

(21)

Hence, utilizing equation (20) and inequality (21) , we obtain

1
2 kuh(t)k2

H +
Z t

0
kuh(� )k2

V d� � 1
2 kuh(0)k2

H + 1
2

Z t

0
[ jj l (� )jj2

� + jjuh(� )jj2
V ] d�

which can b e rewritten into

kuh(t)k2
H +

Z t

0
kuh(� )k2

V d� � k uh(0)k2
H +

Z t

0
jj l (� )jj2

� d� 8t 2 [0; T]: (22)

Consequently this states that

(
semi � discrete Galerkin approximations f uhg
form a bounded set in space L1 (0; T ; H ) \ L 2 (0; T ; V ) :

(23)

This also states the stability of semi-discrete approximations.

Theorem 4. Given �xed h > 0 and f ' i gN
i =1 , the basis of Vh . Then semi-

discrete problem (13) al lows a unique solution uh 2 L 1 (0; T ; H ) \ L 2 (0; T ; V )
that is uniquely de�ned by Cauchy problem (16) and decomposition (14) . More-

over inequality (22) holds.

Corollary 2. For each h > 0 the semi-discrete problem (13) is wel l-posed.

Theorem 5. Given u0 2 H; l 2 L 2 (0; T ; V 0) . Then variational problem (3.6)

has unique solution u 2 L 1 (0; T ; H ) \ L 2 (0; T ; V ) and u0 2 L 2 (0; T ; V 0) .

Furthermore (l; u0) ! u is continuous mapping from L 2 (0; T ; V 0) � H into

L 2 (0; T ; V 0) \ L 1 (0; T ; H ) .
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Pro ofs of these theorems can b e found e.g. in [12, pp. 44-45].

8. One-step time integration recurrent scheme

To construct a numerical scheme for solving a variational problem (10) we

also need to discretize problem (13) in time. To accomplish this we use pro jec-

tion metho d. In this section we will omit index h for simplicity of notation.

Let us divide time interval [0; T ] into P subintervals [tk ; tk+1 ], k = 0 ; ::; P � 1,

with the constant length � t = tk+1 � tk > 0. On every time step [tk ; tk+1 ],

k = 0 ; :::; P � 1; solution uh(t) 2 Vh of (13) will b e approximated by p olynomial

function u� t (t) such that

u� t (t) = [1 � ! (t j ; t)]uj + ! (t j ; t)uj +1 ;

! (t j ; t) = ( t � t j )=� t; t 2 [t j ; t j +1 ]; j = 0 ; :::; P � 1:
(24)

The latter function can b e rewritten in the following manner:

u� t (t) = uj + � t! (t j ; t) u j +1 � u j

� t

= 1
2(uj +1 + uj ) + � t(! (t j ; t) � 1

2) u j +1 � u j

� t

= uj +1 =2 + � t(! (t j ; t) � 1
2) _uj +1 =2; _uj +1 =2 = ( uj +1 � uj )=� t:

(25)

Linear functional will b e approximated with piecewise-constant functions:

l � t (t) = l j +1 =2 = l(t j +1 =2); t j +1 =2 = t j + 1
2 � t: (26)

Summing assumptions (25) and (26) and consequent substitution into (13)

yields:

8
>>>>>><

>>>>>>:

f ind _uj +1 =2; uj +1 2 Vh such that
s( _uj +1 =2; v) + � t! (t j ; t)a( _uj +1 =2; v)

= < l j +1 =2; v > � a(uj ; v);
uj +1 = uj + � t _uj +1 =2; 8v 2 Vh ; 8t 2 [t j ; t j +1 ];
s(u0 � u(0); v) = 0 ; j = 0 ; :::; P � 1:

(27)

The next phase is construction of pro jective equations. Here we denote by

(�; �) a scalar pro duct in space L 2(( t j ; t j +1 )) and cho ose in it function � (t) such

that

(�; 1) =
Z t j +1

t j

� (t)dt = 1 :

We intro duce notation � = ( !; � ) and assume that (27) is orthogonal to

function � (t) with resp ect to scalar pro duct (�; �) or in other terms:

s( _uj +1 =2; v) + � t�a ( _uj +1 =2; v) = < l j +1 =2; v > � a(uj ; v);

8v 2 Vh ; j = 0 ; :::; P � 1; 8� 2 [0; 1] :
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As a result we can denote the following one-step time-integration recurrent

scheme (hereinafter denoted as ORS):

8
>>><

>>>:

given � 2 [0; 1] ; u0; f ind _uj +1 =2; uj +1 2 Vh such that
s( _uj +1 =2; v) + � t�a ( _uj +1 =2; v) = < l j +1 =2; v > � a(uj ; v);
uj +1 = uj + � t _uj +1 =2 8v 2 Vh;
s(u0 � u(0); v) = 0 j = 0 ; :::; P � 1:

(28)

Taking into account the H � and V� ellipticity of bilinear forms s ( � ; � ) and

a ( � ; � ) and also Lax-Milgram-Vyshyk lemma [1 ], ORS (28) is uniquely solved

with resp ect to u0; _uj +1 =2
and uj +1

.

In such manner, piecewise-linear approximation uh� t (t) 2 Vh of (13) solution

uh (t) 2 Vh is uniquely determined after application of scheme (28) .

Stability and convergence of ORS must also b e considered.

Theorem 6. If data of variational problem (10) ful�l l (4) , the ORS scheme

(28) with parameters � t and � is:

1. unconditional ly ( with respect to chosen � t ) stable in spaces H and V ,

when � � 1
2 ;

2. stable in spaces H and V , when parameter � t meets inequality:

� t �
2

� (1 � 2� )
:

Theorem 7. Let the solution uh (t) of problem (12) is such that uh
0002

C (0; T; V ) and let uh� t (t) is his piecewise-linear approximation, obtained with

application of unconditional ly stable scheme (28) with parameter � � 1
2 .

Then the sequence uh� t , with respect to enery norm

kuk2
T = 1

2 ku(T)k2
H 0 (
) +

Z T

0
kr u(t)k2

H 0(
) dt;

converges to u , when � t ! 0 and h ! 0.

Pro ofs of theorems 6, 7 and analisys of space and temp oral error convergence

rates can b e found e.g. in [12 ].

9. Validation of numerical scheme

Sheme (28) can b e implemented in the ma jority of sp ecialized environments.

So for testing of numerical scheme we used a free, op en source environment

FreeFEM++, with quadratic triangular �nite elements, due to simplicity of

problem description, ability to work with resulting matrices and near optimal

execution sp eed [4 ].

Taking into account that the analytical solution of problem (4) is not known,

we will only examine a p osteriori rates of convergence of �nite element scheme.

Our two-dimensional mo del problem will b e formed as (4) with the following

characteristics:

l = 41 � 10� 4 [m]; b = 55 � 10� 5 [m]; T = 56 � 10� 5 [s]; xc = 0 [m];

tc = 48 � 10� 5 [s];
_
q = 8 :2 � 106 [W=m2]; � = 7850 [kg=m3];



12 IVAN CHYR, HEORGIY SHYNKARENKO

cV = 466 [J=(kg � K )]; � = 41 [W=(m � K )]; � = 500 [W=(m2 � K )];

vh = 4 [m=s]; vd = 60 [m=s]; nz = 24; lc = 3 � 10� 3 [m]:

where l is the length and b is thickness of workpiece. Given that 
 = (0 ; l ) �
(0; b) we can concretize function � (x; t ) from (4) in the following manner :

� (x; t ) =
�

1; x 2 
 (t); t 2 [tk� 1; tk ]; t � tk < = tc;

0; t � tk > t c;
k = 1 ; ::; N;

where 
 (t) = f (x1; x2) : x1 2 [vh t � lc=2 + xc; vh t + lc=2 + xc]; x2 = bg is area

of dynamic contact, tk is the initial time of k contact, tc is time of single to oth

contact, lc is length of contact zone, xc represents the initial displacement of

the contacts area and vh represents the velo city of contact zone.

For veri�cation of approximate solutions accuracy we will evaluate rates of

convergence separately for space and time discretization in the following norms

(as in [13]) :

kuk2
H m (
) = kuk2

m =
X

j � 1+ � 2 j� m

Z



(

@� 1+ � 2

@x1� 1 @x2� 2
u)

2

dx;

kuk2
T = 1

2 ku(T)k2
H 0(
) +

Z T

0
kr u(t)k2

H 0(
) dt:

(29)

Intro duction of these norms enables us to calculate the following indicators

of convergence rates:

pm
� t (u) = log 2




 u� t � u� t=2






m


 u� t=2 � u� t=4






m

; p� t (u) = log 2




 u� t � u� t=2






T


 u� t=2 � u� t=4






T

;

pm
h (u) = log 2




 uh � uh=2






m


 uh=2 � uh=4






m

; ph(u) = log 2




 uh � uh=2






T


 uh=2 � uh=4






T

:

(30)

10. Convergence of spatial approximations

We use sequence of uniformly re�ned triangulations Th of isosceles triangles

to determine convergence rates with resp ect to space variables, where Th =
f K g; hK = diam K =

p
2 b

N , where N is the numb er of divisions of smaller side

b of 
 . Results are obtained at time T with time step � t = T
224 = 2 ; 5�10� 7 [s].

For analysis of convergence we utilize norms (29) and the following indicators

of absolute and relative errors

em
h (u) =




 uh � uh=2






m
; "m

h (u) =




 uh � uh=2






m


 uh=2






m

� 100 %;

eh(u) =



 uh � uh=2






T
; "h(u) =




 uh � uh=2






T


 uh=2






T

� 100 %:

(31)

Given that we use quadratic �nite element approximations, theoretically

rates of convergence for given spaces are p0
h(u) = 3 , p1

h(u) = 2 and

ph(u) = 1 . Acquired results indicate ability of ORS to converge with required

rates. It should b e noted that application of norm k�kT gives ability to protect
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Tabl. 1. Convergence of spacial approximations in norms (29)

N e0
h (u) � 10� 3 e1

h (u) eh (u) p0
h (u) p1

h (u) ph (u) " 0
h (u) " 1

h (u) " h (u)
1=7 4; 22 158; 08 5; 15 1; 49 0; 47 0; 45 0; 92 39; 74 39; 77
1=14 1; 94 122; 18 2; 71 1; 12 0; 37 0; 92 0; 42 31; 06 20; 77
1=28 0; 41 31; 88 1; 18 2; 23 1; 94 1; 20 0; 09 8; 08 9; 02
1=56 0; 04 7; 30 0; 48 3; 30 2; 13 1; 29 0; 01 1; 85 3; 70

against accidental measurements in �well-suited� time and represents accumu-

lation of sp ecial discretization error during preceding p erio d.

11. Convergence in time

To verify convergence in time we �x space mesh with initial parameters

256� 64 and examine the nature of a p osteriori rates of convergence during

successive re�nement of time step � t = T=P .

We also use the following indicators for this analysis:

em
� t (u) =




 u� t � u� t=2






m
; "m

� t (u) =




 u� t � u� t=2






m


 u� t=2






m

� 100 %;

e� t (u) =



 u� t � u� t=2






T
; " � t (u) =




 u� t � u� t=2






T


 u� t=2






T

� 100 %:

(32)

Tabl. 2. Convergence in time of solution in terms of norms (29)

P e0
� t (u) � 10� 3 e1

� t (u) e� t (u) p0
� t (u) p1

� t (u) p� t (u) " 0
� t (u) " 1

� t (u) " � t (u)
56 2; 73 453; 85 6; 38 1; 99 1; 53 0; 74 0; 59 102; 82 46; 78
112 0; 69 157; 31 3; 81 1; 31 0; 81 0; 83 0; 15 38; 56 28; 67
224 0; 28 89; 71 2; 14 2; 03 1; 80 1; 01 0; 06 22; 71 16; 33
448 0; 07 25; 76 1; 06 1; 62 5; 91 1; 09 0; 01 6; 53 8; 12

Based on these results we state that scheme (28) achieves theoretical rates

of convergence in time. As we use Crank-Nicolson scheme for time integration

p0
� t (u) , p1

� t (u) must b e greater or equal to 2 and p� t (u) this numb er is 1.

Acquired numerical results indicate the correctness of used ORS scheme and

its p otential for practical utilization.

12. Numerical experiments

As our pap er also concerns practical exp eriment we mo deled the pro cess of

frictional hardening for detail with such parameters:

l = 44 � 10� 4 [m]; b = 65 � 10� 5 [m]

Workpiece is made of steel (Stal-45) which has the following prop erties:

� = 7850 [kg=m3]; cV = 466 [J=(kg � K )]; � = 41 [W=(m � K )]:

In the initial time it is heated to the temp erature of û = 293 [� ; K ]. It is

rigidly �xed on the table that moves with linear sp eed vh = 4 [m=s]. Points on

to ols surface circulate with sp eed vd = 60 [m=s]. To ol-workpiece interaction
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creates a contact zone lc = 3 � 10� 3 [m] in length causing a heat source with

the p ower of

_
q = 8 :2 � 107 [W=m2] to b e generated. Due to serration of to ol's

surface contact (and subsequently heat source) has a sp ecial p erio dic regime.

Also we assume that one contact lasts for tc = 48 � 10� 5 [s], one contactless

p erio d is tp = 8 � 10� 5 [s] and xc = � 1:5 lc [m].

To complete the description of technological pro cess we should mention that

the co oling liquid is supplied to the contact area. The heat transfer co e�cient

b etween workpiece and co olant is � = 500 [W=(m2 �K )] . We also consider time

T = 280 � 10� 5 [s] that covers full pro cessing of the workpiece. In the initial

moment of time the to ol is situated aside of the detail. As exp eriment b egins

it starts to move in the direction of detail.

As a result of numerical exp eriment, the following graphics of temp erature

distribution were obtained ( Fig. 1). They represent state of temp erature �eld

in di�erent times so one can see the dynamics of the pro cess.

Fig. 1. Distribution of temp erature after contact with the sec-

ond, third and fourth to oth of the to ol (resp ectively �rst, second

and third �gure from the top). Contact area is depicted with a

rectangle

Also sp ecial attention was drawn to evolution of maximal temp erature that

clearly shows the in�uence of serration of to ol's surface into technological pro-

cess (Fig. 2).

Latter characteristic is aggregative and incomplete without full knowledge of

the place where this maximum o ccurs. As the maximum is reached on contact

surface we supply �gures to show the evolution on temp erature pro�le on it

(Fig. 3). Also to b e noted that strip es in the background of these �gures

represent the area of dynamic contact in corresp onding p oints in time.

These �gures shed a light on singularities of the temp erature pro�le evolution

on the contact surface. First �gure shows the last moment of the �rst contact.

Figure b illustrates temp erature decrease and creation of unheated area. Then

second to oth starts to act and �nishes with surface heated to temp erature as
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Fig. 2. Evolution of maximal temp erature during the exp eri-

ment with highlighted contactless intervals

can b e seen of �gure d. The following �gures demonstrate further evolution of

heat pro�le on the surface.

These �gures reveal interesting singularities of examined problem. Illustra-

tions depict that the sp eed of heat conduction is less than the sp eed of contact

area. If we write down the corresp onding ration in dimensionless form, we

obtain the Peclet numb er for a sp eci�c problem [11 , p.12]:

Pe = vh � ld � (�=c V � )� 1 �
4 � 0; 003

1 ,121 � 10

-5

� 1070

Given the magnitude of this characteristic (singularly unp erturb ed problems

have Pe < 10) we can state that this problem is singularly p erturb ed.

13. Conclusions

In the pro cess of research the initial b oundary value problem for the heat

conduction pro cess in workpiece during friction hardening was stated. Suc-

cessively we formulated corresp ondent variational problem and proved its wel-

p osendess. With utilization of Poincare-Freidrich's inequality a V -ellipticity of

bilinear form with term from b oundary condition for heat exchange with envi-

ronment was proven. This gave opp ortunity to extend known result (e.g. [12,

pp. 29-62]) to our problem.

Mo deling of the frictional hardening with a jagged to ol brings in some dif-

�culties related to its mathematical mo del. They show themselves in form of

mixed b oundary conditions. Moreover due to magnitude of Peclet numb er,

investigated problem is singularly p erturb ed. This fact will also contribute
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a) b)

c) d)

e) f )

g) h)

i)

Fig. 3. The distribution of temp erature on the contact sur-

face at a) 0.00048 s, b) 0.00055875 s, c) 0.000625 s, d) 0.00104

s, e) 0.00111875 s, f ) 0.001185 s, g) 0.0016 s, h) 0.00168 s,

i) 0.001745 s. (contact area is represented with a strip e)
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di�culties that would need to b e overcome using appropriate metho ds (e.g.

apriori mesh re�nement in contact area [6 ]).
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ON PRACTICAL ATTAINMENT OF PREASSIGNED

ACCURACY OF RESULTS IN THE PROCESS

OF NUMERICAL ANALYSIS OF SOME

TWO-DIMENSIONAL INTEGRAL EQUATIONS

Yaroslav Garasym, Borys Ostudin

Ðåçþìå. Ó ïðåäñòàâëåíié ðîáîòi ìè äîñëiäæó¹ìî ðiçíi àñïåêòè ïîáóäîâè

íàáëèæåíèõ ñõåì äëÿ ðîçâ'ÿçóâàííÿ iíòåãðàëüíîãî ðiâíÿííÿ ïåðøîãî ðîäó

çi ñëàáêîþ îñîáëèâiñòþ â ÿäði, ÿêå ¹ õàðàêòåðíèì äëÿ òåîði¨ ïîòåíöiàëó. Ó

çâ'ÿçêó ç öèì ìè ïðèéìà¹ìî äî óâàãè ñóòò¹âî ïðîñòîðîâå ôîðìóëþâàííÿ

ïî÷àòêîâî¨ ïðîáëåìè, à òàêîæ ñèíãóëÿðíó ïîâåäiíêó øóêàíîãî ðîçâ'ÿçêó

â îêîëi êîíòóðó ðîçiìêíåíî¨ ãðàíè÷íî¨ ïîâåðõíi. Ç ìåòîþ îòðèìàííÿ

ãàðàíòîâàíî¨ òî÷íîñòi ðåçóëüòàòó, âèêîðèñòîâóþ÷è âiäîìi çàãàëüíi iäå¨

ìåòîäîëîãi¨ àïîñòåðiîðíî¨ îöiíêè ïîõèáêè, ìè ïðîïîíó¹ìî òàêó ¨ ¨ âåðñiþ,

ùî ¹ ïðèäàòíîþ ñàìå äî ðîçãëÿäóâàíîãî iíòåãðàëüíîãî ðiâíÿííÿ.

Abstract. In the article we investigate di�erent asp ects of approximate

schemes construction for the �rst kind integral equations b eing used in p o-

tential theory. In this connection we take into consideration substantially

spatial setting of the problem and sp eci�c b ehavior of desired solution near

the contour of unclosed b oundary surface. With a view to obtain guaran-

teed accuracy of results, using known general concept of a p osteriori error

estimation metho dology, we prop ose such it version applicable precisely to

considered integral equation.

1. Introduction

The main ob ject of our analysis is di�erent asp ects of approximate schemes

construction for the �rst kind integral equation solving. In addition, we have

to do with equations in the form as

(A� )(M ) �
ZZ

S

� (P) j M � P j� 1
d SP = U(M ); M 2 S; (1)

where in general case S is an op en Lipschitz surface, M and P are the p oints of

Euclidean space R3
. The typ e (1) equations app ear at the mo delling of p oten-

tial theory some b oundary problems, in particular, electron optics. Ordinary

generalization of (1) is a p ermission that S is formed by the aggregate m of

surfaces, so that S :=
S m

i =1 Si . In this case we interpret � (P) as a desired total

charge distribution density on S , that is � (P) := f � (P); P 2 Si ; i = 1; N g. It

is p ossible to research op erator equation (1) in various functional spaces [4 , 8].

However, it should b e taken into account the sp eci�city of investigated physi-

cal phenomenon. Thus, for example, the mo delling of electrostatic �eld in the

Key words . Integral equation, axial symmetry, the collo cation metho d, a p osteriori error

estimation.
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substantially spatial setting foresees the account of desired charge distribution

density � (P) b ehavior near the contour of unclosed surface S and lines of its

fracture [7]. In this case we consider that U(M ) , M 2 S , is the given b oundary

value of p otential on an electro de which is actually mo deled by a surface S
( U(M ) � const ). As to numerical metho ds applied for initial problem solving

we can p oint out in principle some approaches for integral equations approx-

imate schemes construction [1 , 2, 6]. In this connection, taking into account

substantially spatial setting of the problem and sp eci�c b ehavior of desired so-

lution, from practical p oint of view, in the b est way, mentioned ab ove questions

were solved in [2].

2. Considered set of boundary surfaces and the ways

of their specification

At �rst, using parametric representation of S , we will consider that

M :=
�

x(� 0; � 0); y(� 0; � 0); z(� 0; � 0); ( � 0; � 0) 2 D := ( � 1; 1)2	
;

P :=
�

x(�; � ); y(�; � ); z(�; � ); ( �; � ) 2 D
	

:

At that time, integral equation (1) will b e shown as

ZZ

D

� (�; � ) K (�; � ; � 0; � 0) d � d � = U(� 0; � 0); (� 0; � 0) 2 D ; (2)

where

K (�; � ; � 0; � 0) :=
n

[x(�; � ) � x(� 0; � 0)]2 + [ y(�; � ) � y(� 0; � 0)]2+

+[ z(�; � ) � z(� 0; � 0)]2
o � 1=2

J (�; � );

and J (�; � ) d � d � is an element of surface S in lo cal co ordinates (�; � ) asso-

ciated with S . Keeping in (2) notation for � and U from (1), we will also

remark that from functions x(�; � ) , y(�; � ) , and z(�; � ) , which express the

Cartessian co ordinates (x; y; z) of the p oints on a surface S , it is required, at

least, continuous di�erentiability in D b ecause

J (�; � ) :=
�

E(�; � ) G(�; � ) � F 2(�; � )
	 1=2

;

and

E(�; � ) :=
�
x0

�

� 2 +
�
y0

�

� 2 +
�
z0

�

� 2;

G(�; � ) :=
�
x0

�

� 2 +
�
y0

�

� 2 +
�
z0

�

� 2;

F (�; � ) := x0
� x0

� + y0
� y0

� + z0
� z0

� :

As an example, for arbitrary charged quadrangular plate presentation we

make use of the following equations:
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x(�; � ) =
1
4

4X

j =1

x j ' j (�; � ); ' j (�; � ) :=
�

1 + ( � 1)p�
� �

1 + ( � 1)q�
�

;

y(�; � ) =
1
4

4X

j =1

yj ' j (�; � ); p :=
hj

2

i
+ 1 ; q :=

hj � 1
2

i
+ 1 ;

z(�; � ) =
1
4

4X

j =1

zj ' j (�; � ); (�; � ) 2 D ;

where (x j ; yj ; zj ) are co ordinates of corresp onding plate vertex. It is obvious

that we simulate this and similar plates with the help of double-sided in�nitely-

thin surfaces.

Addressing to such typ e of b oundary surfaces is explained by a p ossibility of

the use for the approximate solving (2) in this case of numerically-analytical

metho dology intro duced by the authors [3 ].

Another example of parametric equations is related to the necessity of so-

called �at diaphragms descriptions. The last ones are comp onents of rather

complicated and actual in practice electron-optical systems. The �gure 1 rep-

resents a pro jection of a diaphragm on the plane z = const . It is easy to notice

that in this case the examined surface S represents the combination of eight

elements. In addition, each of them is expressed by a �at curvilinear quadran-

gle. For every element a unique description it is enough to �x eight p oints on

the corresp onding contours as shown at the �gure 1.

Fig. 1. A pro jection of �at diaphragm on the plane z = const

In this connection parametric equations have such expression as
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x(�; � ) =
1
4

4X

j =1

x j ' j (�; � );

y(�; � ) =
1
4

4X

j =1

yj ' j (�; � ); (�; � ) 2 D ;

where

' 1(�; � ) := (1 + � ) (1 + � ) ( � + � � 1);

' 2(�; � ) := (1 � � 2) (1 + � ); : : : ;

and x j , yj are co ordinates of p oints M i ( i = 1; 8).

3. General remarcs concerned with numerical analysis

of type (1) integral equations

Two-dimensional integral equation (2) was solved by the metho d of collo ca-

tion with the use of piecewise-constant and bilinear approximation of desired

� (P) . It is easy to see that (2) b elongs to integral equations with weak sin-

gularity in the kernel. Therefore, in the pro cess of (2) solving it is necessary

to calculate approximately some two-dimensional singular integrals of sp eci�c

class. In this connection the algorithms of such integrals calculation b ecome

substantially complicated through the presence of certain weight functions. The

p oint is that the last ones represent precisely singular b ehavior of desired solu-

tion near the contour of op en surface S .

The integral equations of typ e (1)-(2) were also examined in the context

of electrostatic �eld determination, in the case when the systems of charged

electro des have rather complicated con�guration. We will �nd out some details

of initial problem e�ective solution, based on the integral equations metho d,

in the substantially spatial setting, taking into account present symmetry at

geometry of unclosed surfaces-electro des. The account of symmetry enables to

interpret initial problem as a task with �nite order ab elian group of symmetry.

It allows to reduce (2), set on all b oundary surface, to the sequence N of

indep endent integral equations, set on one of their congruent constituents. Here

N is an order of established group of symmetry. It results in avoidance of

numerical instability of the systems of linear algebraic equations solving. With

the help of these systems the approximation of corresp onding integral equations

is realized. In addition, their dimensions excessively increase. There is also a

p ossibility to create pre-conditions for parallelizing an algorithm of the basic

problem solving. Cho osing a di�erent numb er of pro cessors, it allows to reach

maximal e�ciency of their loading and increasing the sp eed of calculation.

4. Scheme of results refinement obtained in the process

of specific model task solving

Illustrating the exp ediency of the mentioned metho dology application, we

will consider the problem of electrostatic �eld calculation of so-called plane-

parallel condenser (see Fig. 2).
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Fig. 2. Investigated plane-parallel condenser

In the course of initial problem mathematical mo delling we will represent

the corresp onding systems of electro des as an combination of two op en surfaces

which do not have common p oints, so that S := S1
S

S2 . It is easy to see

that surfaces Si are b ounded to the piecewise-smo oth contours of �nite length.

We consider this task as mo del one. The p oint is that the electrostatic �eld

repro duction under the conditions of essential di�erence of p otentials on the

plates and step-by-step decrease of the distance b etween indicated plates is not

trivial problem. In this case the results of calculation are esp ecially sensitive

with resp ect to variation of output date.

Returning to our integral equation let us assume that

Sl :=
n

(x; y; z) 2 R3
�
�
� (x; y) 2 [� a; a] � [� b; b];

z = ( � 1)l � 1h; l = 1; 2; a; b; h > 0
o

:

Considering the geometric characteristics of total surface S let us represent the

last in the form of congruent constituents combination:

S =
2[

l=1

 
4[

k=1

Slk

!

:

Taking into account such sub division of Sl ( l = 1 ; 2), integral equations (2), in

turn, can b e formally represented as

2X

l=1

4X

k=1

Z

Slk

� lk (P) j P � M j� 1
d SP =

= U(M ) =

8
<

:

U1; M 2 S1;

U2; M 2 S2;

(3)
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where � lk (P) is the pro jection of � (P) on Slk ;

j P � M j� 1 =
�
(x � x0)2 + ( y � y0)2 + ( z � z0)2� � 1=2;

M := ( x0; y0; z0 = � h); (x; y); (x0; y0) 2 [� a; a] � [� b; b]:

Fig. 3. A pro jection of congruent comp onent S11 on the plane

z = const together with the consequent step-by-step partition

into elements for the attainment of desired accuracy

of (4) solving

Then, applying in (3) trivial changes of variables, we realize the conversion

from integration over total surface S to integration over it congruent constituent

S11 . In addition, let us note than the p oint of collo cation M is placed also on

S11 . As a result, we have obtained in fact the system of eight linear integral

equations with resp ect to unknown density � j (x; y) ( j = 1; 8), according to

chosen group of symmetry of surface S :

8X

j =1

ZZ

� 1

� j (x; y) Gj i � j j+1 (x; y; h; x0; y0; z0) d x d y = U(M i ) ( i = 1; 8): (4)

Here � 1 := [0 ; a] � [0; b];

M i :=
�
(� 1)r � 1x0; (� 1)s� 1y0; (� 1)p� 1h

�
2 Spq;

in this case i := 4( p� 1) + 2( r � 1) + s, and q := 2( r � 1) + s with p; r; s = 1; 2.

The p oint of integration is

P :=
�

(� 1)n� 1x; (� 1)m� 1y; (� 1)l � 1h
�

2 Slk ;
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in this case j := 4( l � 1)+2( n � 1)+ m , and k := 2( n � 1)+ m with n; m = 1; 2
(see Fig. 2); and �nally,

Gj i � j j+1 (x; y; h; x0; y0; z0) := j P � M i j� 1:

Now the pro cedure of splitting (4) into eight indep endent integral equations

may b e applied. But, at �rst, we will observe that the choice of symmetry

group with an order of eight is exhaustive from the p oint of view of electro des

systems design. Another advantage is a p ossibility to take into account a priori

information ab out desired solution b ehavior only along a free part of congruent

comp onent S11 contour. Under these conditions, ignoring the weight function

mentioned ab ove, it is p ossible to use one of the e�ective metho ds of accuracy

control of the received results. In addition, the correction of required function

is carried out by use of sp ecial a p osteriori error estimation and provided by

net condensing in the neighb orho o d of S11 singular p oints.

Tabl. 1. The value of p otential at veri�ed p oints

x y z U(x; y; z)
0.9510 0.9510 0.5000 999.1812

0.8590 0.8590 0.5000 999.9378

1.0000 1.0000 0.4990 780.6304

0.9900 0.9900 0.4990 979.5774

0.9500 0.9500 0.4990 995.8487

0.9000 0.9000 0.4990 996.2100

0.7000 0.7000 0.4990 997.7024

0.5000 0.5000 0.4990 997.9232

0.3000 0.3000 0.4990 997.9784

0.0000 0.0000 0.4990 997.9939

0.0000 0.0000 0.4000 799.4128

0.0000 0.0000 0.2000 399.0503

0.0000 0.0000 0.1000 199.4134

1.0000 1.0000 0.4900 731.5166

1.0000 1.0000 0.4800 688.9154

1.0000 1.0000 0.4000 492.6562

1.0000 1.0000 0.2000 219.5428

1.0000 1.0000 0.1000 107.6509

Using known general concept of a p osteriori error estimation metho dology

[5], we prop ose such it version applicable precisely to integral equation of typ e

(1). Let � h(P) is a solution which b elongs to chosen approximation space.

This solution, taking into consideration it integral representation, generates

approximate value of p otential in an arbitrary p oint M of interelectro des space

Uh(M ) = ( A� h)(M ):

At that time, error function eU is de�ned with the help of such formula

eU = A� � A� h = A(� � � h) = Ae� ;
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where e� is the solution of such integral equation

(Ae� )(M ) = U0 � (A� h)(M ); M 2 S;

here U0 is the given value of p otential on S . The b ehavior of this solution

is irregular only in the neighb orho o d of unclosed surface S contour. That is

why, we repro duce eU only over element D e
which app ears in the pro cess of

S partition and where eU may b e obtained maximal value. We consider such

element as "extremal". Then, it is necessary to verify the condition of the

accessibility of preassigned accuracy

k e� kL 2 (D e)q
k� hk2

L 2 (D e) + k e� k2
L 2 (D e)

100 %� T OL:

If the last condition is not realized, then, it is necessary to rep eat stated ab ove

pro cedure, using more dense net, as it was shown at the �gure 3. We rep eat

the describ ed pro cedure so many times that it needs to obtain the guaranteed

accuracy of equation (1) solving.

The considered numerical scheme was applied to solve one typical problem.

Computations were realized with the use of some parameters: a = 1 , b = 1 ,

h = 0 :5, U1 = 1000, U2 = � 1000, T OL = 0 :1%. The solution of this problem

was shows with the help of the Table 1 at some p oints. In this case the numb er

of iteration to attain preassigned accuracy is 5.
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THE DYNAMICS OF RECURRENT

STATISTICAL EXPERIMENTS WITH

PERSISTENT NON�LINEAR

REGRESSION AND EQUILIBRIUM

Dmitri Koroliouk

Ðåçþìå. Âèâ÷à¹òüñÿ ïîñëiäîâíiñòü áiíàðíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ

ç íàïîëåãëèâîþ íåëiíiéíîþ ðåãðåñi¹þ òèïó Ðàéòà-Ôiøåðà, ÿêà çàäà¹òüñÿ

êóái÷íî¨ ïàðàáîëîþ, ùî ìà¹ òðè äiéñíèõ êîðåíi. Áóäó¹òüñÿ ñòîõàñòè÷íà

àïðîêñèìàöiÿ ïîñëiäîâíîñòi ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-

ðåãðåñi¨ ç íîðìàëüíèìè çáóðåííÿìè, à òàêîæ ñòîõàñòè÷íà àïðîêñèìàöiÿ

ïîñëiäîâíîñòi åêñïîíåíöiéíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-

ðåãðåñi¨, ÿêèé çàäà¹òüñÿ ïðîöåñîì ãåîìåòðè÷íîãî áðîóíiâñüêîãî ðóõó.

Abstract. We study a sequence of binary statistical exp eriments with p er-

sistent non�linear regression with Wright�Fisher normalization [1], which is

given by a cubic parab ola, which has three real ro ots. We construct sto-

chastic approximation of recurrent statistical exp eriments by autoregression

pro cess with normal disturbances, as well as sto chastic approximation of ex-

p onential statistical exp eriments by exp onential autoregression pro cess with

normal disturbances.

1. Introduction

In our previous pap er [1] there has b een searched a limit b ehavior of recur-

rent statistical experiments (SE) with persistent linear regression by increasing

sample volume N ! 1 . An imp ortant role in the analysis of SE with p ersistent

linear regression plays the control parameter a of the regression function which

provides a steady state with equilibrium p oint and, at the same time , gives a

p ossibility of approximating the original recurrent SE by normal autoregression

pro cess, which statistical analysis is signi�cantly easier.

In this pap er, we study a similar problem for a sequence of SE with p ersistent

regression with an additional term which determines the non-linear regression.

The initial assumptions ab out the binary nature [1], as well as non-linear re-

gression mo del with Wright�Fisher normalization [2] make a natural choice for

the regression's nonlinear comp onent as a cubic parab ola, which has three real

ro ots in the value interval � 1 � s � +1 of the results of statistical exp eriments.

It is natural to assume that the non-linear comp onent of the regression takes

the value 0 at the ends of the interval s = � 1, as well as at the equilibrium

p oint � of the linear regression.

Key words . Binary statistical exp eriment, p ersistent regression, stabilization, sto chastic

approximation, exp onential statistical exp eriment, exp onential autoregression pro cess.
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These considerations lead to the clear conclusion that the non-linear comp o-

nent of the regression is as follows:

C0(s) = � g(1 � s2)(s � � ) ; jsj � 1 ; g > 0: (1)

2. Steady state regime

In this pap er we consider the sequence of the SE

SN (k) =
1
N

NX

r =1

� r (k); k � 0: (2)

with p ersistent non-linear regression:

E[SN (k + 1) jSN (k) = s] = C(s) ; C(s) = s + C0(s): (3)

The parameter g of non-linear regression signi�cantly changes the dynamics of

the recurrent SE.

Remark 1. Setting the SE using the regression (2) - (3) means that the prob-

ability sample values are given by:

Pf � r (k + 1) = � 1jSN (k) = sg =
1
2

[1 � C(s)]: (4)

At the same time, there exist control parameters g and � such that the condition

(4) is correctly de�ned.

The sp eci�city of the binary SE is, in particular, that the conditional variance

SE is simply calculated

D[SN (k + 1) jSN (k) = s] = B (s)=N ; B (s) := 1 � C2(s): (5)

Now it is p ossible to verify the existence of the steady state (see [1, Theorem

1]).

Theorem 1. Provided the initial condition (convergence with probability 1)

SN (0) ) � ; N ! 1 ; (6)

there is the convergence with probability 1

SN (k) ) � ; N ! 1 ; (7)

for each �nite k > 0:

Proof of Theorem 1. We intro duce a martingale as the sum of martingale dif-

ferences:

� N (n) :=
nX

k=0

[SN (k + 1) � E [SN (k + 1) j SN (k)]] (8)

or another, in view of the prop erties of p ersistent regression (3)

� N (n) =
nX

k=0

[SN (k + 1) � C(SN (k)]: (9)
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The quadratic characteristic of the martingale (8) , considering (9) , is given by

the sum:

h� N i n :=
nX

k=0

D[SN (k + 1) j SN (k)] =
1
N

nX

k=0

B (SN (k)) : (10)

Hence for any �xed n � 0 the following convergence takes place (with prob-

ability 1):

h� N i n ) 0; N ! 1 : (11)

This implies the convergence with probability 1 of the martingales (8) for each

�nite n � 0
� N (n) ) 0; N ! 1 ; n � 0: (12)

In particular when n = 0 we have

� N (0) = SN (1) � C(SN (0)) = SN (1) � � � [SN (0) � � ] � C0(SN (0))

In this case, by the condition of Theorem 1

C0(SN (0)) ) C0(� ) = 0 ; N ! 1 :

So there is the convergence with probability 1:

SN (1) � � ) 0; N ! 1 :

By induction, we deduce that for every k � 1 the convergence (7) takes

place. �

3. Stochastic approximation of statistical experiments

As in previous work [1 ] app ears the problem of simpli�ed description of the

recurrent SE dynamics by increasing sample volume N ! 1 : The nonlinear

comp onent of the regression function, which has the factor (s � � ); preserves

the p ossibility of approximating SE by normal autoregression pro cess.

Theorem 2. Under the conditions of Theorem 1 there takes place the limit

relation (in probability):

p
N [SN (k + 1) � C(SN (k)] ) �W (k + 1) ; N ! 1 (13)

for each �nite k � 0:
The sequence of independent, normal ly distributed random variables W (k) ,

k � 1 satis�es the normalization conditions :

EW (k) = 0 ; DW (k) = 1 ; k � 1 ; � 2 = 1 � � 2: (14)

Prop osition 1. The limit relation (13) is the basis to use the normal process

of autoregression

eSN (k + 1) = C( eSN (k)) +
�

p
N

W (k + 1) ; k � 0;

= eSN (k) + C0( eSN (k)) +
�

p
N

W (k + 1) ; k � 0;
(15)

as an approximation of the original SE (2) � (3) with nonlinear regression func-

tion (3) .
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Remark 2. It is clear that the stochastic approximation in (15) is considerably

simpler than the original model (2) � (5) and at the same time, preserves the

condition of persistent regression:

E[ eSN (k + 1) j eSN (k)] = C( eSN (k)) ; k � 0: (16)

Proof of Theorem 2. We intro duce a martingale as the sum of martingale dif-

ferences:

� N (n) :=
p

N
nX

k=0

[SN (k + 1) � C(SN (k))] ; n � 0: (17)

Using the equilibrium state � (ñì. Òåîðåìó 1), and the relations (2), (3) and

(5), we get the following result.

Lemma 1. The martingale (17) has the fol lowing asymptotic representation:

� N (n) =
nX

k=0

[� N (k + 1) � b0� N (k)] +
1

p
N

nX

k=0

� 2
N (k)R(SN (k)) ; n � 0: (18)

Here

� N (k) :=
p

N [SN (k) � � ]; k � 0;

R(s) = g(s + � ) ; b0 := 1 � g� 2 ; � 2 = 1 � � 2:
(19)

According to Theorem 1 and relation (19), the nonlinear term in (19) con-

verges (in probability) to zero as N ! 1 for each �nite n � 0. Now the normal

approximation of martingale (17) - (19) is realized in the same manner as in

[1]. First, we compute the quadratic characteristic of martingale (17)

h� N i n =
nX

k=0

B (SN (k)) ; B (S) := 1 � C2(s) ; n � 0: (20)

Then, according to Theorem 1, there is a limit (with probability 1)

h� N i n ) (n + 1) � 2 ; N ! 1 ; n � 0: (21)

However, according to the central limit theorem, the primary (linear) martin-

gale p ortion (18) converges (in probability) to the sum of normally distributed

random variables.

The convergence of the quadratic characteristics (21) implies the convergence

in probability of martingale-di�erences

� 0
N (n) :=

nX

k=0

[� N (k + 1) � (1 � g� 2)� N (k)] ) �
nX

k=0

W (k + 1) : (22)

The limit normally distributed random variables W (k) ; k � 1 are mutually

indep endent with

EW (k) = 0 ; EW 2(k) = 1 ; k � 1

b ecause the limit disp ersion of martingale (21) is equal to o sum of disp ersions

of martingale-di�erences.
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The convergence of the original martingale (17) means that there is the

convergence (in probability) :

p
N [SN (k + 1) � C(SN (k))] ) �W (k + 1) ; N ! 1 (23)

for each �nite k � 0: The pro of of Theorem 2 in complete. �

Corollary 1. The convergence of the linear component of the martingale (18)

implies the convergence (in probability)

� N (k + 1) � (1 � g� 2)� N (k) ) �W (k + 1) ; N ! 1 : (24)

Prop osition 2. The convergence (24) serves as the basis to use approximation,

in the neighborhood of the equilibrium point � , of the original statistical experi-

ments with persistent regression (2) by the new process of normal autoregression

with linear regression function:

fS0
N (k + 1) � � = (1 � g� 2)[ fS0

N (k) � � ] +
�

p
N

W (k + 1) ; (25)

so that

fS0
N (k + 1) = (1 � g� 2) fS0

N (k) + g� 2� +
�

p
N

W (k + 1) : (26)

The sto chastic approximation by the normal pro cess of autoregression (25)

- (26) (Prop osition 2) for the linear regression function

eC(s) = s � g� 2(s � � ) (27)

has a stationary distribution , which is given by the density of the normal dis-

tribution (see [2, item 5])

� (s) =
1

(e� 2=N)
p

2�
exp[� (s � � )2=2e� 2=N]: (28)

e� 2 = � 2=(1 � g� 2): (29)

4. Exponential statistical experiments: steady-state behavior

In many applications in biology [2, 6] and economics [7] imp ortant role is

played symmetric exponential statistics

� N (�; k ) :=
NY

r =1

[1 + �� r (k)] ; k � 0: (30)

For example, if the sample values � r (k) ; 1 � r � N ; k � 0 de�ne

success rates � r (k)) = +1 or failure ones � r (k)) = � 1 , then (31) sets the total

value of the interest rate in the k -th exp eriment. The parameter � > 0 can b e

considered as a discount factor.

We consider exponential statistical experiments (ESE) (30) in the series

scheme with increasing sample size N ! 1 :
The prop erty of p ersistent regression (3) is converted to the following form:

E[� N (�; k + 1) jSN (k)] = [1 + �C (SN (k))]N : (31)
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Now we intro duce the exp onential martingale

� e
N (�; k + 1) = � N (�; k + 1) =� N (�; k ) ; k � 0: (32)

� N (�; k ) := [1 + �C (SN (k))]N ; k � 0: (33)

Its martingale prop erty is obvious:

E[� e
N (�; k + 1) jSN (k)] = 1 ; k � 0:

Steady state of SE is established by the following

Theorem 3. By the condition of convergence with probability 1 of the SE initial

values

SN (0) ) � = p=(1 � a) ; N ! 1 ; (34)

there is the convergence in probability of ESE (31)

P � lim
N !1

� N (�=N; k ) = exp( �� ) ; k � 0; (35)

and also the convergence in probability of conditional expectations (32) , (34)

P � lim
N !1

� N (�=N; k ) = exp( �� ) ; k � 0: (36)

Corollary 2. Under the condition (35) the fol lowing convergence takes place:

P � lim
N !1

� e
N (�=N; k ) = 1 : (37)

Proof of Theorem 3. We use the approximation formula of Le Cam in the

following form:

Lemma 2. (ñð. [5, Lemma 6.3.1]) Assume that the convergence in probability

takes place:

max
1� r � N

j� r (k + 1) j ) 0 ; N ! 1 ; k � 0: (38)

Then there takes place the convergence in probability

P � lim
N !1

f
NX

r =1

ln[1 + �� r (k + 1) =N] � �S N (k + 1) g = 0 : (39)

The condition (38) is obviously satis�ed for binary random variables � r (k +
1); 1 � r � N; k � 0, taking two values � 1. In addition, by Theorem 1

SN (k + 1) ) � ; N ! 1 :

Hence the convergence (40) is equivalent to the convergence:

P � lim
N !1

f
NX

r =1

ln[1 + �� r (k + 1) =N] = ��: (40)

We now use the obvious identity

Y
= exp ln

Y
:
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The convergence (36) is equivalent to the convergence in (40) . Even easier to

establish the convergence (37) using the relation

C(SN (k)) ) � ; N ! 1 ; k � 0:

Theorem 3 is proved. The Corollary 1 is obvious.

5. Exponential statistical experiments: approximation by the

normal process of autoregression

The exp onential statistical exp eriments (ESE) (31) with conditional ex-

p ectation (32) are considered in the scheme of series with series parameter

� N = �=
p

N :

� N (�=
p

N; k + 1) =
NY

r =1

[1 + �� r (k + 1) =
p

N ] ; k � 0: (41)

However, the averaging of ESE in given by the relation:

� N (�=
p

N; k ) = [1 + �C (SN (k))=
p

N ]N ; k � 0: (42)

So that the corresp onding exp onential martingale has the form:

� e
N (� N ; k + 1) := � N (� N ; k + 1) =� N (� N ; k) ; k � 0: (43)

The fundamental imp ortance for the of ESE approximation has the following

Theorem 4. (ESE approximation) Under the conditions of Theorem 3 we have

the convergence in probability

P � lim
N !1

� e
N (�=

p
N; k + 1) = exp[ ��W (k + 1) � � 2� 2=2] ; k � 0; (44)

Remark 3. The exponential martingale in the series scheme (44) , given by

ESE (41) , converges (as N ! 1 ) to exponential normal martingale. It is

obvious that

E exp[��W (k + 1) � � 2� 2=2] = 1 ; k � 0: (45)

Proof of Theorem 4. As in the pro of of Theorem 3, we use Lemma approxi-

mation of Le Cam and the obvious identity � = exp ln � .

Lemma 3. (Le Cam approximation [5, Lemma 6.3.1]) Assume that the con-

vergence in probability takes place

max
1� r � N

j� r (k + 1) =Nj ) 0 ; N ! 1 ;

and also the sums

VN (k) :=
1
N

NX

r =1

(� r (k))2

are bounded in probability. Then there takes place the convergence in probability

P � lim
N !1

NX

r =1

ln[1 + �� r (k)=
p

N ] � �
p

NSN (k) + � 2VN (k)=2 = 0: (46)
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Note that in our case VN (k) = 1 : So the convergence in Lemma 3 has the

following form:

P � lim
N !1

NX

r =1

ln[1 + �� r (k)=
p

N ] � �
p

NSN (k) = � � 2=2: (47)

Note that ESE (42) is represented in the form:

� N (�=
p

N; k + 1) = exp
NX

r =1

ln[1 + �� r (k + 1) =
p

N ] ; k � 0: (48)

So that the convergence (48) means

P � lim
N !1

� N (�=
p

N; k + 1) exp[ � �
p

NSN (k + 1)] = exp[ � � 2=2] ; k � 0: (49)

Similarly, the conditions of Lemma 3 provide the convergence in probability

(by N ! 1 ) of the averaged ESE:

P � lim
N !1

� N (�=
p

N; k ) exp[� �
p

NC (SN (k))] = exp[ � � 2� 2=2] ; k � 0: (50)

We should use the Theorem 1, according to which

C(SN (k)) ) C(� ) = � = p=(1 � a) ; N ! 1 ; k � 0:

Now we intro duced the centered ESE:

� 0
N (�=

p
N; k + 1) := � N (�=

p
N; k + 1) exp[ � �

p
NSN (k + 1)] ; k � 0; (51)

� 0
N (�=

p
N; k ) := � N (�=

p
N; k ) exp[� �

p
NC (SN (k))] ; k � 0: (52)

By Theorem 2, there is convergence (in probability):

p
N [SN (k + 1) � C(SN (k))] ) �W (k + 1) ; N ! 1 ; k � 0: (53)

So that the exp onential martingale (44) is represented in the following form:

� e
N (�=

p
N;k + 1) =

h
� 0

N (�=
p

N; k + 1) = � 0
N (�=

p
N; k )

i
�

� expf �
p

N [SN (k + 1) � C(SN (k))]g ; k � 0:
(54)

Using the the relations (50) - (53), taking into account the relations � 2 = 1 � � 2
,

we get the assertion (45) .

Theorem 4 is proved. 2

We now rewrite the approximations (51) and (45) in the original series scheme

with the series parameter � N = �=N :

� N (�=N; k ) exp[� �C (SN (k))] = exp( � 2� 2=2N )eRN ; k � 0; (55)

� e
N (�=N; k + 1) = exp[ � (�=

p
N )W (k + 1) � � 2� 2=2N ]eRN : (56)

Here the residual term RN = o(1=N); n ! 1 .
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Hence the normalized ESE (31) admit the following approximation:

� N (�=N; k + 1) = exp[ �C (SN (k)) � � 2� 2=2N ]�

� exp[� (�=
p

N )W (k + 1) � � 2� 2=2N ]eRN :
(57)

The approximation of the ESE (57) serves as a basis the following statement.

Prop osition 3. The exponential statistical experiments (31) can be approxi-

mated by an exponential process of autoregression

g� N (�=N; k + 1) :=
NY

r =1

[1 + � e� r (k + 1) =N] =

= exp[ �C ( fSN (k)) � � 2� 2=2N ] � exp[� (�=
p

N )W (k + 1) � � 2� 2=2N ];

(58)

Here by de�nition

fSN (k) :=
1
N

NX

r =1

e� r (k); k � 0:

Remark 4. An important basis for the application of approximation (58) is the

fact that the conditional expectations asymptotical ly coincides with the regres-

sion function (conditional expectation) of the original ESE (30) , namely (cf.

(58)):

E

"
NY

r =1

[1 + � e� r (k + 1) =N]j fSN (k)

#

= exp[ �C ( fSN (k)) � � 2� 2=2N ]eRN : (59)
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Ðåçþìå. Â äàíié ñòàòòi ðîçðîáëåíî òåîðiþ ñòðóêòóðíèé ïåðåòâîðåíü

ñèñòåì çâè÷àéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü (ÇÄÐ) äðóãîãî ïîðÿäêó, ÿêi

çáåðiãàþòü âëàñòèâiñòü ñòiéêîñòi çà Ëÿïóíîâèì. Îñîáëèâó óâàãó ïðèäiëå-

íî òàêèì ïåðåòâîðåííÿì, ÿêi ïðèâîäÿòü çàäàíó ñèñòåìó ÇÄÐ äî ñïåöiàëü-

íîãî ñèìåòðè÷íîãî âèäó, áiëüø çðó÷íîãî ïðè äîñëiäæåííi ñòiéêîñòi íóëüî-

âîãî ðîçâ'çêó òàêèõ ñèñòåì. Îêðåìî ðîçãëÿíóòî âèïàäêè àâòîíîìíèõ òà

íåàâòîíîìíèõ ñèñòåì. Îñíîâíà òåîðåìà äàíî¨ ñòàòòi ñóòò¹âî óçàãàëüíþ¹

âñi âiäîìi ðåçóëüòàòè â îáëàñòi ñòðóêòóðíèõ ïåðåòâîðåíü ñèñòåì ÇÄÐ òà

ìîæå ðîçãëÿäàòèñÿ ÿê àíàëîã âiäîìî¨ òåîðåìè ™ðóãiíà ïðî ñèñòåìè ïåð-

øîãî ïîðÿäêó. Çàçíà÷åíà òåîðåìà äîçâîëèëà íàì óçàãàëüíèòè 3-òþ òà 4-

òó òåîðåìè Êåëüâiíà-Òåòà-×åòà¹âà. Îäåðæàíi òåîðåòè÷íi ðåçóëüòàòè áóëè

óñïiøíî çàñòîñîâàíi ïðè äîñëiäæåííi ñòiéêîñòi îáåðòàëüíîãî ðóõó æîðñò-

êîãî òiëà ïiäâiøåíîãî íà ñòðóíi.

Abstract. In the pap er we have develop ed a theory of stability preserving

structural transformations (SPST) of systems of second-order ordinary di�er-

ential equations (ODEs), i.e., the transformations which preserve the prop erty

of Lyapunov stability. Sp ecial attention is paid to those SPST, which can re-

duce a given system of ODEs to several sp ecial symmetric forms that are more

approachable for the existing metho ds of stability investigation than the �non-

symmetric� ones. The autonomous and non-autonomous cases were discussed

separately. The main Theorem proved in the pap er essentially generalizes all

the known theoretical results related to the SPST of systems of second-order

ODEs and can b e viewed as an analogous of the Erugin's theorem for the sys-

tems of second-order ODEs. The Theorem allowed us to generalize the 3-rd

and 4-th Kelvin � Tait � Chetayev theorems. The obtained theoretical results

were successfully applied to the stability investigation of the rotary motion of

a rigid b o dy susp ended on a string.

MSC 2010: 74H55, 34D20, 37N15

1. Introduction

It is well known that a great numb er of dynamical systems can b e approxi-

mately describ ed by the following system of second-order ordinary di�erential

equations (ODEs):

J (t) •
x (t) + ( D (t) + G (t)) _

x (t) + ( P (t) + � ( t)) x (t) = F (t; x (t)) ;

t 2 [t0; 1 )
(1)

Key words . Kelvin � Tait � Chetayev theorems, null solution, stability in the sense of Lya-

punov, Lyapunov's second metho d for stability, Lyapunov transformation, Lyapunov matrix.
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where x (t) = col [x1 (t) ; x2 (t) ; : : : ; xm (t)] is an unknown vector-function.

From the physical p oint of view the matrix J (t) = J T (t) > 0 (the upp er index

T denotes the op eration of transp osition) describ es the inertia characteristics

of a dynamical system; the matrices D (t) = D T (t) ; G (t) = � GT (t) ; P (t) =
� PT (t) and � ( t) = � T (t) represent a dissipative, gyroscopic, non-conservative

p ositional and p otential forces resp ectively; the vector-function F (t; x (t)) 1

rep-

resents an external forces acting on the system.

Let us consider a linear one-to-one mapping L � 1(t); which maps the unknown

vector-function x (t) to some other m -dimensional unknown vector-function

� (t): If the inverse mapping, L(t); is su�ciently smo oth then it can b e viewed as

a structural transformation

2

of system (1) . Indeed, substituting vector x (t) in

system (1) with expression L(t)� (t) we can get a transformed second-order sys-

tem of ODEs with resp ect to the unknown vector-function � (t): In the present

pap er we con�ne ourselves to study only those transformations (or mappings)

L; which do not change the stability prop erties of the null solution of system

(1). We will call them the stability preserving structural transformations .

By �stability prop erties� of a null solution we mean the prop erties of b eing

unstable , stable or asymptotical ly stable in the sense of Lyapunov.

De�nition 1. The null solution, x 0(t) � 0; of system (1) is called stable

(in the sense of Lyapunov) if 8" > 0 there exists � = � (" ) > 0; such that

kx � (t)k < "; 8t 2 [t0; + 1 ); where x � (t) represents any solution of system (1)

which satis�es initial condition kx � (t0)k < �:
The null solution is called asymptotically stable (in the sense of Lyapunov)

if it is stable and lim
t ! + 1

kx � (t)k = 0 :

The null solution is called unstable (in the sense of Lyapunov) if it is not

stable .

As an example of stability preserving structural transformations we can men-

tion the Lyapunov transformations (see [1 , p. 117]) though those are not the

only stability preserving transformations considered in the present pap er (see

section 2 for more detail).

De�nition 2 (see [1], p. 117) . A square matrix L(t) will b e called a Lyapunov

matrix if it satis�es the following conditions :

1. L(t) has continuous derivative

dL (t)
dt on some interval [t0; + 1 );

2. matrices L(t) and

dL (t)
dt are b ounded on the interval [t0; + 1 );

3. there exists a constant � such that 0 < � < j det(L (t)) j; 8t 2 [t0; 1 ):
A transformation x(t) = L(t)� (t) will b e called a Lyapunov transformation if

the matrix L(t) is a Lyapunov matrix.

The ab ove classic de�nition is useful only for the case of �rst-order systems.

To adapt it for the case of second-order systems we will additionally require

that the Lyapunov matrix L(t) has continuous second derivative on [t0; + 1 ):

1

We assume that 8t1 2 [t0 ; + 1 ); lim
k x k! 0

kF (t1 ; x )k=k x k = 0 :

2

In the next section we will give a thorough de�nition of "structural transformation" and

here we are going to give a general idea.
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As it was p ointed out by V. N. Koshlyakov in [2], when the gyroscopic terms

in system (1) are p erio dic in t with some p erio d � > 0 then the formal ap-

plication of the averaging metho d to the system could result in the discarding

of gyroscopic structures though this structures had some stabilizing e�ect on

the system b efore averaging. Thus, it is very desirable to have a theoretical

framework which allows us to transform the initial system into a system that

p ossess the same stability prop erties and contain no gyroscopic structures. In

[2] the author has considered a case when J (t) = a0E; 3 a0 > 0: He showed that

the transformation x(t) = L(t)� (t); with matrix L(t) that satis�es the Cauchy

problem

_L(t) = � (2a0)� 1G(t)L (t); L (t0) = E; will reduce system (1) to a

system which do es not contain gyroscopic structures. He also proved that the

transformation mentioned ab ove is a Lyapunov transformation, i.e., it preserves

stability prop erties of system (1). Furthermore, V. N. Koshlyakov showed that

in some real physical cases the reduced system could b e so simple that its

general solution can b e easily found explicitly.

However, V. N. Koshlyakov was not the �rst one who p ointed out the prac-

tical b ene�ts of using stability preserving transformations. Almost twenty �ve

years earlier D. L. Mingori did this.

In [3 ] D. L. Mingori has considered a case when system (1) is autonomous,

that is,

J •x(t) + ( D + G) _x(t) + ( P + �) x(t) = 0 4 ; (2)

where x = col [x1 (t) ; x2 (t) ; : : : ; xm (t)] is an unknown vector; here again the

matrix J = J T > 0 describ es the inertia characteristics of the dynamical system

and matrices D = D T ; G = � GT ; � = � T ; P = � PT
represent a dissipa-

tive, gyroscopic, non-conservative p ositional and p otential forces resp ectively.

D. L. Mingori proved that under some restrictions imp osed on the matrix co-

e�cients of system (2) there exists a Lyapunov transformation

x(t) = J � 1
2 L(t)� (t) (3)

that can reduce autonomous system (2) to another autonomous system

•� (t) + V _� (t) + W � (t) = 0 (4)

which do es not contain nonconservative p ositional structures, i.e, W = W T
.

Since the matrix L(t) is a Lyapunov matrix, the null solutions of systems (2)

and (4) are stable, asymptotically stable or unstable simultaneously. On the

other hand, b ecause of the symmetrical prop erties of system (4) the stability

investigation of its null solution is an easier task than the stability investigation

of the null solution of system (2).

Thereby in [3] D. L. Mingori had suggested an approach to the stability in-

vestigation of the second-order systems of ODEs (2) which consists of reducing

the initial problem to the problem of stability investigation of the corresp ond-

ing equivalent (in the sense of Lyapunov, see [1 , p. 118]) symmetric system

(4). He has shown that such approach can b e very useful and fruitful for the

3 E denotes the identity matrix of corresp onding order.

4

For the sake of simplisity the vector function of external forces was not taken into account.
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stability investigation in analytical mechanics. However, in [3] the author has

considered the case when D > 0 only. Though in [4] the results of D. L. Mingori

were extended on the case when D � 0; the necessary and su�cient conditions

providing that a given non-symmetric second-order system of ODEs is equiva-

lent in the sense of Lyapunov to some symmetric second-order system remains

unknown: b oth pap ers [3 ] and [4] contain the su�cient conditions only.

Later the necessary and su�cient conditions providing that the autonomous

system (2) can b e reduced to some other autonomous system (4) with W1 = W T
1

via substitution (3) were found in pap ers [5] and [6]. However, the results of

these pap ers were obtained under additional assumptions that

G = H Ĝ;

dL (t)
dH

= 0 ; 8t � 0; (5)

D > 0; det (G) 6= 0 ;

where H denotes a p ositive numerical parameter.

In some cases the parameter H can b e a part of matrix � : This will b e the

case when equation (2) describ es a p erturb ed motion of a gyroscopic systems

installed on the platform which rotates around the vertical with the angular

velo city !: Using assumptions (5) and assuming that � = � (0) + H � (H ) ; where

matrices � (0) ; � (H )
are indep endent on H; the necessary and su�cient condi-

tions providing the reducibility of system (2) to some other system (4) with

W1 = W T
1 where obtained in [7 ].

One of the common features of the series of works [3, 4 , 5, 6, 7, 8, 9 ] is that

their authors included the commutation of the matrices D and P into a set

of conditions which provide the reducibility of system (2) to system (4) with

W1 = W T
1 . As it is show in Section 4 (see Example 1) this commutativity

condition is not the necessary one

5

and in the present pap er we �nally got rid

of it.

In the present pap er without any additional assumptions we have obtained

the necessary and su�cient conditions (in terms of the matrix co e�cients)

providing that a given system of second-order ODEs is equivalent in the sense of

Lyapunov to some other system of second-order ODEs with symmetric matrix

co e�cients. We have considered b oth the autonomous and non-autonomous

cases. In the case when the initial system is autonomous we require that the

reduced system b e autonomous to o.

The pap er is organized as follows.

In Section 2 we intro duce the notion of the structural transformation of a sys-

tem of second-order ODEs and give the de�nition of the L k -equivalent systems

of second-order ODEs. Using the notion of the L k -equivalence we formulate

two symmetrization problems for the non-autonomous systems of second-order

ODEs: the problem of Elimination of Gyroscopic Structures (EGS problem) and

the problem of Elimination of Non-conservative Positional Structures (ENPS

5

We mean the case when there are no additional restrictions as, for example, those that

were intro duced in [5 ], [6], [7].
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problem). In the section the necessary and su�cient conditions providing the

solvability of the b oth problems were obtained.

In Section 3 we reformulate the EGS and ENPS problems for the case of

the autonomous systems and intro duce the notion of the L -equivalence of two

autonomous systems of second-order ODEs. Theorem 6 proved in the section

can b e considered as an analogous of the Erugin's theorem (see [1 , p. 121])

for the autonomous systems of second-order ODEs. Some useful consequences

from Theorem 6 are stated in Section 5. Among them there is a theorem which

generalizes the theorems of Mingori (see [3]) and M �uller (see [4 ]).

In Section 5 we discuss the question of the interconnection b etween the no-

tions of the L k -equivalence and equivalence in the sense of Lyapunov.

In Section 6 we demonstrate how the using of structural transformations

can facilitate the stability investigation of the null solution of the autonomous

second-order system of ODEs describing the rotary motion of a rigid b o dy

susp ended on a string.

Section 7 contains several conclusions ab out the theoretical results presented

in the pap er.

2. Stability preserving structural transformations of the

non-autonomous systems of second-order ODEs

Let us consider the following system of second-order ordinary di�erential

equations:

•x + A (t) _x+ B (t) x = 0 ; (6)

where x = �! x (t) = [ x1 (t) ; : : : ; xm (t)]T
is an unknown vector-function. By de-

fault, we assume that A (t) ; B (t) are square matrices of order m whose elements

are continuous on [t0; + 1 ) functions, i.e., A (t) ; B (t) 2 M m (C [t0; + 1 )) : Also

we will use the notation M m
�
C i [t0; + 1 )

�
; i = 1 ; 2 to denote the linear spaces

of square matrices of order m whose elements b elong to the functional space

C i [t0; + 1 ) ; i = 1 ; 2; and the notation M m;n (R) will b e used to denote the

space of constant real matrices of dimension m � n:

De�nition 3. The structural transformation of the second-order system of

ordinary di�erential equations (6) is the transformation of unknown vector x
which can b e expressed in the form

x = L (t) �; (7)

where � = [ � 1 (t) ; : : : ; � m (t)]T
is a new unknown vector-function,

L (t) 2 M m
�
C2 [t0; + 1 )

�
; det (L (t)) 6= 0 ; 8t 2 [t0; + 1 ) :

Applying transformation (7) to system (6) we obtain the following system of

second-order ordinary di�erential equations:

L (t) •� (t) +
�

2 _L (t) + A (t) L (t)
�

_� (t) + (8)

+
�

•L (t) + A (t) _L (t) + B (t) L (t)
�

� (t) = 0 ;
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or , in more convenient form,

•� + V (t) _� + W (t) � = 0 ; (9)

where

V (t) = L � 1 (t)
�

2 _L (t) + A (t) L (t)
�

;

W (t) = L � 1 (t)
�

•L (t) + A (t) _L (t) + B (t) L (t)
�

:
(10)

Apparently we have that V (t) ; W (t) 2 M m (C [t0; + 1 )) : Therefore, apply-

ing transformation (7) to system (6) with continuous on [t0; + 1 ) matrix co-

e�cients, we arrive at system (9) that also p ossesses continuous on [t0; + 1 )
matrix co e�cients.

De�nition 4. We say that the system of second-order ODEs (6)

is L k -equivalent to system (9) ( k 2 f 0; 1; 2g) if there exists a matrix L (t) 2
M m

�
C2 [t0; + 1 )

�
satisfying conditions

1. jdet (L (t)) j > � > 0; 8t 2 [t0; + 1 ) ;

2. sup
t2 [t0 ;+ 1 )










di

dt i L (t)








 < + 1 ; 8i 2 0; k;

together with equalities (10) . A matrix L (t) 2 M m
�
C2 [t0; + 1 )

�
which satis-

�es conditions 1, 2 for some k 2 f 0; 1; 2g is called an L k -matrix.

According to the de�nition given in [10, p. 353], a matrix L(t) 2
M m (C1[t0; + 1 )) which satis�es conditions 1, 2 for k = 0 ; is called a regular

on [t0; + 1 ) matrix . Transformation (7) , where L (t) is an L 2 -matrix can also

b e referenced to as a Lyapunov transformation of system of second-order ODEs

(compare with the de�nition of a Lyapunov transformation form [1, p. 117]).

Let us consider the following symmetrization problems for the given system

of second-order ODEs (6) :

1. the problem of Elimination of Gyroscopic Structures (EGS problem)

which consists in �nding an L k -matrix L (t) ( k = 0 ; 1; 2) together with

matrices V (t) ; W (t) 2 M m (C [t0; + 1 )) ; V (t) = V T (t) ; such that

equalities (10) hold true 8t 2 [t0; + 1 ) ;
2. the problem of Elimination of Non-conservative Positional Structures

(ENPS problem) which consists in �nding an L k -matrix L (t) ( k =
0; 1; 2) together with matrices V (t) ; W (t) 2 M m (C [t0; + 1 )) ; W (t) =
W T (t) ; such that equalities (10) hold true 8t 2 [t0; + 1 ) :

If the matrices L (t) ; V (t) ; W (t) mentioned in items 1 and/or 2 exist then we

say that the EGS and/or ENPS problems for system (6) can b e solved by means

of L k -transformation.

Both symmetrization problems can b e stated in terms of the L k -equivalence

in the following way:

1. to �nd a system (9) with V (t) = V T (t) which is L k -equivalent to the

given system (6) (EGS problem);

2. to �nd a system (9) with W (t) = W T (t) which is L k -equivalent to the

given system (6) (ENPS problem).
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Let us �nd the necessary and su�cient conditions (in terms of matrices

A (t) ; B (t) ) providing the solvability of the EGS and/or ENPS problems for

the given system (6) , or, in other words, the necessary and su�cient conditions

providing that system (6) is L k -equivalent to some system (9) with V (t) =
V T (t) and/or W (t) = W T (t) for some k = 0 ; 1; 2.

Supp osing that the matrix co e�cient in front of the vector-function

_� in

system (9) is symmetric (i.e., there is no gyroscopic structures), we arrive at the

following matrix di�erential equation with resp ect to the unknown L k -matrix

L (t) :

2
�

_L (t) L T (t) � L (t) _L T (t)
�

+ A (t) L (t) L T (t) � L (t) L T (t) AT (t) = 0 : (11)

Similarly to that, assuming that the matrix co e�cient in front of the vector-

function � in system (9) is symmetric (i.e., there is no non-conservative p osi-

tional structures) we arrive at the equation

•L (t) L T (t) � L (t) •L T (t) + A (t) _L (t) L T (t) �

� L (t) _L T (t) AT (t) + B (t) L (t) L T (t) � L (t) L T (t) B T (t) = 0 :
(12)

It is easy to verify that there exists a unique pair of matrices K (t); S(t);
such that

_LL T = _L (t) L T (t) = K (t)+ S (t) ; K (t) = � K T (t) ; S (t) = ST (t) : (13)

If matrix L (t) is an L k -matrix ( k = 0 ; 1; 2) then matrices K (t) and S (t) (13)

b elongs to M m (C1[t0; + 1 )) : It is easy to see that

d
dt

�
L (t) L T (t)

�
= _L (t) L T (t) + L (t) _L T (t) = 2 S (t) ; (14)

and

L (t) L T (t) = 2

tZ

t0

S (� ) d� + S0; L (t0) L T (t0) = S0 = ST
0 > 0: (15)

Taking into account equalities (13) , (15) , we can rewrite equations (11) and

(12) in the form of

4K (t) + A (t)
�

2
tR

t0

S (� ) d� + S0

�
�

�
2

tR

t0

S (� ) d� + S0

�
AT (t) = 0

(16)

and

2 _K (t) + A (t) (S (t) + K (t)) � (S (t) � K (t)) AT (t) +

+ B (t)
� tR

t0

2S (� ) d� + S0

�
�

� tR

t0

2S (� ) d� + S0

�
B T (t) = 0

(17)

resp ectively. What are the necessary and su�cient requirements which have

to b e imp osed on the matrices K (t) and S (t) to provide the existence of an

L k -matrix L (t) which satis�es equality (13)? The answer to this question is

given by the following theorem.
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Theorem 1. A regular on [t0; + 1 ) matrix L (t) which satis�es equality (13)

exists if and only if the matrices K (t) ; S (t) belong to M m (C [t0; + 1 )) and

satisfy the fol lowing inequalities:

�
�
�
�2

tZ

t0

T r (S (� )) d� + T r (S0)
�
�
�
� � � 2; 8t 2 [t0; + 1 ) ; (18)

det
�

2

tZ

t0

S (� ) d� + S0

�
� � 2; 8t 2 [t0; + 1 ) (19)

for some constants � > 0; � > 0 and real valued positive de�nite symmetric

matrix S0 2 M m (R) :

Proof. Necessity. Supp ose that there exists a matrix L (t) which b elongs to

M m
�
C1 [t0; + 1 )

�
and satis�es equality (13) together with inequalities

kL (t)kF � �; 8t 2 [t0; + 1 ) 6 ; (20)

jdet (L (t)) j � �; 8t 2 [t0; + 1 ) ; (21)

for some constants � > 0; � > 0: It easy to see that the matrices K (t) ; S (t)
app earing in (13) b elong to M m (C [t0; + 1 )) ; and the necessity of conditions

(18) , (19) immediately follows from (15) . The necessity in the theorem is

proved.

Su�ciency . Supp ose that K (t) ; S (t) 2 M m (C[t0; + 1 )) ; K (t) = � K T (t);
S(t) = ST (t) and inequalities (18) , (19) hold true for some constants � >
0; � > 0 and some p ositive de�nite symmetric matrix S0: Assuming that the

matrix L = L (t) satis�es equality (13) 8t 2 [t0; + 1 ) together with the initial

condition

L (t0) = L 0; L 0L T
0 = S0; (22)

we arrive at the conclusion that equality (15) together with inequality (18)

imply inequality (20) as well as inequality (19) implies inequality (21) .

Let us prove that the solution L = L (t) to the Cauchy problem (13) , (22)

supplemented with conditions (18) , (19) exists and is unique on [t0; T ] for any

arbitrary T > t 0: If we denote by � i ; i = 1 ; 2; : : : ; m the ascending ordered

eigenvalues of matrix S0 , that is, 0 < � 1 � � 2 � : : : � � m ; then inequality (18)

implies that

� m �
mX

i =1

� i = T r (S0) � � 2: (23)

Taking into account inequality (23) we can obtain from inequality (19) the

estimate

� 1 =
det (S0)

� 2 : : : � m
�

� 2

� 2(m� 1)

6

Here kAkF denotes the Frob enius norm of matrix A; that is, kAkF =
p

T r (AA T ):
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which leads us to the inequality




 L � 1

0




 2

E = T r
�
S� 1

0

�
�

m
� 1

�
m� 2(m� 1)

� 2 = � 2:

Since det(L (t)) 6= 0 ; 8t 2 [t0; + 1 ); equality (13) can b e rewritten in the form

of

_L = F (t; L ) = ( S (t) + K (t))
�
L � 1� T

: (24)

Now we intend to show that the matrix-valued function F (t; L ) satis�es con-

ditions of the Picard-�Lindel�of theorem (see, for example, [11 , p. 8]) in the

rectangle

P =
�

(t; L ) 2 R� M m (R) : t0 � t � T;








 L � L 0










E
�

�
�

; 0 < � < 1
�

: (25)

Taking into account that the elements of matrix-functions S (t) and K (t) are

continuous on [t0; + 1 ); it remains only to show that the matrix-valued function

F (t; L ) is Lipschitz-continuous on P (25) with resp ect to its second argument

L: This fact follows from the following inequalities, which are valid for any

matrices L i 2 M m (R) ; i = 1 ; 2; such that kL i � L 0kE �
�
�

:




 L � 1

1 � L � 1
2






E =





 (L 1 � L 0 + L 0)� 1 � (L 2 � L 0 + L 0)� 1








E
=

=





 L � 1

0

�
(L 1 � L 0) L � 1

0 + E
� � 1

� L � 1
0

�
(L 2 � L 0) L � 1

0 + E
� � 1








E
=

=












L � 1
0

 
1X

i =0

(� 1)i
�

(L 1 � L 0) L � 1
0

� i
�

1X

i =0

(� 1)i
�

(L 2 � L 0) L � 1
0

� i
! 











E

=

=











L � 1

0

 
1X

i =1

(� 1)i
� �

(L 1 � L 0) L � 1
0

� i
�

�
(L 2 � L 0) L � 1

0

� i
� ! 











E

�

�



 L � 1

0






E

1X

i =1

0

@
iX

j =1

kL 1 � L 0ki � j
E kL 1 � L 2kE kL 2 � L 0kj � 1

E




 L � 1

0




 i

E

1

A =

=



 L � 1

0




 2

E kL 1 � L 2kE

1X

i =1

0

@
iX

j =1

kL 1 � L 0ki � j
E kL 0 � L 2kj � 1

E




 L � 1

0




 i � 1

E

1

A �

� k L 1 � L 2kE � 2
1X

i =1

i� i � 1 =
� 2

(1 � � )2 kL 1 � L 2kE : (26)

In the ab ove formula we have used the equality (see, for example, [12, p. 113])

(A + E) � 1 =
1X

i =0

(� 1)i A i ; 8A 2 M m (R) ; kAk < 1;

and the evident identity

An � B n =
nX

i =1

An� i (A � B ) B i � 1; 8A; B 2 M m (R) ; n = 1 ; 2; : : : :
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Using (26) we can estimate the norm of F (t; L ) on the rectangle P (25) in the

following way:

max
kL � L 0kE � �

�








�
L � 1� T








E
= max

kL � L 0kE � �
�




 L � 1 � L � 1

0 + L � 1
0






E �

�
� 2

(1 � � )2 max
kL � L 0kE � �

�

kL � L 0kE +



 L � 1

0






E �
��

(1 � � )2 + �;

max
(t;L )2 �

kF (t; L )kE � max
t2 [t0 ;T ]

kK (t) + S (t)kE max
kL � L 0kE � �

�







�
L � 1� T








E
= FP :

Thus, the conditions of the Picard�Lindel�of theorem are satis�ed and the

solution of the Cauchy problem (22) , (24) exists at least on the interval I h =

[t0; h] ; where h = min
�

T;
�

�F P

�
: If h = T then the theorem is proved. Oth-

erwise, if h < T then, applying the same reasoning as ab ove to equation (24)

with the initial condition L h = L (h) ; we arrive at the conclusion that the so-

lution to the Cauchy problem (22) , (24) exists at least on the interval [t0; 2h] :
Apparently, after a �nite numb er of iterations we will prove that the solution

exists on [t0; T ] : From the arbitrariness of T it follows that the solution to the

Cauchy problem (22) , (24) exists on [t0; + 1 ) : The theorem is proved.

It is not hard to verify that the matrix K (t) + S (t) where K (t) = � K T (t) ,

S (t) = ST (t) is b ounded on [t0; + 1 ] and/or b elongs to M m (Ck [t0; + 1 )) if

and only if b oth of the two matrices K (t) and S(t) are b ounded on [t0; + 1 )
and/or b elong to M m (Ck [t0; + 1 )) : Taking this fact into account and using

Theorem 1 we can make several conclusions stated b elow.

Corollary 3. An L k -matrix L (t) ( k = 1 ; 2) satisfying equality (13) exists if

and only if K (t) ; S (t) 2 M m
�
C1 [t0; + 1 )

�
and the fol lowing conditions hold

true:

1. there exist constants � > 0; � > 0 and matrix S0 2 M m (R) ; S0 = ST
0 > 0

satisfying inequalities (18) , (19) ;

2. sup
t2 [t0 ;+ 1 )










di

dt i K (t)







 + sup

t2 [t0 ;+ 1 )










di

dt i S (t)







 < + 1 ; 8i 2 0; k � 1:

Equation (16) and Corollary 3 imply the following theorem.

Theorem 2. The given system of second-order ODEs (6) with A (t) 2
M m

�
C1 [t0; + 1 )

�
is L k -equivalent ( k = 0 ; 1; 2) to some system (9) with

V (t) = V T (t) if and only if there exist the symmetric matrices S (t) 2
M m

�
C1 [t0; + 1 )

�
; S0 2 M m (R) ; S0 > 0 which de�ne the skew-symmetric

matrix K (t)

4K (t) = � ( t) AT (t) � A (t) � ( t) ; � ( t) = 2

tZ

t0

S (� ) d� + S0; (27)

and satisfy conditions

1. (18) , (19) for some constants � > 0; � > 0;
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2. sup
t2 [t0 ;+ 1 )










di

dt i K (t)








 + sup

t2 [t0 ;+ 1 )










di

dt i S (t)








 < + 1 ; 8i 2 0; k � 1; (k 6= 0) 7 :

From Theorem 2 we obtain the following corollary.

Corollary 4. The given system of second-order ODEs (6) with A (t) 2
M m

�
C1 [t0; + 1 )

�
is always L 0 -equivalent to some system (9) with V (t) =

V T (t) :

From equation (17) and Corollary 3 we can easily obtain the theorem which

gives the necessary and su�cient conditions for solvability of the ENPS prob-

lem.

Theorem 3. The given system of second-order ODEs (6) is L k -equivalent ( k =
0; 1; 2) to some system (9) with W (t) = W T (t) if and only if there exist the

symmetric matrices S (t) 2 M m
�
C1 [t0; + 1 )

�
; S0 2 M m (R) ; S0 > 0 and the

skew-symmetric matrix K (t) which satis�es the matrix di�erential equation

2 _K (t) + A (t) K (t) + K (t) AT (t) + A (t) S (t)

� S (t) AT (t) + B (t) � ( t) � � ( t) B T (t) = 0 ;

� ( t) = 2
tR

t0

S (� ) d� + S0;

(28)

and conditions 1, 2 of Theorem 2 .

It is worth to emphasize that for any initial condition K (t0) = K 0 = � K T
0 2

M m (R) the solution K (t) to the matrix di�erential equation (28) is a skew-

symmetric matrix. Indeed, if we sum up equation (28) with the transp osed

equation (28) we obtain the Cauchy problem

2 _N (t) + A (t) N (t) + N (t) AT (t) = 0 ;

N (t) = K (t) + K T (t) ; N (0) = 0 :
(29)

It is easy to see that the conditions of the Picard-�Lindel�of theorem for the

Cauchy problem (29) are ful�lled and its solution N (t) exists and is unique on

[t0; + 1 ) : Therefore, the problem has the trivial solution only, that is, N (t) =
0; 8t 2 [t0; + 1 ) and K (t) = � K T (t) ; 8t 2 [t0; + 1 ) : Such conclusion can

also b e obtained from the analysis of the analytical expression for the general

solution K (t) of equation (28) (see, for example, [13 , p. 188]).

From Theorem 3 we can easily obtain the corollary.

Corollary 5. The given system of second-order ODEs (6) is always

L 0 -equivalent to some other system (9) with W (t) = W T (t) :

Combining Theorems 4 and 2 we arrive at the following one.

7

In the case when k = 0 condition 2 should b e neglected.
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Theorem 4. The given system of second-order ODEs (6) with A (t) 2
M m

�
C1 [t0; + 1 )

�
is L k -equivalent ( k = 0 ; 1; 2) to some system (9) with V (t) =

V T (t) ; W (t) = W T (t) if and only if there exist the symmetric matrices S (t) 2
M m

�
C1 [t0; + 1 )

�
; S0 2 M m (R) ; S0 > 0 which de�ne the skew-symmetric

matrix K (t) (27) and satisfy conditions 1, 2 of Theorem 2 together with equality

� ( t) M T (t) = M (t) � ( t) ; 8t 2 [t0; + 1 ) ;

M (t) =
1
2

d
dt

A (t) +
1
4
A2 (t) � B (t) ; � ( t) = 2

tR

t0

S (� ) d� + S0:
(30)

Condition (30) can b e obtained as a result of substitution of the matrix K (t)
from equation (28) by its expression from (27) .

Remark 1. Suppose that the conditions of at least one of the Theorems 2, 3 or

4 are ful�l led. Then each suitable L k -matrix L (t) can be found as the solution

to the matrix di�erential equation (13) supplemented with an initial condition

L(t0) = L 0 where L 0 is an arbitrary matrix form M m (R); such that L 0L T
0 = S0:

Additional ly to that, the matrix coe�cients of the respective symmetrized system

(9) can be found via formulas (10) .

3. Stability preserving structural transformations of the

autonomous systems of second-order ODEs

Let us consider the two systems of second-order ordinary di�erential equa-

tions

•x + A _x+ B x = 0 ; A; B 2 M m (R) ; (31)

•� + V _� + W � = 0 ; V; W 2 M m (R) : (32)

De�nition 5. We say that the given autonomous system (31) is L -equivalent

to system (32) if there exists a regular on [0; + 1 ) matrix L (t) (see de�nition

on p. 40) which satis�es equalities

8

V = L � 1 (t)
�

2 _L (t) + AL (t)
�

;

W = L � 1 (t)
�

•L (t) + A _L (t) + BL (t)
�

; 8t 2 [0; + 1 ) :
(33)

From the �rst equality of (33) we can easily obtain

L (2t) = exp ( � At ) C exp (V t) ; C 2 M m (R) : (34)

It is easy to see that if the matrix L (t) (34) is regular on [0; + 1 ) then it is

an L k -matrix for k = 0 ; 1; 2: Hence, we can see that the notion of the L k -

equivalence ( k = 0 ; 1; 2) for two autonomous systems according to de�nition 4

is tantamount to the notion of the L -equivalence according to de�nition 5.

In this section we consider the following symmetrization problems for the

autonomous systems of second-order ODEs (31):

8

Without loss of generality and for the sake of simplicity, in this section we consider the

segment [0; + 1 ) instead of [t0 ; + 1 ):
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1. to �nd an autonomous system (32) with V = V T
which is L -equivalent

to the given system (31) (compare with the EGS problem);

2. to �nd an autonomous system (32) with W = W T
which is L -equivalent

to the given system (31) (compare with the ENPS problem).

Let us �nd the necessary and su�cient requirements which have to b e im-

p osed on matrices A; B to provide the solvability of the EGS and/or ENPS

problems for autonomous system (31).

To pro ceed with this task we have to intro duce several convenient notations.

We will use the notation [A; B ] to describ e a commutator of two square matrices

A and B; that is,

[A; B ] = AB � BA:

Also, we will use the notation f A1A2 : : : Ang to describ e a sup erp osition of

commutators, that is,

f A1A2g = [ A1; A2]; f A1A2 : : : An g = [ f A1A2 : : : An� 1g; An ]:

It is easy to ensure that the commutators ob ey the following prop erties:

[AB; C ] = [ A; C ] B; 8A; B; C 2 M m (R) : [B; C ] = 0 ; (35)

[[A; B ] ; C] = [ A; [B; C ]] ; 8A; B; C 2 M m (R) : [A; C ] = 0 : (36)

It is a well known fact that every matrix A 2 M m (R) can b e expressed in the

form of

A = TA diag
h
� 1 (A) E (p1 ) + H (p1) ; : : : ; � r (A) E (pr ) + H (pr )

i
T � 1

A ; (37)

where

� k (A) = � k (A) + i � k (A) ; � k (A) ; � k (A) 2 R; (38)

k = 1 ; 2; : : : ; r denote the eigenvalues of matrix A ; E (pk )
denotes the identity

matrix; all the elements of square matrix H (pk )
are zero except those in the �rst

sup erdiagonal which are equal to 1. The orders of square matrices E (pk )
and

H (pk )
are equal to the p ower pk of the k -th elementary devisor of matrix A: The

matrix TA denotes some nonsingular matrix from M m (R) (see, for example, [12,

p. 152]).

According to formulas (37) and (38) we de�ne

AR = TA diag
�
� 1 (A) E (p1 ) + H (p1) ; : : : ; � r (A) E (pr ) + H (pr )

�
T � 1

A ;

A I = TA diag
�
i � 1 (A) E (p1 ) ; : : : ; i � r (A) E (pr )

�
T � 1

A ;
(39)

then

A = AR + A I ; ARA I = A I AR : (40)

Using the notion of real Jordan canonical form of a real matrix (see [14 , p.

184]) it is not hard to prove that if A 2 M m (R) then AR ; A I 2 M m (R) :
Let us consider a Jordan matrix (see, for example, [14 , p. 150])

JR = diag [J1 (� 1) ; : : : ; Js (� s)] ; (41)



48 VOLODYMYR MAKAROV, DENYS DRAGUNOV

where J i (� i ) denotes a Jordan blo ck of size mi corresp onding to the eigenvalue

� i 2 R; i = 1 ; : : : ; s: For the de�niteness we will use the assumption that

� i > � j ; i < j;
sX

i =1

mi = m: (42)

In the ab ove formula mi denotes an algebraic multiplicity of the eigenvalue � i
of matrix JR (see [14 , p. 58]). The following lemma holds true.

Lemma 1. Suppose that the matrix L(t) is de�ned by the formula

L(t) = exp ( � JR t) Q exp (JR t) ; t � 0; (43)

where Q 2 M m (R) : Matrix L(t) (43) is a regular on [0; + 1 ) matrix if and only

if the matrix Q possesses the fol lowing structure:

Q =

2

6
6
4

Q11 Q12 : : : Q1s
O21 Q22 : : : Q2s
: : : : : : : : : : : :
Os1 Os2 : : : Qss

3

7
7
5 ; (44)

where matrices Qij 2 M m i m j (R) satisfy the conditions

det (Qii ) 6= 0 ;
h
J (R)

i ; Qii

i
= 0 (45)

and Oij denotes a zero-matrix of dimension mi � mj ; i; j = 1 ; 2; : : : ; s:

Proof. Without loss of generality, we consider the case when s = 2 ; that is,

when the matrix JR has only two di�erent eigenvalues � 1; � 2 2 R; � 1 > � 2 of

the algebraic multiplicities m1 � 0 and m2 � 0 resp ectively, m1 + m2 = m . Let

us denote

G1 = J1 (0) ; G2 = J2 (0) : (46)

From formula (41) , taking into account notation (46) , we obtain (see [12 , p.

157])

exp (JR t) = diag

"

e� 1 t
m1X

i =0

1
i !

t i Gi
1; e� 2 t

m2X

i =0

1
i !

t i Gi
2

#

;

exp (� JR t) = (exp ( JR t)) � 1 =

= diag

"

e� � 1 t
m1X

i =0

(� t) i

i !
Gi

1; e� � 2 t
m2X

i =0

(� t) i

i !
Gi

2

#

:

(47)

Necessity. Assume that the matrix L (t) (43) is a regular on [0; + 1 ) matrix.

Taking into account formulas (47) we obtain
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L (t) = exp ( � JR t)
�

Q11 Q12
Q21 Q22

�
exp (JR t) =

�
L 11 (t) L 12 (t)
L 21 (t) L 22 (t)

�
;

L 11 (t) =
�

m1P

i =0

(� t ) i

i ! Gi
1

�
Q11

�
m1P

i =0

t i

i ! G
i
1

�
;

L 12 (t) = e(� 2 � � 1 )t

�
m1P

i =0

(� t ) i

i ! Gi
1

�
Q12

�
m2P

i =0

t i

i ! G
i
2

�
;

L 21 (t) = e(� 1 � � 2 )t
�

m2P

i =0

(� t ) i

i ! Gi
2

�
Q21

�
m1P

i =0

t i

i ! G
i
1

�
;

L 22 (t) =
�

m2P

i =0

(� t ) i

i ! Gi
2

�
Q22

�
m2P

i =0

t i

i ! G
i
2

�
:

(48)

Since the matrices

m jP

i =0

(� t ) i

i ! Gi
j ; j = 1 ; 2 are nonsingular, it is easy to see that

the matrix L (t) (43) has unb ounded norm on [0; 1 ) unless Q21 = O21 and

matrices L 11 (t) ; L 22 (t) ; whose elements are p olynomials of t; are constant.

The latter fact implies that

L 11 (t) = Q11; L 22 (t) = Q22: (49)

Particulary, from equalities (49) it follows that det (Qj j ) 6= 0 ; j = 1 ; 2: Taking

into account the equalities

 m jX

i =0

(� t) i

i !
Gi

j

!

=

 m jX

i =0

(t) i

i !
Gi

j

! � 1

; j = 1 ; 2;

from (48) and (49) we obtain

Qj j

 m jX

i =0

(t) i

i !
Gi

j

!

=

 m jX

i =0

(t) i

i !
Gi

j

!

Qj j ; j = 1 ; 2; 8t � 0: (50)

Equalities (50) imply that [Gj ; Qj j ] = 0 ; j = 1 ; 2; and we immediately arrive at

the conclusion ab out necessity of commutativity equalities in (45) . The pro of

of the necessity is complete.

Su�ciency. Assume that the matrix Q has a structure describ ed in (44),

that is,

Q =
�

Q11 Q12
O21 Q22

�
;

and conditions (45) holds true. Then, taking into account equalities (47) , we

get

L (t) = exp ( � JR t)
�

Q11 Q12
O21 Q22

�
exp (JR t) =

�
Q11 L 12 (t)
O21 Q22

�
;

L 12 (t) = e( � 2 � � 1 )t
�

m1P

i =0

(� t ) i

i ! Gi
1

�
Q12

�
m2P

i =0

t i

i ! G
i
2

�
:

(51)
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Conditions (45) together with assumption (42) imply that the matrix L (t)
(51) is regular on [0; + 1 ): Hence, the su�ciency is proved and the Theorem is

proved.

Lemma 2. Suppose that A; V; C 2 M m (R) : If the matrix L(t); de�ned by

formula

L(t) = exp ( � At ) C exp (V t) ; t � 0; (52)

is regular on [0; + 1 ) then the spectra of matrices A and V has the same real

part (see de�nition in [15, p. 145] ), that is, there exists a nonsingular matrix

C1 2 M m (R) , such that

VR = C � 1
1 ARC1:

Proof. From the commutativity of matrices A I and AR (40) it follows that

L(t) = exp ( � A I t) exp (� AR t) C exp (VR t) exp (VI t) : (53)

Taking into account the de�nitions of matrices A I and VI and equality (53) we

arrive at the conclusion that the matrix L (t) is regular on [0; + 1 ) if and only

if the matrix

L 1(t) = exp ( � AR t) C exp (VR t)

is regular on [0; + 1 ): On the other hand, it is easy to see that the matrix L 1(t)
represents the general solution to the matrix di�erential equation (supp osing

that C represents an arbitrary matrix from space M m (R) )

d
dt

L 1 (t) = L 1 (t) VR � ARL 1 (t) : (54)

In [12, pp. 121�125] it was proved that equation (54) p ossesses a solution L 1 (t)
that is a regular on [0; + 1 ) matrix if and only if the matrices AR and VR has

the same set of elementary devisors. It is known (see [14, p. 185]) that if the

matrices AR ; VR 2 M m (R) has the same set of elementary devisors then they

are similar, furthermore, the similarity matrix C1 can b e chosen from the space

M m (R) : This completes the pro of of the Theorem.

Lemma 3. Suppose that A; V; C; Z 2 M m (R) ; the matrix

L(t) = exp ( � At ) C exp (V t) (55)

is regular on [0; + 1 ) and

�
Z; L (t)C � 1�

= 0 ; 8t � 0: (56)

Then there exists a nonsingular matrix C1 2 M m (R) ; such that

VR = C � 1
1 ARC1; (57)

C � 1ZC = C � 1
1 ZC1 (58)

and the matrix

L 1 (t) = exp ( � At ) C1 exp (V t) (59)

is a regular on [0; + 1 ) matrix satisfying the identity

�
Z; L 1 (t) C � 1

1

�
= 0 ; 8t � 0: (60)
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Proof. Supp ose that the conditions of the Lemma are ful�lled. Then, ac-

cording to Lemma 2, the sp ectra of matrices A and V has the same real part.

Thus, there exist nonsingular matrices TA ; TV 2 M m (R) ; such that

A = TA (JR + I A ) T � 1
A ; V = TV (JR + I V ) T � 1

V ;

I A = T � 1
A A I TA ; I V = T � 1

V VI TV ; [JR ; I A ] = [ JR ; I V ] = 0 ;
(61)

where JR is the Jordan matrix de�ned in (41) .

Let us consider the matrix L(t) (55) . Using notation (61) , we can rewrite it

as following

L(t) = TA exp (� (JR + I A )t) T � 1
A CTV exp ((JR + I V )t) T � 1

V =

= TA exp (� I A t) exp (� JR t)
�

T � 1
A CTV

�
exp (JR t) exp (I V t) T � 1

V :
(62)

From Lemma 1 it follows that T � 1
A CTV = Q; where Q 2 M m (R) is the

matrix de�ned in (44).

Formula (62) leads us to the equality

T � 1
A L(t)C � 1TA = exp ( � I A t) �

� diag [exp (� J1 (� 1) t) ; : : : ; exp (� Js (� s) t)] Q�

� diag [exp (J1 (� 1) t) ; : : : ; exp (Js (� s) t)] exp (I V t) Q� 1:

(63)

From equality (63) , owing to the commutation prop erties (45), we get

T � 1
A L(t)C � 1TA = exp ( � I A t) QD exp (I V t) Q� 1+ E 1 (t) = E 0 (t)+ E 1 (t) ; (64)

where

QD = diag [Q11; : : : ; Qss] :

It is easy to see that identity (56) can b e rewritten in the form of

�
T � 1

A ZTA ; T � 1
A L(t)C � 1TA

�
=

�
T � 1

A ZTA ; E 0 (t) + E 1 (t)
�

= 0 ; 8t � 0: (65)

It is not hard to verify that the elements of matrix E 0 (t) (64) can b e ex-

pressed as linear combinations of functions of typ e

sin (� t ) � cos (� t ) ; �; 2 R: (66)

On the other hand, the elements of matrix E 1 (t) (64) can b e expressed as linear

combinations of functions of typ e

tpe�t (cos (�t ) � sin (�t )) ; �; � 2 R; � < 0; (67)

p 2 N
S

f 0g; p < m:
If the matrix E 0 (t) + E 1 (t) commutates with the constant matrix T � 1

A ZTA
for all t � 0 (see (65) ) then the same remains true for each of the summands

E 0 (t) and E 1 (t) separately. Indeed, assume to the contrary that there exists

a value t1 � 0; such that

�
E 0 (t1) ; T � 1

A ZTA
�

6= 0 : It is obvious that in this
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case

�
E 1 (t1) ; T � 1

A ZTA
�

6= 0 : Taking into account the continuity of elements of

matrices E 0 (t) ; E 1 (t) ; we obtain

�
E 0 (t) ; T � 1

A ZTA
�

6= 0 ;
�

E 1 (t) ; T � 1
A ZTA

�
6= 0 ; 8t 2 [t1 � �; t 1 + � ] ; (68)

for some su�ciently small p ositive real numb er �:
It is easy to see that each element of the matrix

�
E 0 (t) ; T � 1

A ZTA
�

can b e

expressed as a linear combination of functions of typ e (66) and each element

of the matrix

�
E 1 (t) ; T � 1

A ZTA
�

can b e expressed as a linear combination of

functions of typ e (67) . Since the functions of typ es (66) and (67) are linearly

indep endent, we conclude that

�
E 0 (t) + E 1 (t) ; T � 1

A ZTA
�

=
�

E 0 (t) ; T � 1
A ZTA

�
+

�
E 1 (t) ; T � 1

A ZTA
�

6= 0

for some t 2 [t1 � �; t 1 + � ] : Thus, we get a contradictions to condition (65).

This contradiction proves the incorrectness of our assumption. Therefore we

proved the identity

�
E 0 (t) ; T � 1

A ZTA
�

= 0 ; 8t � 0: (69)

Setting t = 0 in (69) we obtain

�
QD Q� 1; T � 1

A ZTA
�

= 0 : (70)

Let us construct a matrix C1 2 M m (R) ; det (C1) 6= 0 satisfying equality

(58) . Using equality (70) we get

C � 1ZC = C � 1TA
�
T � 1

A ZTA
�

T � 1
A C = TV

�
T � 1

V C � 1TA
� �

T � 1
A ZTA

�
�

�
�
T � 1

A CTV
�

T � 1
V = TV Q� 1

�
T � 1

A ZTA
�

QT � 1
V =

= TV Q� 1
D

�
QD Q� 1

� �
T � 1

A ZTA
� �

QQ� 1
D

�
QD T � 1

V =

= TV Q� 1
D

�
T � 1

A ZTA
�

QD T � 1
V =

�
TV Q� 1

D T � 1
A

�
Z

�
TA QD T � 1

V

�
:

(71)

From equalities (71) it follows that the matrix C1 satisfying condition (58) can

b e chosen in the following way

C1 = TA QD T � 1
V 2 M m (R) : (72)

Equality (57) can b e obtained from the following chain of equalities

C � 1
1 ARC1 =

�
TA QD T � 1

V

� � 1 �
TA JRT � 1

A

�
TA QD T � 1

V =

= TV Q� 1
D T � 1

A

�
TA JRT � 1

A

�
TA QD T � 1

V = TV JRT � 1
V = VR :

Let us prove that the matrix L 1 (t) (59) is regular on [0; + 1 ): Taking into

account equality (57) and executing several elementary transformations, we
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get

L 1 (t) = exp ( � At ) C1 exp (V t) =

= exp ( � A I t) exp (� AR t) C1 exp (VR t) exp (VI t) =

= exp ( � A I t) C1C � 1
1 exp (� AR t) C1 exp (VR t) exp (VI t) =

= exp ( � A I t) C1 exp
�
� C � 1

1 ARC1t
�

exp (VR t) exp (VI t) =

= exp ( � A I t) C1 exp (� VR t) exp (VR t) exp (VI t) =

= exp ( � A I t) C1 exp (VI t) :

It is easy to see that the matrix exp (� A I t) C1 exp (VI t) is regular on [0; + 1 ):
Now we intend to prove identity (60). Equalities

T � 1
A L 1 (t) C � 1

1 TA = T � 1
A

�
exp (� A I t)

�
TA QD T � 1

V

�
exp (VI t)

�
�

�
�

TA QD T � 1
V

� � 1
TA = exp ( � I A t) QD exp (I V t) Q� 1QQ� 1

D = E 0 (t)
�
QQ� 1

D

�

together with commutation identities (69) and (70) immediately lead us to the

equalities �
Z; L 1 (t) C � 1

1

�
=

�
T � 1

A ZTA ; T � 1
A L 1 (t) C � 1

1 TA
�

=

=
h
T � 1

A ZTA ; E 0 (t)
�

Q (QD )� 1
�i

= 0 ;

which are valid for all t � 0:
The Theorem is proved.

Let us denote by Xn a set containing all the solutions of the system of linear

matrix equations n
ZA (k)X

o
= 0 ; k = 0 ; 1; : : : ; n; (73)

where Z; A 2 M m (R) are given matrices and X is the unknown square matrix

of order m:

Theorem 5. There exists a positive integer number n < m 2; such that the set

equalities

Xn = Xk ; k = n + 1 ; n + 2 ; : : : : (74)

hold true.

Proof. It is not hard to verify that the set Xn can b e represented in the

multi-parametric matrix form

Xn =

" pnX

k=1

� (n)
k;i;j ck

#m

i;j =1

; (75)

where � (n)
k;i;j are constant real co e�cients and ck are the arbitrary parameters

k = 1 ; 2; : : : ; pn (see, for example, [12 , p. 221]), 0 < p n � m2
.
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To b egin with, we prove that if for some non-negative integer n 2 N
S

f 0g
the set equality

Xn = Xn+1 ; (76)

holds true then equalities (74) hold as well. Indeed, equality (76) implies that

0 =
n

ZA (n+1) Xn+1

o
=

hhn
ZA (n)

o
; A

i
; Xn

i
= (77)

=
hn

ZA (n)
o

; [A; Xn ]
i

=
n

ZA (n) [A; Xn ]
o

:

From here and b elow by equality of typ e (77) we mean the equality for every

element of set Xn . From (77) it follows that

[A; Xn ] � X n : (78)

From equality (76) and inclusion (78) it follows that

n
ZA (n+2) Xn

o
=

hhn
ZA (n+1)

o
; A

i
; Xn

i
= (79)

=
hn

ZA (n+1)
o

; [A; Xn ]
i

=
n

ZA (n+1) [A; Xn ]
o

= 0 ;

i.e., Xn � X n+2 : On the other hand, from the de�nition of the set Xn it follows

that Xn � X n+1 � X n+2 : Therefore, we have

Xn = Xn+1 = Xn+2 : (80)

Using reasoning similar to that used ab ove and the metho d of mathematical

induction it is not hard to prove that equality (76) implies equalities (74) .

Now let us prove that the non-negative integer n 2 N
S

f 0g; mentioned in

the Theorem, exists and is less then m2: For this purp ose we consider the system

of matrix equations

n
ZA (n)X

o
= 0 ; n = 0 ; 1; : : : ; m2 � 1 (81)

with resp ect to unknown matrix X 2 M m (R) . If we would show that every

solution X of system (81) satis�es equalities

n
ZA (n)X

o
= 0 ; n = m2; m2 + 1 ; : : : ; (82)

then we will prove the Theorem.

Let us consider the pro cess of solving of system (81) . Supp ose that n = 0 :
There are only two p ossible cases (see representation (75) ):

a)
f ZA X0g = 0 ; 8ck 2 R; k = 1 ; : : : ; p0;

that is, we already have found a non-negative integer n = 0 ; such that equalities

(76) hold true. Therefore, as it was proved ab ove, equalities (81) , (82) hold true

for all X 2 X 0; the pro cess is completed and the Theorem is proved;

b) equality

f ZA X0g = 0 (83)

do es not hold true for all p ossible values of the parameters ck 2 R; k =
1; 2; : : : ; p0: This means that m2 > p 0 � 2; b ecause the assumption that p0 = 1
or p0 = m2

immediately leads us to the equalities X0 = c0E or Z = aE; a 2 R
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resp ectively and we arrive at the case a). Thus, equality (83) can b e viewed

as a system of m2
linear homogeneous equations with resp ect to the arbitrary

parameters ck ; k = 1 ; 2; : : : ; p0: Since this system p ossesses a non-zero solution,

the rank r1 of its matrix satis�es the two-sided inequality 0 < r 1 < p 0: If we

would solve the given system we will arrive at the matrix (set) X1 (75). In

addition to that (see [16, p. 40�41]) p1 = p0 � r1: Therefore, p1 < p 0; that is,

the numb er of the arbitrary parameters has decreased. Again, there are only

two p ossible cases

a) n
ZA (2) X1

o
= 0 ; 8ck 2 R; k = 1 ; : : : ; p1;

i.e., the pro cess is completed and the Theorem is proved;

b) equality n
ZA (2) X1

o
= 0 (84)

do es not hold true for all p ossible values of the parameters ck 2 R; k =
1; 2; : : : ; p1: It means that m2 > p 0 � p1 +1 � 3: Equality (84) can b e viewed as

a system of m2
linear homogeneous equations with resp ect to the parameters

ck ; k = 1 ; 2; : : : ; p1: If we would solve this new system we will arrive at the

matrix (set) X2 (75) . It is obvious that in this case p2 < p 1; that is, the numb er

of the arbitrary parameters has decreased again. And so on.

This pro cess could not contain more than p0 < m 2
steps. The Theorem is

proved.

Lemma 4. Suppose that A; V; Z; C 2 M m (R) and det (C) 6= 0 : Then the

commutation identity

�
Z; L (t) C � 1�

= 0 ; 8t � 0; (85)

where

L (2t) = exp ( � At ) C exp (V t) (86)

holds true if and only if the in�nite system of matrix equalities

n
ZA (n) �

CV C� 1 � A
� o

= 0 ; n = 0 ; 1; : : : : (87)

holds true.

Proof. Necessity. The matrix-valued function L (t) (86) satis�es the equali-

ties

�
A; L (n) (t) C � 1

�
= AL (n) (t) C � 1 � L (n) (t) C � 1A =

= AL (n) (t) C � 1 � L (n) (t) V C� 1 + L (n) (t) V C� 1 � L (n) (t) C � 1A =

= � 2L (n+1) (t) C � 1 + L (n) (t) C � 1
�
CV C� 1 � A

�
=

= � 2L (n+1) (t) C � 1 + 2L (n) (t) C � 1L (1) (0) C � 1; L (n) (t) def =
dn

dtnL (t)

(88)
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8n 2 N
S

f 0g or, that is the same,

L (n+1) (t) C � 1 = L (n) (t) C � 1L (1) (0) C � 1 �
1
2

h
A; L (n) (t) C � 1

i
: (89)

Supp ose that the commutativity identity (85) holds. Let us prove that it

implies the identities

n
ZA (n) �

L (t) C � 1� o
= 0 ; 8t � 0; 8n 2 N [ f 0g: (90)

In order to prove this, we will use the metho d of mathematical induction with

resp ect to n: If n = 0 then identity (90) coincides with (85) . If n = 1 then form

identity (85) , using (89) and the prop erties of commutators (36), we get

0 =
h
Z; L (1) (t) C � 1

i
=

h
Z; L (t) C � 1L (1) (0) C � 1

i
�

�
1
2

�
Z;

�
A; L (t) C � 1��

= �
1
2

�
[Z; A ] ; L (t) C � 1�

=

= �
1
2

�
ZA

�
L (t) C � 1�	

:

(91)

Equality (91) proves identity (90) with n = 1 : Let us assume that identity (90)

is proved for n = k � 2 and let us prove it for n = k + 1 : Using equality (89)

and the prop erties of commutators (36) , from the latter assumption we obtain

0 =
��

ZA (k)
	

; L (1) (t) C � 1
�

=
��

ZA (k)
	

; L (t) C � 1L (1) (0) C � 1
�

�

�
1
2

��
ZA (k)

	
;
�
A; L (t) C � 1

��
= �

1
2

���
ZA (k)

	
; A

�
; L (t) C � 1

�
=

= �
1
2

�
ZA (k+1)

�
L (t) C � 1

�	
:

(92)

Therefore, according to the principle of mathematical induction, we have that

identity (90) holds for all n 2 N [ f 0g:
Taking into account the arbitrariness of n 2 N [ f 0g in formula (90) , we can

obtain equalities (87) via di�erentiation of identity (90) with resp ect to t and

subsequent substitution t = 0 :
Su�ciency. Supp ose that equalities (87) hold. Let us prove that they imply

identity (85) . If n = 0 then from (87) we get

�
Z;

�
CV C� 1 � A

��
= 2

h
Z; L (1) (0) C � 1

i
= 0 : (93)

If n = 1 then from (87) , taking into account (36) , (88) and (93), we obtain

0 =
�
[Z; A ] ;

�
CV C� 1 � A

��
= 2

h
Z;

h
A; L (1) (0) C � 1

ii
=

= � 4
h
Z; L (2) (0) C � 1

i
+ 4

�
Z;

�
L (1) (0) C � 1

� 2
�

=

� (� 2)2
h
Z; L (2) (0) C � 1

i
:

(94)
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Let us assume that we already have proved equalities

h
Z; L (n) (0) C � 1

i
= 0 ; n = 1 ; 2; : : : ; k (95)

for some p ositive integer k � 2:
From equalities (87), assumption (95), prop erties of commutators (36) and

equality (88) we get

0 =
n

ZA (k) �
CV C� 1 � A

� o
=

hhn
ZA (k� 1)

o
; A

i
;
�
CV C� 1 � A

� i
=

=
hn

ZA (k� 1)
o

;
�
A; CV C � 1 � A

� i
= 2

hn
ZA (k� 1)

o
;
h
A; L (1) (0) C � 1

ii
=

= � 4
hn

ZA (k� 1)
o

; L (2) (0) C � 1
i

+ 4
� n

ZA (k� 1)
o

;
�

L (1) (0) C � 1
� 2

�
=

= � 4
hh

ZA (k� 1)
o

; L (2) (0) C � 1
i

= � 4
hhn

ZA (k� 2)
o

; A
i

; L (2) (0) C � 1
i

=

= � 4
hn

ZA (k� 2)
o

;
h
A; L (0) (0) C � 1

ii
= 8

hn
ZA (k� 2)

o
; L (3) (0) C � 1

i
�

� 8
hn

ZA (k� 2)
o

; L (2) (0) C � 1L (1) (0) C � 1
i

= : : :

: : : = � (� 2)k
h
[Z; A ] ; L (k) (0) C � 1

i
= � (� 2)k

h
Z;

h
A; L (k) (0) C � 1

ii
=

= � (� 2)k+1
h
Z; L (k+1) (0) C � 1

i
: (96)

Thus, according to the principle of mathematical induction, we have that equal-

ities (95) hold for every non-negative integer n 2 N [ f 0g:
From (86) it follows that the matrix series

1X

n=0

L (n) (0) C � 1 tn

n!

is dominated by the numb er series

1X

n=0

�
kAk +




 CV C� 1




 � n � t

2

� n

n!
= exp

�
�
kAk +




 CV C� 1




 � t

2

�
:

Thus, the matrix series is uniformly convergent on [0; + 1 ) and its sum coincides

with the matrix L (t) C � 1: This fact together with equalities (95) immediately

lead us to the commutativity identity (85) . This completes the pro of of the

Theorem.

Now we are in p osition to prove the main theorem of the pap er. It is stated

b elow.

Theorem 6 (An analogue of the Erugin's theorem) . Suppose that A; B; V; W 2
M m (R) : The two systems of second-order di�erential equations

•x (t) + A _x (t) + B x (t) = 0 ; (97)

•� (t) + V _� (t) + W � (t) = 0 (98)
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are L -equivalent if and only if there exists a nonsingular matrix C 2 M m (R)
satisfying conditions

VR = C � 1ARC; (99)

4W = V 2 + C � 1 �
4B � A2�

C; (100)

n�
4B � A2�

A (n) �
CV C� 1 � A

� o
= 0 ; n = 0 ; 1; : : : ; m2 � 1: (101)

Proof. Su�ciency. Supp ose that for some nonsingular matrix C 2 M m (R)
conditions (99) , (100) and (101) are ful�lled. It is easy to see that the matrix

L (2t) = exp ( � At ) C exp (V t) = exp ( � A I t) C exp (VI t) (102)

is regular on [0; + 1 ): Substituting the matrix L (t) (102) into the �rst equality

of (33) we obtain the identity

L � 1 (t)
�

2 _L (t) + AL (t)
�

= L � 1 (t) ( � AL (t) + L (t) V + AL (t)) = V: (103)

From the second equality of (33) we get

4L � 1 (t)
�

•L (t) + A _L (t) + BL (t)
�

= L � 1 (t)
�
4B � A2�

L (t) + V 2 = 4W:
(104)

Here we have taken into account that equalities (101) , according to Theorem 5

and Lemma 4, are equivalent to the commutativity identity

�
4B � A2; L (t) C � 1�

= 0 ; 8t � 0: (105)

Since the regular on [0; + 1 ) matrix L (t) (102) satis�es conditions (33) , systems

(97) and (98) are L -equivalent. The su�ciency is proved.

Necessity. Supp ose that systems (97) and (98) are L -equivalent. Then, ac-

cording to the de�nition of the L -equivalence, there exists a regular on [0; + 1 )
matrix L (t) ; such that

L � 1 (t)
�

2 _L (t) + AL (t)
�

= V; (106)

L � 1 (t)
�

•L (t) + A _L (t) + BL (t)
�

= W; 8t 2 [0; + 1 ) : (107)

From (106) we obtain that

L (2t) = exp ( � At ) C exp (V t) ; (108)

where C 2 M m (R) ; det (C) 6= 0 : Then from (107) , using formula (108) and

setting t = 0 ; we obtain equality (100) and commutativity identity (105) .

Since the conditions of Lemma 3 are ful�lled, we can assume that the matrix

C is chosen in such a way that identity (105) , equality (100) and condition (99)

hold and in addition to that matrix (108) is regular on [0; + 1 ) : From identity

(105) , according to Lemma (4), we get equalities (101) . The necessity is proved

and the pro of of the Theorem is completed.
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Remark 2. Suppose that A; V; C 2 M m (R) and det (C) 6= 0 : If for some non-

negative integer n 2 N[f 0g the spectrum of the matrix Zn =
��

4B � A2
�

A (n)
	

is simple, i.e., al l the eigenvalues of matrix Zn are di�erent, then conditions

(101) are equivalent to the equalities

�
B; CV C � 1 � A

�
= 0 ; (109)

�
A; CV C � 1�

= 0 : (110)

Proof. It is almost obvious that conditions (109) and (110) imply conditions

(101) .

Supp ose that conditions (101) are ful�lled and for some non-negative integer

n the sp ectrum of matrix Zn is simple. Then there exists a nonsingular matrix

T; such that the matrix T � 1ZnT is diagonal with pairwise di�erent diagonal

elements. Thus, (see [12 , p. 221]) we have that

T � 1 �
CV C� 1 � A

�
T = diag [� 1; : : : ; � m ] ; � i 2 R; i 2 1; m: (111)

Using Theorem 5 and equalities (101) we obtain

0 =
�
[Zn ; A] ; CV C� 1 � A

�
=

�
Zn ;

�
A; CV C � 1 � A

��
:

Applying the same reasoning as ab ove to the latter equalities we arrive at the

following representation, which is similar to (111) :

T � 1
�
A; CV C � 1 � A

�
T = T � 1AT T � 1

�
CV C� 1 � A

�
T �

� T � 1
�
CV C� 1 � A

�
T T � 1AT = T AT � 1diag [� 1; : : : ; � m ] �

� diag [� 1; : : : ; � m ] T AT � 1 = diag [� 1; : : : ; � m ] ; � i 2 R; i 2 1; m:

(112)

It is easy to see that all the diagonal elements of matrix

[T AT � 1; diag [� 1; : : : ; � m ]] are equal to 0: On the other hand, from (112) it fol-

lows that all the elements of matrix [T AT � 1; diag [� 1; : : : ; � m ]] except for the

diagonal are equal to 0: Therefore we get the equality

�
A; CV C � 1 � A

�
= 0

which implies equality (110) . Additionally to that equality (109) obviously

follows from (101) and (110) . The pro of is completed.

Remark 3. Conditions (109) and (110) imply conditions (101) . The reverse

implication is true only when the spectrum of the matrix Zn =��
4B � A2

�
A (n)

	
is simple for some non-negative integer n .

Though Theorem 6 gives us the necessary and su�cient conditions provid-

ing that systems (97) and (98) are equivalent ( L -equivalent, to b e precise),

conditions (99) , (100) and (101) of the Theorem do not p ossess the prop erty of

symmetry, which is one of the main prop erties of an equivalence relation. How-

ever, this is only the matter of the wording. In that form the theorem ab out

L -equivalence will b e useful in the further sections of the pap er. Theorem 6

can b e reformulated in the �symmetric� form presented b elow.
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Theorem 7 (An analogue of the Erugin's theorem in the �symmetric� form) .

Suppose that A; B; V; W 2 M m (R) : The two systems of second-order di�er-

ential equations (97) and (98) are L -equivalent if and only if there exists a

nonsingular matrix C 2 M m (R) ; such that

CVR = ARC; (113)

C
�
4W � V 2�

=
�
4B � A2�

C; (114)

n�
4B � A2�

A (n)
o

(CV � AC ) = ( CV � AC )
n�

4W � V 2�
V (n)

o
; (115)

n = 0 ; 1; 2; : : : ; m2 � 1:

Proof. To prove the Theorem it is enough to show that conditions (99) �

(101) are equivalent to conditions (113) � (115) . It is easy to see that condition

(99) is equivalent to condition (113) , as well as condition (100) is equivalent to

condition (114) .

Taking into account (114) , from equalities (115) with n = 0 we obtain the

equalities

�
4B � A2� �

CV C� 1 � A
�

=
�
CV C� 1 � A

�
C

�
4W � V 2�

C � 1 = (116)

=
�
CV C� 1 � A

� �
4B � A2�

which lead us to condition (101) with n = 0 : Multiplying equality (116) on C � 1

from the left and on C from the right and rearranging the summands, we get

[C � 1 �
4B � A2�

C; V ] = [
�
4W � V 2�

; V ] = C � 1 ��
4B � A2�

; A
�

C: (117)

From equalities (115) with n = 1 ; taking into account (114) and (117) , we

obtain the equalities

��
4B � A2�

A
	 �

CV C� 1 � A
�

=

=
�
CV C� 1 � A

�
C

��
4W � V 2�

V
	

C � 1 = (118)

=
�
CV C� 1 � A

� ��
4B � A2�

V
	

which lead us to condition (101) with n = 1 : Multiplying equality (118) on C � 1

from the left and on C from the right and rearranging the summands, we get

�
C � 1 ��

4B � A2�
A

	
C

�
V � V

�
C � 1 ��

4B � A2�
A

	
C

�
=

= C � 1
n�

4B � A2�
A (2)

o
C:

Combining the latter equality with (117) we obtain

n�
4W � V 2�

V (2)
o

= C � 1
n�

4B � A2�
A (2)

o
C: (119)

Therefore we have proved that the �rst two equalities of (101) (with n = 0 ; 1)

are equivalent to the �rst two equalities of (115) (with n = 0 ; 1) resp ectively.

Besides that we have proved the auxiliary equalities (117) and (119) . Let us

assume that for some p ositive integer k; 2 < k < m 2 � 1 we have proved that

the �rst k equalities of (101) are equivalent to the �rst k equalities of (115)
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(with n = 0 ; 1; : : : ; k � 1) resp ectively and the auxiliary equality (similar to

(119) ) n�
4W � V 2�

V (k)
o

= C � 1
n�

4B � A2�
A (k)

o
C (120)

holds. Then from equalities (115) with n = k; taking into account (120), we

obtain equalities

n�
4B � A2�

A (k)
o �

CV C� 1 � A
�

=

=
�
CV C� 1 � A

�
C

n�
4W � V 2�

V (k)
o

C � 1 =

=
�
CV C� 1 � A

� n �
4B � A2�

V (k)
o

(121)

which lead us to condition (101) with n = k: In addition to that, multiplying

equality (121) on C � 1
from the left and on C from the right and rearranging

the summands, we obtain

�
C � 1

n�
4B � A2�

A (k)
o

C
�

V � V
�

C � 1
n�

4B � A2�
A (k)

o
C

�
=

= C � 1
n�

4B � A2�
A (k+1)

o
C:

Combining the latter equality with assumption (120) we get

n�
4W � V 2�

V (k+1)
o

= C � 1
n�

4B � A2�
A (k+1)

o
C: (122)

Therefore we have proved that the �rst k + 1 equalities of (101) are equivalent

to the �rst k + 1 equalities of (115) (with n = 0 ; 1; : : : ; k ) resp ectively. Also,

we have proved the auxiliary equality (122) . According to the principle of

mathematical induction we can conclude that equalities (101) are equivalent to

equalities (115) , provided that condition (114) holds. This completes the pro of

of the Theorem.

4. Consequences from Theorem 6

Below we have stated several consequences from Theorem 6 that are related

to the question of symmetrization of the matrix di�erential equation (or, in

other words, the system of di�erential equations)

J •x + ( D + G) _x+ ( P + �) x = 0 ; (123)

where J; D; G; P; � 2 M m (R) ; J = J T > 0; D = D T ; � = � T ; G = � GT ;
P = � PT : Let us denote

A = J � 1
2 (D + G) J � 1

2 ; B = J � 1
2 (P + �) J � 1

2 : (124)

Corollary 6. Suppose that there exist a symmetric matrix V 2 M m (R) and a

nonsingular matrix C 2 M m (R) satisfying conditions

9

�
A; CV C � 1�

= ACV C � 1 � CV C� 1A = 0 ; (125)

�
B; A � CV C� 1�

= B
�
A � CV C� 1�

�
�
A � CV C� 1�

B = 0 ; (126)

CVR = ARC: (127)

9

See Remark 3.
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Then the autonomous equation (123) is L -equivalent to the autonomous equa-

tion

•� + V _� + W � = 0 ; V; W 2 M m (R) ; (128)

W =
1
4

V 2 + C � 1
�

B �
1
4

A2
�

C; (129)

containing no gyroscopic structures (V = V T ) .

Corollary 7. Suppose that there exist matrices V; C 2 M m (R) ; det (C) 6= 0
satisfying conditions (125) � (127) and

V 2 �
�
V 2� T

+ C � 1ZC � CT Z T �
C � 1� T

= 0 (130)

where

Z =
�

B �
1
4

A2
�

:

Then the autonomous equation (123) is L -equivalent to the autonomous equa-

tion (128) , (129) , containing no non-conservative positional structures (W =
W T ):

Corollary 8. Suppose that there exist a symmetric matrix V 2 M m (R) and

a nonsingular matrix C 2 M m (R) satisfying conditions (125) � (127) together

with the equality

C � 1ZC � CT Z T �
C � 1� T

= 0 : (131)

Then the autonomous equation (123) is L -equivalent to the �symmetric� au-

tonomous equation (128) , (129) (W = W T ; V = V T ):

Corollary 9. If for some non-negative integer n the spectrum of the matrix

Zn =
n�

4B � A2�
A (n)

o

is simple then the conditions of Corol laries 6�8 are the necessary ones (not only

su�cient!).

Combining Theorem 6 with the theorems of Kelvin � Tait � Chetayev it is

not hard to prove the following theorem that can b e viewed as a generalization

of the Mingori's [3 ] and M �uller's [4 ] theorems.

Theorem 8. Suppose that the matrices V; C 2 M m (R) ; det (C) 6= 0 ;
V + V T > 0 satisfy conditions

CVR = ARC; (132)

n�
4B � A2�

A (n) �
CV C� 1 � A

� o
= 0 ; n = 0 ; 1; : : : ; m2 � 1; (133)

V 2 �
�
V 2� T

+ C � 1 �
4B � A2�

C � CT �
4B � A2� T �

C � 1� T
= 0 : (134)

If the symmetric matrix

W =
1
4

V 2 + C � 1
�

B �
1
4

A2
�

C (135)

is positive de�nite then the nul l solution of system (123) is asymptotical ly stable

( in the sense of Lyapunov ) and if matrix (135) is nonsingular and has at least
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one negative eigenvalue then the nul l solution of system (123) is unstable ( in

the sense of Lyapunov ) .

It is easy to see that if P = 0 then conditions (132) � (134) can b e satis�ed

once we take V = A; C = E: In this case we would have that W = � : This

means that Theorem 8 can b e considered as a generalization of the 3-rd and

4-th theorems of Kelvin � Tait � Chetayev (see [17]).

It is not hard to verify that the conditions of the Mingori's [3 ] and M �uller's

[4] theorems implies conditions (132) � (134) . However, the following example

shows that the converse of ab ove prop osition is not correct in general.

Example 1. Assume that

A = diag [A1; A2] ; B =
�

B1 b5E (2)

b5E (2) B2

�
;

A1 = T
�

a1 a2
� a2 a1

�
T � 1; A2 = T

�
a3 a4

� a4 a3

�
T � 1;

B1 = T
�

b1 b2
� b2 b1

�
T � 1; B2 = T

"
b3

a3b2
a1

� a3b2
a1

b3

#

T � 1;

J = diag [1; 1; 1; 1] ; T =
�

1 1
0 1

�
; E (2) =

�
1 0
0 1

�
:

(136)

Then in terms of matrix co e�cients of equation (123) we have

D = diag [D1; D2] ; G = diag [G1; G2] ;

D1 =
�

a1 � a2
a2
2

a2
2 a2 + a1

�
; D2 =

�
a3 � a4

a4
2

a4
2 a4 + a3

�
;

G1 = � 3a2
2 S(2) ; G2 = � 3a4

2 S(2) ; S(2) =
�

0 � 1
1 0

�
;

� =
�

� 1 b5E (2)

b5E (2) � 2

�
; P = � diag

h
3b2
2 S(2) ; 3a3b2

2a1
S(2)

i
;

� 1 =
�

b1 � b2
b2
2

b2
2 b2 + b1

�
; � 2 =

"
b3a1 � b2a3

a1

a3b2
2a1

a3b2
2a1

a3b2+ b3a1
a1

#

:

(137)

Both, the Mingori's [3] and M �uller's [4] theorems demand the commutativity

of the matrices P and D .

10

However, it is easy to verify that for the matrices

P and D (137) this condition is not ful�lled in general. Thus, we can't use

the results of the mentioned theorems for the stability investigation of system

(123) , (137) . On the other hand, the matrices

V = diag [V1; V2] ; C = diag [T; T] ;

V1 = a1E (2) �
�

a2 � 2b2
a1

�
S(2) ; V2 = a3E (2) �

�
a4 � 2b2

a1

�
S(2) ;

(138)

10

The same is true for the results of pap ers [5 , 6, 7, 8 , 9]
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satisfy conditions (125) � (127) of Theorem 8, according to which the matrix

W (135) can b e expressed in the form of

W =
�

w1E (2) b5E (2)

b5E (2) w2E (2)

�
;

w1 =
a1a2b2 � b2

2 + a2
1b1

a2
1

; w2 =
a1a4b2 � b2

2 + a2
1b3

a2
1

:

(139)

The conditions of Sylvester's criterion (see [18, c. 99]), when applied to the

matrix W (139) , lead us to the inequalities

w1 > 0; w2 > 0: (140)

Inequalities (140) together with the conditions a1 > 0; a3 > 0 (which provide

that the matrix V (138) is p ositive de�nite) describ e the region of the asymp-

totical stability of the null solution of system (123) , (137) .

5. On the interconnection between the notions of the

L k -equivalence and the equivalence in the sense of Lyapunov

It is well known that systems (6) and (9) can b e rewritten in the form of

d
dt

�
x
_x

�
= A � (t)

�
x
_x

�
; A � (t) =

�
O E

� B (t) � A (t)

�
; (141)

and

d
dt

�
�
_�

�
= V � (t)

�
�
_�

�
; V � (t) =

�
O E

� W (t) � V (t)

�
; (142)

resp ectively. Supp ose that systems (141) and (142) are connected by the trans-

formation

�
x
_x

�
= L (t)

�
�
_�

�
; L (t) =

�
L 11 (t) L 12 (t)
L 21 (t) L 22 (t)

�
; t 2 [t0; + 1 ) ; (143)

L ij (t) 2 M m
�
C1 [t0; + 1 ]

�
: It is not hard to verify that this would b e the case

if and only if the equalities

_L 11 (t) � L 12 (t) W (t) � L 21 (t) = 0 ;

_L 12 (t) � L 12 (t) V (t) + L 11 (t) � L 22 (t) = 0 ;
(144)

B (t) L 11 (t) + A (t) L 21 (t) = L 22 (t) W (t) � _L 21 (t) ;

B (t) L 12 (t) + A (t) L 22 (t) = � L 21 (t) + L 22 (t) V (t) � _L 22 (t)
(145)

hold true 8t 2 [t0; + 1 ) :
In accordance with the de�nition of the equivalence in the sense of Lyapunov

of two systems of �rst-order ODEs that was given in [1, p. 118] we can intro duce

the same notion for the case of second-order systems.

De�nition 6. We say that the systems of second-order ODEs (6) and (9) are

equivalent in the sense of Lyapunov if there exists a Lyapunov matrix (see

de�nition in [1 , p. 117]) L (t) (143) satisfying conditions (144) , (145) .
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Let us assume that the matrix L (t) (143) satis�es conditions

L 12 (t) = O; L11 (t) = L (t) 2 M m
�
C2 [t0; + 1 )

�
;

inf
t2 [t0 ;+ 1 ]

jdet (L (t)) j > 0; sup
t2 [t0 ;+ 1 )










dk

dtk L (t)








 < + 1 ; 8k 2 0; 2:

Then from equalities (144) we immediately obtain that L 21 (t) = _L 11 (t) ;
L 22 (t) = L (t) ; transformation (143) reduces to the form

�
x
_x

�
=

�
L (t) O
_L (t) L (t)

� �
�
_�

�
(146)

and represents a Lyapunov transformation (see de�nition in [1, p. 117]); con-

ditions (145) reduce to conditions (10) , i.e.,

V (t) = L � 1 (t)
�

2 _L (t) + A (t) L (t)
�

;

W (t) = L � 1 (t)
�

•L (t) + A (t) _L (t) + B (t) L (t)
�

:
(147)

Thus, we can conclude that if systems (6) and (9) are L 2 -equivalent according

to De�nition 4 then they are equivalent in the sense of Lyapunov according to

De�nition 6. However, it is almost obvious that the converse of ab ove prop osi-

tion is not correct in general. It is easy to see that the notion of the equivalence

in the sense of Lyapunov includes the notions of the L 2 -equivalence (see De�-

nition 4) and the L -equivalence (see De�nition 5) as partial cases. Therefore,

when we consider the p ossibility of using structural transformations to aid the

investigation of stability of the null solution of system (6) , we inevitably arrive

at the following general problems of symmetrization :

1. for the given system (6) , �nd a Lyapunov matrix L (t) (143) and matrices

V (t) ; W (t) 2 M m (C [t0; + 1 )) which satisfy the symmetry conditions

V (t) = V T (t) and/or W (t) = W T (t) together with equalities (144) ,

(145) 8t 2 [t0; + 1 ) ;
2. for the given autonomous system (6) , i.e, A (t) = A 2 M m (R) ; B (t) =

B 2 M m (R) ; �nd a Lyapunov matrix L (t) (143) and matrices V (t) =
V 2 M m (R) ; W (t) = W 2 M m (R) which satisfy the symmetry con-

ditions V = V T
and/or W = W T

together with equalities (144) , (145)

8t 2 [0; + 1 ) :
In the case when systems (6) and (9) are autonomous, i.e., A � (t) = A � 2

M 2m (R) ; V � (t) = V � 2 M 2m (R) ; the necessary and su�cient conditions

providing that they are equivalent in the sense of Lyapunov were found by

Erugin (see the Erugin's theorem in [15 , p. 145]): Two systems (141) and

(142) ( A �
and V �

are constant matrices of the same order) are equivalent in

the sense of Lyapunov if and only if the matrices A �
and V �

have a single,

similar real part of the spectrum or, in other words, there exists a nonsingular

matrix C 2 M 2m (R) ; satisfying equality

A �
R = CV �

RC � 1:
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Evidently, in general case, to check whether the conditions of the Erugin's

theorem are ful�lled could b e as di�cult as to solve b oth systems (141) and

(142) directly. However, Theorems 2 � 4, 6 indicate that in some cases the

question ab out equivalence in the sense of Lyapunov of two systems (141) and

(142) can b e answered without necessity to solve them.

Let as supp ose that V (t) ; W (t) 2 M m
�
C1 [t0; + 1 )

�
: Then substituting the

expressions for matrices L 21 (t) and L 22 (t) obtained from equations (144) into

equation (145) , we get the following system of second-order matrix di�erential

equations with resp ect to the unknown matrices L 11 (t) ; L 12 (t) :

d
dt

�
_Z (t) + Z (t) V � (t)

�
+

�
_Z (t) + Z (t) V � (t)

�
V � (t) +

+ B (t) Z (t) + + A (t)
�

_Z (t) + Z (t) V � (t)
�

= 0 ;

Z (t) = [ L 11 (t) ; L 12 (t)] :

(148)

Thus, we arrive at the conclusion that systems (6) and (9) are equivalent in

the sense of Lyapunov if and only if system (148) p ossesses a solution Z (t)
satisfying conditions

sup
t2 [t0 ;+ 1 )










dk

dtkL (t)








 < + 1 ; k = 0 ; 1; inf

t2 [t0 ;+ 1 )
jdet (L (t)) j > 0;

L 21 (t) = _L 11 (t) � L 12 (t) W (t) ;

L 22 (t) = _L 12 (t) � L 12 (t) V (t) + L 11 (t) :

(149)

The general problems of symmetrization (GPS) stated ab ove have not b een

studied in this pap er. However, on our opinion, the problem of �nding necessary

and su�cient conditions for solvability of the GPS can b e interesting from b oth

practical and theoretical p oints of view. This problem is signi�cantly more

complicated then the problem of �nding necessary and su�cient conditions for

solvability of the EGS and/or ENPS problems (see de�nitions on pp. 40 and

46). The main reason for that is the signi�cant complexity of conditions (148) ,

(149) for �nding the matrices L (t) ; V (t) and W (t) : On the other hand, as

it was mentioned ab ove, in some cases to solve the GPS for the given system

the one should b e able to determine the Jordan canonical form of the system's

matrix (see the conditions of the Erugin's theorem). Evidently, in this case the

using of structural transformations can't facilitate the stability investigation of

the null solution of the system.

6. Application of the structural transformations to the

stability investigation of dynamical systems

The stability of rotary motion of a rigid b o dy susp ended on a

string. Let us consider the symmetrization problem for the system of second-

order di�erential equations describing the p erturb ed motion of a heavy, sym-

metric rigid b o dy susp ended to the stationary p oint O by the inextensible

weightless string. We assume that the string is attached to the b o dy at the

p oint S lying on the b o dy's symmetry axis. We denote the distance b etween
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p oint S and the center of mass of the b o dy by a; and the length of the string

by b: It is known that the rotary motion of the b o dy can b e approximately

describ ed (assuming that the displacement and rotations are small enough) by

the following equations (see equations (2.8) and (2.9) from [19 ]):

8
>><

>>:

J1•x1 + � _x1 + cx1 � (2J1 � J3)! _x2 + ( � 1 � � )!x 2 + mgax3 = 0 ;
J1•x2 + � _x2 + cx2 + (2 J1 � J3)! _x1 � (� 1 � � )!x 1 + mgax4 = 0 ;
mb2•x3 + mb(g � b! 2)x3 � 2mb2! _x4 + mgax1 = 0 ;
mb2•x4 + mb(g � b! 2)x4 + 2mb2! _x3 + mgax2 = 0 ;

(150)

where c = mga(" + 1)+( J3 � J1) ! 2; a = b"; � = fD 1; � 1 = fD 3: In equations

(150) by ! > 0 we denote the angular velo city of rotation of the b o dy, by

m � the mass of the b o dy, by g � the free fall acceleration, and by J � =
diag [J1; J1; J3] � the central tensor of inertia of the b o dy. The authors of

[19] assume that the b o dy is e�ected by the dissipative moment M d = � fD!;
where D = diag [D1; D1; D3] ; D1 > 0; D3 > 0; f > 0: Additionally, we assume

that 2J1 � J3 6= 0 ; J1 > 0:
It is easy to see that system (150) can b e represented in the form of (123)

with

J = diag
h
J1 E (2) ; mb2 E (2)

i
; D = diag

h
� E (2) ; O(2)

i
;

G = diag
h
(2J1 � J3)! S (2) ; 2mb2! S (2)

i
;

� =
�

c E(2) mga E(2)

mga E(2) mb(g � b! 2) E (2)

�
;

P = diag
h
� (� 1 � � )! S (2) ; O(2)

i
;

E (2) =
�

1 0
0 1

�
; S(2) =

�
0 � 1
1 0

�
;

where O(2)
denotes the square zero matrix of order 2. Furthermore, using

notation (124) we get

A = J � 1
2 (D + G) J � 1

2 = D1 + G1 =

= diag
�

1
J1

�
� � (2J1 � J3)!

(2J1 � J3)! �

�
; 2!

�
0 � 1
1 0

��
;

(151)

B = J � 1
2 (P + �) J � 1

2 = P1 + � 1 =

=

"
cJ � 1

1 E (2) � J � 1
1 (� 1 � � )! S (2) ga

p
m

b
p

J1
E (2)

ga
p

m
b
p

J1
E (2)

�
gb� 1 � ! 2

�
E (2)

#

:
(152)

Let us �nd the su�cient conditions in terms of the parameters of system

(150) which provide that the system is equivalent to some other system that

do es not contain the gyroscopic structures and (or) non-conservative p ositional

structures.
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The elimination of the gyroscopic structures. It is easy to verify that

the sp ectrum of matrix Z0 =
�
4B � A2

�
(151) , (152) is simple. Therefore, ac-

cording to Corollary 9 the conditions of Corollary 6 are necessary and su�cient

simultaneously. Let us check whether the conditions of Corollary 6 are ful�lled.

The matrix CV C� 1
satisfying condition (125) can b e expressed in the form of

CV C� 1 = diag
��

v11 v12
� v12 v11

�
;
�

v33 v34
� v34 v33

��
: (153)

Taking into account representation (153) and the fact that matrix V is real we

arrive at the conclusion that condition (127) can b e satis�ed if and only if

v11 =
�
J1

; v33 = 0 : (154)

Taking into account (153) and (154) , from condition (126) we can �nd that

CV C� 1 = diag
��

�J � 1
1 v12 + !J 3J � 1

1
� v12 � !J 3J � 1

1 �J � 1
1

�
;
�

0 v12
� v12 0

��
: (155)

From formula (155) it follows that the matrix V is a symmetric matrix if and

only if

J3 = 0 ; v12 = 0 : (156)

Thus, the gyroscopic structures can b e excluded from system (150) if and only

if J3 = 0 :
We can assume that the condition J3 = 0 is satis�ed if the value of the inertia

moment J3 is fairly small in comparison with the value of 2J1: This can b e the

case when the b o dy is heavy and has a shap e of a cylinder with a very small

transverse section.

Following to the Sommerfeld- Greenhill concept we can set � = �J 1; � 1 =
�J 3; where � is a small constant co e�cient dep ending on the environment

characteristics. Returning to the case of a heavy cylinder with a very small

transverse section, we can assume that � 1 = 0 .

The elimination of the non-conservative p ositional structures. As it

was shown ab ove, conditions (125) � (127) led us to representation (155) . Let

us take C = E (4) : To satisfy condition (130) we take v12 = � 2!� 1
� and according

to Corollary 7, whose conditions are ful�lled, obtain the matrix co e�cients of

equation (128)

V = diag
�
V (1) ; V (2)

�
;

V (1) = 1
�J 1

�
� 2 J3!� � 2!� 1J1

� J3!� + 2 !� 1J1 � 2

�
;

V (2) = 2!� 1
�

�
0 � 1
1 0

�
;

W =

2

4

�
! 2 � 1

�

�
J3
J1

� � 1
�

�
+ mga

J1
(" + 1)

�
E (2)

p
mg"p
J1

E (2)

p
mg"p
J1

E (2)
�

g
b � � 2

1 ! 2

� 2

�
E (2)

3

5 :

(157)
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We see that, according to Corollary 7, the elimination of the non-conservative

p ositional structures is p ossible without any additional restrictions on the pa-

rameters of system (150) .

Once the non-conservative p ositional structures are eliminated, we can try to

�nd the region of the asymptotic stability of the null solution of system (150) .

Since systems (150) and (128) , (157) are L -equivalent, that is, equivalent in the

sense of Lyapunov, their regions of the asymptotic stability coincide. Let us

�nd the region of the asymptotic stability of system (128) , (157) .

Unfortunately, the matrix V (157) is not a p ositive de�nite matrix, that is,

the conditions of Theorem 8 are not ful�lled. However, this problem can b e

overcame. First of all let us emphasize the fact that if the parameters of system

(150) are chosen in such a way that det (W ) = 0 then the null solution of system

(150) is unstable. Thus, we can assume that the matrix W is nonsingular.

It is easy to verify that if

W > 0 (158)

then function V (� ) = _� T _� + � T W � where � = � (t) represents an arbitrary so-

lution of system (128) , (157) , satis�es the conditions of the Krasovsky theorem

on asymptotic stability (see, for example, [17, p. 42]). On the other hand if

the symmetric matrix W (157) is nonsingular and has at least one negative

eigenvalue then the function � V (� ) satis�es the conditions of the Krasovsky

theorem on instability (see, for example, [17, p. 51]). Thus, we can conclude

that condition (158) describ es the required region of asymptotic stability.

The conditions of Sylvester's criterion, when applied to the matrix W (157) ,

lead us to the following system of inequalities:

P > 0; P S � R2 > 0; (159)

where

P =
�

! 2 � 1

�

�
J3

J1
�

� 1

�

�
+

mga
J1

(" + 1)
�

; S =
�

g
b

�
� 2

1! 2

� 2

�
; R =

p
mg"

p
J1

:

Returning to the case of a heavy cylinder with a very small transverse section

and setting � 1 = 0 we see that

P =
mga
J1

�
1 +

a
b

�
; S =

g
b

; R =
ga

p
m

b
p

J1
:

Therefore, the �rst inequality of (159) is ful�lled and the second one reduces

to the form

mg2

J1

a
b

> 0:

It is worth to emphasize that conditions (159) are in go o d agreement with the

similar conditions obtained in [9 ]. On the other hand, a sophisticated metho d

prop osed in pap er [19] for the stability investigation of the null solution of

system (150) results in a set of inequalities which do not describ e the region of

asymptotic stability of the system (contrary to the exp ectations of the authors

of pap er [19]). The reason for that is an essential error intro duced in [19] by

the authors.
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7. Conclusions

In the present pap er we have extended and generalized the results of a series

of pap ers devoted to the stability investigation of the null solution of systems of

second-order ODEs via the stability preserving structural transformations. The

series was started with D.L. Mingori [3] and then continued by Von P. C. M �uller

[4], V.N. Koshlyakov [8], V.N. Koshlyakov and V.L. Makarov [20, 5, 6, 7],

V.N. Koshlyakov and V.A. Storozhenko [9].

We have found the necessary and su�cient conditions providing that a given

autonomous (non-autonomous) system of second-order ODEs is equivalent in

the sense of Lyapunov to some autonomous (non-autonomous) system of second-

order ODEs which do es not contain gyroscopic and/or non-conservative p osi-

tional structures (see Theorems 2, 3, 4, 6).

Particularly, using Theorem 6 we managed to generalize the results of pap ers

[3, 4, 5 , 6, 7, 8, 9] which are related to the ENPS problem for the autonomous

system (123) . The results of the mentioned pap ers are applicable only when

the matrix D commutate with P whereas in the present pap er we got rid of

this unnecessary constraint (see Example 1).

Theorem 8 proved in the pap er generalizes the 3-rd and 4-th Kelvin � Tait

� Chetayev theorems as well as the Mingori's [3] and M �uller's [4] theorems.

In Section 5 we stated and brie�y discussed the general problems of sym-

metrization (GPS). It was shown that the EGS and ENPS problems can b e

considered as particular cases of the GPS. The solution of the latter problems

can provide us with essentially more p owerful to ols for the stability investiga-

tion of systems of ODEs than those obtained in the present pap er. Due to the

signi�cant complexity of the GPS we left them for the subsequent publications.

In Section 6 it was shown that the theoretical results presented in the pap er

can b e successfully applied to the stability investigation of real mechanical

systems.
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Ðåçþìå. Ó ñòàòòi ïîáóäîâàíî òà îá ðóíòîâàíî åêñïîíåíöiàëüíî çáiæíèé

÷èñåëüíèé ìåòîä (ÔÄ-ìåòîä) äëÿ ðîçâ'ÿçóâàííÿ çàäà÷ Øòóðìà-Ëióâiëëÿ

ç ñèíãóëÿðíèì îïåðàòîðîì Ëåæàíäðà òà ñèíãóëÿðíèì ïîòåíöiàëîì. Îäåð-
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Íàâåäåíî àëãîðèòì äëÿ ïðîãðàìíîãî âòiëåííÿ ÔÄ-ìåòîäó òà ïîðiâíÿíî

éîãî ç âiäîìèìè àëãîðèòìàìè (SLEIGN2).

Abstract. The article develops and proves an exp onentially convergent

numerical-analytical metho d (the FD-metho d) for solving Sturm-Liouville

problems with a singular Legendre op erator and a singular p otential. Ob-

tained within are su�cient conditions for convergence of the metho d and

a priori estimates of its accuracy. A detailed algorithm for programmatic

implementation of the F D -metho d is presented and compared with known

algorithms (SLEIGN2).

MSC 2010: Primary: 65L15, 65L20; Secondary: 33D15, 68W99

1. Introduction

The results presented in this article constitute a logical extension and a

generalization of the results in [1] and [2], which consider the sub ject of solving

the following Sturm-Liouville problem:

�
d
dx

�
(1 � x2)

du(x)
dx

�
+ q(x)u(x) = �u (x); x 2 (� 1; 1); (1)

lim
x!� 1

(1 � x2)
du(x)

dx
= 0 : (2)

Problems of this kind arise in applications when solving partial di�erential

equations in spherical co ordinates using separation of variables, as is done, e.g.,

with hydrogen-molecule ion's equation in [3] (see [3, p. 167�170]).

To recall, articles [1 ], [2] develop and prove an exp onentially convergent

algorithm (an FD-metho d) for solving problem (1), (2) for the case when the

function q(x) is of the class Q0[� 1; 1] of piecewise continuous functions that are

b ounded on the closed interval [� 1; 1] and have no more than a �nite numb er

of jump discontinuities. However, [2] shows the results of applying the FD-

metho d to problem (1), (2) with the potential q(x) = jx +1=3j1=2 +ln( jx � 1=3j);
which clearly do es not b elong to the class Q0[� 1; 1]: Despite the FD-metho d's

convergence having not b een proved for such problems the metho d turns out

Key words . Singular Sturm-Liouville problem, F D -metho d, co e�cient approximation

metho ds, Legendre functions, Stenger's formula.
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convergent. This fact has suggested to the authors of [2] that the su�cient

convergence conditions for the FD-metho d for problems of typ e (1) , (2) can b e

weakened substantially, esp ecially where they concern the smo othness of the

function q(x):
The sub ject of this article is the Sturm-Liouville problem (1) , (2) with a

function q(x) from the space L 1;� (� 1; 1); � = 1=
p

1 � x2; which contains func-

tions f (x); de�ned almost everywhere on the interval (1� ; 1) for which it holds

that

kf k1;� =

1Z

� 1

jf (x)j
p

1 � x2
dx < 1 : (3)

Thus stated, the problem is a generalization of those considered in [1 ] and [2],

su�ciently so we could not apply the pro of techniques used therein. Instead,

to obtain the su�cient conditions for convergence a new approach was used

based on an inequality for Legendre functions prop osed by V. L. Makarov.

This inequality (see Theorem 2) follows from Theorem 1, analogues of which

the authors were unable to �nd. For this reason the aforementioned theorems

are presented here with a detailed pro of as novel and original results.

The article has the following structure: we start out by giving an outline

of the FD-metho d in section 2 and applying it to the problem at hand. We

pro ceed to prove a general auxiliary result in section 3. In section 4 we give a

theoretical justi�cation of the metho d as applied to the case at hand and obtain

a pro of of its convergence. We discuss the programmatic side of the question

in section 5. Finally, we draw some conclusions ab out what has b een done.

2. The FD -method: algorithm

We are going to construct a solving algorithm for problem (1) , (2) based on

the general idea of the FD-metho d (see [4]).

It is easy to see that the di�erential op erator L [�] de�ned by the equality

L [u(x)] =
d

dx

�
(1 � x2)

du(x)
dx

�
� q(x)u(x) (4)

is self-adjoint in the Hilb ert space

W =
n

f (x) 2 C2(� 1; 1) \ L 2(� 1; 1) j lim
x!� 1

(1 � x2)f (x) = 0;

q(x)f (x) 2 L 2(� 1; 1)
o (5)

equipp ed with the common inner pro duct

< f; g > =

1Z

� 1

f (x)g(x)dx (6)

(see [5, p. 55]). This fact implies that there exists an increasing sequence of

eigenvalues � 0 < � 1 < : : : < � n < : : : and corresp onding orthogonal eigenfunc-

tions u0(x); u1(x); : : : ; un (x); : : : that satisfy equation (1) and condition (2).



74 VOLODYMYR MAKAROV, DENYS DRAGUNOV, DANYIL BOHDAN

We are lo oking for the eigensolution un (x); � n to eigenvalue problem (1) ,(2)

in the form of a series

un (x) =
1X

j =0

u(j )
n (x); � n =

1X

j =0

� (j )
n ; (7)

where the pair u(j )
n (x); � (j )

n can b e found as the solution to the following system

of recurrence problems:

d
dx

"

(1 � x2)
du(j )

n (x)
dx

#

+ � (0)
n u(j )

n (x) =

= �
j � 1X

i =0

� (j � i )
n u(i )

n (x) + q(x)u(j � 1)
n (x); u(� 1)

n (x) � 0;

(8)

lim
x!� 1

(1 � x2)
du(j )

n (x)
dx

= 0 ; j = 0 ; 1; 2; : : : : (9)

If we put j = 0 in (8) we obtain the equation for the basic problem

d
dx

"

(1 � x2)
du(0)

n (x)
dx

#

+ � (0)
n u(0)

n (x) = 0 : (10)

Taking into account that the eigenfunctions of op erator L [�] (4) are determined

up to a multiplicative constant we imp ose an additional requirement on the

solutions of the basic problem (10) , (9) :

1Z

� 1

�
u(0)

n (x)
� 2

dx = 1 ; n = 0 ; 1; 2; : : : (11)

It is well known (see [6, p. 121], [7 , p. 33]) that every solution u(0)
n (x) to

equation (10) (when � (0)
n is �xed) can b e represented through the Legendre

functions P� (x); Q� (x) :

u(0)
n (x) = AP� (x) + BQ � (x); A; B 2 C; (12)

where � is the solution of the algebraic equation � (� + 1) = � (0)
n ; i.e,

� = �
1
2

�
1 �

q
1 + 4� (0)

n

�
: (13)

Now taking into account the formulas that describ e the b ehaviour of Legendre

functions near the singular p oints � 1 (see [6, p. 163�164]) and the formulas

that connect derivatives of the Legendre functions with the asso ciated Legendre

functions (see [6, p. 148]) we can easily compute that

lim
x!� 1

�
1 � x2

� dP� (x)
dx

=
2 sin (�� )

�
; lim

x! 1

�
1 � x2

� dP� (x)
dx

= 0 ;

(14)

lim
x!� 1

�
1 � x2

� dQ� (x)
dx

= cos (�� ) ; lim
x! 1

�
1 � x2

� dQ� (x)
dx

= 1 :
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From equalities (14) it follows that function u(0)
n (x) (12) satis�es condition (9)

if and only if B = 0 and � = n 2 N [ f 0g; whereas condition (11) leads us to

the equality (see [7, p. 42])

A � 1 =

s
1R

� 1
(Pn (x))2 dx =

r
2

2n + 1
: (15)

In the other words we have that the pairs

u(0)
n (x) =

r
2n + 1

2
Pn (x); � (0)

n = n(n + 1) ; n = 0 ; 1; 2; : : : : (16)

represent eigensolutions of eigenvalue problem (9), (10) and (11) . Problems

(8), (9) for j = 1 ; 2; : : : are solvable if and only if the functions

F (j )
n (x) = �

j � 1X

i =0

� (j � i )
n u(i )

n (x) + q(x)u(j � 1)
n (x); j = 1 ; 2; : : : (17)

are orthogonal (in the sense of inner pro duct (6) ) to the kernel space of the

linear op erator

L (0)
n [u(x)] =

d
dx

�
(1 � x2)

du(x)
dx

�
+ � (0)

n u(x);

i.e, to the function u(0)
n (x): This fact gives us a simple formula for �nding � (j )

n ;
j = 1 ; 2; : : : :

� (j )
n =

1Z

� 1

u(0)
n (x)

(

�
j � 1X

i =1

� (j � i )
n u(i )

n (x) + q(x)u(j � 1)
n (x)

)

dx; (18)

whereas functions u(j )
n (x); j = 1 ; 2; : : : can b e found via the variation of param-

eters formula (see, e.g., [7 , p. 8, 34])

u(j )
n (x) = c(j )

n u(0)
n (x) +

xZ

� 1

K n (x; � )F (j )
n (� )d�; (19)

where

K n (x; � ) = Pn (x)Qn (� ) � Qn (x)Pn (� ) (20)

and constant c(j )
n 2 R can b e chosen arbitrary. In a later section we will cho ose

it to satisfy the orthogonality condition

D
u(0)

n (x); u(j )
n (x)

E
= 0 :

3. Auxiliary results

In what follows we will need the result stated b elow in the form of a theorem,

which we consider to b e quite elegant.

Theorem 1. Suppose that uI (� ) and uII (� ) are a pair of solutions to the dif-

ferential equation

d2u(� )
d� 2 + � (� )u(� ) = 0 ; � 2 (a; b) ; (21)
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� (� ) 2 C1(a; b); � (� ) > 0; 8� 2 (a; b)
that satisfy the fol lowing condition:

W (� ) = uI (� )u0
II (� ) � u0

I (� )uII (� ) = 1 ; 8� 2 (a; b): (22)

If there exists a point c 2 (a; b) such that � 0(� ) � 0 8� 2 (a; c] and � 0(� ) � 0
8� 2 [c; b) then �

�
�v(�; ~� )

�
�
� �

p
2� � 1(c); 8�; ~� 2 (a; b); (23)

v(�; ~� )
def
= uI (� )uII (~� ) � uI (~� )uII (� ):

If � 0(� ) � 0 or � 0(� ) � 0 8� 2 (a; b) then

�
�
�v(�; ~� )

�
�
� � max

� p
� � 1(� );

q
� � 1(~� )

�
; 8�; ~� 2 (a; b): (24)

Before pro ceeding to the pro of of Theorem 1 we should emphasize that the

main idea of the theorem was evoked by the Theorem of Sonin (see [8 , p. 166]).

Proof. Supp ose that the conditions of Theorem 1 are ful�lled and for some

c 2 (a; b) we have that

� 0(� ) � 0 8� 2 (a; c]; � 0(� ) � 0 8� 2 [c; b): (25)

In such a case the auxiliary function

f 1(�; ~� ) = v2(�; ~� ) + � � 1(� )

 
@v(�; ~� )

@�

! 2

(26)

is non-decreasing on (a; c] and non-increasing on [c; b) with resp ect to its argu-

ment �; i.e.,

@f1(�; ~� )
@�

� 0; 8� 2 (a; c];
@f1(�; ~� )

@�
� 0; 8� 2 [c; b); 8~� 2 (a; b): (27)

The latter fact easily follows from the equality

@f1(�; ~� )
@�

= 2
@v(�; ~� )

@�

 

v(�; ~� ) + � � 1(� )
@2v(�; ~� )

@�2
�

1
2

� 0(� )
� 2(� )

 
@v(�; ~� )

@�

!!

=

= �
� 0(� )
� 2(� )

 
@v(�; ~� )

@�

! 2

; 8�; ~� 2 (a; b) (28)

and inequalities (25) . In much the same way it is easy to verify that

@f2(�; ~� )

@~�
� 0; 8~� 2 (a; c];

@f2(�; ~� )

@~�
� 0; 8~� 2 [c; b); 8� 2 (a; b): (29)

where

f 2(�; ~� ) = v2(�; ~� ) + � � 1(~� )

 
@v(�; ~� )

@~�

! 2

: (30)

Let us consider the function f (�; ~� ) de�ned in the following way:

f (�; ~� ) =
�

f 1(�; ~� ) when � � ~� ; �; ~� 2 (a; c];
f 2(�; ~� ) when � � ~� ; �; ~� 2 (a; c]:

(31)
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� � �

�

�

�

� �� ���

�

�
�

	 � ��
��

	 � ��
��
�

Fig. 1. A graph of f (�; ~� ) ,

�f (�; ~� ) on (a; b) � (a; b) . The domain

of

�f (�; ~� ) is indicated with a b old-lined square. It may b e of

interest to note that on (a; c)2 [ (c; b)2
the right side of estimate

(23) need not contain

p
2; see formulas (34), (35)

From expressions (26) and (30) it follows that f 1(�; � ) = f 2(�; � ) = � � 1(� ): The

latter fact means that the function f (�; ~� ) (31) is well de�ned and continuous

on (a; c]2: Expressions (26) and (30) together with inequalities (27) , (29) and

identity (22) lead us to the inequalities

f 1(�; ~� ) � f 1(~�; ~� ) = � � 1(~� ); 8�; ~� 2 (a; c]; � � ~�; (32)

f 2(�; ~� ) � f 2(�; � ) = � � 1(� ); 8�; ~� 2 (a; c]; � � ~�: (33)

Taking into account expressions (26) , (30) from inequalities (32) , (33) we can

deduce that

v2(�; ~� ) � f (�; ~� ) � � � 1(c); 8�; ~� 2 (a; c]: (34)

Through applying nearly identical reasoning to the function

�f (�; ~� ) =
�

f 2(�; ~� ) when � � ~�; �; ~� 2 [c; b);
f 1(�; ~� ) when � � ~�; �; ~� 2 [c; b):

we can get the inequalities

v2(�; ~� ) � �f (�; ~� ) � � � 1(c); 8�; ~� 2 [c; b): (35)

Now let us return to the function f 1(�; ~� ) (26). From inequalities (27) it

follows that

v2(�; ~� ) � f 1(�; ~� ) � f 1(c; ~� ) = v2(c; ~� ) + � � 1(c)w2(~� ); �; ~� 2 (a; b) (36)

where w(~� ) = u0
I (c)uII (~� ) � uI (~� )u0

II (c): Taking into account inequalities (34)

and (35) we can pro ceed estimating v2(�; ~� ) as follows:

v2(�; ~� ) � � � 1(c)(1 + w2(~� )) ; �; ~� 2 (a; b): (37)

It is not hard to verify that

w2(~� ) � w2(~� ) + � � 1(~� )

 
dw(~� )

d~�

! 2

� w2(c) + � � 1(c)

 
dw(~� )

d~�

! 2
�
�
�
�
�
�
~� = c

= 1 :
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Combining the latter inequality with inequality (37) we arrive at sought in-

equality (23) .

Inequality (24) can b e easily derived from inequalities (32), (33) as a limit

case when c ! b:
The pro of is complete. �

Using Theorem 1 we can obtain a curious and useful inequality p ertaining

to the Legendre functions.

It is well known that the Legendre functions P� (x) and Q� (x) are two linearly

indep endent solutions to the Legendre di�erential equation (see [6, p. 121]):

d
dx

�
(1 � x2)

dy(x)
dx

�
+ � (� + 1) y(x) = 0 ; x 2 (� 1; 1): (38)

Furthermore, the functions P� (x) and Q� (x) p ossess the prop erty

(1 � x2)(P0
� (x)Q� (x) � P� (x)Q0

� (x)) = 1 ; 8x 2 (� 1; 1): (39)

It is also known (see [8, p. 67]) that equation (38) can b e rewritten in the

equivalent form (21) with

� (� ) = (2 sin( � )) � 2 + ( � + 1=2)2; (40)

u(� ) =
p

sin(� )y(cos(� )) ; a = 0 ; b = �:

In the other words, we have that functions

uI (� ) =
p

sin(� )P� (cos(� )) ; uII (� ) =
p

sin(� )Q� (cos(� )) (41)

satisfy equations (21) , (40) and identity (22) , which is equivalent to identity

(39) . Also, it is easy to see that the function � (� ) (40) ful�ls all the require-

ments of Theorem 1 with c = �= 2: Therefore, Theorem 1 provides us with the

estimation

q
sin(� )sin(~� ) �

�
�
�P� (cos(� ))Q� (cos(~� ) � P� (cos(~� ))Q� (cos(� )

�
�
� �

�
p

2� � 1(�= 2) �

s
2

1
4 +

�
� + 1

2

� 2 ;

8�; ~� 2 (0; � ) and the following corollary:

Theorem 2. For every � 2 R the inequality

4
p

(1 � x2)(1 � � 2) jP� (x)Q� (� ) � P� (� )Q� (x)j �

s
2

1
4 +

�
� + 1

2

� 2 (42)

holds true for al l x; � 2 (� 1; 1):

4. The FD -method: theoretical justification

In this section we are going to investigate the question of convergence of

the prop osed FD-metho d, i.e, to �nd the su�cient conditions that provide the

convergence of series (7).

Let us consider a general eigenvalue problem
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d
dx

�
(1 � x2)

du(x; � )
dx

�
� �q (x)u(x; � ) = � � (� )u(x; � ); x 2 (� 1; 1); � 2 [0; 1];

(43)

lim
x!� 1

(1 � x2)
du(x; � )

dx
= 0 ; 8� 2 [0; 1]: (44)

The problem (1), (2) is its partial case for � = 1 . If we supp ose that the

eigenvalue � n (� ) and the corresp onding eigenfunction un (x; � ) can b e expressed

in the form of a series

� n (� ) =
1X

i =0

� (i )
n � i ; un (x; � ) =

1X

i =0

u(i ) (x)� i 8x 2 (� 1; 1); � 2 [0; 1]

and the di�erential formulas

dun (x; � )
dx

=
1X

i =0

du(i )
n (x)
dx

� i ;

d2un (x; � )
dx2 =

1X

i =0

d2u(i )
n (x)

dx2 � i 8x 2 (� 1; 1); � 2 [0; 1]

hold we immediately arrive at the conclusion that the unknown co e�cients

� (i )
n ; u(i )

n (x); i = 0 ; 1; 2; : : : can b e found as solutions to problems (8), (9) . To

justify formulas (7) we only need to mention that if we set � = 1 problem (43),

(44) will b e reduced to problem (1) , (2).

Now let us go back to formula (19). Without loss of generality we can obtain

the values of c(j )
n using the orthogonality condition:

cj
n = �

1Z

� 1

u(0)
n (x)

xZ

� 1

K n (x; � )F (j )
n (� )d�dx: (45)

It is not hard to verify that if c(j )
n is found according to formula (45) then

D
u(0)

n (x); u(j )
n (x)

E
def
=

1Z

� 1

u(0)
n u(j )

n (x)dx = 0 ; 8j 2 N

and formula (18) can b e substantially simpli�ed:

� (j )
n =

1Z

� 1

q(x)u(0)
n (x)u(j � 1)

n (x)d; j 2 N: (46)

Using the norm k � k1;� intro duced in (3) and formula (46) we can estimate

j� (j )
n j as follows:

�
�
� � (j )

n

�
�
� =

�
�
�
�
�
�

1Z

� 1

q(x)
p

1 � x2

4
p

1 � x2u(j � 1)
n (x) 4

p
1 � x2u(0)

n (x)dx

�
�
�
�
�
�

� (47)
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� k qk1;� ku(j � 1)
n k1 ;1=

p
� ku(0)

n k1 ;1=
p

� ;

where kf k1 ;1=
p

�
def
= max

x2 [� 1;1]
jf (x)

p
� j = max

x2 [� 1;1]
j 4
p

1 � x2f (x)j: Theorem 7.3.3

from [8 ] allows us to estimate ku(0)
n k1 ;1=

p
� as follows:

ku(0)
n k1 ;1=

p
� =

p
n + 1=2 max

0� � � �

p
sin(� ) jPn (cos(� )) j �

r
2(n + 1=2)

�n
: (48)

Combining the latter inequality with (47) we get the estimation

�
�
� � (j )

n

�
�
� �

r
2(n + 1=2)

�n
kqk1;� ku(j � 1)

n k1 ;1=
p

� : (49)

Using estimation (48) and formula (45) we can estimate jc(j )
n j as follows:

�
�
�c(j )

n

�
�
� =

�
�
�
�
�
�

1Z

� 1

1
p

1 � x2

4
p

1 � x2u(0)
n (x)

xZ

� 1

4
p

(1 � x2)(1 � � 2)
p

1 � � 2
K n (x; � ) �

�

"

�
j � 1X

i =0

� (j � i )
n

4
p

1 � � 2u(i )
n (� ) + q(� ) 4

p
1 � � 2uj � 1

n (� )

#

d�dx

�
�
�
�
�

�

�

p
2� 2

n + 1=2

r
2(n + 1=2)

�n

" j � 1X

i =0

j� (j � i )
n jku(i )

n k1 ;1=
p

� + kqk1;� ku(j � 1)
n k1 ;1=

p
�

#

=

=
2�

p
�

p
n

p
n + 1=2

" j � 1X

i =0

j� (j � i )
n jku(i )

n k1 ;1=
p

� + kqk1;� ku(j � 1)
n k1 ;1=

p
�

#

:

To obtain the latter inequality we used the evident equality

1Z

� 1

dx
p

1 � x2
= �

and the result of Theorem 2.

Now we are in a p osition to estimate ku(j )
n k1 ;1=

p
� : We can do this in the

following way (see formula (19)):

ku(j )
n k1 ;1=

p
� � j c(j )

n j

r
2(n + 1=2)

�n
+

+ max
x2 [� 1;1]

8
<

:

xZ

� 1

4
p

1 � x2 4
p

1 � � 2
p

1 � � 2
jK n (x; � )jd� �

�

" j � 1X

i =0

j� (j � i )
n jku(i )

n k1 ;1=
p

� + kqk1;� ku(j � 1)
n k1 ;1=

p
�

#)

� (50)

� j c(j )
n j

r
2(n + 1=2)

�n
+
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+

p
2�

n + 1=2

" j � 1X

i =0

j� (j � i )
n jku(i )

n k1 ;1=
p

� + kqk1;� ku(j � 1)
n k1 ;1=

p
�

#

=

=
p

2�
�

3n + 1
n(n + 1=2)

� " j � 1X

i =0

j� (j � i )
n jku(i )

n k1 ;1=
p

� + kqk1;� ku(j � 1)
n k1 ;1=

p
�

#

:

Combining inequalities (49) and (50) we arrive at the following estimate:

ku(j )
n k1 ;1=

p
� �

� � n

"

� n

j � 1X

i =0

ku(j � i � 1)
n k1 ;1=

p
� ku(i )

n k1 ;1=
p

� + ku(j � 1)
n k1 ;1=

p
�

#

;
(51)

where

� n = � n (n) =

p
2� (3n + 1)

n(n + 1=2)
kqk1;� �

3
p

2�
n

kqk1;� ;

� n = � n (n) =

r
2(n + 1=2)

�n
�

r
3
�

< 1:

Using substitution

kuj
nk1 ;1=

p
� = � j

nvj (52)

we can rewrite inequality (51) in the form of

vj �
j � 1X

i =0

vi vj � i � 1 + vj � 1; j = 1 ; 2; : : : ; v0 = ku(0)
n k1 ;1=

p
� : (53)

Let us consider a sequence of p ositive real numb ers f Vi gi =0 ;1;::: de�ned by

the recurrence formula

Vj +1 =
jX

i =0

Vi Vj � i + Vj ; j = 0 ; 1; 2; : : : ; V0 = 1 : (54)

Comparing (53) with (54) and taking into account inequality (48) we can

arrive at the conclusion that

vj � Vj ; j = 0 ; 1; 2; : : : : (55)

Recall that kuj
n k1 ;1=

p
� � � j

nVj = � j
nVj (n): If for some n = n0 2 N the series

1P

i =0
� j

nVj (n) is convergent then according the inequalities (55) , (47) and equality

(52) the series (7) are convergent, i.e., the FD-metho d is convergent. Now we

are going to �nd the smallest n0 of the kind mentioned ab ove. For this purp ose

let us consider the series

f (z) =
1X

j =0

zj Vj (56)

and �nd its radius of convergence.

Taking into account recurrence equalities (54) one can verify that function

f (z) (56) satis�es the functional equation

f (z) = zf 2(z) + zf (z) + 1
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or, in a more convenient form,

zf 2(z) + ( z � 1)f (x) + 1 = 0 : (57)

Solving equation (57) with resp ect to function f (z) we obtain

f (z) =
1
2z

�
1 � z �

r
1 �

z



p
1 � 
z

�
; 
 = 3 � 2

p
2: (58)

From formula (58) we see that the radius of convergence R for series (56) is

equivalent to 
 :
R = 
 = 3 � 2

p
2: (59)

Thus, if

3 � 2
p

2 �
3
p

2�
n

kqk1;� � � n (60)

the FD-metho d is convergent.

For a su�ciently large n inequality (60) will always b e satis�ed. This means

that for su�ciently large values of n the FD-metho d will always b e convergent.

To b e sp eci�c, the FD-metho d will b e convergent for all n > n 0; where N 3
n0 � 3

p
2�

3� 2
p

2
kqk1;� .

Furthermore, formula (58) allows us to �nd the co e�cients Vj ; j 2 N explic-

itly. For this purp ose we need to expand the right-hand side of formula (58)

into a p ower series with resp ect to z :

f (z) =
1
2z

0

@1 � z �

2

4p

 �

z
2
p



�

1X

p=2

(2p � 3)!!
(2p)!!


 1=2� pzp

3

5 �

�

2

4 1
p



�

p

z
2

�
1X

p=2

(2p � 3)!!
(2p)!!


 p� 1=2zp

3

5

1

A = (61)

=
1
2z

 

� z+
1X

j =1

zj

"
(2j � 3)!!

(2j )!!
(
 j + 
 � j )�

�
j � 1X

p=1

(2p � 3)!!
(2p)!!

(2j � 2p � 3)!!
(2j � 2p)!!


 2p� j

#!

=

= 1 +
1
2

1X

j =2

zj � 1

2

4 (2j � 3)!!
(2j )!!

(
 j + 
 � j ) �
j � 1X

p=1

(2p � 3)!!
(2p)!!

(2j � 2p � 3)!!
(2j � 2p)!!


 2p� j

3

5 :

Here we de�ne (2p)!! as 2� 4 � : : : � 2p and (2p+ 1)!! as 1 � 3 � : : : � (2p+ 1) ;

(� 1)!!
def
= 1 :

From (61) we have that

Vj � 1 =
1
2

2

4 (2j � 3)!!
(2j )!!

(
 j + 
 � j ) �
j � 1X

p=1

(2p � 3)!!
(2p)!!

(2j � 2p � 3)!!
(2j � 2p)!!


 2p� j

3

5;

j = 2 ; 3; : : : :

(62)
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Using the fact that Vj � 0 and Stirling's formula we can estimate Vj � 1 in the

following way:

Vj � 1 �
(2j � 3)!!

2(2j )!!
=

(2j � 1)!!
2(2j � 1)(2j )!!

=

=
(2j )!

2(2j � 1)((2j )!!)2 =
(2j )!

22j +1 (2j � 1)(j !)2 <

<
2
p

�j (2j )2j e� 2j +1 =(24j )

22j +1 (2j � 1)(
p

2�jj j e� j )2 =
e1=(24j )

2(2j � 1)
p

�j
<

1
(2j � 1)

p
�j

: (63)

Using inequalities (49) , (55) and (63) together with equality (52) we can easily

estimate ku(j )
n k1 ;1=

p
� and j� (j )

n j :

ku(j )
n k1 ;1=

p
� � � j

nVj �

 
3
p

2�
n

kqk1;�

! j
1

(2j + 1)
p

� (j + 1)
; (64)

�
�
� � (j )

n

�
�
� �

 
3
p

2�
n

! j � 1

(kqk1;� ) j 1
(2j � 1)

p
�j

(65)

Inequalities (64) , (65) now allow us to formulate the theorem ab out conver-

gence of the FD-metho d.

Theorem 3. Let

n0 =

"
3
p

2�

3 � 2
p

2
kqk1;�

#
� + 1

and

~� n =
3
p

2�
n

kqk1;� :

The FD-method described by formulas (7) , (16) , (19) , (20) , (45) and (46) con-

verges to the eigensolution (un (x); � n ) of problem (1) , (2) for al l n > n 0 . Fur-

thermore, for the n > n 0 the fol lowing estimations of the method's convergence

rate hold true:






 un (x)�

m
un(x)








1 ;1=
p

�
�

~� m+1
n

(2m + 3)
p

� (m + 2)(1 � ~� n )
; (66)

�
�
� � n �

m
� n

�
�
� � k qk1;�

~� m
n

(2m + 1)
p

� (m + 1)(1 � ~� n )
; (67)

where

m
un(x) =

mX

j =0

u(j )
n (x);

m
� n=

mX

j =0

� (j )
n : (68)

�
Here [�] denotes the integer part of a real numb er.
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5. The FD -method: software implementation

In the section b elow we discuss the software implementation that was pro-

duced of the present metho d and describ e explicitly the algorithm used in this

implementation.

The software implementation was written in the Python programming lan-

guage version 2.7 using the libraries NumPy, SciPy, mpmath and matplotlib.

The use of the NumPy library has allowed us to have �oating-p oint variables

with up to quadruple precision

y
. We faced a technical problem when trying to

compute the values of Legendre Qn function for an argument that's su�ciently

close to � 1 using SciPy's lqmn to circumvent which we had to resort to calling

the corresp onding function legenq of the mpmath library. This pro cess involves

converting the argument of legenq from the data typ e numpy.longdouble to

mpf and back again with su�cient precision.

In the algorithm we use the tanh rule and Stenger's formula in order to

approximate integration in (18), (19):

Z b

a
f (x)dx =

Z + 1

�1
f

�
a + bet

1 + et

�
(b� a)dt

(e� t=2 + et=2)2
� (69)

� hsinc

KX

i = � K

f
�

a + beih sinc

1 + eih sinc

�
b� a

(e� ih sinc =2 + eih sinc =2)2
;

Z zj

a
f (x)dx � hsinc

KX

i = � K

� (� 1)
j � i f

�
a + beih sinc

1 + eih sinc

�
b� a

(e� ih sinc =2 + eih sinc =2)2
(70)

where � (� 1)
i = 1

2 +
Ri

0
sin( �t )

�t dt; i = � 2K : : : 2K , hsinc =
q

2�
K .

Below we also use the following auxiliary notation:

zi =
a + behsinc i

1 + ehsinc i ; � i =
b� a

(e� ih sinc =2 + eih sinc =2)2
; (71)

and refer to A � 1
as de�ned in (15).

In order to measure how close an obtained approximation is to the exact

solution we used the functional

m
� n =

2

4
Z 1

� 1

"

(1 � x2)
d

m
un(x)
dx

+
Z x

� 1

�
m
� n � q(� )

�
m
un (� )d�

#2

dx

3

5

1
2

referred to in the algorithm as the residual.

The develop ed software library implements the capacity to sub divide the

interval (a; b) on which numerical integration takes place into subintervals (a =
x0; x1); : : : ; (xN � 1; xN = b) in a uniform as well as a non-uniform manner. A

y
If the co de called up on by SciPy and NumPy is compiled for the x86_64 architecture. For

reasons to do the GCC compiler the same numpy.longdouble typ e we use results in 80-bit

precision on 32-bit pro cessors.
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Algorithm 1: IntAB(values)

Data : values, hsinc , zj , � j
Result : s
b egin

s := 0 ;

for j := � K : : : K do

p := � j ;

foreach v in values do

if v is a function then

p := p v(zj ) ;

else

// v is an array

p := p v[j ];

end

end

s := s + p;

end

s := hsinc s;

end

Algorithm 2: IntAZ(j;values)

Data : j , values, hsinc , zj , � i , � (� 1)
i

Result : r
b egin

s := 0 ;

for i := � K : : : K do

p := � i �
(� 1)
j � i ;

foreach v in values do

if v is a function then

p := p v(zi ) ;

else

// v is an array

p := p v[i ];

end

end

s := s + p;

end

s := hsinc s;

end
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Algorithm 3: Main

Data : n � the numb er of the eigenvalue we want to �nd, m � the order of

the FD-metho d (the numb er of steps taken), K , hsinc , zi , � i , � (� 1)
i

Result :

m
� n ,

m
� n ,

m
un (x) ,

d
m
u n
dx (x) ,

n




 u(i )

n (x)







om

i =0
b egin

// We initialize L as a one-dimensional array of 2K + 1

zeros and F, U and DU as two-dimensional arrays of 2K +

1 by 2K + 1 zeros.

L := zeros(� K : : : K ) ;

F; U; DU := zeros(� K : : : K; � K : : : K ) ;

L [0] = n(n + 1) ;

for i := � K : : : K do

U[0][i ] = Pn (x) ;

DU [0][i ] = dPn (x) ;

end

for d := 1 ; 2: : : m do

// Compute the correction for the eigenvalue

L [d] := A � 2
IntAB (U[0]; U[d � 1]; q) ;

// Compute F

for i := � K : : : K do

F [d][i ] := U[d � 1][i ] q(zi ) ;

for j := 0 : : : d � 1 do

F [d][i ] := F [d][i ] � L [d � j ] U[j ][i ];

end

end

// Compute the correction for the eigenfunction

for i := � K : : : K do

U[d][i ] := Qn (zi ) IntAZ (i ; F [d]; Pn ) � Pn (zi ) IntAZ (i ; F [d]; Qn ) ;

DU [d][i ] :=
dQn (zi ) IntAZ (i ; F [d]; Pn ) � dPn (zi ) IntAZ (i ; F [d]; Qn ) ;

end

// Orthogonality

I = A � 2
IntAB (U[d]; U[0]);

for i := � K : : : K do

U[d][i ] := U[d][i ] � I U [0][i ];

DU [d][i ] := DU [d][i ] � I DU [0][i ];

end

// Compute the residual

CompRes ;

end

m
� n :=

P m
i =0 L [i ];

end



EXPONENTIALLY CONVERGENT NUMERICAL-ANALYTICAL METHOD ... 87

separate set of zi ; � i is generated for each (x i � 1; x i ); i 2 f 0; 1; : : : ; N g in that

case. Since q(x) is sampled at the p oints zi , which are at their densest at

the ends of the interval, one could b ene�t from sub dividing the interval at the

singularity p oints of q(x) . For the sake of simplicity we shall omit this detail

in the description of the algorithm that follows.

As the values of � (� 1)
i do not dep end on q(x) or how the interval is sub divided

they were precomputed and stored in a �le to b e loaded by the library at

runtime.

Note: when in the algorithm we say � F [i ][j ]� we refer to a particular element

of the two-dimensional array F that has the index i; j . However, when we refer

to � F [i ]� what we mean is the values F [i ][� K ]; F [i ][� K + 1] ; : : : ; F [i ][K ] taken

as a one-dimensional array.

The main computing routine is describ ed in Algorithm 3. It references the

subroutines IntAB and IntAZ de�ned in Algorithms 1, 2.

6. Numerical experiments

Using the ab ove algorithm we applied the FD-metho d to problem (1), (2)

with the p otential

q(x) = ln
� �

�
�
�

�
5
12

� x
� �

1
3

+ x
� �

�
�
�

�
:

First, the software was run to approximate the value of � 0 with m = 60 steps

of the FD-metho d to demonstrate the rate of convergence. In this and subse-

quent runs the quadrature formulas (69), (70) had K at 250 and for numerical

integration (� 1; 1) was sub divided into four subintervals using the set of p oints

f� 1; � 1
3 ; 0; 5

12; 1g. The imp ortance of using the latter kind of sub division is

illustrated b elow.

� � �� �� �� �� ��
���

���

���

���

���

���

���

���

�


�	

ln
�

m
� n

�

�����
�����
�����
�����
�����

�

� � �� �� �� �� ��
���

���

���

���

���

���

���

���

�

	��




ln
� 





 u(i )

n (x)







�

Fig. 2. A log-scale graph that shows the convergence rate for � 0; : : : ; � 4

Figure 2 illustrates how the convergence rate of the FD-metho d increases

exp onentially for each subsequent eigenvalue � n .

Solving the same problem was attempted using the well-known SLEIGN2

software package. The rightmost columns of Tables 2, 4 show the margin of

error in the results it pro duces compared to the present implementation of the

FD-metho d.
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Tabl. 1. The results obtained using SLEIGN2

n � n;sl 2 T OL IFLAG

0 � 1:98326983D + 00 0:46748D � 08 1
1 0:855187683D + 00 0:73426D � 07 1
2 0:489606686D + 01 0:35447D � 07 1
3 0:104183770D + 02 0:40228D � 07 1
4 0:188163965D + 02 0:61329D � 11 1

Tabl. 2. Convergence for the eigenvalue � 0

m
m
� 0






 u(m)

0 (x)







m
� 0 j

m
� 0 � � 0;sl2j

0 -1.8538570587 0.2270941786 0.4851738751 0.1294127713

1 -2.0002817053 0.0478946893 0.0863600316 0.0170118753

2 -1.9826820263 0.0140616365 0.0200439342 0.0005878037

3 -1.9827492251 0.0032752573 0.0044828399 0.0005206049

4 -1.9832100727 0.000281665 0.0004743141 0.0000597573

5 -1.9831500665 0.0001734894 0.0002452252 0.0001197635

6 -1.9831433619 9.61416137299e-05 0.0001358145 0.0001264681

7 -1.9831424182 2.99030462249e-05 4.5191830517e-05 0.0001274118

8 -1.9831451284 5.71179849936e-06 9.49092804135e-06 0.0001247016

9 -1.9831441732 3.7195952769e-07 8.68014240854e-07 0.0001256568

m
m
� 0






 u(m)

0 (x)







m
� 0 j

m
� 0 � � 0;sl2j

50 -1.983144271 3.6458910063e-24 5.42202004605e-24 0.000125559

51 -1.983144271 1.45758164365e-24 2.17584093998e-24 0.000125559

52 -1.983144271 3.59257473326e-25 5.46661601878e-25 0.000125559

53 -1.983144271 2.29601032831e-26 5.40330904597e-26 0.000125559

54 -1.983144271 4.24716018236e-26 6.37606340182e-26 0.000125559

55 -1.983144271 2.6000804557e-26 3.86695510098e-26 0.000125559

56 -1.983144271 9.47336776012e-27 1.41695598924e-26 0.000125559

57 -1.983144271 2.02349833941e-27 3.116321958e-27 0.000125559

58 -1.983144271 1.81719782215e-28 3.7965999043e-28 0.000125559

59 -1.983144271 3.43816989604e-28 5.133026339e-28 0.000125559

60 -1.983144271 1.8365375822e-28 2.7327040704e-28 0.000125559

Computations for further eigenvalues were also p erformed and compared to

the results from SLEIGN2 (see Tables 3, 4).

For the eigenvalue � 0 and m = 30 the choice of sub division mattered sig-

ni�cantly. Numerical exp eriments show that the sub division p oints are b est

placed near the singularities of q(x) (see Table 5).

7. Conclusions

The article lays out the structure of and provides a theoretical justi�cation

for the FD -metho d as applied to solving the Sturm-Liouville problem (1), (2).
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Tabl. 3. The values obtained for � 0; : : : ; � 4 at m = 30

n
m
� n j� (m)

n j





 u(m)

n (x)







0 -1.98314427097744064 1.46303698262e-17 1.26598694672e-15

1 0.857270328373118208 1.63565545758e-17 8.83118381572e-16

2 4.893950682679907660 1.72618520779e-18 1.22013435336e-18

3 10.42051129625743390 5.71577711655e-26 4.58227541331e-25

4 18.81639652150898795 1.30790575077e-32 5.43628701044e-32

Tabl. 4. Accuracy results for � 0; : : : ; � 4 at m = 30

n
m
� n

m
� n j

m
� 0 � � 0;sl2j

0 -1.98314427097744064 1.9052706379e-15 0.000125559

1 0.857270328373118208 6.92114145514e-16 0.0020826454

2 4.893950682679907660 2.72086325283e-18 0.0021161773

3 10.42051129625743390 2.28096722974e-25 0.0021342963

4 18.81639652150898795 5.26360265358e-32 0.0000000215

Tabl. 5. The values obtained for � 0 at m = 30 with di�erent sub divisions

Sub division

m
� 0 j

m
� 0 � � 0;sl2j

N = 1 , none -1.9318815213501200317 0.051388309

N = 4 , uniform -1.9776298960768203497 0.005639934

N = 4 , f� 1; � 1
3 ; 0; 5

12; 1g -1.9831442710817836887 0.000125559

In Theorem 3 convergence is proven for the case when q(x) satis�es condition

(3) and estimates for the convergence rate are given explicitly.

Sp ecial attention should also b e drawn to Theorem 1. The authors were un-

able to �nd analogous results in the existing literature. To their b est knowledge

the theorem and its pro of constitute a novel and original result.

The presented metho d suggests at least two ways for further re�nement.

First, by considering a separate approximation for the p otential on each subin-

terval of [� 1; 1] (as done for piecewise continuous p otential problems in [2]).

Second, by mo difying the algorithm for concurrent computation. The authors

hop e to explore these p ossibilities in future publications.

The algorithm was implemented in software as a function library (a Python

mo dule). The implementation can b e integrated into larger systems or used

as is in applied sciences. The source co de for the function library along with

example Python co de that uses it can b e obtained from

https://github.com/imathsoft/legendrefdnum .
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THE BOUNDARY EFFECT

IN THE ERROR ESTIMATE

OF THE FINITE-DIFFERENCE SCHEME

FOR THE TWO-DIMENSIONAL

HEAT EQUATION

Nataliya Mayko

Ðåçþìå. Ó ðîáîòi äîñëiäæåíî òî÷íiñòü òðàäèöiéíî¨ ñêií÷åííî-ðiçíèöåâî¨

ñõåìè äëÿ ïî÷àòêîâî-êðàéîâî¨ çàäà÷i äëÿ ðiâíÿííÿ òåïëîïðîâiäíîñòi ç

óìîâàìè Äiðiõëå i Íåéìàíà íà ìåæi îäèíè÷íîãî êâàäðàòà. Äîâåäåíî

àïðiîðíó îöiíêó ç âàãîþ äëÿ øâèäêîñòi çáiæíîñòi ìåòîäó. Ç îäåðæàíî¨

íåðiâíîñòi âèïëèâà¹, ùî òî÷íiñòü ñõåìè çáiëüøó¹òüñÿ ïîáëèçó òèõ ái÷íèõ

ãðàíåé ïðîñòîðîâî-÷àñîâîãî ïàðàëåëåïiïåäà, äå çàäàíà êðàéîâà óìîâà Äi-

ðiõëå.

Abstract. The accuracy of the conventional �nite-di�erence scheme for

the initial-b oundary value problem for the parab olic equation in a unit square

with Dirichlet's and Neumann's b oundary value conditions is considered. The

error estimate with the weight function is proved. This inequality shows

that the accuracy order is higher near the three side faces of the space-time

parallelepip ed where the Dirichlet b oundary condition is satis�ed precisely

than that is far from them.

1. Introduction

The grid metho d is widely used for solving numerically many problems of

mathematical physics, and the theory of the metho d is profoundly develop ed

(see [1]). It is obvious that the Dirichlet b oundary condition is satis�ed exactly

and may therefore in�uence the order of the error estimate: the accuracy of

the di�erence scheme is likely to b e higher near the b oundary of the domain

than it is in the middle of that. Such supp osition turned justi�ed and were

quantitatively estimated in [2 ] where the initial-b oundary value problem with

the Dirichlet b oundary condition is investigated and the error estimate of the

usual �nite-di�erence scheme is proved. These ideas were further develop ed in

[3] where the one- and two-dimensional heat equations are considered.

In the present pap er we study the e�ect of the mixed b oundary conditions

when the Neumann b oundary condition is given on the left side of the unit

square and the Dirichlet one is on its three other sides.

We consider the problem

Key words . Heat equation, mixed b oundary condition, grid metho d, weighted error

estimate.
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@u(x; t )
@t

= � u(x; t ) + f (x; t ); (x; t ) 2 QT = Q � (0; T);

@u(x; t )
@x1

= 0 ; (x; t ) 2 � � 1 � (0; T);

u(x; t ) = 0 ; (x; t ) 2 (� n� � 1) � (0; T);

u(x; 0) = ' (x); x 2 Q;

(1)

where x = ( x1; x2) , � =
@2

@x21
+

@2

@x22
, Q = f x = ( x1; x2) : 0 < x � < 1; � =

1; 2g is a unit square, � = @Q is the b oundary of Q , � � 1 = f x = ( x1; x2) :
x1 = 0 ; 0 < x 2 < 1g is the left side of Q .

Denoting the grid sets

! � = f x(i � )
� = i � h� ; i � = 1; N � � 1; h� = 1=N� ; N � > 2;

N � is an integer numb er g;

! �
� = ! � [ f 0g; ! +

� = ! � [ f 1g; �! � = ! � [ f 0g [ f 1g;

! = ! 1 � ! 2; �! = �! 1 � �! 2; 
 = �! n!;


 � � = f x � = 0 ; x3� � 2 ! 3� � g; 
 + � = f x � = 1 ; x3� � 2 ! 3� � g; � = 1 ; 2;

! � = f t j = j�; j = 1; M � 1; � = T=M; M > 2; M is an integer numb er g;

! QT = ( ! [ 
 � 1) � ! � :

and making use of the op erators

(T2v)(x1; x2) =
1
h2

2

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

�
v(x1; � 2) d� 2 ; x 2 ! [ 
 � 1;

(T1v)(x1; x2) =

8
>>>>>>><

>>>>>>>:

1
h2

1

x1+ h1Z

x1 � h1

(h1 � j x1 � � 1j) v(� 1; x2)d� 1 ; x 2 !;

2
h2

1

h1Z

0

(h1 � � 1) v(� 1; x2)d� 1 ; x 2 
 � 1;

we approximate problem (1) with the following �nite-di�erence scheme

y�t (x; t ) + ( Ay)(x; t ) = ( T1T2f )(x; t ); (x; t ) 2 ! QT ;

y(x; t ) = 0 ; (x; t ) 2 (
 n
 � 1) � ! � ;

y(x; 0) = ' (x); x 2 !;

(2)

where A = A1 + A2 ,

A1y =

(
y�x1x1 ; x 2 !;

2h� 1
1 yx1 ; x 2 
 � 1;

A2y = � y�x2x2 ; x 2 ! [ 
 � 1 .
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For the error z(x; t ) = y(x; t ) � u(x; t ) we then have the problem

z�t (x; t ) + ( Az)(x; t ) =  (x; t ); (x; t ) 2 ! QT ;

z(x; t ) = 0 ; (x; t ) 2 (
 n
 � 1) � ! � ;

z(x; 0) = 0 ; x 2 !;

(3)

where  = T1T2f � u�t � Au = A1� 1 + A2� 2 + � 3 is the approximation error,

� � (x; t ) = u(x; t ) � (T3� � u)(x; t ) , � = 1 ; 2, � 3(x; t ) =
d(T u)

dt
(x; t ) � u�t (x; t ) ,

(x; t ) 2 (! [ 
 � 1) � ! � .

2. The Green's function estimate

Denoting by Hh the space of grid functions de�ned on �! and vanishing on


 n
 � 1 we intro duce the inner pro duct and the asso ciate norm:

(y; v) =
X

x2 !

h1h2y(x)v(x) +
h1

2

X

x2 
 � 1

h2y(x)v(x);

kvk =
p

(v; v) =
� X

x2 !

h1h2v2(x) +
h1

2

X

x2 
 � 1

h2v(x)
� 1=2

:

It is well known (see [1], [4]) that the di�erence op erator A is symmetric and

p ositive de�nite in Hh , and therefore the inverse op erator A � 1
exists. We �nd

kAyk2 = ( Ay; Ay ) =
X

x2 !

h1h2(� y�x1x1 � y�x2x2 )2+

+
h1

2

X

x2 
 � 1

h2

�
�

2
h1

yx1 � y�x2x2

� 2

=

=
X

x2 !

h1h2(y2
�x1x1

+ y2
�x2x2

) +
h1

2

X

x2 
 � 1

h2

�
4
h2

1
y2

x1
+ y2

�x2x2

�
+

+
X

x2 !

h1h22y�x1x1
y�x2x2

+
h1

2

X

x2 
 � 1

h22
2
h1

yx1 y�x2x2
= (4)

=
X

x2 !

h1h2y2
�x1x1

+
h1

2

X

x2 
 � 1

h2

�
2
h1

yx1

� 2

+
X

x2 !

h1h2y2
�x2x2

+

+
h1

2

X

x2 
 � 1

h2y2
�x2x2

+ 2
X

x2 ! �
1 � ! �

2

h1h2y2
x1x2

= kA1yk2 + kA2yk2 + 2 kB �
1yk2

� ;

where B �
1y = � yx1x2 , x 2 ! �

1 � ! �
2 , is a di�erence op erator acting from Hh

into the space H �
h of the grid functions which are de�ned on the set of the

no de p oints ! �
1 � ! �

2 ; (y; v) � =
P

x2 ! �
1 � ! �

2

h1h2y(x)v(x) is the inner pro duct and

kyk� =
p

(y; y) � =
P

x2 ! �
1 � ! �

2

h1h2y2(x) is the corresp onding norm in H �
h . Then
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we have

(B �
1y; w) � = �

X

x2 ! �
1 � ! �

2

h1h2yx1x2 w =

= �
X

x2 !

h1h2yw�x1 �x2 �
h1

2

X

x2 
 � 1

h2y
2
h1

w�x2 = ( y; B1w);

where B1 : H �
h ! Hh is a conjugate op erator for B �

1 : Hh ! H �
h ,

B1w = �

8
<

:

w�x1 �x2 ; x 2 !;
2
h1

w�x2 ; x 2 
 � 1:
(5)

Similarly to that we can also deduce the relation

kAyk2 = ( Ay; Ay ) =
X

x2 !

h1h2(� y�x1x1 � y�x2x2 )2+

+
h1

2

X

x2 
 � 1

h2

�
�

2
h1

yx1 � y�x2x2

� 2

=

=
X

x2 !

h1h2y2
�x1x1

+
h1

2

X

x2 
 � 1

h2

�
2
h1

yx1

� 2

+
X

x2 !

h1h2y2
�x2x2

+ (6)

+
h1

2

X

x2 
 � 1

h2y2
�x2x2

+ 2
X

x2 ! �
1 � ! +

2

h1h2y2
x1 �x2

= kA1yk2 + kA2yk2 + 2 kB �
2yk2

� ;

where B �
2y = � yx1 �x2 , x 2 ! �

1 � ! +
2 ; is a di�erence op erator acting from Hh

into the space H �
h of the grid functions which are de�ned on the set of the

no de p oints ! �
1 � ! +

2 ; (y; v) � =
P

x2 ! �
1 � ! +

2

h1h2y(x)v(x) is the inner pro duct and

kyk� =
p

(y; y) � =
P

x2 ! �
1 � ! +

2

h1h2y2(x) is the corresp onding norm in H �
h . We

have

(B �
2y; w) � = �

X

x2 ! �
1 � ! +

2

h1h2yx1 �x2 w =

= �
X

x2 !

h1h2yw�x1x2 �
h1

2

X

x2 
 � 1

h2y
2
h1

wx2 = ( y; B2w);

where B2 : H �
h ! Hh is a conjugate op erator for B �

2 : Hh ! H �
h ,

B2w = �

8
<

:

w�x1x2 ; x 2 !;
2
h1

wx2 ; x 2 
 � 1:
(7)

In what follows we need the assertion from [4] (see p. 54 therein).

Lemma 1. Let: 1) A be a self-conjugate operator acting in the Hilbert space

H , 2) B be a linear operator acting from H �
into H ( H � � H ), 3) A � 1

exist,

4) kB � vk� 6 
 kAvk 8v 2 H , where B � : H ! H �
is a conjugate operator



THE BOUNDARY EFFECT IN THE ERROR ESTIMATE ... 95

for B : H � ! H , (y; v) � is the inner product, and kvk� =
p

(v; v) � is a

corresponding norm in H �
. Then

kA � 1Bvk 6 
 kvk� 8v 2 H � :

Applying Lemma 1 to the op erators A , B1 , B2 we obtain the estimate ( k =
1; 2)

kA � 1Bkvk 6
1

p
2

kvk� 8v 2 H � : (8)

By means of Green's function G(x; � ) = G(x1; x2; � 1; � 2) of the di�erence

b oundary value problem

� G �� 1 � 1
(x; � ) � G �� 2 � 2

(x; � ) =
� (x1; � 1) � (x2; � 2)

h1h2
; � 2 !;

�
2
h1

G� 1 (x; � ) =
2
h1

� (x1; � 1) � (x2; � 2)
h2

; � 2 
 � 1;

G(x; � ) = 0 ; � 2 
 n
 � 1;

(9)

where � (r; s) is the Kronecker symb ol, we present the solution of problem (3)

as follows

z(x; t ) =
�
G(x; �);  (�; t) � z�t (�; t)

�
; (x; t ) 2 ! QT =

�
! [ 
 � 1

�
� ! � : (10)

In the statement which go es next we obtain the Green's function estimate.

Lemma 2. The fol lowing inequality holds true

kG(x; �)k 6
1

p
2

� (x);

where � (x) = min
� p

(1 � x1)(1 � x2) ;
p

(1 � x1)x2
	

.

Proof. We write down problem (8) in a di�erent way:

� G �� 1 � 1
(x; � ) � G �� 2 � 2

(x; � ) =
�
H (� 1 � x1)H (� 2 � x2)

�
�� 1 �� 2

; � 2 !;

�
2
h1

G� 1 (x; � ) =
2
h1

�
H (� 1 � x1)H (� 2 � x2)

�
�� 2

; � 2 
 � 1;

G(x; � ) = 0 ; � 2 
 n
 � 1;

where H (x) =

(
1; s > 0;
0; s < 0;

is the Heaviside step function. That can b e reduced

to the op erator equation

A � G(x; � ) = � B1�
�
H (� 1 � s1)H (� 2 � x2)

�
:
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Then we have

kG(x; �)k =



 � A �

� 1B1�
�
H (� � x1)H (� � x2)

� 


 6

6
1

p
2

kH (� � x1)H (� � x2)k� =

=
1

p
2

 
X

� 2 ! �
1 � ! �

2

h1h2H 2(� 1 � x1)H 2(� 2 � x2)

! 1=2

=

=
1

p
2

 
1� h1X

� 1=0

h1H 2(� 1 � x1)

! 1=2 
1� h2X

� 2=0

h2H 2(� 2 � x2)

! 1=2

= (11)

=
1

p
2

 
1� h1X

� 1= x1

h1

! 1=2 
1� h2X

� 2= x2

h2

! 1=2

=
1

p
2

p
(1 � x1)(1 � x2) :

Similarly we rewrite problem (9) as follows

� G �� 1 � 1
(x; � ) � G �� 2 � 2

(x; � ) = �
�
H (� 1 � x1)H (x2 � � 2)

�
�� 1 � 2

; � 2 !;

�
2
h1

G� 1 (x; � ) = �
2
h1

�
H (� 1 � x1)H (x2 � � 2)

�
� 2

; � 2 
 � 1;

G(x; � ) = 0 ; � 2 
 n
 � 1:

That can b e reduced to the op erator equation

A � G(x; � ) = B2�
�
H (� 1 � x1)H (x2 � � 2)

�
;

from where we get the relation

kG(x; �)k =



 A �

� 1B2�
�
H (� � x1)H (x2 � � )

� 


 6

1
p

2
kH (� � x1)H (x2 � � )k� =

=
1

p
2

 
X

� 2 ! �
1 � ! +

2

h1h2H 2(� 1 � x1)H 2(x2 � � 2)

! 1=2

=

=
1

p
2

 
1� h1X

� 1=0

h1H 2(� 1 � x1)

! 1=2 
1X

� 2= h2

h2H 2(x2 � � 2)

! 1=2

= (12)

=
1

p
2

 
1� h1X

� 1= x1

h1

! 1=2 
x2X

� 2= h2

h2

! 1=2

=
1

p
2

p
(1 � x1)x2 :

Inequalities (11) and (12) lead to the assertion of the lemma. �

3. The weighted error estimate

From (10), we deduce the relation

jz(x; t )j =
�
� � G(x; �);  (�; t) � z�t (�; t)

� �
� 6 kG(x; �)k � k (�; t) � z�t (�; t)k 6

6 kG(x; �)k
�
jj  (�; t)k + jjz�t (�; t)k

�
6

1
p

2
� (x)

�
k (�; t)k + jjz�t (�; t)k

�
;
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which subsequently gives the inequality

jz(x; t )j2

� 2(x)
6

1
2

�
k (�; t)k + kz�t (�; t)k

� 2 6 k (�; t)k2 + kz�t (�; t)k2:

From the ab ove, we obtain the inequation

tX

� = �

�
jz(x; � )j2

� 2(x)
6

tX

� = �

�
�
k (�; � )k2 + kz�t (�; � )k2�

6 2
tX

� = �

� k (�; � )k2; (13)

which comes out from the following

kz�t (�; t)k2 + 2
�
z�t (�; t); (Az)( �; t)

�
+ k(Az)( �; t)k2 = k (�; t)k2;

2
tX

� = �

�
�
z�� (�; � ); (Az)( �; � )

�
=

= 2
tX

� = �

�

 
X

� 2 !

h1h2z�� (�; � )
�

� z�� 1 � 1
(�; � ) � z�� 2 � 2

(�; � )
�

+

+
h1

2

X

� 2 
 � 1

h2z�� (�; � )
�

�
2
h1

z� 1 (�; � ) � z�� 2 � 2
(�; � )

� !

=

= �
X

� 2 ! +
1 � ! 2

h1h2

tX

� = �

� z 2
�� 1 �� (�; � ) +

X

� 2 ! +
1 � ! 2

h1h2z2
�� 1

(�; t ) +

+ �
X

� 2 ! 1 � ! +
2

h1h2

tX

� = �

� z 2
�� 2 �� (�; � ) =

+
X

� 2 ! 1 � ! +
2

h1h2z2
�� 2

(�; t ) +
h1

2
�

X

� 22 ! +
2

(� 1=0)

h2

tX

� = �

� z 2
�� 2 � (�; � ) +

+
h1

2

X

� 22 ! +
2

(� 1=0)

h2z2
�� 2

(�; t ) > 0:

For the approximation error  = T1T2f � u�t � Au = A1� 1 + A2� 2 + � 3 , we

have

k (�; t)k2 = k(A1� 1)( �; t) + ( A2� 1)( �; t) + � 3(�; t)k2 6

6 3
�
k(A1� 1)( �; t)k2 + k(A2� 1)( �; t)k2 + k� 3(�; t)k2�

;

from where (see also (13)) the following inequality comes out

tX

� = �

�
jz(x; � )j2

� 2(x)
6 6

tX

� = �

�
�
k(A1� 1)( �; t)jj2 + k(A2� 1)( �; t)k2 + k� 3(�; t)k2�

: (14)
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Now we investigate the summand k(A1� 1)( �; t)k2
. For the no de x 2 ! [ 
 � 1

we have (see [3])

� 1(x; t ) = ( T2u)(x; t ) � u(x; t ) =

= �
1

�h 3
2

tZ

t � �

d�

x2+ h 2
2Z

x2 � h 2
2

d� 2

tZ

�

d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � j

�
d�

x2Z

�

@2u(x1; � 1; � 1)
@�1@�1

d� 1�

�
1

�h 3
2

tZ

t � �

d�

x2+ h 2
2Z

x2 � h 2
2

d� 2

x2+ h2Z

x2 � h2

�
h2 � j x2 � � j

�
d�

x2Z

�

d� 1

� 1Z

� 2

@2u(x1; � 3; � )
@�23

d� 3:

Bearing in mind the relation

�
T1

@2u
@x21

�
(x; t ) = u �x1x1 (x; t ) , x 2 ! , one can get

� 1�x1x1
(x; t ) = �

1
h2

1�h 3
2

x1+ h1Z

x1 � h1

�
h1 � j x1 � � 4j

�
d� 4

tZ

t � �

d� �

�

x2+ h 2
2Z

x2 � h 2
2

d� 2

tZ

�

d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � j

�
d�

x2Z

�

@4u(� 4; � 1; � 1)
@�24@�1@�1

d� 1 �

�
1

h2
1�h 3

2

x1+ h1Z

x1 � h1

�
h1 � j x1 � � 4j

�
d� 4

tZ

t � �

d�

x2+ h 2
2Z

x2 � h 2
2

d� 2�

�

x2+ h2Z

x2 � h2

�
h2 � j x2 � � j

�
d�

x2Z

�

d� 1

� 1Z

� 2

@2u(x1; � 3; � )
@�23

d� 3 :

Then

�
� � 1�x1x1

(x; t )
�
� 6 4

r
�h 2

h1

0

@
x1+ h1Z

x1 � h1

d� 4

tZ

t � �

d� 1

x2+ h2Z

x2 � h2

�
@4u(� 4; � 1; � 1)

@�24@�1@�1

� 2

d� 1

1

A

1=2

+

+ 8

s
h3

2

h1�

0

@
x1+ h1Z

x1 � h1

d� 4

tZ

t � �

d�

x2+ h2Z

x2 � h2

�
@4u(� 4; � 3; � )

@�24@�23

� 2

d� 3

1

A

1=2

; x 2 !:

Applying here the inequality (a + b)2 6 2(a2 + b2) we receive
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�
� � 1�x1x1

(x; t )
�
�2 6 2

 

16
�h 2

h1

x1+ h1Z

x1 � h1

d� 4

tZ

t � �

d� 1

x2+ h2Z

x2 � h2

�
@4u(� 4; � 1; � 1)

@�24@�1@�1

� 2

d� 1

+ 64
h3

2

h1�

x1+ h1Z

x1 � h1

d� 4

tZ

t � �

d�

x2+ h2Z

x2 � h2

�
@4u(� 4; � 3; � )

@�24@�23

� 2

d� 3

!

; x 2 ! :

(15)

Next we make use of the relation

�
T1

@2u
@x21

�
(x; t ) =

2
h1

ux1 (x; t ) , x 2 
 � 1 ,

and draw the formula

2
h1

� 1x1
(x; t ) = �

2
h2

1�h 3
2

h1Z

0

(h1 � � 4)d� 4

tZ

t � �

d� �

�

x2+ h 2
2Z

x2 � h 2
2

d� 2

tZ

�

d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � j

�
d�

x2Z

�

@4u(� 4; � 1; � 1)
@�24@�1@�1

d� 1 �

�
2

h2
1�h 3

2

h1Z

0

(h1 � � 4)d� 4

tZ

t � �

d�

x2+ h 2
2Z

x2 � h 2
2

d� 2

x2+ h2Z

x2 � h2

�
h2 � j x2 � � j

�
d� �

�

x2+ h2Z

x2 � h2

�
h2 � j x2 � � j

�
d�

x2Z

�

d� 1

� 1Z

� 2

@2u(x1; � 3; � )
@�23

d� 3; x 2 
 � 1;

which gives the inequality

�
�
�
�

2
h1

� 1x1
(x; t )

�
�
�
� 6

4
p

2�h 2p
h1

0

@
h1Z

0

d� 4

tZ

t � �

d� 1

x2+ h2Z

x2 � h2

�
@4u(� 4; � 1; � 1)

@�24@�1@�1

� 2

d� 1

1

A

1=2

+

+
8
p

2h3
2p

h1�

0

@
h1Z

0

d� 4

tZ

t � �

d�

x2+ h2Z

x2 � h2

�
@4u(� 4; � 3; � )

@�24@�23

� 2

d� 3

1

A

1=2

; x 2 
 � 1;

from where we obtain

�
�
�
�

2
h1

� 1x1
(x; t )

�
�
�
�

2

6 2

 

32
�h 2

h1

h1Z

0

d� 4

tZ

t � �

d� 1

x2+ h2Z

x2 � h2

�
@4u(� 4; � 1; � 1)

@�24@�1@�1

� 2

d� 1+

+ 128
h3

2

h1�

h1Z

0

d� 4

tZ

t � �

d�

x2+ h2Z

x2 � h2

�
@4u(� 4; � 3; � )

@�24@�23

� 2

d� 3

!

; x 2 
 � 1:

(16)
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Thus we come to the estimate (see (15) and (16))

tX

� = �

� k(A1� 1)( �; � )k2 6

6 128

 

� 2h2
2

tZ

0

d�
ZZ

D

�
@4u(� 1; � 2; � )

@�21@�2@�

� 2

d� 1d� 2

+ 4h4
2

tZ

0

d�
ZZ

D

�
@4u(� 1; � 2; � )

@�21@�22

� 2

d� 1d� 2

!

:

(17)

Now we lo ok closely at the summand k(A2� 2)( �; t)k2
in (14). Acting as b efore

(see (15) ) for the no de x 2 ! one can establish the relation

�
� � 2�x2x2

(x; t )
�
�2 6 2

 

16
�h 1

h2

x1+ h1Z

x1 � h1

d� 1

tZ

t � �

d�

x2+ h2Z

x2 � h2

�
@4u(� 1; � 2; � )

@�22@�@�1

� 2

d� 2

+ 64
h3

1

h2�

x1+ h1Z

x1 � h1

d� 1

tZ

t � �

d�

x2+ h2Z

x2 � h2

�
@4u(� 1; � 2; � )

@�21@�22

� 2

d� 2

!

; x 2 !:

(18)

For the no de x 2 
 � 1 we have

� 2(x; t ) = ( T1u)(x; t ) � u(x; t ) =

=
2
h2

1

h1Z

0

(h1 � � )
�
u(�; x 2; t) � u(0; x2; t)

�
d� =

=
2
h2

1

h1Z

0

(h1 � � )d�

�Z

0

@u(� 1; x2; t)
@�1

d� 1 =

=
2

�h 3
1

h1Z

0

(h1 � � )d�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

�
@u(� 1; x2; t)

@�1
�

@u(� 2; x2; � )
@�2

�
d� 2 +

+
2

�h 3
1

h1Z

0

(h1 � � )d�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

@u(� 2; x2; � )
@�2

d� 2 =

=
2

�h 3
1

h1Z

0

(h1 � � )d�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

d� 2

tZ

�

@2u(� 1; x2; � 1)
@�1@�1

d� 1 +

+
2

�h 3
1

h1Z

0

(h1 � � )d�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

d� 2

� 1Z

� 2

@2u(� 3; x2; � )
@�23

d� 1 +
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+
2

�h 3
1

h1Z

0

(h1 � � )d�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

@u(� 2; x2; � )
@�2

d� 2 :

Taking into account the relation

�
T2

@2u
@x22

�
(x; t ) = u �x2x2 (x; t ) , x 2 ! [ 
 � 1 , one

can get the representation

� 2�x2x2 (x; t ) =

=
2

h2
2�h 3

1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 4j

�
d� 4

h1Z

0

(h1 � � )d� �

�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

d� 2

tZ

�

@4u(� 1; � 4; � 1)
@�24@�1@�1

d� 1 +

+
2

h2
2�h 3

1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 4j

�
d� 4

h1Z

0

(h1 � � )d� �

�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

d� 2

� 1Z

� 2

@4u(� 3; � 4; � )
@�24@�23

d� 1 +

+
2

h2
2�h 3

1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 4j

�
d� 4

h1Z

0

(h1 � � )d� �

�

�Z

0

d� 1

tZ

t � �

d�

h1Z

0

@3u(� 2; � 4; � )
@�24@�2

d� 2;

where we apply the inequality (a + b+ c)2 6 3(a2 + b2 + c2) and then have

�
� � 2�x2x2

(x; t )
�
�2 6 3

 

2
�h 1

h2

x2+ h2Z

x2 � h2

d� 2

h1Z

0

d� 1

tZ

t � �

�
@4u(� 1; � 2; � )

@�22@�@�1

� 2

d� +

+
2h3

1

9�h 2

x2+ h2Z

x2 � h2

d� 2

tZ

t � �

d�

h1Z

0

�
@4u(� 1; � 2; � )

@�21@�22

� 2

d� 1 + (19)

+
2h1

9�h 2

x2+ h2Z

x2 � h2

d� 2

tZ

t � �

d�

h1Z

0

�
@3u(� 1; � 2; � )

@�22@�1

� 2

d� 1

!

; x 2 
 � 1:

As a result (see (18) and (19) ) the following estimate is substantiated
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tX

� = �

� k(A2� 2)( �; � )k2 6 128

 

� 2h2
1

tZ

0

d�
ZZ

D

�
@4u(� 1; � 2; � )

@�1@�22@�

� 2

d� 1d� 2 +

+ 4h4
1

tZ

0

d�
ZZ

D

�
@4u(� 1; � 2; � )

@�21@�22

� 2

d� 1d� 2

!

+ (20)

+
2h2

1

3

tZ

0

d�
ZZ

D h

�
@3u(� 1; � 2; � )

@�22@�1

� 2

d� 1d� 2;

where Dh = f x = ( x1; x2) : 0 6 x1 6 h1; 0 6 x2 6 1g .

Finally we examine the summand k� 3(�; t)k2
in (14) . For the no de x 2 ! we

get

� 3(x; t ) =
d(T u)

dt
(x; t ) � u�t (x; t ) =

1
�h 2

1h2
2

x1+ h1Z

x1 � h1

�
h1 � j x1 � � 1j

�
d� 1�

�

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

�
d� 2

tZ

t � �

d�

tZ

�

@2u(� 1; � 2; � 1)
@�21

d� 1 +

+
1

�h 3
1h2

2

x1+ h1Z

x1 � h1

�
h1 � j x1 � � 1j

�
d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

�
d� 2

tZ

t � �

d�

� 1Z

x1

d� 3 �

�

x1+ h 1
2Z

x1 � h 1
2

d� 5

� 3Z

� 5

@3u(� 8; � 2; � )
@�28@�

d� 8 +

+
1

�h 3
1h3

2

x1+ h1Z

x1 � h1

�
h1 � j x1 � � 1j

�
d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

�
d� 2

tZ

t � �

d�

� 2Z

x2

d� 4�

�

x1+ h 1
2Z

x1 � h 1
2

d� 6

x2+ h 2
2Z

x2 � h 2
2

d� 7

x1Z

x6

@3u(� 9; � 4; � )
@�9@�4@�

d� 9 +

+
1

�h 3
1h3

2

x1+ h1Z

x1 � h1

�
h1 � j x1 � � 1j

�
d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

�
d� 2

tZ

t � �

d�

� 2Z

x2

d� 4�
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�

x1+ h 1
2Z

x1 � h 1
2

d� 6

x2+ h 2
2Z

x2 � h 2
2

d� 7

� 4Z

� 7

@3u(� 6; � 10; � )
@�210@�

d� 10 :

Making use of the inequality (a + b+ c + d)2 6 4(a2 + b2 + c2 + d2) we draw

from here the estimate

�
� � 3(x; t )

�
�2 6 4

 
16�

9h1h2

x1+ h1Z

x1 � h1

d� 1

x2+ h2Z
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d� 2

tZ

t � �

�
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+
64h3

1
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x2+ h2Z
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d� 2

tZ
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d�
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x1 � h1

�
@3u(� 8; � 2; � )

@�28@�

� 2

d� 8 +

+
32h1h2

�

tZ

t � �

d�

x2+ h2Z

x2 � h2

d� 4

x1+ h 1
2Z

x1 � h 1
2

�
@3u(� 9; � 4; � )

@�9@�4@�

� 2

d� 9 + (21)

+
128h3

2

�h 1

tZ

t � �

d�

x1+ h 1
2Z

x1 � h 1
2

d� 6

x2+ h2Z

x2 � h2

�
@3u(� 6; � 10; � )

@�210@�

� 2

d� 10

!

; x 2 ! :

Now we consider the term � 3(x; t ) for x 2 
 � 1 . Omitting some details we can

present it in the form

� 3(x; t ) =
d(T u)

dt
(x; t ) � u�t (x; t ) =

=
2

h2
1h2

2

h1Z

0

(h1 � � 1)d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

� @u(� 1; � 2; t)
@t

d� 2�

�
u(0; x2; t) � u(0; x2; t � � )

�
=

=
2

h2
1h2

2

h1Z

0

(h1 � � 1)d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

�
d� 2

tZ

t � �

h@u(� 1; � 2; t)
@t

�

�
@u(0; x2; � )

@�

i
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=
2

h2
1h2

2

h1Z

0

(h1 � � 1)d� 1

x2+ h2Z

x2 � h2

�
h2 � j x2 � � 2j

�
d� 2

tZ

t � �

d�
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�

@2u(� 1; � 2; � 1)
@�21

+
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+
2

h2
1h2

2

h1Z
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(h1 � � 1)d� 1
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�
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�
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tZ
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0
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2
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�
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�

tZ
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x2

d� 4

h1Z

0

d� 5

x2+ h 2
2Z
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2

d� 6

0Z
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2

h1Z

0
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x2+ h2Z
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d� �

�
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h1Z

0

d� 5

x2+ h 2
2Z

x2 � h 2
2

d� 6

� 4Z

� 6

@3u(� 5; � 8; � )
@�28@�

d� 8 ;

which leads to the inequality

�
� � 3(x; t )

�
�2 6 4
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t � �

�
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+
2h1
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x2+ h2Z
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0

�
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d� 3 + (22)

+
2h1h2

�
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h1Z

0
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2h3

2

�h 1
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h1Z
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x2 � h2

�
@3u(� 5; � 8; � )

@�28@�

� 2

d� 8

!

; x 2 
 � 1 :

Combining (21) and (22) we conclude that
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D
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+ 1024h4
1
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D
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@3u(� 1; � 2; � )

@�21@�

� 2

d� 1d� 2 +



THE BOUNDARY EFFECT IN THE ERROR ESTIMATE ... 105

+ 256h2
1h2

2
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0
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D
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@3u(� 1; � 2; � )

@�1@�2@�

� 2

d� 1d� 2 +

+ 1024h4
2

tZ

0

d�
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D

�
@3u(� 1; � 2; � )

@�22@�

� 2

d� 1d� 2+

+ 8h2
1

tZ

0

d�
ZZ

D h

�
@2u(� 1; � 2; � )

@�1@�

� 2

d� 1d� 2 ;

where Dh = f x = ( x1; x2) : 0 6 x1 6 h1; 0 6 x2 � 1g.

Assembling (14) , (17) , (20) , (23) we arrive at the �nal conclusion.

Theorem 1. Let the solution u(x1; x2; t) of problem (1) satisfy the conditions

@4u
@x21@x2@t

;
@4u

@x21@x22
;

@4u
@x1@x22@t

;

@3u
@x1x2

2
;

@3u
x2

1@t
;

@3u
x2

2@t
;

@3u
@x1@x2@t

;
@2u
@t2

;
@2u

@x1@t
2 L 2(QT ):

Then for the accuracy of scheme (2) the weighted a priory estimate holds true

 
tX

� = �

�
jz(x; � )j2

� 2(x)

! 1=2

�

M
�
� 2h2

2 + h4
2 + � 2h2

1 + h4
1 + � 2 + h2

1h2
2 + h2

1

� 1=2
;

(24)

where the constant M is expressed through the norms of the above listed deriva-

tives of the solution u(x; t ) .

Remark 4. One can apply the results from [4] (see p.161 therein) to the inte-

grals

h2
1

tZ

0

d�
ZZ

D h

�
@3u(� 1; � 2; � )

@�22@�1

� 2

d� 1d� 2 ; h2
1

tZ

0

d�
ZZ

D h

�
@2u(� 1; � 2; � )

@�1@�

� 2

d� 1d� 2

in (20) and (23) respectively. If the assumptions of theorem 1 are satis�ed and,

in addition,

@4u
@x1@x32

2 L 2(QT ) , then instead of (24) the fol lowing estimate can

be proved

 
tX

� = �

�
jz(x; � )j2

� 2(x)

! 1=2

6 M
�
� 2h2

2 + h4
2 + � 2h2

1 + h4
1 + � 2 + h2

1h2
2 + h3

1

� 1=2
:
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A POSTERIORI ERROR ESTIMATIONS

FOR FINITE ELEMENT APPROXIMATIONS

ON QUADRILATERAL MESHES

Heorgiy Shynkarenko, Olexandr Vovk

Ðåçþìå. Îñíîâíîþ ìåòîþ öi¹¨ ïðàöi ¹ ïîáóäîâà ïðîñòèõ àïîñòåðiîðíèõ

îöiíþâà÷iâ ïîõèáîê ÷àñòèíàìè áiëiíiéíèõ àïðîêñèìàöié ìåòîäó ñêií÷åí-

íèõ åëåìåíòiâ, çäàòíèõ íàäiéíî òà åôåêòèâíî îá÷èñëþâàòè äâîñòîðîííi

ãðàíèöi ïîõèáîê íàáëèæåííÿ ðîçâ'ÿçêiâ åëiïòè÷íèõ êðàéîâèõ çàäà÷. Çà

äîïóùåííÿ, ùî ñõåìà ìåòîäó ñêií÷åííèõ åëåìåíòiâ ñïðîìîæíà îá÷èñëèòè

òî÷íi çíà÷åííÿ ðîçâ'ÿçêó ó âóçëàõ ñiòêè, çàïðîïîíîâàíî ïîåëåìåíòíî âèç-

íà÷åíi îöiíþâà÷i ïîõèáîê Äiðiõëå òà Íåéìàíà, ÿêi ïîñëiäîâíî îá÷èñëþþòü-

ñÿ ÿê íàáëèæåíi ðîçâ'ÿçêè çàäà÷i ïðî ëèøîê àïðîêñèìàöi¨ ìåòîäó ñêií÷åí-

íèõ åëåìåíòiâ. Ïåðøèé ç íèõ çíàõîäèòü íèæíþ ãðàíèöþ ïîõèáêè àïðîêñè-

ìàöi¨ ìåòîäó ñêií÷åííèõ åëåìåíòiâ, à äðóãèé � âåðõíþ ãðàíèöþ. Ìè

äîïîâíþ¹ìî õàðàêòåðèçàöiþ öèõ îöiíþâà÷iâ äåòàëüíèìè ðåçóëüòàòàìè

÷èñëîâèõ åêñïåðèìåíòiâ ç ñëàáêî íåëiíiéíîþ òà ñèíãóëÿðíî çáóðåíèìè

çàäà÷àìè ç ïðèìåæåâèìè i âíóòðiøíiìè øàðàìè.

Abstract. The main goal of this pap er is to construct the simple a p oste-

riori error estimators for piecewise bilinear approximations of �nite element

metho d which are able to reliably and e�ciently calculate the two-sided con-

�dence interval for the approximation error of the elliptic b oundary value

problems. Under assumption that �nite element metho d scheme can calcu-

late the exact values of a solution at mesh no des, we prop ose the element-wise

error estimators of Dirihlet and Neuman, which are calculated in succession as

the approximated solutions of the residual problem of �nite element metho d

approximations. The �rst of them evaluate the lower b ound of the �nite

element approximation error and second evaluate the upp er b ound. We sup-

plement the characteristics of this estimators by the detailed results of the

numerical exp eriments with semi-linear and singularly p erturb ed problems

with b oundary and internal layers.

1. Introduction

A p osteriori error estimations of �nite element metho d (FEM) approxi-

mations is the imp ortant comp onent of a mo dern science calculations. The

Babu �ska's and Rheinb oldt's original conception of a p osteriori error estimation

(1978) in the last decades generates a large family of various a p osteriori error

estimators (AEEs), which are able to qualitatively describ e the errors of ob-

tained approximations by FEM and create the foundation for lo cal triangulation

re�nement and\or lo cal re�nement of approximations rates such that to �nd

Key words . Semi-linear di�usion-advection-reaction equation, variational problem, �nite

element metho d, Newton's metho d, generalized minimum residual metho d, element-wise a

p osteriori error estimator, e�ciency index, convergence rate.
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approximative solutions with guaranteed accuracy and minimal computational

cost, see [2], [3 ], and also [4].

Following the previous work [8 ] we build element-wise Dirihlet "Dir
h and Neu-

man "Neu
h a p osteriori error estimators for piece-wise bilinear �nite element

approximations on quadrilateral meshes. These estimators are able to quali-

tatively calculate the lower and upp er b ounds of exact error in terms of the

following inequality

"Dir
h �k u � uh k� "Neu

h : (1)

This pap er is structured in the following manner. In Section 2 we formulate

the variational problem for elliptic di�usion-advection-reaction equation with

semi-linearity and describ e its features. The numerical scheme with quadrilat-

eral �nite elements is presented in Section 3. The next (Section 4) is devoted

to the problem of the error estimation of FEM approximations. In Sections

5 and 6 we present element-wise solutions of this problem as the p olynomial

Dirihlet and Neuman indicator functions. The rest of the pap er is devoted to

the analysis of numerical exp eriments with the b oundary value problems which

require some e�orts for solving b ecause they are semi-linear or singularly p er-

turb ed. A comparison of characteristics of the estimators and they analogues,

which are calculated for exact values of errors con�rms the p ossibility of the

calculation of two-sided error estimates (1) and exp ected convergence rates of

FEM approximations.

2. Problem statement

To construct the cheap a p osteriori error estimators for two-sided error esti-

mates of �nite element approximations we consider a singular p erturb ed and\or

semi-linear b oundary value problems with second order elliptic equation

8
><

>:

�r :(� r u) + �: r u + �u = f [u] in 


u = 0 on � D ;

� (� r u):� = �q on � N = @
 n� D :
(2)

This semi-linear b oundary value problem has the following variational formu-

lation (
�nd u 2 V = f v 2 H 1(
) : v = 0 on � D g such that

a(u; v) = hN [u]; vi 8 v 2 V;
(3)

where 8
>><

>>:

a(u; v) : =
Z



[(� r u):r v + v(�: r u + �u )]dx;

hN [w]; vi : =
Z



f [w]vdx �

Z

� N

�qvd
:

Below we assume that the domain 
 � R2
is a b ounded p olygon and other prob-

lem data are su�ciently regular functions to guarantee existence and unique-

ness of the solution u = u(x; y) that satis�es (3). We note here that the

problem (3) b ecomes singularly p erturb ed in the case k� kL 1 (
) ! + 1 or/and

k� kL 1 (
) ! + 1 , for the details we refer to [7].
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3. Finite element approximations

In order to obtain approximations of the solution u of the variational problem

(3) we use the family of quasiuniform meshes fT hg, which are comp osed of

quadrilateral elements Q , Th = f Qg, hQ = diam Q , h = max hQ . Now for each

m 2 N we can construct the �nite element space

V 1
h :=

n
v 2 V \ C(
) : v =

X

i;j =0 ;1
aij x i yj 8aij 2 R;

8(x; y) 2 Q; 8Q 2 Th

o

with usual basis functions

' 1; :::; ' M 2 V 1
h ; supp ' i := 
 i = f[ Q : A i 2 �Qg; ' j (A i ) = � ij ; (4)

where M is a numb er of no des A i = ( x i ; yi ) of the mesh Th , which do es not lie

on a b oundary patch � D .

Then, using Galerkin discretization pro cedure, we reduce (3) to the following

problem

(
�nd uh 2 V 1

h such that

a(uh ; v) = hN [uh ]; vi 8 v 2 V 1
h

(5)

or in the algebraic form:

8
>>>>>><

>>>>>>:

�nd uh =
MX

i =1

qi ' i such that

the coe�cients f qi gM
i =1 2 RM

satisfy

X M

j =1
a(' j ; ' i )qj = hN [uh ]; ' i i ; i = 1 ; :::; M:

(6)

In order to unify computing pro cess of the co e�cients qi 2 R , i = 1 ; :::; M , we

use the so called 'master element' Q0 = f (�; � ) 2 R2 : j� j; j� j � 1g with the

mapping � : Q0 ! Q as follows

8
>>><

>>>:

x(�; � ) =
X

i;j = � 1

x 1
2 (5+2 j � ij )(1 + i� )(1 + j� );

y(�; � ) =
X

i;j = � 1

y 1
2 (5+2 j � ij )(1 + i� )(1 + j� );

where Am = ( xm ; ym ) , m = 1; :::; 4 are the vertices of the quadrilateral Q. The

integrals from (6) that de�ned in the variational problem (3) are calculated

numerically by using Gauss quadratures on master element Q0 .

To solve the problem (6) we rewrite it in the following matrix form:

�nd vector q 2 RM
such that Sq = F [q]; (7)
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where the matrix S = f Skm gM
k;m =1 and the vector F [q] = f Fk [q]gM

k=1 are ob-

tained in the following rules

8
>>>><

>>>>:

Skm :=
Z


 mk

[(� r � m ):r � k + ( �: r � m + �� m )� k ]dx; 
 mk := 
 m \ 
 k ;

Fk [w] :=
Z


 k

f

"
NX

i =1

wi � i

#

� kdx +
Z

� q \ @
 k

g� kd
; k; m = 1 ; :::; M:

The last one can b e solved by Newton's metho d which is written as the following

iterative pro cess with the initial guess q0 2 RM
and the relaxation parameter

� 8
>>>><

>>>>:

given vector qn 2 RM ; � = const > 0;

�nd vector r 2 RM
such that

f S � �F q[qn ]gr = F [qn ] � Sqn ;

qn+1 = qn + � r; n = 0 ; 1; :::;

(8)

where Fq[q] :=
n

@Fk [q]
@qm

oM

k;m =1
is the Jacobi matrix with comp onents

@Fk [q]
@qm

=
Z


 mk

@f
@u

"
MX

i =1

qi � i

#

� m � kdx; k; m = 1 ; :::; M; q 2 RM :

At each iteration of the Newton's metho d we solve the system of linearized

equations (8) by the iterative solver, namely the generalized minimal residual

metho d (GMRES) [14 ]. A preconditioner for this linear system is constructed

using incomplete LU factorization.

4. Residual element-based estimator

We de�ne the error eh = u � uh , which is the solution of the following

nonlinear error problem [1 , 4, 5]:

�
�nd eh 2 Eh � E; V = E � Vh such that

a(eh ; v) = hN [uh + eh ]; vi � a(uh ; v) 8v 2 Eh :

Applying Taylor's formula f [eh + uh ] = f [uh] + f u[uh ]eh + O(e2
h) , we obtain

the linear problem

�
�nd error estimator eh 2 Eh such that

b(uh ; eh ; v) = h� [uh ]; vi 8 v 2 Eh ;
(9)

where 8
<

:

b(w; z; v) : = a(z; v) �
Z



f u[w]zvdx;

h� [w]; vi : = hN [w]; vi � a(w; v) 8w; z; v 2 V:

In order to obtain the two-sided con�dence interval for the approximation

error we intro duce b oth Dirihlet � Dir
h and Neuman � Neu

h element-based residual

error indicator functions that get lower and upp er error b ounds corresp ondingly.

They are the approximate solutions of the problem (9) for two di�erent �nite
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dimensional subspaces E Dir
h � Eh and E Dir

h � Eh and are obtained as the

solutions of the following lo cal problems:

(
�nd � Dir

Q 2 E Dir
h (Q) := f v 2 H 1(Q) : v = 0 on @�Qg such that

b(uh ; � Dir
Q ; v) = h� [uh ]; vi 8 v 2 E Dir

h (Q); 8Q 2 Th ;
(10)

and

(
�nd � Neu

Q 2 E Neu
h (Q) := f v 2 H 1(Q) : v(A i ) = 0 8A i 2 �Qg such that

b(uh ; � Neu
Q ; v) = h� [uh ]; vi 8 v 2 E Neu

h (Q); 8Q 2 Th;
(11)

corisp ondingly. The solutions of the problems (10) and (11) are unique and exist

on each �nite element Q 2 Th . Also, we can de�ne the single element indicator

� Q := k� Qk1;Q 8Q 2 Th and the global estimator k� hk2
1;
 :=

P
Q2T h

� 2
Q 8Th

for b oth of them. This a p osteriori error estimators come from the original

concept of a p osteriori error estimation, which was prop osed in [2 , 3], and is

similar to the residual estimators based on a lo cal Dirichlet b oundary value

problem, see [4]. The novelty is in the b ehaviour of interp olation on the edges

of elements: the constructed Dirihlet error estimator � Dir
Q (10) vanishes at all

b oundary of �nite element Q and Neuman estimator � Neu
Q (11) vanishes only

at the no des of Q 2 Th . The similar idea was prop osed in [8, 9 ] for triangular

meshes.

5. Computable estimator for piecewise bilinear approximations

Now we consider the �nite element approximation uh 2 V 1
h , which is written

in lo cal co ordinates (�; � ) of the quadrilateral Q 2 Th as follows

uh jQ = uQ(�; � ) =
X

i;j = � 1
uh(A 1

2 (5+2 j � ij ))(1 + i� )(1 + j� ):

To compute the solutions of of the problems (10) and (11), in a general case

we de�ne the indicator function �� h on each �nite element Q in the lo cal manner

�� h jQ = �� Q(�; � ) := � Q � Q(�; � ) 2 Eh(Q) 8(�; � ) 2 Q0; � Q 2 R; (12)

where � Q(�; � ) is the quadratic function on master element Q0 . Then, from

lo cal problem (10) or (11) we can obtain the co e�cients � Q on each �nite

element of the following general kind

� Q =
h� [uh ]; � Q i

b(uh ; � Q ; � Q )
8Q 2 Th;

and de�ne the element error indicator �� Q and the global error estimation k�� hk1;


�� Q = k�� Qk1;Q = j� Q j k� Qk1;Q 8Q 2 Th ; k�� hk2
1;
 =

X

Q2T h
�� 2

Q 8Th:

From the general view of error estimator (12) we construct the following

Dirihlet estimator

(
�� Dir
Q (�; � ) = � Dir

Q � Dir
Q (�; � ) = � Dir

Q (1 � � 2)(1 � � 2) 2 E Dir
h

8(�; � ) 2 Q0; � : Q0 ! Q; � Dir
Q 2 R; 8Q 2 Th;

(13)
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and Neuman estimator

(
�� Neu
Q (�; � ) = � Neu

Q � Neu
Q (�; � ) = � Neu

Q [1 � 1
2(� 2 + � 2)] 2 E Neu

h

8(�; � ) 2 Q0; � : Q0 ! Q; � Neu
Q 2 R; 8Q 2 Th ;

(14)

see also Fig.1.

Fig. 1. Indicator functions: � Dir
Q (�; � ) = (1 � � 2)(1 � � 2) (left),

� Neu
Q (�; � ) = 1 � 0:5(� 2 + � 2) (right)

6. Convergence analysis of numerical results

To investigate abilities and features of the constructed Dirihlet � Dir
h (13)

and Neuman � Neu
h (14) AEEs, we solve the mo del problems with known exact

solutions. We present results of the numerical exp eriments for bilinear �nite

elements approximations on uniform quadrilateral meshes.

Example 1. Problem with Helmholtz equation

(
� � u � 104u = f in 
 = (0 ; 1)2

,

u = 0 on @
 ;

that has the exact solution u(x) = sin(3 �x ) sin(3�y ) .

At �rst we solve this problem using bilinear approximation on 10� 10 quadri-

lateral mesh to illustrate the exact solution, it's approximation, error magnitude

and distribution, see Fig. 2.

Fig. 2. Plot of the exact solution u (left), it's approximation uh
(middle) and the error ju � uh j (right) on 10� 10 quadrilateral

mesh for Example 1
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Fig. 2 shows that even coarse 10 � 10 quadrilateral mesh gives the approxi-

mation with a go o d precision. But what ab out a p osteriori estimation of this

solving precision? To explore the bilinear approximations error and it's esti-

mation more precisely, hereinafter we construct the convergence tables which

include numerical results for uniform meshes with the variable mesh size h
by rows. The columns of this tables corresp ond to the following character-

istics: k denotes the re�nement step of the solution pro cess with estimation,

Nod Th is the numb er of no des in the mesh, Card Th is the numb er of �nite

elements in the mesh, " := ku � uhk1;
 kuk� 1
1;
 100% is the exact relative error,

"Dir
h := k� Dir

h k1;
 kuhk� 1
1;
 100% is the relative error estimate by Dirihlet AEE,

"Neu
h := k� Neu

h k1;
 kuhk� 1
1;
 100% is the relative error estimate by Neuman AEE,

� Dir := k� Dir
h k1;
 ku � uhk� 1

1;
 is the e�ciency index of the Dirihlet error estima-

tor, � Neu := k� Neu
h k1;
 ku � uhk� 1

1;
 is the e�ciency index of the Neuman error

estimator,

pDir := 2
ln k� Dir

h;k k1;
 � ln k� Dir
h;k +1 k1;


ln M k+1 � ln M k
; pNeu := 2

ln k� Neu
h;k k1;
 � ln k� Neu

h;k +1 k1;


ln M k+1 � ln M k

denote the convergence rate of the Dirihlet and Neuman error estimators norms

corresp ondingly.

Tabl. 1. Convergence of bilinear approximations, it's errors

and a p osteriori error estimators (13), (14) for Example 1 on

uniform quadrilateral meshes

k Nod Th Card Th "Dir
h " "Neu

h � Dir � Neu pDir pNeu

1 1 681 1 600 8.025 6.796 66.045 1.19 1.73 - -

2 6 561 6 400 3.268 3.393 9.336 0.96 2.77 1.3 3.2

3 25 921 25 600 1.568 1.696 3.638 0.93 2.16 1.1 1.4

4 103 041 102 400 0.776 0.848 1.725 0.92 2.04 1.0 1.1

5 410 881 409 600 0.387 0.424 0.851 0.91 2.01 1.0 1.0

6 1 640 961 1 638 400 0.194 0.212 0.424 0.91 2.00 1.0 1.0

Table 1 shows that the e�ciency index � Dir
is less then 1.0 and � Neu

is

greater then 1.0. It means that Dirihlet (13) and Neuman (14) estimators

provide the lower and upp er b ounds of exact error corresp ondingly. The same

result can b e observed for the relative errors " , "Dir
h and "Neu

h . Simultaneously,

the e�ciency indices are in a close neighb ourho o d of 1.0 and, consequently, are

close to each other. So the constructed a p osteriori error estimators provide a

narrow interval that contain an exact error. The convergence rates pDir
and

pNeu
are equal to the exp ected theoretical rate 1.0. Note that, hereinafter,

all conclusions from the convergence tables are true for su�cient �ne meshes

and, consequently, small approximation errors. In other words, they are true

starting from certain table row.



114 HEORGIY SHYNKARENKO, OLEXANDR VOVK

Example 2. Problem with a b oundary layer

(
� 10� 2� u + f 2; 3g:r u = f in 
 = (0 ; 1)2

,

u = 0 on @
 ;

with the solution u(x; y) = xy2 � y2g(2; x) + g(3; y)[g(2; x) � x], g(
; t ) :=
exp(102
 (t � 1)) .

This problem is singularly p erturb ed with Peclet numb er P e = 361 . That is

why we solve it on more �ne mesh with 40 � 40 quadrilaterals.

Fig. 3. Plot of the exact solution u (left), it's approximation uh
(middle) and the error ju � uh j (right) on 40� 40 quadrilateral

mesh for Example 2

Fig. 3 shows that the largest errors are concentrated in the b oundary layer

and a global error still large for such mesh density.

Now we create the following convergence table by the similar way as the

previous

Tabl. 2. Convergence of bilinear approximations, it's errors

and a p osteriori error estimators (13), (14) for Example 2 on

uniform quadrilateral meshes

k Nod Th Card Th "Dir
h " "Neu

h � Dir � Neu pDir pNeu

1 1 681 1 600 78.972 104.717 94.245 1.2 2.7 - -

2 6 561 6 400 54.332 76.446 81.712 0.8 1.9 1.0 1.0

3 25 921 25 600 30.804 45.964 57.855 0.7 1.5 1.0 1.0

4 103 041 102 400 15.981 24.446 33.427 0.7 1.5 1.0 1.0

5 410 881 409 600 8.068 12.432 17.461 0.7 1.4 1.0 1.0

6 1 640 961 1 638 400 4.044 6.243 8.832 0.6 1.4 1.0 1.0

Table 2 con�rms the conclusions (see. Table 1) ab out two-sided error estimates

that are obtained by Dirihlet and Neuman AEEs. We also note that this

problem is more di�cult to solve and estimate an error than previous (Example

1.).

Example 3. Problem with two internal layers

(
� � � u � (� 1; � 2):r u = 0 in 
 = (0 ; 1)2

,

u � U on @
 ;
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with the solution U = U(x; y) = G[m� 1(x)+ v� 2(y)]G[m� 2(y) � v� 1(x)] , where

� = 10 � 4
, � 1(x) = x � 0:6, � 2(y) = y � 0:3, m = cos(�= 6), v = sin( �= 6),

G(z) = 0 :5[1 � erf (z=
p

2� )] .

The solution of this problem include two internal layers. Peclet numb er for

this singularly p erturb ed problem is approximately 8062.

Then, as b efore, we solve Example 1 on 40 � 40 mesh, plot exact solution,

it's approximation, error and calculate the convergence table.

Fig. 4. Plot of the exact solution u (left), it's approximation uh
(middle) and the error ju � uh j (right) on 40� 40 quadrilateral

mesh for Example 3

Fig. 4 shows that the largest errors are concentrated in the internal layers.

And the internal layers problem is less di�cult to solve than the previous prob-

lem with b oundary layer despite the fact that Peclet numb er in the latter is by

one order of magnitude smaller.

Tabl. 3. Convergence of bilinear approximations, it's errors

and a p osteriori error estimators (13), (14) for Example 3 on

uniform quadrilateral meshes

k Nod Th Card Th "Dir
h " "Neu

h � Dir � Neu pDir pNeu

1 1 681 1 600 87.528 51.380 94.319 3.4 5.3 - -

2 6 561 6 400 29.316 22.044 51.412 1.4 2.7 2.5 2.2

3 25 921 25 600 8.565 10.136 17.955 0.8 1.8 1.8 1.7

4 103 041 102 400 4.106 5.057 8.896 0.8 1.8 1.1 1.0

5 410 881 409 600 2.055 2.529 4.489 0.8 1.8 1.0 1.0

6 1 640 961 1 638 400 1.028 1.264 2.251 0.8 1.8 1.0 1.0

Table 3 con�rms the two-sided error estimates for FEM approximations of

the internal layers problem in Example 3.

Example 4. Semi-linear problem [11 ]

8
><

>:

� � u = au3 + bu2
in 
 = (0 ; 1)2;

u � U on sides x = 1 ; y = 1;

r u:� � 0 on sides x = 0 ; y = 0 ;

with the solution U = (sin r 2 + 2) � 1
and the co e�cients r 2 = l2(x2 + y2) ,

a = � 8l2r 2 cos2 r 2
, b = 4 l2(cosr 2 � r 2 sin r 2) , l = 3 :0.
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Finally, we demonstrate that the devised AEEs and FEM schemes are suit-

able to solve the semi-linear problems, see Fig. 5 and Table 4.

Fig. 5. Plot of the exact solution u (left), it's approximation uh
(middle) and the error ju � uh j (right) on 40� 40 quadrilateral

mesh for Example 4

Tabl. 4. Convergence of bilinear approximations, it's errors

and a p osteriori error estimators (13), (14) for Example 4 on

uniform quadrilateral meshes

k Nod Th Card Th "Dir
h " "Neu

h � Dir � Neu pDir pNeu

1 1 681 1 600 10.857 18.234 23.704 0.5 1.2 - -

2 6 561 6 400 5.577 7.869 12.210 0.7 1.5 0.9 0.9

3 25 921 25 600 2.812 3.590 6.159 0.8 1.7 1.0 1.0

4 103 041 102 400 1.409 1.739 3.087 0.8 1.8 1.0 1.0

5 410 881 409 600 0.705 0.862 1.544 0.8 1.8 1.0 1.0

6 1 640 961 1 638 400 0.353 0.430 0.772 0.8 1.8 1.0 1.0

7. Conlusions

In this pap er we have constructed the Dirihlet and Neuman estimators for

two-sided error estimates of FEM approximations. This estimators are suit-

able for solving of the singularly p erturb ed and semi-linear di�usion-advection-

reaction problems with a priori set accuracy. We use the classic Galerkin

metho d with the piecewise linear bases of approximation spaces for uniform

quadrilateral meshes. The calculation of b oth error indicators requires only

the interior residual in the quadrilateral. The e�ciency and reliability of the

prop osed Dirihlet and Neuman error estimators are shown by the numerical re-

sults for the b oundary value problem with semi-linearity, Helmholtz equation,

a b oundary and interior layers.

Finally, the suggested Dirihlet and Neuman error estimators can b e nat-

urally extended to 3D case. We assume that the domain 
 2 R3
is parti-

tioned into �nite hexahedral elements f H g. Then, for the 'master element'



A POSTERIORI ERROR ESTIMATIONS FOR FINITE ELEMENT ... 117

H0 = f (�; �; 
 ) 2 R3 : j� j; j� j; j
 j � 1g we obtain the lo cal Dirihlet

8
><

>:

eDir
H (�; �; 
 ) =

h� [uh ]; � Dir
H (�; �; 
 )i

b(uh ; � Dir
H (�; �; 
 ); � Dir

H (�; �; 
 ))
� Dir

H (�; �; 
 );

� Dir
H (�; �; 
 ) = 1 � 1

2(� 2 + � 2 + 
 2) 8(�; �; 
 ) 2 H0;

and Neuman

8
><

>:

eNeu
H (�; �; 
 ) =

h� [uh ]; � Neu
H (�; �; 
 )i

b(uh ; � Neu
H (�; �; 
 ); � Neu

H (�; �; 
 ))
� Neu

H (�; �; 
 );

� Neu
H (�; �; 
 ) = (1 � � 2)(1 � � 2)(1 � 
 2) 8(�; �; 
 ) 2 H0;

estimators, where H is the arbitrary �nite hexahedral element from the parti-

tion f H g which is obtained from the master element H0 using an appropriate

mapping 	 : H0 ! H .
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EXPONENTIALLY CONVERGENT METHOD FOR INTEGRAL

NONLOCAL PROBLEM FOR THE ELLIPTIC EQUATION

IN BANACH SPACE

Vitaliy Vasylyk

Ðåçþìå. Ðîçãëÿäà¹òüñÿ íåëîêàëüíà çàäà÷à ç iíòåãðàëüíîþ óìîâîþ äëÿ

åëiïòè÷íîãî äèôåðåíöiàëüíîãî ðiâíÿííÿ ç íåîáìåæåíèì îïåðàòîðíèì êîå-

ôiöi¹íòîì â áàíàõîâîìó ïðîñòîði. Ïîáóäîâàíî òà îáãðóíòîâàíî åêñïîíåí-

öiéíî çáiæíèé ÷èñåëüíèé ìåòîä äëÿ íàáëèæåíîãî ðîçâ'ÿçêó â ïðèïóùåííi,

ùî îïåðàòîðíèé êîåôiöi¹íò A � ñåêòîðiàëüíèé òà âèêîíàíi óìîâè iñíóâàííÿ

òà ¹äèíîñòi ðîçâ'ÿçêó. Öåé àëãîðèòì áàçó¹òüñÿ íà çîáðàæåííi îïåðàòîðíèõ

ôóíêöié çà äîïîìîãîþ iíòåãðàëà Äàíôîðäà-Êîøi âçäîâæ ãiïåðáîëè, ùî

îõîïëþ¹ ñïåêòð A òà âèêîðèñòàííi âiäïîâiäíî¨ êâàäðàòóðíî¨ ôîðìóëè, ùî

ìiñòèòü íåâåëèêó êiëüêiñòü ðåçîëüâåíò. Åôåêòèâíiñòü çàïðîïîíîâàíîãî

àëãîðèòìó äåìîíñòðó¹òüñÿ íà ÷èñåëüíîìó ïðèêëàäi.

Abstract. Problem for the elliptic di�erential equation with an unb ounded

op erator co e�cient in Banach space and integral nonlo cal condition is consid-

ered. An exp onentially convergent algorithm is prop osed and justi�ed for the

numerical solution of this problem under an assumption that op erator co e�-

cient A is strongly p ositive and some existence and uniqueness conditions are

ful�lled. This algorithm is based on the representation of op erator functions

by a Dunford-Cauchy integral along a hyp erb ola, enveloping the sp ectrum of

A , and on the prop er quadratures involving small numb er of resolvents. The

e�ciency of the prop osed algorithm is demonstrated on numerical example.

1. Introduction

Nonlo cal b oundary value problems naturally arise in mathematical mo delling

of many problems in engineering, physics, chemistry. These problems are inter-

esting also from the p oint of view of mathematics as generalization of classical

b oundary value problems. Despite of a big amount of articles devoted to the

nonlo cal problems (see e.g. [1 , 2, 7, 11 ]) and evidentially imp ortance of such

problems, the construction of highly precision and fast algorithms for their

solution is still actual.

In this pap er we consider the following nonlo cal problem with integral con-

dition:

d2u
dx2 � Au = 0 ; x 2 [0; X ]

u(0) = 0 ;
Z 1

0
w(s)u(s)ds + u(1) = u1;

(1)

Key words . Nonlo cal problem, di�erential equation with an op erator co e�cient in Banach

space, exp onentially convergent algorithms, nonlo cal integral condition, elliptic equation.
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where w(s) � 0 is a given function, u1 2 X: The op erator A with the domain

D(A) in a Banach space X is assumed to b e densely de�ned strongly p ositive

(sectorial) op erator, i.e. its sp ectrum �( A) lies in a sector of the right half-plane

with the vertex at the origin. The resolvent of A decays inversely prop ortional

to jzj at the in�nity (see estimate (6) b elow).

Inhomogeneous problem related to (1) can b e reduced to the homogeneous

one by change of function in the following way. If we have

d2u
dx2 � Au = f (x); x 2 [0; X ]

u(0) = u0;
Z 1

0
w(s)u(s)ds + u(1) = u1;

(2)

with f (x) b eing vector-valued function in the Banach space X then by putting

u(x) = v(x) + v1(x) , where

v1(x) = sinh(
p

A(1 � x)) sinh � 1(
p

A)u0 +

1Z

0

G(x; s; A)f (s)ds;

G(x; s; A) is a Green's function

G(x; s; A) = [
p

A sinh
p

A]� 1

(
sinh(x

p
A) sinh((1 � s)

p
A) x � s;

sinh(s
p

A) sinh((1 � x)
p

A) x � s
:

we obtain the following problem for u(x)

d2v
dx2 � Av = 0 ; x 2 (0; 1)

v(0) = 0 ;
Z 1

0
w(s)v(s)ds + v(1) = u1 � � ;

with

� =

1Z

0

w(s)v1(s)ds:

Note that an exp onentially convergent numerical approximation for v1(x)
was develop ed in [6], [5 ]. So, one can use this approximation to obtain v1(x)
and then to �nd � .

It should b e remark that various exp onentially convergent metho ds were de-

velop ed recently for problems with unb ounded co e�cients in Banach space [9],

[6], [10 ], [12 ], [14], [17 ], [18]. These problems can b e considered as metamo dels

of classical problems for partially di�erential equations such as parab olic elliptic

and hyp erb olic.

The aim of this pap er is to construct an exp onentially convergent approx-

imation of a solution to problem (1) . The pap er is organized as follows. In

Section 2 we discuss the existence and uniqueness of the solution as well as
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its representation through input data. A numerical algorithm for problem (1)

is prop osed and justi�ed in section 3. The main result of this section is the-

orem 1 ab out the exp onential convergence rate of the prop osed discretization.

The next section 4 is devoted to numerical examples which con�rms theoretical

results from the previous section.

2. Existence and representation of the solution

The solution of (1) can b e formally represented as follows (see [5 ], [6]):

u(x) = E(x;
p

A)u(1) = E(x;
p

A)
�
u1 �

Z 1

0
w(s)u(s)ds

�
: (3)

where

E(x;
p

A) = sinh(
p

Ax ) sinh� 1(
p

A):

From the integral condition in (1) and formula (3) we obtain

Z 1

0
w(s)u(s)ds =

Z 1

0
w(s)E(s;

p
A)ds

�
u1 �

Z 1

0
w(s)u(s)ds

�
;

or

Z 1

0
w(s)u(s)ds =

�
I +

Z 1

0
w(s)E(s;

p
A)ds

� � 1 Z 1

0
w(s)E(s;

p
A)dsu1;

in the case when

h
I +

R1
0 w(s)E(s;

p
A)ds

i � 1
exists (su�cient conditions for

the existence of this op erator will b e discussed later). Here I is the identity

op erator. So, we have

u(x) = E(x;
p

A)
�
I +

Z 1

0
w(s)E(s;

p
A)ds

� � 1

u1 (4)

Let the op erator A from (1) b e a densely de�ned strongly p ositive (sectorial)

op erator in a Banach space X with the domain D(A); i.e. its sp ectrum �( A)
is situated in a sector �

� =
n

z = � 0 + r ei� : r 2 [0; 1 ); � 0 > 0 j� j < ' <
�
2

o
: (5)

Additionally, the following estimate for the resolvent of A is valid

kRA (z)k =



 (zI � A)� 1




 �

M
1 + jzj

(6)

outside the sector and on its b oundary � � . The numb ers � 0; ' are called the

sp ectral characteristics of A .

We call the curve � 0 a sp ectral hyp erb ola:

� 0 = f z(� ) = � 0 cosh� � ib0 sinh� : � 2 (�1 ; 1 ); b0 = � 0 tan ' g: (7)

It has a vertex at (� 0; 0) and asymptotes that are parallel to the rays of the

sp ectral angle � .

A convenient representation of op erator functions is the one through the

Dunford-Cauchy integral (see e.g. [3 , 8]) where the integration path plays an
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imp ortant role. Using the Dunford-Cauchy integral representation and (4) the

solution to problem (1) can b e written down as

u(x) =
1

2�i

Z

� I

E(x;
p

z)

1 +
R1

0 w(s)E(s;
p

z)ds
RA (z)u1dz = (8)

=
1

2�i

Z

� I

F (x; z)RA (z)u1dz;

if F (x; z) is analytic function inside the integration hyp erb ola � I that envelop es

� 0: To obtain uniformly convergent and numerically stable algorithm we shall

mo dify this integral by changing the resolvent RA (z) to R1
A (z) that do esn't

change the value of integral when u0 2 D(A � ); � > 0 (for the details see

[4],[6 ]).

R1
A (z) = ( zI � A)� 1 �

I
z

:

Therefore, one can obtain the following representation for the solution to prob-

lem (1):

u(x) =
1

2�i

Z

� I

F (x; z)R1
A (z)u1dz: (9)

We cho ose the following hyp erb ola

� I = f z(� ) = aI cosh� � ibI sinh� : � 2 (�1 ; 1 )g; (10)

for an integration contour that envelop es the sp ectrum of A , where the values

of aI , bI are to b e de�ned later. Using this hyp erb ola, we obtain from (9)

u(x) =
1

2�i

Z 1

�1
F (x; z(� ))R1

A (� )z0(� )u1d� =
Z 1

�1
F (x; � )d�; (11)

with

z0(� ) = aI sinh� � ibI cosh�:
The next step toward a numerical algorithm is an approximation of (11) by

an e�cient quadrature formula. For this purp ose we need to estimate the width

of a strip around the real axis where the integrand in (11) admits analytical

extension (with resp ect to � ). The integration hyp erb ola � I will b e translated

into the parametric set of hyp erb olas with resp ect to � after changing � to � + i�

�( � ) = f z(�; � ) = aI cosh (� + i� ) � ibI sinh (� + i� ) : � 2 (�1 ; 1 )g

= f z(�; � ) = a(� ) cosh� � ib(� ) sinh � : � 2 (�1 ; 1 )g;

with

a(� ) = aI cos� + bI sin � =
q

a2
I + b2

I sin (� + �= 2);

b(� ) = bI cos� � aI sin � =
q

a2
I + b2

I cos (� + �= 2);

cos
�
2

=
bIq

a2
I + b2

I

; sin
�
2

=
aIq

a2
I + b2

I

:

The analyticity of the integrand in the strip

Dd1 = f (�; � ) : � 2 (�1 ; 1 ); j� j < d 1=2g;
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with some d1 could b e violated if the resolvent or the part related to the nonlo cal

condition b ecome unb ounded. To avoid this we have to cho ose d1 in a way such

that for � 2 (� d1=2; d1=2) the hyp erb ola �( � ) remains in the right half-plane

of the complex plane. For � = � d1=2 the corresp onding hyp erb ola is going

through the p oint (� 1; 0), for some 0 � � 1 < � 0 . For � = d1=2 it coincides with

the sp ectral hyp erb ola and therefore for all � 2 (� d1=2; d1=2) the set �( � ) do es

not intersect the sp ectral sector. For � = 0 we have �(0) = � I .

Such requirements for �( � ) imply the following system of equations

8
><

>:

aI cos (d1=2) + bI sin (d1=2) = � 0;
bI cos (d1=2) � aI sin (d1=2) = b0 = � 0 tan ';
aI cos (� d1=2) + bI sin (� d1=2) = � 1;

from where we obtain

d1 = arccos

 
� 1p

� 2
0 + b2

0

!

� '; (12)

with cos' = � 0p
� 2

0+ b2
0

; sin ' = b0p
� 2

0+ b2
0

,

aI =
q

� 2
0 + b2

0 cos
�

d1

2
+ '

�
= � 0

cos
�

d1
2 + '

�

cos'
;

bI =
q

� 2
0 + b2

0 sin
�

d1

2
+ '

�
= � 0

cos
�

d1
2 + '

�

cos'
:

(13)

For aI and bI de�ned as ab ove the resolvent of the op erator A is analytic in

the strip Dd1 with resp ect to w = � + i� for any t � 0. Note, that for � 1 = 0
we have d1 = �= 2 � ' as in [4].

Taking into account (13) we can similarly write the equations for a(� ); b(� )
on the whole interval � d1

2 � � � d1
2

a(� ) = aI cos� + bI sin � =
q

� 2
0 + b2

0 cos
�

d1

2
+ '

�
cos(� )

+
q

� 2
0 + b2

0 sin
�

d1

2
+ '

�
sin(� ) =

q
� 2

0 + b2
0 cos

�
d1

2
+ ' � �

�
;

b(� ) = bI cos� � aI sin � =
q

� 2
0 + b2

0 sin
�

d1

2
+ '

�
cos(� )

�
q

� 2
0 + b2

0 cos
�

d1

2
+ '

�
sin(� ) =

q
� 2

0 + b2
0 sin

�
d1

2
+ ' � �

�
;

� 1 � a(� ) � � 0; b0 � b(� ) �
q

b2
0 + � 2

0 � � 2
1;

with d1; de�ned by (12).

Now, let us establish a condition on w(s) , that guaranties the existence

of op erator related to nonlo cal condition from (4). For this to b e true the
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expression

�
1 +

Z 1

0
w(s)E(s;

p
z)ds

�

related to nonlo cal condition have to b e b ounded away from zero inside the

integration hyp erb ola � I .

�
�
�
�1 +

Z 1

0
w(s)E(s;

p
z(� ))ds

�
�
�
� � 1 �

�
�
�
�

Z 1

0
w(s)E(s;

p
z(� ))ds

�
�
�
� �

� 1 � k w(s)kC[0;1]

Z 1

0
jE (s;

p
z(� )) jds � 1 � k w(s)kC[0;1]

Z 1

0

cosh(s
p

aI )
sinh(

p
aI )

ds =

= 1 �
kw(s)kC[0;1]

p
aI

;

b ecause (see [16])

�
�
�
�
�
sinh(

p
z(� )x)

sinh(
p

z(� ))

�
�
�
�
�

�
cosh (x

p
aI )

sinh
p

aI
:

Similarly to ab ove one can obtain more rough estimate

�
�
�
�1 +

Z 1

0
w(s)E(s;

p
z(� ))ds

�
�
�
� � 1 � k w(s)kC[0;1]

Z 1

0

cosh(s
p

aI )
sinh(

p
aI )

ds �

� 1 �
kw(s)kC[0;1]

sinh(
p

aI )

Therefore, we have

�
�
�
�1 +

Z 1

0
w(s)E(s;

p
z(� ))ds

�
�
�
�

� 1

� C1;

in the case when

kw(s)kC[0;1] <
p

aI ; (14)

or, alternatively

kw(s)kC[0;1] <
p

aI ; (15)

where aI is de�ned in (13) .

So, we can summarize all of the ab ove in the following lemma.

Lemma 1. Let A be a densely de�ned strongly positive operator. If one of the

conditions (14) or (15) is valid then there exists a unique solution to problem

(1) that can be represented by (9) .

Further, let us establish conditions for the existence of the solution to (1)

in the case when the op erator A is self-adjoint p ositive de�nite. To achieve

that we have to cho ose d1 in a way that for � 2 (� d1=2; d1=2) the hyp erb ola

�( � ) remains in the right half-plane of complex plane. For � = � d1=2 the

corresp onding hyp erb ola turns into the line parallel to the imaginary axis. For
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� = d1=2 it coincides with the ray that lies on the real axis having a vertex at

� 0 . These requirements imply the following system of equations

8
><

>:

aI cos (d1=2) + bI sin (d1=2) = � 0;
bI cos (d1=2) � aI sin (d1=2) = 0 ;
aI cos (� d1=2) + bI sin (� d1=2) = 0 ;

which has the solution

aI = bI =
� 0p

2
;

d1 =
�
2

The condition (14) then b ecomes

kw(s)kC[0;1] <
r

� 0p
2

; (16)

that is su�cient condition of existence solution to (1) in the case of self-adjoint

p ositive op erator A .

3. Numerical algorithm

First of all we approximate integral

R1
0 w(s)E(s;

p
z)ds in (8) using exp o-

nentially convergent quadrature. For such approximation one can uses Gauss,

Clenshaw-Curtis or Sinc quadrature formulas for integrals over b ounded inter-

vals. For analytical integrands these quadratures provide exp onential rate of

convergence. The Gauss quadrature is of the order O(� � 2n ) and the Clenshaw-

Curtis quadrature is of the order O(� � n ) where � is the sum of the semiminor

and semima jor axis lengths of Bernstein ellipse [15 ]. The Sinc quadrature has

the rate of convergence of the order O(e�
p

n ) [13] and are well suited for inte-

grals over unb ounded intervals. Its convergence order may b e either O(e�
p

n )
or O(e� n= ln n ) dep ending on the analytical prop erties of integrands. We use

the Gauss quadrature for the integral

I =
Z 1

0
w(s)E(s;

p
z(� ))ds �

1
2

nX

j =0

! j w(� j )E (� j ;
p

z(� )) = I n ; (17)

� j =
1
2

(� j + 1) ;

where f � j g is a set of n +1 ro ots of the Legendre p olynomial Pn+1 (x) and f ! j g
is a set of weights related to the Gauss quadrature rule. Note that � j and ! j
can b e precomputed using fast algorithms (see [15 ]).

Therefore we obtain from (11)

u(x) � un (x) =
1

2�i

Z 1

�1
Fn (x; z(� ))z0(� )R1

A (� )u1d� =
Z 1

�1
Fn (x; � )d�; (18)

where

Fn (z(� ); A) =
E(x;

p
z(� ))

1 + I n
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For the error estimate we have

�
�
�
�

1
1 + I

�
1

1 + I n

�
�
�
� =

�
�
�
�

I � I n

(1 + I )(1 + I n )

�
�
�
� :

Due to (14) we have

1
j1 + Ij

� C:

1
j1 + I n j

�
1

1 �

�
�
�
�
�

1
2

nP

j =0
! j w(� j )E (� j ;

p
z(� ))

�
�
�
�
�

�

�
1

1 �
kw(s)kC [0;1]

2

nP

j =0
! j E(� j ;

p
z(� ))

�
1

1 �
kw(s)kC [0;1]

sinh
p

aI

� c = const; (19)

in the case when (15) is valid. Consequently we arrive at the estimate

�
�
�
�

1
1 + I

�
1

1 + I n

�
�
�
� � c jI � I n j :

Normalized hyp erb olic sin-function E(x; z) is analytical with resp ect to x in

all complex plane. So, smo othness of the integrand in I is governed by w(s) .

Using theorem 19.3 from [15] we can deduce that if w( 1
2(s + 1)) is analytic

in [� 1; 1] and analytically continuable to the op en Bernstein ellipse where�
�w( 1

2(s + 1)) E( 1
2 (s + 1) ; z)

�
� � M then

jI � I n j �
144M� � 2n

35(� 2 � 1)
; n � 2: (20)

If w(s) and its derivatives up to w(� � 1)
are absolutely continuous and w(� )

has

a b ounded variation V then

jI � I n j �
32V

15�� (n � 2� � 1)2� +1 ; n > 2� + 1 : (21)

Supp osing u1 2 D(A � ); 0 < � < 1 it was shown in [6 ] that






 E (x;

p
z(� ))z0(� )R1

A (� )u1






 � (1 + M )K

bI

1 � e� 2
p

aI

�
2
aI

� 1+ �

�

� e(x � 1)
p

aI cosh� � � j � jkA � u1k;

� 2 R; x 2 (0; 1];

(22)

where K is a constant that dep ends on � , M is a constant from resolvent

estimate (6) .

The part resp onsible for the nonlo cal condition in (18) is estimated by (19).

Thus, we obtain the following estimate for Fn (x; � ) :

kFn (x; � )k � C('; � )e(x � 1)
p

aI cosh� � � j � jkA � u1k;

C('; � ) = (1 + M )qK
bI

1 � e� 2
p

aI

�
2
aI

� 1+ �

; � 2 R; x 2 (0; 1]:
(23)
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Next we approximate integral (18) by the Sinc-quadrature formula [6, 13 ]:

un;N (x) = h
NX

k= � N

Fn (x; z(kh)) ; (24)

with the error

k� N (Fn ; h)k = kun (x) � un;N (x)k

�












un (x) � h
1X

k= �1

Fn (x; z(kh))












+













h

X

jkj>N

Fn (x; z(kh))














�
1

4�
e� �d=h

sinh (�d=h )
kFn kH 1 (D d )

+
C('; � )hkA � u1k

2�

1X

k= N +1

e(x � 1)
p

aI cosh (kh)� �kh :

Here H 1(Dd) is a space of all vector-valued functions F analytic in the strip

Dd intro duced similarly to [13] in [6 ]. Due to [6]

kE(x;
p

z(� ))z0(� )R1
A (� )u1kH 1 (D d1 ) � k A � u1k[C� ('; � )

+ C+ ('; � )]
Z 1

�1
e� � j � jd� = C('; � )kA � u1k

(25)

with

C('; � ) =
2
�

[C+ ('; � ) + C� ('; � )];

C� ('; � ) = ctan
�

d1

2
+ ' �

d1

2

�
0

@ 2 cos'

� 0 cos
�

d1
2 + ' � d1

2

�

1

A

�

:

d = d1 � �;
for an arbitrary small p ositive � .

It is obvious that in the case of (15) the part resp onsible for the nonlo cal

condition is b ounded in Dd . It allows us to obtain

kFn (x; �)kH 1 (D d ) � C('; �; � )kA � u1k:

So, we end up with the error for � N (Fn ; h)

k� N (Fn ; h)k �
ckA � u1k

�

(
e� �d 1

h

sinh ( �d 1
h )

+ e (x � 1)
p

aI cosh ( ( N +1) h
2 ) � � (N +1) h

)

(26)

where the constant c do es not dep end on h , N , x .

Equalizing b oth exp onentials gives us

�d 1

h
= � (N + 1) h;

h =

s
�d 1

� (N + 1)
; (27)
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this leads to the following error estimate

k� N (Fn ; h)k �
c
�

e
�

�
p

�d 1 � (N +1)
�

kA � u1k (28)

The �rst summand in the argument of e(x � 1)
p

aI cosh ( ( N +1) h
2 ) � � (N +1) h

from

(26) contributes mainly to the error in the case x < 1. Setting for such case

h = c1 ln N=N with some p ositive constant c1 we obtain for a �xed x the

following estimate:

k� N (Fn ; h)k � c
h
e� �d 1N=(c1 ln N ) + e � c1 (x � 1)

p
aI N=2� c1 � ln N

i
kA � u1k: (29)

Thus, we have proven the following theorem.

Theorem 1. Let A be a densely de�ned strongly positive operator, u1 2 D(A � ) ,

� 2 (0; 1) and condition (15) is valid. Then Sinc-quadrature (24) represents

an approximation to un (x) . It provides the convergence of exponential order

uniformly with respect to x presented by estimate (28) for the step size h de�ned

in (27) . The approximation has the convergence rate (29) for the case x < 1
and h = c1 ln N=N .

Remark 5. The integration curve � I is symmetric with respect to the real axis.

Therefore z(� kh) = z(kh) and z0(� kh) = � z0(kh) . Approximation (24) can

be rewritten in the form

un;N (x) =
h

2�i
Fn (x; z(0)) + Re

"
NX

k=1

h
Fn (x; z(kh))

�i

#

;

which reduce the number of resolvent calculations by the factor of two.

Now we can turn our attention to the full error estimate.

"1 = ku(x) � un (x)k =










Z 1

�1
[F (x; � ) � F n (x; � )] d�








 �

1
2�

Z 1

�1

�
�
�E (x;

p
z(� ))z0(� )

�
�
�

�
�
�
�

I
1 + I

�
I n

1 + I n

�
�
�
�



 R1

A (� )u1



 d�;

By virtue of (22) it can b e transformed to

"1 =
(1 + M )KbI c

1 � e� 2
p

aI

�
2
aI

� 1+ �

kA � u1k jI � I n j
Z 1

�1
e(x � 1)

p
aI cosh� � � j � jd� �

�
2(1 + M )KbI c

1 � e� 2
p

aI

�
2
aI

� 1+ �

kA � u1k jI � I n j
Z 1

0
e� � j � jd� =

= C kA � u1k jI � I n j :
Then for the full error estimate we have

ku(x) � un;N (x)k � "1 + k� N (Fn ; h)k : (30)

It allows us to formulate the main theorem.

Theorem 2. Let the conditions of theorem 1 be valid. Then (24) represents

an approximation to u(x) . It provides the convergence of exponential order in

the case when w(x) is analytical ly continuable to the Bernstein el lipse.
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4. Numerical examples

Example 1. Let us consider the problem (1) with the op erator A de�ned by

D(A) = f v(y) 2 H 2(0; 1) : v(0) = v(1) = 0 g;

Av = � v00(y) 8v 2 D(A);
(31)

that generates a homogeneous parab olic equation with b oundary conditions

@2u(x; y)
@x2

�
@2u(x; y)

@y2
= 0 ;

u(x; 0) = u(x; 1) = 0 :

Let us supplement this problem with a b oundary condition

u(0; y) = 0 ;

and nonlo cal integral condition

u(1; 0) +
Z 1

0
sin(�s )u(s; y)ds = sinh( � )

1 + 2�
2�

sin(�y ):

In this case the exact solution to the problem is u(x; y) = sinh( �x ) sin(�y ):
We have p erformed calculations using Maple. The errors are presented in Table

1 for di�erent numb er of quadrature p oints n (17) and numb er of Sinc-p oints N
(24) . The table clearly demonstrates the exp onential decay of error according

to the theoretical estimate (30) .

Tabl. 1. The error for x = 0 :5; y = 0 :5

n
N 4 8 16

4 0:869502080695972
8 0:351883285832682 0:351901023526236257
16 0:017266161343386 0:017307693141547764 0:0173076931433691542
32 0:000071497193928 0:000038004847747042 0:0000380048260057791
64 0:000033550806875 6:2833535266435186� 10� 13 4:738853014104683� 10� 13

128 1:5442654065186853� 10� 13 3:847741101629530� 10� 24

256 3:806256157045269� 10� 34
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