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This issue of the journal is dedicated to the 70th anniversary of the
well-known scientist in the �eld of numerical mathematics and scienti�c

computing Professor Ivan Gavrilyuk. All authors cordially congratulate the
jubilee and wish him good health and new interesting scienti�c results.

Responsible Editor R.Chapko
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IVAN GAVRILYUK � 70

Our friend of long standing, colleague, and collaborator, Professor Ivan
Gavrilyuk (german Gawriljuk), has turned 70.
He was born and grew in the village Majdan Stasiv (currently Goncharivka)

of Lityns'kyj district of Vinnitsa region, Ukraine. School he graduated in the
village Klembivka of Jampil' district of the same region. His professional activ-
ity of almost four decades in two countries, Ukraine and Germany, is a splendid
example of ceaseless service to the mathematical community and is noted for
remarkable scienti�c achievements in a wide range of topics in the area of the-
oretical numerical analysis, mathematical modelling, and scienti�c computing.
I.P.Gavrilyuk studied mechanics and mathematics at the Faculties of Me-

chanics and Mathematics and then at the Faculty of Cybernetics of the Taras
Shevchenko Kiev State University. He graduated in 1971 from the department
of Cybernetics and, as a talented young mathematician, was appointed as as-
sistant professor at the department. His mentors, collaborators, and colleagues
at that time were G.N.Polozhij, V.M.Glushkov, V.L .Makarov and other well-
known mathematicians from the Kiev school. In 1975 he defended his thesis
for the degree of Candidate of Sciences in physics and mathematics at the
Taras Shevchenko Kiev State University. In 1979 he was promoted to the post
of associate professor of applied statistics and soon to associate professor of
computational methods in mathematical physics.
In the period from 1981 to 1989 Makarov and Gavrilyuk were, respectively,

chair and vice-chair of the Department of numerical methods of mathematical
physics at the Kiev National University of Ukraine. Under their leadership the
department became a leading organization in Ukraine in the area of numerical
and applied mathematics. Makarov and Gavrilyuk were largely responsible for
the grown prestige of the department and for the raised quality of research.
Dr. Gavrilyuk was part of a team of young scientists with a vigorous research
program and close scienti�c collaboration with the world-renowed mathematical
schools.
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In 1989 Dr. Gavrilyuk made a cruicial decision to move to Germany with his
wife Ingrid and their children Alexander and Kristina. That year was a turning
point in the European history, when young professionals were looking for new
opportunities in the new world that was about to be created after the fall of the
Berlin wall. In 1989�1999 Dr. Gavrilyuk was a Lecturer, Privatdozent at the
Institute of Mathematics, Faculty of Mathematics and Informatics, University
of Leipzig and in 1995 he defended his Dr. rer. nat. habilitation at this
university. His close collaborators and mentors in Leipzig were the well-known
mathematicians Eberhard Zeidler, Damir Arov and Wolfgang Hackbush.
In 1999 Dr. Gavrilyuk was appointed Professor and Chairman of the depart-

ment of Information and Communication Technologies at the newly founded
University of Cooperative Education, Berufsakademie Eisenach, Staatliche Stu-
dienakademie Thueringen, later transformed into dual University Gera-Eise-
nach. These universities represent a new internationally recognized education
form, so to say the german "know-how" in the �eld of closed to practice educa-
tion. Professor Gawriljuk made a signi�cant contribution to the development
of this form of education.
In the earlier period of his professional career as scientist, namely 1971�

1975, Dr. Gavrilyuk's research was focused on the theory of �nite di�erence
schemes. In this period he initiated a study of a new class of �nite di�erence
schemes, namely schemes with exact and explicit spectra. He also introduced
the concept of the best scheme with exact spectrum, which was the forerun-
ner of the modern spectral and pseudospectral methods. Dr. Gavrilyuk made
important contributions to the development of the theory of exact and trun-
cated di�erence schemes for variational inequalities and for degenerate ODE's,
the direction initiated and developed into a powerful numerical tool in the
early 1960s by A.N. Tikhonov and A.A. Samarskii and later in the 1970s by
V.L. Makarov. Among the most spectacular achievements of Dr. Gavrilyuk in
this area are his results on the existence and uniqueness of exact di�erence
schemes for the weak solutions. They have been used further as the basis for
the construction of truncated di�erence schemes of arbitrary given degree of ac-
curacy as well as of di�erence schemes on a �nite grid for ordinary and partial
di�erential equations in unbounded domains. In the period from 1975 to 1989
Dr. Gavrilyuk participated also in a number of theoretical and applied projects
related to mathematical modelling and computer-aided design of complex radio-
engineering systems. He headed a team for developing a mathematical model of
photon recycling diode and used it for computer simulation of photon recycling.
It was probably the �rst mathematical model which could completely describe
all complex processes in this electronic device. Due to the strong nonlinear-
ity and nonlocal terms the investigation of this model and its discreztization
was a challenging mathematical problem. Further, Dr. Gavrilyuk and his team
proposed a new model (a system of nonlinear partial di�erential equations) of
internal-di�usion kinetics of adsorption, derived an appropriate discretization,
and developed e�cient algorithms and computer programs for its numerical so-
lution. This was a team-work of applied mathematicians and engineers that led
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to a number of unique results in terms of mathematical modelling, development
of numerical algorithms and software for computer simulation.
In 1989 Dr. Gavrilyuk, while working at the University of Leipzig, began

a new line of research. He studied di�erential equations with operator coe�-
cients and other operator equations in Hilbert and Banach spaces, which can be
considered as meta-models for partial di�erential equations. Using the Cayley
transform and special functions he obtained the solution operators and closed
form solutions of these meta-models containing, e.g., all the three important
classes of partial di�erential equations (parabolic, hyperbolic and elliptic), oper-
ator equations (including Lyapunov, Silvester, and other important equations).
On the basis of these explicit solutions he was able to construct and justify
numerical schemes without accuracy saturation and with exponential accuracy.
Further Dr. Gavrilyuk applied the improper Dunford-Cauchy integral to rep-

resent the solution operators and to discretize them using Sinc-quadratures.
These algorithms have three important properties: a) they converge exponen-
tially, b) they can be parallelized, and c) in the case of multidimensional prob-
lems they allow a tensor-product representation. These important properties
yield e�cient numerical algorithms of optimal or low complexity, which in the
case of multidimensional problems solve the famous "curse of dimensionality"
problem. The tensor-product representations of the solution operators has be-
come a crucial tool (very often the only working tool) for many multidimen-
sional problems and is intensively developing at various scienti�c institutions.
Dr. Gavrilyuk's colleague, friend and collaborator in this important �eld from
Leipzig school is Boris Khoromskij.
An important �eld of Dr. Gavrilyuk's scienti�c activities in University of

Leipzig was mathematical modelling of the sloshing of liquids in moving con-
tainers in various marine applications. These phenomena are described by
a complex system of nonlinear partial di�erential equations in domains with
moving boundaries. The main idea of the approach used by Dr. Gavrilyuk in a
team with I. Lukovskyj, V.Makarov, A.Timokha, M.Hermann and others is to
derive simpler mathematical models (so-called modal models) in the form of a
system of ODEs. Then he proposed e�cient numerical algorithms that for var-
ious applications lead to boundary-value, initial-value, or eigenvalue problems
for the modal models.
Dr. Gavrilyuk has shown how the seemingly "abstract" mathematical results

in terms of numerical functional analysis in Hilbert and Banach spaces could
be converted into practical algorithms for solving particular applied problems
connected with the sloshing of liquids. In fact, using the full arsenal of theoret-
ical mathematical tools for the computational practice is very typical for the
research of Dr. Gavrilyuk.
Professor I.P.Gavrilyuk lectured for 18 years at the Kiev University, then

for 10 years at the University of Leipzig and afterwards till now at the dual
Gera-Eisenach-university. He has given a whole spectrum of undergraduate,
graduate, and special topics courses in numerical methods, computer science,
and mathematical modelling and has supervised a large number of diplomas
and Ph.D. theses.
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Results published by Prof. Gavrilyuk are widely known in the scienti�c world
and make an important contribution to mathematics. Scienti�c achievements
of Professor Gavrilyuk were awarded the State Prize of Ukraine in the �eld of
science and technology.
As editor Prof. Gavrilyuk left his mark in a number of mathematical jour-

nals, e.g., Mathematics of Computation, Computational Methods in Applied
Mathematics, Journal of Numerical and Applied Mathematics. He has been
invited speaker at a number of International conferences, symposia, and work-
shops. Prof. Gavrilyuk is the author or co-author of 9 monographs, a number
of university textbooks, and more than 150 research papers.
He is full of energy, new scienti�c ideas, and research endeavours. We warmly

congratulate the jubilee and wish him good health, ful�lment of his plans, and
Many Happy Returns of The Day!

R.Chapko, V.Khlobystov, M.Kutniv, I. Lukovskyj, V.Makarov,
H. Shynkarenko, A.Timokha, V.Trotsenko, V.Vasylyk.
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ON THE NON-LINEAR INTEGRAL EQUATION
METHOD FOR THE RECONSTRUCTION OF
AN INCLUSION IN THE ELASTIC BODY

R. S.Chapko, O.M. Ivanyshyn Yaman, V.G.Vavrychuk

Ðåçþìå. Äëÿ çíàõîäæåííÿ ãðàíèöi îá'¹êòó â ïðóæíié äâîâèìiðíié îáëàñ-
òi çà âiäîìèìè äàíèìè Êîøi íà ¨¨ ãðàíèöi çàñòîñîâàíî ìåòîä íåëiíiéíèõ
iíòåãðàëüíèõ ðiâíÿíü, ùî ãðóíòó¹òüñÿ íà ïðóæíèõ ïîòåíöiàëàõ. Ðîçðîá-
ëåíî iòåðàöiéíèé ìåòîä äëÿ íàáëèæåíîãî ðîçâ'ÿçóâàííÿ îòðèìàíèõ iíòåã-
ðàëüíèõ ðiâíÿíü. Çíàéäåíî ïîõiäíó Ôðåøå âiäïîâiäíîãî îïåðàòîðà i ïîêà-
çàíî ðîçâ'ÿçíiñòü ëiíåàðèçîâàíî¨ ñèñòåìè. Ïîâíó äèñêðåòèçàöiþ çäiéñíåíî
ìåòîäîì òðèãîíîìåòðè÷íèõ êâàäðàòóð. ×åðåç íåêîðåêòíiñòü äî îòðèìàíî¨
ñèñòåìè ëiíiéíèõ ðiâíÿíü çàñòîñîâàíî ìåòîä ðåãóëÿðèçàöi¨ Òiõîíîâà. ×è-
ñåëüíi åêñïåðèìåíòè ïîêàçóþòü, ùî ïðîïîíîâàíèé ìåòîä äà¹ äîáðó òî÷-
íiñòü ðåêîíñòðóêöi¨ ïðè åêîíîìíèõ îá÷èñëþâàëüíèõ çàòðàòàõ.

Abstract. We apply the non-linear integral equation approach based on
elastic potentials for determining the shape of a bounded object in the elasto-
static two-dimensional domain from given Cauchy data on its boundary. The
iterative algorithm is developed for the numerical solution of obtained integral
equations. We �nd the Fr�echet derivative for the corresponding operator and
show unique solviability of the linearized system. Full discretization of the
system is realized by a trigonometric quadrature method. Due to the inher-
ited ill-possedness in the system of linear equations we apply the Tikhonov
regularization. The numerical results show that the proposed method gives a
good accuracy of reconstructions with an economical computational cost.

1. Introduction
The idea to reduce the problem of the boundary reconstruction directly

to non-linear equations and to employ a regularized iterative procedure was
�rstly suggested in [18]. The concept consists in the use of the reciprocity
gap approach based on Green's integral theorem. This approach was success-
fully extended in [9, 13, 16, 18, 20] for the case of the Laplace equation and
in [11, 12, 14, 15] for the Helmholtz equation. The other possible way for it is
related with the Green's function [6,7,10,20]. This method is applicable for the
reconstruction of an inclusion in some canonical domains for which the Green's
functions are known. In this paper we would like to use the potential theory
to receive a system of non-linear integral equations [5] which is equivalent to
an inverse boundary problem for the Navier equation. As motivation for this
research we consider the extension of the potential approach to the system
of di�erential equations in elasticity and on the other hand the problem of the

Key words. Double connected elastostatic domain; boundary reconstruction; elastic po-
tentials; boundary integral equations; trigonometric quadrature method; Newton method;
Tikhonov regularization.
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shape reconstruction in the elastic medium is of interest for the solid mechanics
community.
We assume that D is a doubly connected bounded domain in IR2 with the

boundary ∂D consisting of two disjoint closed C2 curves Γ1 and Γ2 such that
Γ1 is contained in the interior of Γ2.
The corresponding direct problem is: Given a vector function g on Γ2 con-

sider the Dirichlet problem for a vector function u ∈ C2(D)∩C1(D̄) satisfying
the Navier equation

∆∗u = 0 in D (1)

and the boundary conditions

u = 0 on Γ1, (2)

Tu = g on Γ2. (3)

Here ∆∗u = µ∆u+ (λ+ µ) grad div u and

Tu = λdivu ν + 2µ(ν · grad)u+ µdiv(Qu)Qν,

where ν is an outward unit normal vector to the boundary and the matrix Q

is given by Q =

(
0 1
−1 0

)
. Constants µ and λ (µ > 0, λ > −µ) are called

the Lame coe�cients, they characterize the physical properties of the material.
Note that throughout the paper the function spaces have to be understood as
vector valued.
It is well-know that the direct mixed boundary value problem has the unique

solution [21, Chapter X, �10].
The inverse problem we are concerned with is: Given the Neumannn data g

on Γ2 and the Dirichlet data

u = f on Γ2, (4)

determine the shape of the interior boundary Γ1.
As opposed to the forward boundary value problem, the inverse problem is

nonlinear and ill-posed.
The issue of uniqueness, i.e., identi�ability of the unknown curve Γ1 from

the Cauchy data on Γ2, is settled by the following theorem (see [4]).

Theorem 1. Let Γ1 and Γ̃1 be two closed curves contained in the interior of
Γ2 and denote by u and ũ the solutions to the mixed problem (1)�(3) for the

interior boundaries Γ1 and Γ̃1, respectively. Assume that g ̸= 0 and

u = ũ

on an open subset of Γ2. Then Γ1 = Γ̃1.

2. Nonlinear integral equations and iterative schemes
for its solutions

Firstly we introduce the single-layer elasticity potential. As it is well known,
the fundamental solution to the Navier equation (1) is given by

Φ(x, y) =
c1
π

ln
1

|x− y|
I +

c2
π
J(x− y),
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where c1 = λ+3µ
4µ(λ+2µ) , c2 = λ+µ

4µ(λ+2µ) , I is the identity matrix and the matrix J

is de�ned by

J(w) =
ww⊤

|w|2

in terms of a dyadic product of w ∈ IR2 \ {0} and its transpose w⊤. Then the
single-layer potential with vector density ψ on Γℓ is de�ned by

(Uℓψ)(x) :=

∫
Γℓ

Φ(x, y)ψ(y) ds(y), x ∈ D, ℓ = 1, 2.

We search the solution of the boundary value problem (1)�(3) in the form

u(x) = (U1ψ1)(x) + (U2ψ2)(x), x ∈ D. (5)

From the boundary behavior properties of the single-layer elasticity potential
[21], we obtain

u(x) = (Sℓ1ψ1)(x) + (Sℓ2ψ2)(x), x ∈ Γℓ, ℓ = 1, 2 (6)

and

(Tu)(x) =
1

2
ψ2(x) + (D21ψ1)(x) + (D22ψ2)(x), x ∈ Γ2. (7)

Here, the boundary integral operators Sℓk and Dℓk are de�ned by

(Sℓkφ)(x) =

∫
Γℓ

Φ(x, y)φ(y) ds(y), x ∈ Γk ,

(Dℓkφ)(x) =

∫
Γℓ

TxΦ(x, y)φ(y) ds(y), x ∈ Γk .

Taking into account the boundary conditions (2) and (3) we receive from (6) a
system of integral equations

S11ψ1 + S12ψ2 = 0 on Γ1,

1
2ψ2 +D21ψ1 +D22ψ2 = g on Γ2

(8)

and the condition (4) leads to the integral equation

S21ψ1 + S22ψ2 = f on Γ2. (9)

Theorem 2. The inverse boundary value problem (1)�(4) is equivalent to the
system of integral equations (8)�(9).

We will call the equations (8) as the ��eld� equations and the equation (9)
as the �data� equation.
In general, there exist three di�erent iterative methods to solve the system

(8)�(9) by linearization:

A. Given initial guess for the boundary Γ1 and the densities ψ1 and ψ2, we
linearize all three equations in order to update all the unknowns.

B. Given initial guess for the boundary Γ1, we solve the subsystem (8)
to obtain the densities. Then, keeping the densities �xed we solve the
linearized �data� equation (9) to obtain the update for the boundary.

9
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C. Given initial guess for the densities, we solve the linearized ��eld� equa-
tions (8) to obtain Γ1 and then we solve the linearized �data� equation
(9) to obtain the new densities.

The linearization, using Fr�echet derivatives of the operators, and the regulariza-
tion of the ill-posed equations are needed in all methods. However, the iterative
method A requires the calculation of the Fr�echet derivatives of the operators
with respect to all the unknowns and the selection of three regularization pa-
rameters at every step. Thus, we prefer to use one of the so-called two-step
methods B or C. Between the two methods, the method B is preferable since we
solve �rst a well-posed linear system and then we linearize the �data� equation.

3. Implementation of the two-step method B

3.1. Numerical solution of the ��eld� integral equations. Assume that
boundary curves Γ1 and Γ2 have parametric representation

Γℓ = {xℓ(t) = (xℓ1(t), xℓ2(t))| t ∈ [0, 2π]}, ℓ = 1, 2,

where xℓ1, xℓ2 are 2π�periodic and twice continuously di�erentiable functions.
It gives us the following parametric form for the operator Sℓk

(Sℓkψk)(xℓ(t)) =
1

π

∫ 2π

0
Kℓk(t, τ)ψk(τ)dτ, ℓ, k = 1, 2,

where Kℓk(t, τ) = πΦ(xℓ(t), xk(τ)) and ψk(t) = ψ(xk(t))|x′k(t)|. Elementary
calculations yield the representation of the matrix Kℓℓ

Kℓℓ(t, τ) = −c1
2
ln

(
4

e
sin2

t− τ

2

)
I + K̃ℓℓ(t, τ), t ̸= τ,

where

K̃ℓℓ(t, τ) = Kℓℓ(t, τ) +
c1
2
ln

(
4

e
sin2

t− τ

2

)
I, t ̸= τ

with the diagonal term

Kℓℓ(t, t) =
c1
2
ln

(
1

e|xℓ(t)|2

)
I + c2

x′ℓ(t) · x′ℓ(t)⊤

|x′ℓ(t)|2
.

Parametrization of integral operators Dℓk reads as following

(Dℓkψk)(xℓ(t)) =
1

π

∫ 2π

0
Lℓk(t, τ)ψk(τ)dτ

with the matrices

Lℓk(t, τ) = c3
(xℓ(t)− xk(τ)) · x′ℓ(t)
|x′ℓ(t)||xℓ(t)− xk(τ)|2

Q−

−
(xℓ(t)− xk(τ)) ·Qx′ℓ(t)
|x′ℓ(t)||xℓ(t)− xk(τ)|2

{c3I + c4J(xℓ(t)− xk(τ))} .
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Here c3 =
µ

2(λ+ 2µ)
and c4 =

λ+ µ

λ+ 2µ
. The kernels Lℓℓ contain the singularity.

The straightforward calculations lead to the following expression

Lℓℓ(t, τ) =
c3

2|x′ℓ(t)|
cot

t− τ

2
Q+ L̃ℓℓ(t, τ),

where

L̃ℓℓ(t, τ) = Lℓℓ(t, τ)−
c3

2|x′ℓ(t)|
cot

t− τ

2
Q

with the diagonal term

L̃ℓℓ(t, t) =
c3x

′′
ℓ (t) · x′ℓ(t)

2|x′ℓ(t)|3/2
Q+

x′′ℓ (t) ·Qx′ℓ(t)
2|x′ℓ(t)|3/2

[
c3I + c4

x′ℓ(t) · x′ℓ(t)⊤

|x′ℓ(t)|2

]
.

Thus we obtain a system of parametrized integral equations

1

π

∫ 2π

0

{[
−c1

2
ln

(
4

e
sin2

t− τ

2

)
I + K̃11(t, τ)

]
ψ1(τ)+

+K12(t, τ)ψ2(τ)

}
dτ = 0,

ψ2(t)

2|x′2(t)|
+

1

π

∫ 2π

0

{
L21(t, τ)ψ1(τ)+

+

[
c3

2|x′2(t)|
cot

t− τ

2
Q+ L̃11(t, τ)

]
ψ2(τ)

}
dτ = g(t).

(10)

For the numerical solution of integral equations (10) we combine a quad-
rature method and a collocation method based on trigonometric interpola-
tion [3, 17]. For this we choose an equidistant mesh by setting tj = jh, h = π

n ,
j = 0, . . . , 2n− 1 and use the following three quadrature rules

1

2π

∫ 2π

0
g(τ) dτ ≈ 1

2n

2n−1∑
k=0

g(tk), (11)

1

2π

∫ 2π

0
g(τ) ln

(
4

e
sin2 tj −

τ

2

)
dτ ≈

2n−1∑
k=0

R|j−k| g(tk) (12)

and
1

2π

∫ 2π

0
g(τ) cot τ − tj

2
dτ ≈

2n−1∑
k=0

Fj−k g(tk), (13)

with the weights

Rj = − 1

2n

{
1 + 2

n−1∑
m=1

1

m
cosmjh+

(−1)j

n

}
, Fj =

1

n

n−1∑
m=1

sinmjh.

These interpolation quadrature formulas are obtained by replacing g by its
trigonometric interpolation polynomial from the 2n-dimensional space Tn and
then integrating.

11
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Thus we use quadrature rules (11) and (12) to approximate two types of
integrals in the integral equations (10) and collocate the approximate equations
to obtain the linear system

2n−1∑
k=0

{[
−c1R|j−k|I +

1

n
K̃11(tj , tk)

]
ψ1n(tk)+

+
1

n
K12(tj , tk)ψ2n(tk)

}
= 0,

ψ2n(tj)

2|x′2(tj)|
+

2n−1∑
k=0

{
1

n
L21(tj , tk)ψ1n(tk)+

+

[
c3

|x′2(tk)|
Fj−kQ+

1

n
L̃22(tj , tk)

]
ψ2n(tk)

}
= g(tj)

(14)

for j = 0, 1, . . . , 2n− 1, which we solve for the nodal values ψℓn(tk), ℓ = 1, 2 of
ψℓn ∈ Tn.
The convergence and error analysis for this quadrature method can be es-

tablished on the basis of the collectively compact operators theory (see [8]) or
on the basis of some estimate of trigonometric interpolation in H�older spaces
(see [19]).

Theorem 3. For f ∈ Cp+1,β[0, 2π] and a su�ciently large n the system (14)
has an unique solution with ψℓn ∈ Tn and for the exact solutions ψℓ of (10) we
have the error estimates

∥ψℓ − ψℓn∥m,α ≤ C
lnn

np−m+β−α
∥ψℓ∥p,β, ℓ = 1, 2

for 0 ≤ m ≤ p, 0 < α ≤ β < 1 and some constant C > 0 depending only on
α, β,m, p.

3.2. Numerical solution of �data� integral equation equation. Accord-
ing to our algorithm we need to �nd the correction for Γ1 from the �data�
equation (9), where the densities ψℓ, ℓ = 1, 2 are known. For simplicity we con-
sider only star-like interior curves, i.e., we choose a parametrization in polar
coordinates of the form

x1(t) = {r(t)c(t) : t ∈ [0, 2π]}, (15)

where c(t) = (cos t, sin t) and r : IR → (0,∞) is a 2π periodic function repre-
senting the radial distance from the origin. Also we use the following notation
Srψ = S21ψ. However, we wish to emphasize that the concepts described below,
in principle, are not con�ned to star-like boundaries only.
For the given r and ψℓ, ℓ = 1, 2 we solve the linearized ill-posed integral

equation

(S′[r, ψ1]q)(t) = f(t)− (Srψ1)(t)− (S22ψ2)(t) (16)

12
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with respect to the function q. Here the Fr�echet derivative of the operator Sr
has the following representation

(S′[r, ψ]q)(t) =
1

π

∫ 2π

0
q(τ)Nr(t, τ)ψ(τ)dτ,

where
Nr(t, τ) = −c1 c(τ) · ∇x1(τ) ln |x2(t)− x1(τ)|I+

+ c2 (c(τ), ∂x1(τ))J(x2(t)− x1(τ)).

Here (c(τ), ∂x1(τ))J(x2(t) − x1(τ)) is the tensor obtained by applying (c(τ),
∂x1(τ)) to each column of J(x2(t)− x1(τ)).

Theorem 4. The Fr�echet derivative operator S′[r, ψ̃1] is injective at the exact
solution.

Proof. Assume S′[r, ψ̃1]q = 0. We introduce a function

V (x) =

∫
Γ1

(ζ(y), ∂y)Φ(x, y)ψ1(y) ds(y), x ∈ IR2 \ Γ1,

where ζ(x1(t)) = q(t)c(t), t ∈ [0, 2π].
Clearly the function V satis�es the Navier equation

∆∗V = 0 in IR2 \ Γ1

and by the assumption
V +|Γ1 = 0.

It is known, [13], that for su�ciently small q, the perturbed interior curve as
given in polar coordinates by

Γ1,r+q = {(r(t) + q(t))c(t) : t ∈ [0, 2π]}
can be represented in terms of the outward unit normal vector ν to Γ1,r as
follows

Γ1,r+q = {r(t)c(t) + q̃(t)ν(t) : t ∈ [0, 2π]}.
Hence, the function V can be rewritten in the form

V (x) =

∫ 2π

0
(ν(τ), ∂x1(τ))Φ(x, x1(τ)) q̃(τ)ψ̃1(τ) |x′1(τ)| dτ, x ∈ IR2 \ Γ1.

Recalling

Φ(x, y) =
c1
π

ln
1

|x− y|
I +

c2
π

(xi − yi)(xj − yj)

|x− y|2
e⃗i ⊗ e⃗j ,

and having introduced εij the two-dimensional Ricci tensor

τi = εjiνj , (εij) = Q, ν = −Qτ,
we rewrite the (ν(y), ∂y)Φ(x, y) in terms of the tangential derivative as follows

(ν(y), ∂y)Φ(x, y) =
c1
π

∂

∂ν(y)
ln

1

|x− y|
I−

− c2
π
εik

∂

∂τ(y)

(xi − yi)(xj − yj)

|x− y|2
e⃗k ⊗ e⃗j

13
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By [2, Theorem 4.5] we obtain that the function V can be continuously extended
to the boundary Γ1, i.e.,

V (x1(t))
± = ∓c1ψ̃1(t)q̃(t)+

+

∫ 2π

0
(ν(τ), ∂x1(τ))Φ(x1(t), x1(τ)) q̃(τ)ψ̃1(τ) |x′1(τ)| dτ.

The function V behaves as o(1) at in�nity. By the uniqueness of the exterior
and interior Dirichlet problem [21, p.55] we have

c1ψ̃1(t)q̃(t) = 0, t ∈ [0, 2π].

The function u given by (5) solves the Dirichlet problem in the interior of Γ1.
By uniqueness of the solution to the Dirichlet problem for the Navier equation
u has to vanish in the interior of Γ1 and hence Tu− = 0 on Γ1.
The jump relations imply Tu+ = ψ1. Employing Holmgren's uniqueness

theorem similar to the case for the Helmholtz equation [1, Theorem 2.3.] one
can show that the Cauchy data (u+, Tu+) cannot be identically zero on an

open subset and hence ψ̃1 cannot vanish on an open subset of [0, 2π]. 2

For the numerical solution of (16) we apply tha collocation method with the
approximation of q in the form

qm =

2m∑
i=0

qmili, m ∈ IN, n > m,

where li(t) = cos it for i = 0, . . . ,m and li(t) = sin(m−i)t for i = m+1, . . . 2m.
Then the following linear system needs to be solved

2m∑
j=0

qmjAij = bi, i = 0, . . . , 2n− 1 (17)

with

Aij =
1

n

2n−1∑
k=0

lj(tk)Nr(ti, tk)ψ1n(tk)

and

bi = f(ti)−
2n−1∑
k=0

{
1

n
K21(ti, tk)ψ1n(tk)+

+

[
−c1R|i−k|I +

1

n
K22(ti, tk)

]
ψ2n(tk)

}
.

Due to ill-possedness of (17) and its over-determination we apply the least-
squares method and the Tikhonov regularization with the regularization pa-
rameter α > 0.

14
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3.3. Algorithm for the two-step method B. Now we summarize the algo-
rithm.

1. Choose some starting value r.
2. Solve the system of well-posed integral equations (8) (see subsec. 3.1).
3. For the given r, ψ1 and ψ2 solve the linearized ill-posed integral equation

(9) with respect to function q (see subsec. 3.2).
4. Calculate an approximation for the radial function r = r + βq, where β

is a relaxation parameter for the Newton method.
5. Repeat steps 2-4 until a stopping criterion is satis�ed.

4. Numerical examples

The Cauchy data on Γ2 were generated by solving the direct problem (1)-(3)
for g = (1, 1)⊤ on Γ2 and calculating f = (f1, f2)

⊤ as the restriction of the
solution on Γ2. Note that when generating the �exact� Cauchy data we used a
�ner mesh in order to avoid the �inverse crime�. The noisy data were formed as

f δℓ = fℓ + δ(2η − 1)∥fℓ∥L2(Γ2), ℓ = 1, 2

with the noise level δ and the uniformly distributed random variable η in (0, 1).
The stopping rule was chosen as

∥q∥L2(Γ1)

∥r∥L2(Γ1)
< ϵ.

We demonstrate the feasibility of the proposed methods for the inverse prob-
lem (1)-(3) with µ = λ = 1 and with following boundaries

a). Reconstruction for exact data after
21 iterations (α = 1E − 10)

b). Reconstruction for 5% nosy in the
data after 16 iterations (α = 1E − 2)

Fig. 1. Reconstruction of the boundary Γ1 for Ex. 1

Example 1: The exterior boundary curve Γ2 is a elipse Γ2 = {x2(t) =
(2 cos t, 1.5 sin t), t ∈ [0, 2π]} and the interior boundary curve Γ1 (to be
reconstructed) is peanut-shaped with radial function

r(t) =
√

cos2 t+ 0.25 sin2 t.

15
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Example 2: The exterior boundary curve Γ2 is a rounded rectangle with
radial function

r2(t) = ((1/2 cos t)10 + (2/3 sin t)10)−0.1

and Γ1 is a boundary with radial function

r1(t) = 1 + 0.15 cos 3t.

The results of the numerical experiments for exact and noisy data with δ =
5% are re�ected on Fig. 1 and Fig. 2. Here we used the following discretization
parameters n = 32, m = 4, ϵ = 0.0001 and β = 0.2.
Thus, as we see from this preliminary study the non-linear integral equation

approach provides accurate reconstruction for exact and noisy data.

a). Reconstruction for exact data after
21 iterations (α = 1E − 10)

b). Reconstruction for 5% nosy in the data
after 20 iterations (α = 1E − 2)

Fig. 2. Reconstruction of the boundary Γ1 for Ex. 2
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THE SYSTEM OF POTAPOV'S FUNDAMENTAL MATRIX
INEQUALITIES ASSOCIATED WITH A MATRICIAL
STIELTJES TYPE POWER MOMENT PROBLEM

B.Fritzsche, B.Kirstein, C.M�adler, M. Scheithauer

Ðåçþìå. Â ñòàòòi ïîêàçàíî, ùî ìíîæèíà ðîçâ'ÿçêiâ ìàòðè÷íî¨ ïðîáëåìè
ñèëîâèõ ìîìåíòiâ òèïó Ñòiëü¹ñà ñïiâïàäà¹ ç ìíîæèíîþ ðîçâ'ÿçêiâ ñèñòåìè
ôóíäàìåíòàëüíî¨ ìàòðèöi íåðiâíîñòåé Ïîòàïîâà.

Abstract. The paper shows that the solution set of a matricial Stieltjes-
type truncated power moment problem coincides with the solution set of the
corresponding system of Potapov's fundamental matrix inequalities.

1. Introduction and preliminaries

The starting point of studying power moment problems on semi-in�nite in-
tervals was the famous two part memoir of T. J. Stieltjes [52, 53]. A complete
theory of the treatment of power moment problems on semi-in�nite intervals in
the scalar case was developed by M. G. Krein in collaboration with A. A. Nudel-
man (see [45, Section 10], [46], [47, Chapter V]). What concerns an operator-
theoretic treatment of the power moment problems named after Hamburger
and Stieltjes and its interrelations, we refer the reader to Simon [51].
In the 1970's, V. P. Potapov developed a special approach to discuss ma-

trix versions of classical interpolation and moment problems. The main idea
of his method is based on transforming such problems into equivalent matrix
inequalities with respect to the L�owner semi-ordering. Using this strategy, sev-
eral matricial interpolation and moment problems could successfully be han-
dled (see, e. g. [6, 7, 13�16, 18, 20�22, 32, 33, 37�44, 48, 54]). L. A. Sakhnovich
enriched Potapov's method by unifying the particular instances of Potapov's
procedure under the framework of one type of operator identities [9, 35, 50].
Matrix versions of the classical Stieltjes moment problem were studied by
Adamyan/Tkachenko [1, 2], And�o [4], Bolotnikov [5, 6, 8], Bolotnikov/Sakhno-
vich [9], Chen/Hu [11], Chen/Li [12], Dyukarev [17, 18], Dyukarev/Katsnel-
son [21,22], and Hu/Chen [34]. The considerations of this paper deal with the
more general case of an arbitrary semi-in�nite interval [α,∞), where α is an
arbitrarily given real number. This problem has already been treated by other
methods in [27,28].
In order to formulate the concrete moment problem, we are going to study,

we �rst review some notation. Throughout this paper, let p and q be positive

Key words. Stieltjes moment problem; Potapov's fundamental matrix inequalities; Her-
glotz�Nevanlinna functions; Stieltjes functions.
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integers. Let C, R, N0, and N be the set of all complex numbers, the set of
all real numbers, the set of all non-negative integers, and the set of all positive
integers, respectively. For every choice of υ, ω ∈ R ∪ {−∞,∞}, let Zυ,ω be the
set of all integers k for which υ ≤ k ≤ ω holds. If X is a non-empty set, then
X p×q stands for the set of all p× q matrices each entry of which belongs to X ,
and X p is short for X p×1. If (Ω,A) is a measurable space, then each countably

additive mapping whose domain is A and whose values belong to the set Cq×q
≥

of all non-negative Hermitian complex q × q matrices is called a non-negative
Hermitian q × q measure on (Ω,A). By Mq

≥(Ω,A) we denote the set of all

non-negative Hermitian q × q measures on (Ω,A). For the integration theory
for non-negative Hermitian measures, we refer to [36, 49]. If µ = [µjk]

q
j,k=0 is

a non-negative Hermitian q × q measure on a measurable space (Ω,A) and if
K ∈ {R,C}, then we use L1(Ω,A, µ;K) to denote the set of all Borel-measurable
functions f : Ω → K for which the integral exists, i. e., that

∫
Ω|f |dµ̃jk <∞ for

every choice of j and k in Z1,q, where µ̃jk is the variation of the complex measure
µjk. If f ∈ L1(Ω,A, µ;K), then let

∫
A fdµ := [

∫
Ω 1Afdµjk]

q
j,k=1 for all A ∈ A

and we will also write
∫
A f(ω)µ(dω) for this integral.

Let BR (resp. BC) be the σ-algebra of all Borel subsets of R (resp. C).
For all Ω ∈ BR \ {∅}, let BΩ be the σ-algebra of all Borel subsets of Ω, let
Mq

≥(Ω) := Mq
≥(Ω,BΩ) and, for all κ ∈ N0 ∪ {∞}, let Mq

≥,κ(Ω) be the set of

all σ ∈ Mq
≥(Ω) such that for all j ∈ Z0,κ the function fj : Ω → C de�ned by

fj(t) := tj belongs to L1(Ω,BΩ, σ;C). If κ ∈ N0 ∪ {∞} and if σ ∈ Mq
≥,κ(Ω),

then we set

s
[σ]
j :=

∫
Ω
tjσ(dt) for each j ∈ Z0,κ. (1)

The following matricial power moment problem lies in the background of our
considerations:

Problem MP[Ω; (sj)
m
j=0,≤]: Let Ω ∈ BR \ {∅}, let m ∈ N0, and let (sj)

m
j=0 be

a sequence of complex q × q matrices. Describe the set Mq
≥[Ω; (sj)

m
j=0,≤] of

all σ ∈ Mq
≥,m(Ω) for which the matrix sm− s

[σ]
m is non-negative Hermitian and

for which, in the case m > 0, moreover s
[σ]
j = sj is ful�lled for all j ∈ Z0,m−1.

The considerations of this paper are mostly concentrated on the case that
the set Ω is a one-sided bounded and closed in�nite interval of the real axis.
Such moment problems are called to be of Stieltjes type. We are going to
follow Potapov's strategy to solve the moment problem MP[[α,∞); (sj)

m
j=0,≤],

where α is an arbitrarily given real number. After the reformulation of the
moment problem in the language of the members of a class of distinguished
matrix-valued functions, a �rst step consists of �nding a convenient system of
matrix inequalities such that the solution set of the moment problem coincides
with the solution set of the system of matrix inequalities. In a second step, one
proves a parametrization of the solution set of the system of matrix inequalities,
where the case that m is an even integer and the case that m is an odd integer
are treated seperately. This paper is aimed at doing the �st step. We are going
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to construct the system of matrix inequalities in question. It will turn out that
the solution set of the moment problem (obtained via Stieltjes transformation)
coincides with the solution set of a certain system of Potapov's fundamental
matrix inequalities. Further considerations to solve these inequalities will be
stated in a subsequent paper.
In Section 2, we recall necessary and su�cient conditions of solvability of

the moment problems in question. In Section 3, we give a reformulation of the
moment problem, using certain matrix-valued functions. Section 4 is aimed at
showing that every solution of the moment problem ful�lls necessarily the cor-
responding system of Potapov's fundamental matrix inequalities. Some integral
estimates for the scalar case are given in Section 5. In Section 6, we will prove
that each solution of the system of Potapov's fundamental matrix inequalities
is a solution of the moment problem as well.
At the end of this section, let us now introduce some further notations, which

are useful for our considerations. We will write Iq for the identity matrix in
Cq×q, whereas 0p×q is the null matrix belonging to Cp×q. If the size of the iden-
tity matrix or the null matrix is obvious, then we will also omit the indexes. The
notations Cq×q

H and Cq×q
≥ stand for the set of all Hermitian complex q × q ma-

trices and the set of all non-negative Hermitian complex matrices, respectively.
If A and B are complex q × q matrices, then we will write A ≤ B or B ≥ A to
indicate that A and B are Hermitian matrices such that the matrix B − A is
non-negative Hermitian. For each A ∈ Cp×q, let N (A) be the null space of A
and let R(A) be the column space of A. For each A ∈ Cq×q, we will use ℜA
and ℑA to denote the real part of A and the imaginary part of A, respectively:
ℜA := 1

2(A+A∗) and ℑA := 1
2i(A−A∗). Furthermore, for each A ∈ Cp×q, let

∥A∥F be the Frobenius norm of A and let ∥A∥S be the operator norm of A. For
each x ∈ Cq, we write ∥x∥E for the Euclidean norm of x. If n ∈ N, if (pj)nj=1

is a sequence of positive integers, and if xj ∈ Cpj×q for each j ∈ Z1,n, then

let col(xj)
n
j=1 :=

[ x1
x2

...
xn

]
. If n ∈ N, if (qk)nk=1 is a sequence of positive integers,

and if yk ∈ Cp×qk for each k ∈ Z1,n, then let row(yk)
n
k=1 := [y1, y2, . . . , yn].

If X , Y, and Z are non-empty sets with Z ⊆ X and if f : X → Y is a map-
ping, then RstrZ f stands for the restriction of f onto Z. Furthermore, let
Π+ := {z ∈ C : ℑz ∈ (0,∞)} and let Π− := {z ∈ C : ℑz ∈ (−∞, 0)}.

2. On the solvability of matricial power moment problems

In this section, we recall a necessary and su�cient condition for the solv-
ability of the Stieltjes moment problem MP[[α,∞); (sj)

m
j=0,≤], where α is an

arbitrarily given real number and where m is an arbitrarily given non-negative
integer. First we introduce certain sets of sequences of complex q × q matrices,
which are determined by the properties of particular block Hankel matrices
built of them. For each n ∈ N0, let H≥

q,2n be the set of all sequences (sj)
2n
j=0

of complex q × q matrices such that the block Hankel matrix Hn := [sj+k]
n
j,k=0

is non-negative Hermitian. Furthermore, let H≥
q,∞ be the set of all sequences
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(sj)
∞
j=0 of complex q × q matrices such that, for all n ∈ N0, the sequence (sj)

2n
j=0

belongs to H≥
q,2n. The elements of the set H≥

q,2κ, where κ ∈ N0∪{∞}, are called
Hankel non-negative de�nite sequences. For all n ∈ N0, let H≥,e

q,2n be the set

of all sequences (sj)
2n
j=0 of complex q × q matrices for which there are matri-

ces s2n+1 ∈ Cq×q and s2n+2 ∈ Cq×q such that (sj)
2(n+1)
j=0 belongs to H≥

q,2(n+1).

Furthermore, for all n ∈ N0, we will use H≥,e
q,2n+1 to denote the set of sequences

(sj)
2n+1
j=0 of complex q × q matrices for which there is some s2n+2 ∈ Cq×q such

that (sj)
2(n+1)
j=0 belongs to H≥

q,2(n+1). For all m ∈ N0, the elements of the set

H≥,e
q,m are called Hankel non-negative de�nite extendable sequences. For techni-

cal reasons, we set H≥,e
q,∞ := H≥

q,∞. Observe that the solvability of the matricial
Hamburger moment problems can be characterized by the introduced classes
of sequences of complex q × q matrices:

Theorem 2.1 (see, e. g. [10, Theorem 3.2] or [20, Theorem 4.16]). Let n ∈ N0

and let (sj)
2n
j=0 be a sequence of complex q × q matrices. Then

Mq
≥[R; (sj)

2n
j=0,≤] ̸= ∅

if and only if (sj)
2n
j=0 ∈ H≥

q,2n.

Let α ∈ C, let κ ∈ N ∪ {∞}, and let (sj)
κ
j=0 be a sequence of complex

p× q matrices. Then let the sequence (sα◃j)
κ−1
j=0 be de�ned by

sα◃j := −αsj + sj+1 for all j ∈ Z0,κ−1. (2)

The sequence (sα◃j)
κ−1
j=0 is called the sequence generated from (sj)

κ
j=0 by right-

sided α-shifting. (An analogous left-sided version is discussed in [25, De�ni-
tion 2.1].) The sequence (sα◃j)

κ−1
j=0 is used to de�ne further sets of sequences of

complex matrices, which are useful to discuss the Stieltjes moment problems
we consider. Let K≥

q,0,α := H≥
q,0. For every choice of n ∈ N, let K≥

q,2n,α :=

{(sj)2nj=0 ∈ H≥
q,2n : (sα◃j)

2(n−1)
j=0 ∈ H≥

q,2(n−1)}. For all m ∈ N0, by Sm(Cq×q) we

denote the set of all sequences (sj)
m
j=0 of complex q × q matrices. Then we set

K≥
q,2n+1,α := {(sj)2n+1

j=0 ∈ S2n+1(Cq×q) : {(sj)2nj=0, (sα◃j)
2n
j=0} ⊆ H≥

q,2n}. For all

m ∈ N0, let K≥,e
q,m,α be the set of all sequences (sj)

m
j=0 of complex q × q matrices

for which there exists a complex q × q matrix sm+1 such that (sj)
m+1
j=0 belongs

to K≥
q,m+1,α. We have K≥,e

q,2n,α = {(sj)2nj=0 ∈ H≥
q,2n : (sα◃j)

2n−1
j=0 ∈ H≥,e

q,2n−1} for all
n ∈ N and K≥,e

q,2n+1,α = {(sj)2n+1
j=0 ∈ H≥,e

q,2n+1 : (sα◃j)
2n
j=0 ∈ H≥

q,2n} for all n ∈ N0.

Obviously, K≥,e
q,m,α ⊆ K≥

q,m,α. Furthermore, if (sj)
m
j=0 ∈ K≥

q,m,α (resp. K≥,e
q,m,α),

then we easily see that (sj)
ℓ
j=0 ∈ K≥

q,ℓ,α (resp. (sj)
ℓ
j=0 ∈ K≥,e

q,ℓ,α) holds true

for all ℓ ∈ Z0,m. Thus, for all α ∈ R, let K≥
q,∞,α be the set of all sequences

(sj)
∞
j=0 of complex q × q matrices such that (sj)

m
j=0 belongs to K≥

q,m,α for all

m ∈ N0, and let K≥,e
q,∞,α := K≥

q,∞,α. For all κ ∈ N0 ∪ {∞}, we call a sequence
(sj)

κ
j=0 [α,∞)-Stieltjes right-sided non-negative de�nite (resp. [α,∞)-Stieltjes
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right-sided non-negative de�nite expendable) if it belongs to K≥
q,κ,α (resp. to

K≥,e
q,κ,α). Note that left versions of these notions are used in [25, De�nition 1.3].
Using the introduced sets of sequences of complex q × q matrices, we are able

to recall solvability criterions of the problem MP[[α,∞); (sj)
m
j=0,≤]:

Theorem 2.2 ( [19, Theorem 1.4]). Let α ∈ R, let m ∈ N0, and let (sj)
m
j=0 be

a sequence of complex q × q matrices. Then Mq
≥[[α,∞); (sj)

m
j=0,≤] ̸= ∅ if and

only if (sj)
m
j=0 ∈ K≥

q,m,α.

For the description of the solution set Mq
≥[[α,∞); (sj)

m
j=0,≤] of Problem

MP[[α,∞); (sj)
m
j=0,≤], it is essential that one can suppose extendable data

without loss of generality:

Theorem 2.3 ( [19, Theorem 5.2]). Let α ∈ R, let m ∈ N0, and let (sj)
m
j=0 ∈

K≥
q,m,α. Then there is a unique sequence (s̃j)

m
j=0 ∈ K≥,e

q,m,α such that the sets

Mq
≥[[α,∞); (s̃j)

m
j=0,≤] and Mq

≥[[α,∞); (sj)
m
j=0,≤] coincide.

3. Some classes of holomorphic matrix-valued functions
The class Rq(Π+) of all q × q Herglotz�Nevanlinna functions in the upper

half-plane Π+ consists of all matrix-valued functions F : Π+ → Cq×q which are
holomorphic in Π+ and which satisfy ℑ[F (Π+)] ⊆ Cq×q

≥ . Detailed considera-

tions of matrix-valued Herglotz�Nevanlinna functions can be found in [26, 31].
In particular, the functions belonging to Rq(Π+) admit a well-known integral
representation:

Theorem 3.1. (a) For each F ∈ Rq(Π+), there exist unique matrices A ∈
Cq×q
H and B ∈ Cq×q

≥ and a unique non-negative Hermitian measure ν ∈
Mq

≥(R) such that

F (z) = A+ zB +

∫
R

1 + tz

t− z
ν(dt) for each z ∈ Π+. (3)

(b) If A ∈ Cq×q
H , if B ∈ Cq×q

≥ , and if ν ∈ Mq
≥(R), then F : Π+ → Cq×q

de�ned by (3) belongs to Rq(Π+).

For each F ∈ Rq(Π+), the unique triple (A,B, ν) ∈ Cq×q
H ×Cq×q

≥ ×Mq
≥(R) for

which the representation (3) holds true is called the Nevanlinna parametrization
of F and we will also write (AF , BF , νF ) for (A,B, ν). In particular, νF is said
to be the Nevanlinna measure of F . If F belongs to R1(Π+), then µF : BR →
[0,∞] de�ned by

µF (B) :=

∫
B
(1 + t2)νF (dt) for all B ∈ BR (4)

is a measure, which is called the spectral measure of F . By R′
q(Π+) we denote

the set of all F ∈ Rq(Π+) for which g : R → R de�ned by g(t) := 1+ t2 belongs
to L1(R,BR, νF ;R). Obviously, R′

q(Π+) = {F ∈ Rq(Π+) : νF ∈ Mq
≥,2(R)}.

If F belongs to R′
q(Π+), then µF : BR → Cq×q

≥ given by (4) is a well-de�ned

non-negative Hermitian q × q measure belonging to Mq
≥(R), which is said to be
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the matricial spectral measure of F . Obviously, for functions which belong to
R′

1(Π+), the notions spectral measure and matricial spectral measure coincide.
For our considerations, the class R′

0,q(Π+) of all F ∈ Rq(Π+) for which

sup
y∈[1,∞)

y∥F (iy)∥S <∞ (5)

holds true plays an essential role. The class R′
0,q(Π+) is a subclass of R′

q(Π+)

(see, e. g. [26, Lemma 6.1]). The functions belonging to R′
0,q(Π+) admit a

particular integral representation:

Theorem 3.2. (a) For each F ∈ R′
0,q(Π+), there is a unique µ ∈ Mq

≥(R)
such that

F (z) =

∫
R

1

t− z
µ(dt) for each z ∈ Π+, (6)

namely the matricial spectral measure of F , and

µ(R) = lim
y→∞

(yℑ[F (iy)]) = −i lim
y→∞

[yF (iy)] = i lim
y→∞

[yF ∗(iy)].

(b) If F : Π+ → Cq×q is a matrix-valued function for which there exists a
non-negative Hermitian measure µ ∈ Mq

≥(R) such that (6) holds true,

then F belongs to R′
0,q(Π+).

A proof of Theorem 3.2 is given, e. g., in [14, Theorem 8.7]. If F ∈ R′
0,q(Π+),

then the unique µ ∈ Mq
≥(R) for which (6) holds true is also called the Stieltjes

measure of F . If a non-negative Hermitian q × q measure µ ∈ Mq
≥(R) is given,

then F : Π+ → Cq×q de�ned by (6) is said to be the Stieltjes transform of µ.

Lemma 3.3. LetM ∈ Cq×q and let F : Π+ → Cq×q be a matrix-valued function
which is holomorphic in Π+ and which satis�es the inequality[

M F (z)

F ∗(z) F (z)−F∗(z)
z−z

]
≥ 0

for each z ∈ Π+. Then F belongs to R′
0,q(Π+) and the inequality

sup
y∈(0,∞)

y∥F (iy)∥S ≤ ∥M∥S

holds true. Furthermore, the Stieltjes measure µ of F ful�lls µ(R) ≤M .

A proof of Lemma 3.3 is given, e. g., in [14, Lemma 8.9].
In view of the Stieltjes moment problem, a further class of matrix-valued

functions plays a key role: For each α ∈ R, let Sq;[α,∞) be the set of all matrix-

valued functions S : C \ [α,∞) → Cq×q which are holomorphic in C \ [α,∞)

and which satisfy ℑ[S(Π+)] ⊆ Cq×q
≥ as well as S((−∞, α)) ⊆ Cq×q

≥ . In [29,

Theorems 3.1 and 3.6, Proposition 2.16], integral representations of functions
belonging to Sq;[α,∞) are proved. Furthermore, several characterizations of the
class Sq;[α,∞) are given in [29, Section 4]. For each α ∈ R, let S0,q;[α,∞) be the
class of all F ∈ Sq;[α,∞) which satisfy (5). The functions belonging to S0,q;[α,∞)

admit a particular integral representation. Before we state this, let us note the
following:
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Remark 3.4. For every choice of α ∈ R and z ∈ C \ [α,∞), the function
bα,z : [α,∞) → C given by bα,z(t) := 1/(t − z) is a bounded and continuous
function which, in particular, belongs to L1([α,∞),B[α,∞), σ;C) for all σ ∈
Mq

≥([α,∞)).

Theorem 3.5 ( [29, Theorem 5.1]). Let α ∈ R.
(a) If S ∈ S0,q;[α,∞), then there is a unique σ ∈ Mq

≥([α,∞)) such that

S(z) =

∫
[α,∞)

1

t− z
σ(dt) for each z ∈ C \ [α,∞). (7)

(b) If σ ∈ Mq
≥([α,∞)) is such that S : C\ [α,∞) → Cq×q can be represented

via (7), then S belongs to S0,q;[α,∞).

If F ∈ S0,q;[α,∞) is given, then the unique σ ∈ Mq
≥([α,∞)) which ful�lls

the representation (7) of F is called the [α,∞)-Stieltjes measure of F . If
σ ∈ Mq

≥([α,∞)) is given, then F : C \ [α,∞) → Cq×q de�ned by (7) is said

to be the [α,∞)-Stieltjes transform of σ. In view of Theorem 3.5, the mo-
ment problem MP[[α,∞); (sj)

m
j=0,≤] admits a reformulation in the language of

[α,∞)-Stieltjes transforms:

Problem S[[α,∞); (sj)
m
j=0,≤]: Let α ∈ R, let m ∈ N0, and let (sj)

m
j=0 be a

sequence of complex q × q matrices. Describe the set S0,q;[α,∞)[(sj)
m
j=0,≤] of all

F ∈ S0,q;[α,∞) the [α,∞)-Stieltjes measure of which belongs to

Mq
≥[[α,∞); (sj)

m
j=0,≤].

Remark 3.6. Let α ∈ R and let F ∈ S0,q;[α,∞). Then F� := RstrΠ+ F belongs
to R′

0,q(Π+), the matricial spectral measure µ� of F� ful�lls µ�((−∞, α)) = 0,

and σ := RstrB[α,∞)
µ� is exactly the [α,∞)-Stieltjes measure of F (see [29,

Proposition 2.16]).

4. From the Stieltjes moment problem to the system of
Potapov's fundamental inequalities

In this section, we introduce the system of Potapov's fundamental matrices
corresponding to the matricial Stieltjes moment problemMP[[α,∞); (sj)

m
j=0,≤].

We will see that each solution of this moment problem ful�lls necessarily the
system of Potapov's fundamental matrix inequalities. First it seems to be useful
to introduce further notations and, in particular, several block Hankel matri-
ces which will play a key role in our considerations. For technical reason, let
s−1 := 0p×q.
Let κ ∈ N0 ∪ {∞} and let (sj)

κ
j=0 be a sequence of complex p× q matrices.

For each n ∈ N0 with 2n ≤ κ, let Hn := [sj+k]
n
j,k=0, for each n ∈ N0 with

2n+ 1 ≤ κ, let Kn := [sj+k+1]
n
j,k=0, and, for each n ∈ N0 with 2n+ 2 ≤ κ, let

Gn := [sj+k+2]
n
j,k=0. If m and n are integers such that −1 ≤ m ≤ n ≤ κ, then

we set ym,n := col(sj)
n
j=m and zm,n := row(sk)

n
k=m. Let u0 := 0p×q, u0 := 0p×q,

w0 := 0p×q, and w0 := 0p×q. For all n ∈ N with n ≤ κ+ 1, let un := −y−1,n−1,

and wn := z−1,n−1. Further, for each n ∈ N0 with 2n ≤ κ, let un :=
[−yn+1,2n

0p×q

]
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and wn := [zn+1,2n, 0p×q]. If a real number α is additionally given, then we
continue to use the notation given by (2), and we set Hα◃n := [sα◃j+k]

n
j,k=0 for

each n ∈ N0 with 2n+ 1 ≤ κ.
For each n ∈ N0, we set

Tq,n := [δj,k+1Iq]
n
j,k=0, vq,n := col(δj,0Iq)

n
j=0, and vq,n := col(δn−j,0Iq)

n
j=0,

where δj,k is the Kronecker delta: δj,k := 1 if j = k and δj,k := 0 if j ̸= k.
Obviously, T ∗

q,n = [δj+1,kIq]
n
j,k=0 for each n ∈ N0.

It seems to be useful to recall well-known Lyapunov identities for block Han-
kel matrices. (These equations can be also easily proved by straightforward
calculation.)

Remark 4.1. Let κ ∈ N0 ∪ {∞} and let (sj)
κ
j=0 be a sequence of complex

p× q matrices.

(a) For each n ∈ N0 with 2n ≤ κ, then HnT
∗
q,n − Tp,nHn = unv

∗
q,n − vp,nwn

and HnTq,n − T ∗
p,nHn = unv

∗
q,n − vp,nwn. In particular, if p = q and if

s∗j = sj for each j ∈ Z0,κ, then HnT
∗
q,n − Tq,nHn = unv

∗
q,n − vq,nu

∗
n and

HnTq,n − T ∗
q,nHn = unv

∗
q,n − vq,nu

∗
n for each n ∈ N0 with 2n ≤ κ.

(b) For each n ∈ N0 with 2n + 1 ≤ κ, we have Hα◃n = −αHn + Kn,

vp,nv
∗
p,nHn =

[
RTp,n(α)

]−1
Hn − Tp,nHα◃n, and, in the case that p = q

and s∗j = sj for each j ∈ Z0,κ hold true, moreover Hα◃nT
∗
q,n−Tq,nHα◃n =

(−αun− y0,n)v
∗
q,n− vq,n(−αun− y0,n)

∗ for each n ∈ N0 with 2n+1 ≤ κ.

Remark 4.2. For each n ∈ N0, the matrix-valued functions
RTq,n : C → C(n+1)q×(n+1)q and RT ∗

q,n
: C → C(n+1)q×(n+1)q given by

RTq,n(z) := (I(n+1)q − zTq,n)
−1 and RT ∗

q,n
(z) := (I(n+1)q − zT ∗

q,n)
−1 are well-

de�ned matrix polynomials of degree n, which can be represented, for each z ∈ C,
via RTq,n(z) =

∑n
j=0 z

jT j
q,n and RT ∗

q,n
(z) =

∑n
j=0 z

j(T ∗
q,n)

j, respectively. In

particular, RT ∗
q,n

(z) = [RTq,n(z)]
∗ for all z ∈ C.

For each n ∈ N0, let Eq,n : C → C(n+1)q×q and Fq,n : C → C(n+1)q×q be
de�ned by

Eq,n(z) := col(zjIq)
n
j=0 and Fq,n(z) := zEq,n(z), (8)

respectively. Obviously, for each n ∈ N0 and each z ∈ C, we have RTq,n(z)vq,n =
Eq,n(z).

Notation 4.3. Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj)
κ
j=0 be a sequence of

complex q × q matrices. Further, let G be a subset of C with G \ R ̸= ∅ and let
f : G → Cq×q be a matrix-valued function. Then, for each n ∈ N0 with 2n ≤ κ,

let P
[f ]
2n : G \ R → C(n+2)q×(n+2)q be de�ned by

P
[f ]
2n (z) :=

[
Hn RTq,n(z)[vq,nf(z)− un]

(RTq,n(z)[vq,nf(z)− un])
∗ f(z)−f∗(z)

z−z

]
. (9)
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If κ ≥ 1, then, for each n ∈ N0 with 2n + 1 ≤ κ, let P
[f ]
2n+1 : G \ R →

C(n+2)q×(n+2)q be given by

P
[f ]
2n+1(z) :=


Hα◃n

RTq,n(z)(vq,n[(z − α)f(z)]

−(−αun − y0,n))

[RTq,n(z)(vq,n[(z − α)f(z)]

−(−αun − y0,n))]
∗

(z−α)f(z)−[(z−α)f(z)]∗

z−z

 . (10)

Furthermore, let P
[f ]
−1 : G \ R → Cq×q be de�ned by

P
[f ]
−1(z) :=

(z − α)f(z)− [(z − α)f(z)]∗

z − z
.

With respect to the Stieltjes moment problem MP[[α,∞); (sj)
m
j=0,≤] if, G =

C, then the functions (9) and (10) are called the Potapov fundamental matrix-
valued functions connected to the Stieltjes moment problem (generated by
f). If these matrices are both non-negative Hermitian, then one says that
the Potapov's fundamental matrix inequalities for the function f are ful�lled.

Remark 4.4. Let κ ∈ N0∪{∞}, let (sj)κj=0 be a sequence of complex q × q ma-

trices, let G be a subset of C with G \ R ̸= ∅, and let S : G → Cq×q be a
matrix-valued function. Straightforward calculations show then that the follow-
ing statements hold true:

(a) For every choice of n ∈ N0 with 2n ≤ κ and z ∈ G \ R, we have[
s0 S(z)

S∗(z) S(z)−S∗(z)
z−z

]
= [vq,n+1, vq,n+1]

∗P
[S]
2n (z)[vq,n+1, vq,n+1]. (11)

(b) If κ ≥ 1, for each n ∈ N0 with 2n+ 1 ≤ κ and each z ∈ G \ R, then[ −αs0 + s1 (z − α)S(z) + s0
[(z − α)S(z) + s0]

∗ (z−α)S(z)−[(z−α)S(z)]∗

z−z

]
=

= [vq,n+1, vq,n+1]
∗P

[S]
2n+1(z)[vq,n+1, vq,n+1].

(12)

Notation 4.5. For each n ∈ N0, let Ã2n(z) := diag([RTq,n(z)]
−1, Iq), let

B̃2n(z) :=

[
I(n+1)q (z − z)vq,n

0q×(n+1)q Iq

]
,

let C̃2n(z) := diag(RTq,n(z), Iq), let

Ã2n+1(z) := Ã2n(z),

let B̃2n+1(z) := B̃2n(z), and let C̃2n+1(z) := C̃2n(z).

Lemma 4.6. Let κ ∈ N0 ∪ {∞} and let (sj)
κ
j=0 be a sequence of Hermitian

complex q × q matrices. Let G be a subset of C with G \ R ̸= ∅. Further, let
f : G → Cq×q be a matrix-valued function, let G∨ := {z ∈ C : z ∈ G}, and let
f∨ : G∨ → Cq×q be de�ned by f∨(z) := f∗(z). For each k ∈ Z−1,κ and each z ∈
G∨ \R, then P [f∨]

k (z) = Xk(z)P
[f ]
k (z)X∗

k(z), where Xk(z) := C̃k(z)B̃k(z)Ãk(z).
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Taking into account Remark 4.1, Lemma 4.6 can be proved by straightfor-
ward calculations (, for details, see e. g. [30, Lemma 4.8]).
In the following, we will write Bp×q for the σ-algebra of all Borel subsets

of Cp×q. Let (Ω,A) be a measurable space and let µ ∈ Mq
≥(Ω,A). Then µ is

absolutely continuous with respect to its trace measure τ := trµ. Let µ′τ be a
version of the Radon�Nikodym derivative of µ with respect to τ . A pair [Φ,Ψ]
of an A-Bp×q-measurable mapping Φ: Ω → Cp×q and an A-Br×q-measurable
mapping Ψ: Ω → Cr×q is called left-integrable with respect to µ if Φµ′τΨ

∗ be-
longs to [L1(Ω,A, τ ;C)]p×r. In this case, the corresponding integral is de�ned
by
∫
ΩΦdµΨ∗ :=

∫
ΩΦµ′τΨ

∗dτ and we also use the notation
∫
ΩΦ(ω)µ(dω)Ψ∗(ω)

for it. In the following, when we write such an integral
∫
ΩΦdµΨ∗, then

we also mean that the pair [Φ,Ψ] is left-integrable with respect to µ. By
p× q-L2(Ω,A, µ;C) we denote the set of all A-Bp×q-measurable mappings for
which the pair [Φ,Φ] is left-integrable which respect to µ. Furthermore, for
each subset A of Ω, we will use 1A to denote the indicator function of the set
A (de�ned on Ω).

Remark 4.7. Let Ω ∈ BR \ {∅}, let m ∈ N0, and let σ ∈ Mq
≥(Ω). In view

of Lemma 7.2, it is readily checked that σ belongs to Mq
≥,2m(Ω) if and only

if RstrΩEq,m belongs to (m+ 1)q × q-L2(Ω,BΩ, σ;C), where Eq,m is given by
(8). If σ ∈ Mq

≥,2m(Ω), then Lemma 7.2 also shows that, for each n ∈ N0

with n ≤ m, the block Hankel matrix H
[σ]
n := [s

[σ]
j+k]

n
j,k=0 admits the integral

representation

H [σ]
n =

∫
Ω
Eq,n(t)σ(dt)E

∗
q,n(t). (13)

If α ∈ R, if κ ∈ N ∪ {∞}, and if σ ∈ Mq
≥,κ([α,∞)), then let H

[σ]
α◃n :=

[s
[σ]
α◃j+k]

n
j,k=0 for each n ∈ N0 with 2n+ 1 ≤ κ.

Remark 4.8. Let α ∈ R and let σ ∈ Mq
≥,1([α,∞)). Using Proposition 7.4 and

Remark 7.3, it is readily checked that the following statements hold true:

(a) The function ϕ : [α,∞) → Cq×q de�ned by ϕ(t) :=
√
t− αIq belongs to

q × q-L2([α,∞),B[α,∞), σ;C) and σ# : B[α,∞) → Cq×q given by

σ#(B) :=

∫
B
(
√
t− αIq)σ(dt)(

√
t− αIq)

∗ (14)

belongs to Mq
≥([α,∞)).

(b) If n ∈ N0 and if σ ∈ Mq
≥,2n+1([α,∞)), then

H
[σ]
α◃n =

∫
[α,∞)

[√
t− αEq,n(t)

]
σ(dt)

[√
t− αEq,n(t)

]∗
. (15)

(c) If n ∈ N0 and if σ
# ∈ Mq

≥,2n([α,∞)), then σ belongs toMq
≥,2n+1([α,∞))

and furthermore s
[σ#]
j = s

[σ]
j+1−αs

[σ]
j for all j ∈ Z0,2n and H

[σ#]
n = H

[σ]
α◃n.
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The next proposition shows that each solution of problem
MP[[α,∞); (sj)

m
j=0,≤] ful�lls necessarily the system of the corresponding Pota-

pov's fundamental matrix inequalities.

Proposition 4.9. Let α ∈ R, let m ∈ N0, and let (sj)
m
j=0 be a sequence

of complex q × q matrices such that Mq
≥[[α,∞); (sj)

m
j=0,≤] ̸= ∅. Let σ ∈

Mq
≥[[α,∞); (sj)

m
j=0,≤] and let S be the [α,∞)-Stieltjes transform of σ. For

each j ∈ Z0,m, let s
[σ]
j be given by (1). Then

P
[S]
2n (z) =

∫
[α,∞)

[
Eq,n(t)

1
t−z

Iq

]
σ(dt)

[
Eq,n(t)

1
t−z

Iq

]∗
+

[
vq,n
0q×q

]
(s2n − s

[σ]
2n)

[
vq,n
0q×q

]∗
for each n ∈ N0 with 2n ≤ m and all z ∈ C\R, where Eq,n is given by (8), and

P
[S]
2n+1(z) =

=

∫
[α,∞)

(√
t− α

[
Eq,n(t)

1
t−z

Iq

])
σ(dt)

(√
t− α

[
Eq,n(t)

1
t−z

Iq

])∗
+

+

[
vq,n
0q×q

]
(s2n+1 − s

[σ]
2n+1)

[
vq,n
0q×q

]∗
for each n ∈ N0 with 2n + 1 ≤ m and all z ∈ C \ R. In particular, for every

choice of k ∈ Z0,m and z ∈ C\R, the matrix P
[S]
k (z) is non-negative Hermitian.

Proposition 4.9 can be proved using standard arguments of integration theory
of non-negative Hermitian measures (Lemma 7.2 and Remark 7.3). We omit
the details.

5. Some integral estimates for the scalar case

In this section, we state some integral representations and estimates in the
scalar case q = 1.

Lemma 5.1. Let α ∈ R and let F ∈ R1(Π+) with Nevanlinna parametrization
(A,B, ν) and spectral measure µ. Then:

(a) For each w ∈ Π+, the integral
∫
R|t− w|−2µ(dt) is �nite and

ℑF (w) = (ℑw)
[
B +

∫
R

1

|t− w|2
µ(dt)

]
. (16)

(b) For each w ∈ Π+, the integral
∫
R|t[|t−w|

−2−(1+t2)−1]−α|t−w|−2|µ(dt)
is �nite and F# : Π+ → C de�ned by

F#(w) := (w − α)F (w) (17)
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satis�es, for each w ∈ Π+, the equation

ℑF#(w) =

= (ℑw)

(
A+B(2ℜw − α)+

+

∫
R

[
t

(
1

|t− w|2
− 1

1 + t2

)
− α

|t− w|2

]
µ(dt)

)
.

(18)

Proof. In view of∫
R

1

1 + t2
µ(dt) =

∫
R

1

1 + t2
(1 + t2)ν(dt) = ν(R) <∞,

we see that, for each w ∈ Π+, the function ψw : R → C given by the equation
ψw(t) := (t − w)−1 − t(1 + t2)−1 belongs to L1(R,BR, µ;C). By virtue of a
result due to R. Nevanlinna (see, e. g. [47, Theorem A.2]), for each w ∈ Π+, we
have

F (w) = A+Bw +

∫
R

(
1

t− w
− t

1 + t2

)
µ(dt). (19)

(a) Let w ∈ Π+. For each t ∈ R, then ℑψw(t) = (ℑw)|t− w|−2. Thus,∫
R

∣∣∣∣ 1

|t− w|2

∣∣∣∣µ(dt) = 1

ℑw

∫
R
ℑψw(t)µ(dt) ≤

1

ℑw

∫
R
|ψw(t)|µ(dt) <∞

and

ℑ
[∫

R
ψw(t)µ(dt)

]
=

∫
R
ℑψw(t)µ(dt) = (ℑw)

∫
R

1

|t− w|2
µ(dt). (20)

Because of A ∈ R and B ∈ [0,∞), we have ℑA = 0 and ℑ(wB) = (ℑw)B.
Consequently, from (19), and (20) we get then (16).
(b) Let w ∈ Π+. In view of (17) and (19), we obtain

F#(w) = A(w − α) +Bw(w − α) +

∫
R

[
w − α

t− w
− t(w − α)

1 + t2

]
µ(dt). (21)

For each t ∈ R, we see that (w−α)ψw(t) = (w−α)/(t−w)− t(w−α)/(1+ t2)
holds true. Hence, (w − α)ψw ∈ L1(R,BR, µ;C) and, for each t ∈ R, we have
furthermore ℑ[(w − α)ψw(t)] = 2i(ℑw)[t( 1

|t−w|2 − 1
1+t2

)− α
|t−w|2 ]. This implies∫

R

∣∣∣∣t( 1

|t− w|2
− 1

1 + t2

)
− α

|t− w|2

∣∣∣∣µ(dt) ≤ 1

ℑw

∫
R
|(w − α)ψw(t)|µ(dt) <∞

and

ℑ
[∫

R
(w − α)ψw(t)µ(dt)

]
=

= (ℑw)
∫
R

[
t

(
1

|t− w|2
− 1

1 + t2

)
− α

|t− w|2

]
µ(dt).

(22)

29



B.FRITZSCHE, B.KIRSTEIN, C.M�ADLER, M. SCHEITHAUER

Obviously, ℑ(w2) = 2(ℜw)(ℑw). Hence, ℑ[w(w − α)] = ℑ(w2) − ℑ(wα) =
(ℑw)(2ℜw− α). Thus, ℑ[Bw(w− α)] = B(ℑw)(2ℜw− α). Then, by virtue of
(21), and (22), we get (18) from

ℑF#(w) = ℑ
(
A(w − α) +Bw(w − α) +

∫
R

[
w − α

t− w
− t(w − α)

1 + t2

]
µ(dt)

)
= ℑ[A(w − α)] + ℑ[Bw(w − α)] + ℑ

(∫
R

[
w − α

t− w
− t(w − α)

1 + t2

]
µ(dt)

)
= Aℑw +B(ℑw)(2ℜw − α)+

+ (ℑw)
∫
R

[
t

(
1

|t− w|2
− 1

1 + t2

)
− α

|t− w|2

]
µ(dt). �

Remark 5.2. Let α ∈ R and let F ∈ R1(Π+) with spectral measure µ. Further,
let ℓ1, ℓ2 ∈ R be such that ℓ1 < ℓ2 < α. Then it is readily checked that for every
choice of a ∈ (−∞, ℓ1) and b ∈ (ℓ2,∞), there exists a Ka,b ∈ R such that, for
each x ∈ [ℓ1, ℓ2], the inequality

∫
R\(a,b)(t− x)−2µ(dt) < Ka,b holds true.

Remark 5.3. Let r, s ∈ R. Then it is readily checked that the following state-
ments hold true:

(a) If r < s and s ̸= 0, then there exists a number a ∈ (−∞, r) ∩ (−∞, 0)
such that∣∣∣∣t[ 1

(t− x)2 + y2
− 1

1 + t2

]∣∣∣∣ < (2 + ∣∣∣rs ∣∣∣) ·
∣∣∣∣t[ 1

(t− s)2 + 1
− 1

1 + t2

]∣∣∣∣ (23)

is valid for every choice of x ∈ [r, s] and y ∈ (0, 1) and t ∈ (−∞, a].
(b) If s < r and r ̸= 0, then there exists a number b ∈ (r,∞) ∩ (0,∞) such

that, for every choice of x ∈ [s, r] and y ∈ (0, 1) and t ∈ [b,∞), inequality
(23) holds true.

Lemma 5.4. Let α ∈ R and let F ∈ R1(Π+) with spectral measure µ. Further,
let ℓ1 and ℓ2 be real numbers with ℓ1 < ℓ2 < α. Then there are real numbers
a, b, and C with a < ℓ1 and ℓ2 < b < α such that

∫
R\(a,b)|t[

1
(t−x)2+y2

− 1
1+t2

]−
α

(t−x)2+y2
|µ(dt) < C holds true for every choice of x ∈ [ℓ1, ℓ2] and y ∈ (0, 1).

Using Lemma 5.1 and Remarks 5.2 and 5.3, Lemma 5.4 can be proved anal-
ogous to the well-known special case α = 0. However, in the general case of on
arbitrary real number α, these straightforward calculations are very lengthy.
We omit the details.

Lemma 5.5. Let α ∈ R and let F ∈ R1(Π+) be such that F
# : Π+ → C de�ned

by (17) belongs to R1(Π+). Further, let µ be the spectral measure of F and let
ℓ1 and ℓ2 be real numbers with ℓ1 < ℓ2 < α. Then there are real numbers a,
b, and C with a < ℓ1 and ℓ2 < b < α such that

∫
(a,b)|

t−α
(t−x)2+y2

|σ(dt) < C and∫
(a,b)|

1
(t−x)2

|σ(dt) < C hold true for every choice of x ∈ [ℓ1, ℓ2] and y ∈ [0,∞).

Lemma 5.5 can be proved, using Lemmata 5.1 and 5.4 and Beppo Levi's
Theorem of monotone convergence. We omit the details.
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Remark 5.6. Let α ∈ R and let F ∈ R1(Π+) be such that F
# : Π+ → C de�ned

by (17) belongs to R1(Π+). Let µ be the spectral measure of F and let ℓ1 and
ℓ2 be real numbers with ℓ1 < ℓ2 < α. Then one can easily see from Remark 5.2
and Lemma 5.5 that there is a real number C such that

∫
R(t− x)−2µ(dt) < C

for all x ∈ [ℓ1, ℓ2].

Lemma 5.7. Let α ∈ R and let F ∈ R1(Π+) be such that F# : Π+ → C
de�ned by (17) belongs to R1(Π+). Then the Nevanlinna measure ν of F and
the spectral measure µ of F ful�ll ν((−∞, α)) = 0 and µ((−∞, α)) = 0.

Proof. (I) In the �rst step of the proof, we consider arbitrary real numbers ℓ1
and ℓ2 with ℓ1 < ℓ2 < α. Let (A,B, ν) be the Nevanlinna parametrization of
F . Because of Remark 5.6, there is a C ∈ R such that

∫
R(t − x)−2µ(dt) < C

is true for all x ∈ [ℓ1, ℓ2]. Since F belongs to R1(Π+), for each x ∈ [ℓ1, ℓ2] and
each ϵ ∈ (0,∞), from Lemma 5.1 we get then 0 ≤ ℑF (x+ iϵ) = ϵ(B +

∫
R[(t−

x)2 + ϵ2]−1µ(dt)) < ϵ(B + C) and, consequently,

0 ≤
∫
[ℓ1,ℓ2]

ℑF (x+ iϵ)λ(1)(dx) ≤ ϵ(B + C)(ℓ2 − ℓ1), (24)

where λ(1) is the Lebesgue measure de�ned on BR. In view of F ∈ R1(Π+), the
inversion formula of Stieltjes�Perron (see, e. g. [47, Appendix, p. 390]) yields

1

2
[σ({ℓ1}) + σ({ℓ2})] + σ((ℓ1, ℓ2)) =

1

π
lim

ϵ→0+0

∫
[ℓ1,ℓ2]

ℑF (x+ iϵ)λ(1)(dx). (25)

Combining (25) and (24), we obtain σ((ℓ1, ℓ2)) = 0, from

0 ≤ σ((ℓ1, ℓ2)) ≤
1

2
[σ({ℓ1}) + σ({ℓ2})] + σ((ℓ1, ℓ2))

=
1

π
lim

ϵ→0+0

∫
[ℓ1,ℓ2]

ℑF (x+ iϵ)λ(1)(dx) ≤ 1

π
lim

ϵ→0+0
[ϵ(B + C)(ℓ2 − ℓ1)] = 0.

(II) For each n ∈ N, the real numbers an := α − (1 + n) and bn := α − 1
n

ful�ll an < bn < α. Thus, part (I) of the proof provides us µ((an, bn)) = 0.
Obviously, (an, bn) ⊆ (an+1, bn+1) for each n ∈ N and

∪∞
n=1(an, bn) = (−∞, α).

Hence, µ((−∞, α)) = limn→∞ µ((an, bn)) = 0. Thus, ν((−∞, α)) = 0 follows
from

0 ≤ ν((−∞, α)) =

∫
(−∞,α)

1ν(dt) ≤

≤
∫
(−∞,α)

(1 + t2)ν(dt) = µ((−∞, α)) = 0.

�

6. From the system of Potapov's fundamental matrix inequalities
to the moment problem

Proposition 4.9 showed that the Stieltjes transform of an arbitrary solution
of problem MP[[α,∞); (sj)

m
j=0,≤] ful�lls necessarily the system of correspond-

ing Potapov's fundamental matrix inequalities. In this section, we are going
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to prove that the validity of the system of Potapov's fundamental matrix in-
equalities for a holomorphic q × q matrix-valued function de�ned on C \ [α,∞)
is also su�cient to be the Stieltjes transform of some solution of this matricial
Stieltjes-type moment problem. For the convenience of the reader, �rst we state
two well-known facts.

Remark 6.1. Let D be a discrete subset of Π+ and let F : Π+ \ D → Cq×q

be a matrix-valued function which is holomorphic in Π+ \ D and which ful-

�lls ℑF (z) ∈ Cq×q
≥ for all z ∈ Π+ \ D. Then one can easily see from [16,

Lemma 2.1.9] that there is a function F△ ∈ Rq(Π+) such that RstrΠ+\D F
△ =

F .

Remark 6.2. Let A,B ∈ Cq×q, let M be an open subset of R, and let ν ∈
Mq

≥(R \M). In view of a well-known result on integrals which depend on a

complex parameter (see, e. g. [24, Satz 5.8]), it is readily checked that ϕ : Π+ ∪
M ∪Π− → Cq×q given by

ϕ(z) := A+Bz +

∫
R\M

1 + tz

t− z
ν(dt)

is holomorphic in Π+ ∪M ∪Π−.

In the following, for all α ∈ R, let Cα,− := {z ∈ C : ℜz ∈ (−∞, α)}.

Lemma 6.3. Let α ∈ R and let F ∈ Rq(Π+) be such that F# : Π+ → Cq×q

de�ned by F#(w) := (w − α)F (w) belongs to Rq(Π+). Further, let ν be the
Nevanlinna measure of F . Then ν((−∞, α)) = 0 and the following two state-
ments hold true:

(a) There is a function Fα : C\ [α,∞) → Cq×q such that RstrΠ+ Fα = F and

Fα((−∞, α)) ⊆ Cq×q
H are ful�lled.

(b) There exists a unique function S ∈ Sq;[α,∞) with RstrΠ+ S = F .

Proof. Since F and F# belong to Rq(Π+), for all u ∈ Cq, we see that {u∗Fu,
u∗F#u} ⊆ R1(Π+) and that u

∗νu is the Nevanlinna measure of u∗Fu. Because
of Lemma 5.7, for all u ∈ Cq, we have u∗ν((−∞, α))u = (u∗νu)((−∞, α)) =
0 = u∗0q×qu. Hence, ν((−∞, α)) = 0q×q.
(a) Obviously, ν̃ := RstrB[α,∞)

ν belongs to Mq
≥([α,∞)). By virtue of F ∈

Rq(Π+) and Theorem 3.1, there are matrices A ∈ Cq×q
H and B ∈ Cq×q

≥ such that

(3) holds true for each z ∈ Π+. Remark 6.2 shows that Fα : C \ [α,∞) → Cq×q

given by

Fα(z) := A+Bz +

∫
[α,∞)

1 + tz

t− z
ν̃(dt) (26)

is holomorphic in C\ [α,∞). Comparing (3) and (26), we get Fα(z) = F (z) for
each z ∈ Π+. For every choice of x ∈ R, we have[∫

[α,∞)

1 + tx

t− x
ν̃(dt)

]∗
=

∫
[α,∞)

(
1 + tx

t− x

)
ν̃(dt) =

∫
[α,∞)

1 + tx

t− x
ν̃(dt).
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In view of (26), A ∈ Cq×q
H , and B ∈ Cq×q

≥ , then [Fα(x)]
∗ = Fα(x) follows for

each x ∈ (−∞, α).
(b) Because of part (a), there is a holomorphic function S : C\[α,∞) → Cq×q

such that

RstrΠ+ S = F and S((−∞, α)) ⊆ Cq×q
H (27)

hold true. According to {F, F#} ⊆ Rq(Π+) and (27), for all z ∈ Π+, then

ℑS(z) = ℑF (z) ∈ Cq×q
≥ and ℑ[(z − α)S(z)] = ℑF#(z) ∈ Cq×q

≥ . (28)

For all z ∈ Cα,− ∩Π+, we have ℑ[(z−α)S(z)] = [ℜ(z−α)]ℑS(z)+ (ℑz)ℜS(z)
and, by virtue of (28), consequently,

ℜS(z) = ℑ[(z − α)S(z)]

ℑz
+ [−ℜ(z − α)]

ℑS(z)
ℑz

∈ Cq×q
≥ . (29)

Now we consider an arbitrary monotonically nondecreasing sequence (yn)
∞
n=1 of

positive real numbers with limn→∞ yn = 0. Since the function S is holomorphic
in C \ [α,∞), the functions ℜS and ℑS are continuous in C \ [α,∞). Thus,
for each x ∈ (−∞, α), we have x + iyn ∈ Cα,− ∩ Π+ for all n ∈ N and, hence,
because of (29), and (28), then

ℜS(x) = lim
n→∞

ℜS(x+ iyn) ∈ Cq×q
≥ and

ℑS(x) = lim
n→∞

ℑS(x+ iyn) ∈ Cq×q
≥ .

(30)

Combining (27) and (30), for each x ∈ (−∞, α), we get ℜS(x) + iℑS(x) =
S(x) = [S(x)]∗ = ℜS(x) − iℑS(x) and, hence, ℑS(x) = 0. From (30) then

S(x) ∈ Cq×q
≥ follows for each x ∈ (−∞, α). Consequently, S ∈ Sq;[α,∞). Now

we consider an arbitrary S� ∈ Sq;[α,∞) such that RstrΠ+ S
� = F . From (27)

we get then S�(z) = F (z) = S(z) for each z ∈ Π+. Thus, the identity theorem
for holomorphic functions provides us S� = S. �

Proposition 6.4. Let α ∈ R and let D be a discrete subset of Π+. Let F : Π+ \
D → Cq×q be a holomorphic matrix-valued function and let F# : Π+ → Cq×q

be de�ned by F#(w) := (w − α)F (w). Suppose {ℑF (w),ℑF#(w)} ⊆ Cq×q
≥ for

all w ∈ Π+ \D. Then there is a unique S ∈ Sq;[α,∞) such that RstrΠ+\D S = F .

Proposition 6.4 can be easily proved using Remark 6.1, Lemma 6.3, and the
identity theorem for holomorphic functions. We omit the details.

Theorem 6.5. Let α ∈ R, let κ ∈ N0 ∪ {∞}, let (sj)
κ
j=0 be a sequence of

complex q × q matrices, and let m ∈ Z0,κ. Further, let D be a discrete subset of
Π+ and let F : Π+ \ D → Cq×q be a holomorphic matrix-valued function such
that

P [F ]
m (z) ≥ 0 and P

[F ]
m−1(z) ≥ 0 for each z ∈ Π+ \ D. (31)

Then there exists a unique S ∈ S0,q;[α,∞) such that RstrΠ+\D S = F . Moreover,

the inequality P
[S]
k (z) ≥ 0 holds true for each k ∈ Z−1,m and each z ∈ C \ R.
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Proof. From (31) and Notation 4.3 we see that Hn ≥ 0 for each n ∈ N0 with
2n ≤ m, that Hα◃n ≥ 0 for each n ∈ N with 2n + 1 ≤ m, that in par-

ticular s∗j = sj for each j ∈ Z0,m, and that ℑF (z) = (ℑz)F (z)−F ∗(z)
z−z ≥ 0

and ℑ[(z − α)F (z)] = (ℑz) (z−α)F (z)−[(z−α)F (z)]∗

z−z ≥ 0 hold true for each z ∈
Π+ \ D. Thus, because of Proposition 6.4, there exists a unique S ∈ Sq;[α,∞)

such that RstrΠ+\D S = F . By continuity arguments, from (31) we get then

{P [S]
m (z), P

[S]
m−1(z)} ⊆ Cq×q

≥ for each z ∈ Π+ and, consequently,

P
[S]
k (z) ≥ 0 for each k ∈ Z−1,m and each z ∈ Π+. (32)

In particular, S̃ := RstrΠ+ S ful�lls[
s0 S̃(z)

S̃∗(z) S̃(z)−S̃∗(z)
z−z

]
= P

[S]
0 (z) ≥ 0 for each z ∈ Π+.

Consequently, Lemma 3.3 provides us S̃ ∈ R′
0,q(Π+) and supy∈[1,∞) y∥S(iy)∥S <

∞. Hence, S belongs to S0,q;[α,∞). Then Theorem 3.5 shows that there is a

σ ∈ Mq
≥([α,∞)) such that (7) holds true. Let S̃∨ : Π− → Cq×q be de�ned

by S̃∨(z) := S∗(z). Thus, from (7) we get S̃∨(z) = [
∫
[α,∞)

1
t−zσ(dt)]

∗ =∫
[α,∞)

1
t−zσ(dt) = S(z) for each z ∈ Π−. From (32) and Lemma 4.6 we see

then that, for each k ∈ Z−1,m and each z ∈ Π−, there exists a matrix Xk(z)

such that P
[S]
k (z) = P

[S̃∨]
k (z) = Xk(z)P

[S]
k (z)X∗

k(z) is ful�lled for all k ∈ Z−1,m

and all z ∈ Π−. In view of (32), this implies P
[S]
k (z) ≥ 0 for each k ∈ Z−1,m

and each z ∈ Π−. Because of C \ R = Π+ ∪Π−, the proof is complete. �
Remark 6.6. For each n ∈ N0 and every choice of w and z in C, it is readily
checked that

(z − w)
[
RT ∗

q,n
(w)
]∗
Tq,nRTq,n(z) = RTq,n(z)−

[
RT ∗

q,n
(w)
]∗
.

Lemma 6.7. Let κ ∈ N0 ∪ {∞} and let (sj)
κ
j=0 be a sequence of Hermitian

complex q × q matrices. Then

HnT
∗
q,nRT ∗

q,n
(z)−

[
RT ∗

q,n
(w)
]∗
Tq,nHn+

+
[
RT ∗

q,n
(w)
]∗
(vq,nu

∗
n − unv

∗
q,n)RT ∗

q,n
(z) =

= (z − w)
[
RT ∗

q,n
(w)
]∗
Tq,nHnT

∗
q,nRT ∗

q,n
(z)

(33)

for all n ∈ N0 with 2n ≤ κ and every choice of w and z in C. Furthermore,

Hα◃nT
∗
q,nRT ∗

q,n
(z)−

[
RT ∗

q,n
(w)
]∗
Tq,nHα◃n+

+
[
RT ∗

q,n
(w)
]∗[

vq,n(−αun − y0,n)
∗ − (−αun − y0,n)v

∗
q,n

]
RT ∗

q,n
(z) =

= (z − w)
[
RT ∗

q,n
(w)
]∗
Tq,nHα◃nT

∗
q,nRT ∗

q,n
(z)

(34)

for all α ∈ R, all n ∈ N0 with 2n+ 1 ≤ κ, and every choice of w and z in C.

34



THE SYSTEM OF POTAPOV'S FUNDAMENTAL MATRIX ...

Proof. By virtue of Remark 4.1(a), we have

HnT
∗
q,nRT ∗

q,n
(z)−

[
RT ∗

q,n
(w)
]∗
Tq,nHn+

+
[
RT ∗

q,n
(w)
]∗
(vq,nu

∗
n − unv

∗
q,n)RT ∗

q,n
(z) =

=
[
RT ∗

q,n
(w)
]∗([

RT ∗
q,n

(w)
]−∗

HnT
∗
q,n − Tq,nHnR

−1
T ∗
q,n

(z)+

+ (vq,nu
∗
n − unv

∗
q,n)

)
RT ∗

q,n
(z) =

[
RT ∗

q,n
(w)
]∗[

(I(n+1)q − wTq,n)HnT
∗
q,n−

− Tq,nHn(I(n+1)q − zT ∗
q,n) + (vq,nu

∗
n − unv

∗
q,n)bigr]RT ∗

q,n
(z) =

=
[
RT ∗

q,n
(w)
]∗[

(z − w)Tq,nHnT
∗
q,n − (Tq,nHn −HnT

∗
q,n)+

+ (vq,nu
∗
n − unv

∗
q,n)
]
RT ∗

q,n
(z) =

[
RT ∗

q,n
(w)
]∗[

(z − w)Tq,nHnT
∗
q,n

]
RT ∗

q,n
(z) =

= (z − w)
[
RT ∗

q,n
(w)
]∗
Tq,nHnT

∗
q,nRT ∗

q,n
(z).

Using Remark 4.1(b), equation (34) can be proved analogous to (33). �
Notation 6.8. Let α ∈ R, let κ ∈ N0∪{∞}, and let (sj)

κ
j=0 be a sequence from

Cq×q. Let G be a subset of C with G \R ̸= ∅ and let f : G → Cq×q be a matrix-

valued function. For each n ∈ N0 with 2n ≤ κ, let F2n : G → C(n+1)q×(n+1)q be
given by

F2n(z) := HnT
∗
q,nRT ∗

q,n
(z) +RTq,n(z)[vq,nf(z)− un]v

∗
q,nRT ∗

q,n
(z) (35)

and let Q
[f ]
2n : G \ R → C(2n+2)q×(2n+2)q be de�ned by

Q
[f ]
2n(z) :=

[
Hn F2n(z)

F ∗
2n(z)

F2n(z)−F ∗
2n(z)

z−z

]
. (36)

If κ ≥ 1, then, for all n ∈ N0 with 2n + 1 ≤ κ, let F2n+1 : G → C(n+1)q×(n+1)q

be given by

F2n+1(z) := Hα◃nT
∗
q,nRT ∗

q,n
(z) +RTq,n(z)

[
vq,n(z − α)f(z)−

− (−αun − y0,n)
]
v∗q,nRT ∗

q,n
(z)

(37)

and let Q
[f ]
2n+1 : G \ R → C(2n+2)q×(2n+2)q be de�ned by

Q
[f ]
2n+1(z) :=

[
Hα◃n F2n+1(z)

F ∗
2n+1(z)

F2n+1(z)−F ∗
2n+1(z)

z−z

]
. (38)

Further, for each k ∈ N0, let m2k := k and m2k+1 := k.

Proposition 6.9. Let α ∈ R, let κ ∈ N0∪{∞}, and let (sj)κj=0 be a sequence of

Hermitian complex q × q matrices. Let f : C\[α,∞) → Cq×q be a matrix-valued

function. Further, for each k ∈ N0, let Fk : C \ [α,∞) → C(mk+1)q×(mk+1)q be
de�ned by Notation 6.8. For all k ∈ Z0,κ, then there are functions Γk : C \R →
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C(mk+2)q×(2mk+2)q and ∆k : C \ R → C(2mk+2)q×(mk+2)q such that P
[f ]
k (z) =

Γk(z)Q
[f ]
k (z)Γ∗

k(z) and Q
[f ]
k (z) = ∆k(z)P

[f ]
k (z)∆∗

k(z) hold true for each z ∈
C \ R.

Proof. (I) In the trivial case k = 0, choose Γ0(z) := I2q and ∆0(z) := I2q for
all z ∈ C \ R.
(II) Now we consider the case that κ ≥ 1 and that n ∈ N0 is such that

2n+ 1 ≤ κ. Let

∆2n+1(z) :=

[
I(n+1)q 0

[RT ∗
q,n

(z)]∗Tq,n [RT ∗
q,n

(z)]∗vq,n

]
and

Γ2n+1(z) :=

[
I(n+1)q 0

−v∗q,n[RT ∗
q,n

(z)]∗Tq,n v∗q,n

] (39)

for all z ∈ C \ R. Since s∗j = sj holds true for each j ∈ Z0,κ, we have H
∗
α◃n =

Hα◃n. We consider an arbitrary z ∈ C \ R. Let
B2n+1(z) := RTq,n(z)[vq,n(z − α)f(z)− (−αun − y0,n)], (40)

let

C2n+1(z) :=
(z − α)f(z)− [(z − α)f(z)]∗

z − z
, (41)

and let

∆2n+1(z)P
[f ]
2n+1(z)∆

∗
2n+1(z) =

[
X2n+1(z) Y2n+1(z)
Z2n+1(z) W2n+1(z)

]
(42)

be the (n+ 1)q × (n+ 1)q block representation of ∆2n+1(z)P
[f ]
2n+1(z)∆

∗
2n+1(z).

Then

P
[f ]
2n+1(z) =

[
Hα◃n B2n+1(z)

B∗
2n+1(z) C2n+1(z)

]
.

Consequently, using (42) and (39), straightforward calculations show that

X2n+1(z) = Hα◃n,

Y2n+1(z) = Hα◃nT
∗
q,nRT ∗

q,n
(z) +B2n+1(z)v

∗
q,nRT ∗

q,n
(z),

(43)

Z2n+1(z) =
[
RT ∗

q,n
(z)
]∗
Tq,nHα◃n +

[
RT ∗

q,n
(z)
]∗
vq,nB

∗
2n+1(z), (44)

and

W2n+1(z) =
[
RT ∗

q,n
(z)
]∗
Tq,nHα◃nT

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
Tq,nB2n+1(z)v

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,nB

∗
2n+1(z)T

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,nC2n+1(z)v

∗
q,nRT ∗

q,n
(z)

(45)

hold true. Because of (44), (40), and (37), we see that

Y2n+1(z) = Hα◃nT
∗
q,nRT ∗

q,n
(z) +RTq,n(z)

[
vq,n(z − α)f(z)−

− (−αun − y0,n)
]
v∗q,nRT ∗

q,n
(z) =

= F2n+1(z)

(46)
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is valid. From (44), H∗
α◃n = Hα◃n, (43), and (46) we obtain then

Z2n+1(z) = Y ∗
2n+1(z) = F ∗

2n+1(z). (47)

Using (45), it follows

W2n+1(z) =
[
RT ∗

q,n
(z)
]∗
Tq,nHα◃nT

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
Tq,nB2n+1(z)v

∗
q,nRT ∗

q,n
(z)+

+
([
RT ∗

q,n
(z)
]∗
Tq,nB2n+1(z)v

∗
q,nRT ∗

q,n
(z)
)∗

+

+
[
RT ∗

q,n
(z)
]∗
vq,nC2n+1(z)v

∗
q,nRT ∗

q,n
(z).

(48)

In view of Lemma 6.7, we have

(z − z)
[
RT ∗

q,n
(z)
]∗
Tq,nHα◃nT

∗
q,nRT ∗

q,n
(z) =

= Hα◃nT
∗
q,nRT ∗

q,n
(z)−

[
RT ∗

q,n
(z)
]∗
Tq,nHα◃n+

+
[
RT ∗

q,n
(z)
]∗[

vq,n(−αun − y0,n)
∗ − (−αun − y0,n)v

∗
q,n

]
RT ∗

q,n
(z).

(49)

By virtue of (40), Remark 6.6, and (37), we conclude

(z − z)
[
RT ∗

q,n
(z)
]∗
Tq,nB2n+1(z)v

∗
q,nRT ∗

q,n
(z) = (z − z)

[
RT ∗

q,n
(z)
]∗
×

× Tq,nRTq,n(z)[vq,n(z − α)f(z)− (−αun − y0,n)]v
∗
q,nRT ∗

q,n
(z) =

=
(
RTq,n(z)−

[
RT ∗

q,n
(z)
]∗)

×

× [vq,n(z − α)f(z)− (−αun − y0,n)]v
∗
q,nRT ∗

q,n
(z) =

= RTq,n(z)[vq,n(z − α)f(z)− (−αun − y0,n)]v
∗
q,nRT ∗

q,n
(z)−

−
[
RT ∗

q,n
(z)
]∗
[vq,n(z − α)f(z)− (−αun − y0,n)]v

∗
q,nRT ∗

q,n
(z) =

= F2n+1(z)−Hα◃nT
∗
q,nRT ∗

q,n
(z)−

−
[
RT ∗

q,n
(z)
]∗
[vq,n(z − α)f(z)− (−αun − y0,n)]v

∗
q,nRT ∗

q,n
(z) =

= F2n+1(z)−Hα◃nT
∗
q,nRT ∗

q,n
(z)−

−
[
RT ∗

q,n
(z)
]∗
vq,n(z − α)f(z)v∗q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
(−αun − y0,n)v

∗
q,nRT ∗

q,n
(z),

(50)

which implies

(z − z)
([
RT ∗

q,n
(z)
]∗
Tq,nB2n+1(z)v

∗
q,nRT ∗

q,n
(z)
)∗

=

= −F ∗
2n+1(z) +

[
RT ∗

q,n
(z)
]∗
Tq,nH

∗
α◃n+

(51)
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+
[
RT ∗

q,n
(z)
]∗
vq,n[(z − α)f(z)]∗v∗q,nRT ∗

q,n
(z)−

−
[
RT ∗

q,n
(z)
]∗
vq,n(−αun − y0,n)

∗RT ∗
q,n

(z).

Taking into account (41) we get

(z − z)
[
RT ∗

q,n
(z)
]∗
vq,nC2n+1(z)v

∗
q,nRT ∗

q,n
(z) =

=
[
RT ∗

q,n
(z)
]∗
vq,n(z − α)f(z)v∗q,nRT ∗

q,n
(z)−

−
[
RT ∗

q,n
(z)
]∗
vq,n[(z − α)f(z)]∗v∗q,nRT ∗

q,n
(z).

(52)

In view of (48), we obtain

(z − z)W2n+1(z) = (z − z)
[
RT ∗

q,n
(z)
]∗
Tq,nHα◃nT

∗
q,nRT ∗

q,n
(z)+

+ (z − z)
[
RT ∗

q,n
(z)
]∗
Tq,nB2n+1(z)v

∗
q,nRT ∗

q,n
(z)+

+ (z − z)
([
RT ∗

q,n
(z)
]∗
Tq,nB2n+1(z)v

∗
q,nRT ∗

q,n
(z)
)∗

+

+ (z − z)
[
RT ∗

q,n
(z)
]∗
vq,nC2n+1(z)v

∗
q,nRT ∗

q,n
(z)

and, using (49), (50), (51), (52), and H∗
α◃n = Hα◃n, consequently,

(z − z)W2n+1(z) = Hα◃nT
∗
q,nRT ∗

q,n
(z)−

[
RT ∗

q,n
(z)
]∗
Tq,nHα◃n+

+
[
RT ∗

q,n
(z)
]∗[

vq,n(−αun − y0,n)
∗ − (−αun − y0,n)v

∗
q,n

]
RT ∗

q,n
(z)+

+ F2n+1(z)−Hα◃nT
∗
q,nRT ∗

q,n
(z)−

−
[
RT ∗

q,n
(z)
]∗
vq,n(z − α)f(z)v∗q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
(−αun − y0,n)v

∗
q,nRT ∗

q,n
(z)− F ∗

2n+1(z)+

+
[
RT ∗

q,n
(z)
]∗
Tq,nH

∗
α◃n +

[
RT ∗

q,n
(z)
]∗
vq,n[(z − α)f(z)]∗v∗q,nRT ∗

q,n
(z)+

−
[
RT ∗

q,n
(z)
]∗
vq,n(−αun − y0,n)

∗RT ∗
q,n

(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,n(z − α)f(z)v∗q,nRT ∗

q,n
(z)−

−
[
RT ∗

q,n
(z)
]∗
vq,n[(z − α)f(z)]∗v∗q,nRT ∗

q,n
(z) = F2n+1(z)− F ∗

2n+1(z).

(53)

From (42), (43), (46), (47), (53), and (38) we infer

∆2n+1(z)P
[f ]
2n+1(z)∆

∗
2n+1(z) = Q

[f ]
2n+1(z). (54)

In view of v∗q,n[R
∗
T ∗
q,n

(z)]vq,n = Iq, we easily see that the matrices Γ2n+1(z) and

∆2n+1(z) given by (39) obviously ful�ll

Γ2n+1(z)∆2n+1(z) = I(n+2)q. (55)
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Thus, because of (54), we obtain

P
[f ]
2n+1(z) = I(n+2)qP

[f ]
2n+1(z)I

∗
(n+2)q =

= Γ2n+1(z)∆2n+1(z)P
[f ]
2n+1(z)Γ

∗
2n+1(z)∆

∗
2n+1(z) =

= Γ2n+1(z)Q
[f ]
2n+1(z)Γ

∗
2n+1(z).

In this case k = 2n+ 1 with some n ∈ N0, the proof is complete.
(III) Now we consider the case that κ ≥ 2 and that there is an n ∈ N such

that k = 2n. Let Γ2n := Γ2n+1 and let ∆2n := ∆2n+1. We consider again an
arbitrary z ∈ C \ R. Let

∆2n(z)P
[f ]
2n (z)∆

∗
2n(z) =

[
X2n(z) Y2n(z)
Z2n(z) W2n(z)

]
(56)

be the (n+ 1)q × (n+ 1)q block representation of ∆2n(z)P
[f ]
2n (z)∆

∗
2n(z). Set-

ting

B2n(z) := RTq,n(z)[vq,nf(z)− un] and C2n(z) :=
f(z)− f∗(z)

z − z
, (57)

we have P
[f ]
2n (z) =

[
Hn B2n(z)

B∗
2n(z) C2n(z)

]
. Consequently, from (56) we easily see then

that

X2n(z) = Hn, Y2n(z) = HnT
∗
q,nRT ∗

q,n
(z) +B2n(z)v

∗
q,nRT ∗

q,n
(z), (58)

Z2n(z) =
[
RT ∗

q,n
(z)
]∗
Tq,nHn +

[
RT ∗

q,n
(z)
]∗
vq,nB

∗
2n(z), (59)

and

W2n(z) =
[
RT ∗

q,n
(z)
]∗
Tq,nHnT

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,nB

∗
2n(z)T

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
Tq,nB2n(z)v

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,nC2n(z)v

∗
q,nRT ∗

q,n
(z)

(60)

hold true. Because of (58), (57), and (35), we obtain

Y2n(z) = HnT
∗
q,nRT ∗

q,n
(z)+RTq,n(z)[vq,nf(z)− un]v

∗
q,nRT ∗

q,n
(z) = F2n(z). (61)

Since s∗j = sj is supposed for each j ∈ Z0,κ, we get H
∗
n = Hn. Consequently, in

view of (59), (58), and (61), then

Z2n(z) = Y ∗
2n(z) = F ∗

2n(z) (62)
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follows. By virtue of (60) and (57), we see that

W2n(z) =
[
RT ∗

q,n
(z)
]∗
Tq,nHnT

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,n

[
f∗(z)v∗q,n − u∗n

][
RTq,n(z)

]∗
T ∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
Tq,nRTq,n(z)[vq,nf(z)− un]v

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,n

[
f(z)− f∗(z)

z − z

]
v∗q,nRT ∗

q,n
(z)

(63)

holds true. Taking into account (63) and Remark 6.6, we conclude

W2n(z) =
[
RT ∗

q,n
(z)
]∗
Tq,nHnT

∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,n

[
f∗(z)v∗q,n − u∗n

][ 1

z − z

(
RT ∗

q,n
(z)−

[
RTq,n(z)

]∗)]
+

+

[
1

z − z

(
RTq,n(z)−

[
RT ∗

q,n
(z)
]∗)]

[vq,nf(z)− un]v
∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,n

[
f(z)− f∗(z)

z − z

]
v∗q,nRT ∗

q,n
(z).

(64)

Using Lemma 6.7, the equation H∗
n = Hn, (35), and (64), we infer

W2n(z) =
1

z − z

{
HnT

∗
q,nRT ∗

q,n
(z)−

[
RT ∗

q,n
(z)
]∗
Tq,nHn+

+
[
RT ∗

q,n
(z)
]∗
(vq,nu

∗
n − unv

∗
q,n)RT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,n

[
f∗(z)v∗q,n − u∗n

](
RT ∗

q,n
(z)−

[
RTq,n(z)

]∗)
+

+
(
RTq,n(z)−

[
RT ∗

q,n
(z)
]∗)

[vq,nf(z)− un]v
∗
q,nRT ∗

q,n
(z)+

+
[
RT ∗

q,n
(z)
]∗
vq,n[f(z)− f∗(z)]v∗q,nRT ∗

q,n
(z)

}
=

=
1

z − z

{
HnT

∗
q,nRT ∗

q,n
(z) +RTq,n(z)[vq,nf(z)− un]v

∗
q,nRT ∗

q,n
(z)−

−
(
HnT

∗
q,nRT ∗

q,n
(z) +RTq,n(z)[vq,nf(z)− un]v

∗
q,nRT ∗

q,n
(z)
)∗}

=

=
1

z − z
[F2n(z)− F ∗

2n(z)].

Thus, (56), the �rst equation in (58), (61), (62), and (36) show that

∆2n(z)P
[f ]
2n (z)∆

∗
2n(z) =

[
Hn F2n(z)

F ∗
2n(z)

F2n(z)−F ∗
2n(z)

z−z

]
= Q

[f ]
2n(z) (65)

is valid. Because of Γ2n = Γ2n+1 and ∆2n = ∆2n+1, equation (55) implies
Γ2n(z)∆2n(z) = I(n+2)q. Consequently, from (65) we get

P
[f ]
2n (z) = Γ2n(z)∆2n(z)P

[f ]
2n (z)∆

∗
2n(z)Γ

∗
2n(z) = Γ2n(z)Q

[f ]
2n(z)Γ

∗
2n(z). �
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Remark 6.10. Let α ∈ R, let κ ∈ N0∪{∞}, and let (sj)κj=0 be a sequence from

Cq×q. Let f : C \ [α,∞) → Cq×q be a holomorphic matrix-valued function. In
view of Proposition 6.9 and Lemma 3.3, it is readily checked that the following
statements hold true:

(a) Let n ∈ N0 be such that 2n ≤ κ. If P
[f ]
2n (z) ∈ C(n+2)q×(n+2)q

≥ holds true

for each z ∈ C\R, then F2n : Π+ → C(n+1)q×(n+1)q given by (35) belongs
to R′

0,(n+1)q(Π+) and the matricial spectral measure µ2n of F2n ful�lls

µ2n(R) ≤ Hn.

(b) Let n ∈ N0 be such that 2n+1 ≤ κ. If P
[f ]
2n+1(z) ∈ C(n+2)q×(n+2)q

≥ for each

z ∈ C \ R, then F2n+1 : Π+ → C(n+1)q×(n+1)q de�ned by (37) belongs to
R′

0,(n+1)q(Π+) and the matricial spectral measure µ2n+1 of F2n+1 ful�lls

µ2n+1(R) ≤ Hα◃n.

Lemma 6.11. Let α ∈ R, let f : C \ [α,∞) → Cq×q be a matrix-valued func-
tion, let κ ∈ N0 ∪ {∞}, and let (sj)

κ
j=0 be a sequence of Hermitian complex

q × q matrices. Then:

(a) Let n ∈ N0 be such that 2n ≤ κ, let F2n : Π+ → C(n+1)q×(n+1)q be de�ned

by (35), and let Ψ2n : C → C(n+1)q×(n+1)q be given by

Ψ2n(z) := RTq,n(z)(HnT
∗
q,n − unv

∗
q,n − zTq,nHnT

∗
q,n)RT ∗

q,n
(z). (66)

Then Ψ2n is a continuous matrix-valued function such that Ψ2n(R) ⊆
C(n+1)q×(n+1)q
H . In view of (8), furthermore,

F2n(z) = Ψ2n(z) + Eq,n(z)f(z)E
∗
q,n(z) for each z ∈ Π+. (67)

(b) Let n ∈ N0 be such that 2n+1 ≤ κ and let F2n+1 : Π+ → C(n+1)q×(n+1)q

be de�ned by (37). Then Ψ2n+1 : C → C(n+1)q×(n+1)q given by

Ψ2n+1(z) := RTq,n(z)
[
Hα◃nT

∗
q,n − (−αun − y0,n)v

∗
q,n−

− zTq,nHα◃nT
∗
q,n

]
RT ∗

q,n
(z)

(68)

is continuous and ful�lls Ψ2n+1(R) ⊆ C(n+1)q×(n+1)q
H as well as

F2n+1(z) = Ψ2n+1(z) + Eq,n(z)[(z − α)f(z)]E∗
q,n(z) for each z ∈ Π+.

Proof. (a) The case n = 0 is trivial. Suppose now 0 < 2n ≤ κ. Remark 4.2
shows that Ψ2n is continuous. For each x ∈ R, we have RT ∗

q,n
(x) = [RTq,n(x)]

∗ =

[RTq,n(x)]
∗ and, consequently,

[Ψ2n(x)]
∗ = RTq,n(x)(Tq,nHn − vq,nu

∗
n − xTq,nH

∗
nT

∗
q,n)RT ∗

q,n
(x),

which, in view of s∗j = sj for each j ∈ Z0,2n, i. e., H
∗
n = Hn, implies that

[Ψ2n(x)]
∗ = RTq,n(x)

(
−[HnT

∗
q,n − Tq,nHn]+

+HnT
∗
q,n − vq,nu

∗
n − xTq,nHnT

∗
q,n

)
RT ∗

q,n
(x) =

= RTq,n(x)
(
−[unv

∗
q,n − vq,nu

∗
n] +HnT

∗
q,n − vq,nu

∗
n − xTq,nHnT

∗
q,n

)
RT ∗

q,n
(x) =

= RTq,n(x)(HnT
∗
q,n − unv

∗
q,n − xTq,nHnT

∗
q,n)RT ∗

q,n
(x) = Ψ2n(x)
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holds true for all x ∈ R. Hence, Ψ2n(R) ⊆ C(n+1)q×(n+1)q
H . Taking into account

(35), Remark 4.2, and (66), for all z ∈ Π+, we conclude

F2n(z) = RTq,n(z)
[
RTq,n(z)

]−1
HnT

∗
q,nRT ∗

q,n
(z)+

+RTq,n(z)vq,nf(z)v
∗
q,nRT ∗

q,n
(z)−RTq,n(z)unv

∗
q,nRT ∗

q,n
(z) =

= RTq,n(z)
[
(I(n+1)q − zTq,n)HnT

∗
q,n − unv

∗
q,n

]
RT ∗

q,n
(z)+

+RTq,n(z)vq,nf(z)v
∗
q,n

[
RTq,n(z)

]∗
=

= RTq,n(z)(HnT
∗
q,n − zTq,nHnT

∗
q,n − unv

∗
q,n)RT ∗

q,n
(z)+

+RTq,n(z)vq,nf(z)[RTq,n(z)vq,n]
∗ =

= Ψ2n(z) + Eq,n(z)f(z)E
∗
q,n(z).

(b) Part (b) can be proved analogously. We omit the details. �

Lemma 6.12. Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj)
κ
j=0 be a sequence from

Cq×q, and let n ∈ N0 be such that 2n + 1 ≤ κ. Further, let S ∈ S0,q;[α,∞) be
such that

P
[S]
2n (z) ∈ C(n+2)q×(n+2)q

≥ and

P
[S]
2n+1(z) ∈ C(n+2)q×(n+2)q

≥ for all z ∈ Π+.
(69)

Then the [α,∞)-Stieltjes measure σ of S belongs to Mq
≥,1([α,∞)).

Proof. (I) For all z ∈ Π+, from Remark 4.4 we see that (11) holds true and,
in view of (69), hence, that the block matrix on the left-hand side of (11) is
non-negative Hermitian. Consequently, since S is holomorphic in C \ [α,∞),
Lemma 3.3 yields that F := RstrΠ+ S belongs to R′

0,q(Π+) and that the ma-

tricial spectral measure µ of F ful�lls µ(R) ≤ s0. Thus, Remark 3.6 provides
us σ([α,∞)) = RstrB[α,∞)

µ([α,∞)) = µ([α,∞)) ≤ µ(R) ≤ s0. Because of (69)

and (9), we have Hn ∈ C(n+1)q×(n+1)q
≥ . In particular, s0 ∈ Cq×q

≥ . Hence,

s∗0 = s0 and {u∗σ([α,∞))u, u∗s0u} ⊆ [0,∞) for all u ∈ Cq. (70)

(II) In the second part of the proof, we consider an arbitrary n ∈ N and an
arbitrary u ∈ Cq. From Remark 3.4 we see then that∫

[α,∞)

∣∣∣∣ in

t− (in+ α)

∣∣∣∣(u∗σu)(dt) = n

∫
[α,∞)

∣∣∣∣ 1

t− (in+ α)

∣∣∣∣(u∗σu)(dt) <∞. (71)

In view of
in

t− (in+ α)
= − n2

|t− α− in|2
+ i

(t− α)n

|t− α− in|2
(72)

and (71), we obtain∫
[α,∞)

∣∣∣∣− n2

|t− α− in|2

∣∣∣∣(u∗σu)(dt) =
=

∫
[α,∞)

∣∣∣∣ℜ[ in

t− (in+ α)

]∣∣∣∣(u∗σu)(dt) <∞
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and ∫
[α,∞)

∣∣∣∣ (t− α)n

|t− α− in|2

∣∣∣∣(u∗σu)(dt) =
=

∫
[α,∞)

∣∣∣∣ℑ[ in

t− (in+ α)

]∣∣∣∣(u∗σu)(dt) <∞.

(73)

For each t ∈ [α,∞), we have

n

[
in

t− (in+ α)
+ 1

]
=

(t− α)n

t− α− in
=

(t− α)2n

(t− α)2 + n2
+ i

(t− α)n2

(t− α)2 + n2
. (74)

Consequently, the function gn : [α,∞) → C given by gn(t) := n[ in
t−(in+α) + 1]

ful�lls |ℜ[gn(t)]| = n(t− α)2[(t− α)2 + n2]−1 ≤ n = n · 1[α,∞)(t) and

|ℑ[gn(t)]| = (t− α)n2
[
(t− α)2 + n2

]−1 ≤

≤ 2|t− α|n2
[
(t− α)2 + n2

]−1 ≤ n = n · 1[α,∞)(t)

for each t ∈ [α,∞). This implies
∫
[α,∞)|ℜ[gn(t)]|(u

∗σu)(dt) ≤ nu∗σ([α,∞))u <

∞ and
∫
[α,∞)|ℑ[gn(t)]|(u

∗σu)(dt) ≤ nu∗σ([α,∞))u <∞. Thus,

gn ∈ L1([α,∞),B[α,∞), u
∗σu;C). (75)

Using Theorem 3.5, Remark 7.1, (72), and (73), we conclude

u∗[in · S(in+ α)]u = u∗

(
in

∫
[α,∞)

[t− (in+ α)]−1σ(dt)

)
u =

=

∫
[α,∞)

in

t− (in+ α)
(u∗σu)(dt) =

=

∫
[α,∞)

[
− n2

|t− α− in|2
+ i

(t− α)n

|t− α− in|2

]
(u∗σu)(dt) =

= −n2
∫
[α,∞)

1

|t− α− in|2
(u∗σu)(dt) + in

∫
[α,∞)

t− α

|t− α− in|2
(u∗σu)(dt)

and, in particular,

ℜ(u∗[in · S(in+ α)]u) = −n2
∫
[α,∞)

|t− α− in|−2(u∗σu)(dt). (76)

Taking into account σ([α,∞)) ≤ s0, (76), and that 1 − n2|t − α − in|−1 =
(t− α)2[(t− α)2 + n2]−1 holds true, for each t ∈ [α,∞), we get

ℜ(u∗[in · S(in+ α)]u) + u∗s0u ≥ ℜ(u∗[in · S(in+ α)]u) + u∗σ([α,∞))u

=

∫
[α,∞)

(
1− n2

|t− α− in|2

)
(u∗σu)(dt) =

∫
[α,∞)

(t− α)2

(t− α)2 + n2
(u∗σu)(dt) ≥ 0

and, consequently,

[ℜ(u∗[in · S(in+ α)]u) + u∗s0u]
2 ≥

≥ [ℜ(u∗[in · S(in+ α)]u) + u∗σ([α,∞))u]2.
(77)
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Because of (70), (77), and again (70), it follows

|nu∗[in · S(in+ α) + s0]u|2 = n2|u∗[in · S(in+ α)]u+ u∗s0u|2 =

= n2
(
[ℜ(u∗[in · S(in+ α)]u) + u∗s0u]

2 + [ℑ(u∗[in · S(in+ α)]u)]2
)
≥

≥ n2
(
[ℜ(u∗[in · S(in+ α)]u) + u∗σ([α,∞))u]2 + [ℑ(u∗[in · S(in+ α)]u)]2

)
=

= n2|u∗[in · S(in+ α)]u+ u∗σ([α,∞))u|2 =

= |nu∗[in · S(in+ α) + σ([α,∞))]u|2

and, therefore,

|nu∗[in · S(in+ α) + s0]u| ≥ |nu∗[in · S(in+ α) + σ([α,∞))]u|. (78)

Since S belongs to S0,q;[α,∞), the function G : Π+ → Cq×q given by G(w) :=
wS(w+ α) + s0 is holomorphic in Π+. From Remark 4.4 we know that, for all
z ∈ C \ [α,∞), equation (12) is true. Hence, from (69) we see that the block
matrix on the left-hand side of (12) is non-negative Hermitian. Consequently,
we conclude[

−αs0+s1 G(w)

G∗(w)
G(w)−G∗(w)

w−w

]
=

[
−αs0+s1 wS(w+α)+s0

[wS(w+α)+s0]∗
[wS(w+α)+s0]−[wS(w+α)+s0]

∗
w−w

]
=

=

[
−αs0+s1 [(w+α)−α]S(w+α)+s0

([(w+α)−α]S(w+α)+s0)
∗ [(w+α)−α]S(w+α)−([(w+α)−α]S(w+α))∗

w−w

]
∈ C2q×2q

≥ .

(79)

SinceG is holomorphic, from (79) and Lemma 3.3 then supy∈(0,∞)(y∥G(iy)∥S) ≤
∥−αs0+ s1∥S and, hence, supn∈N(n∥in · S(in+ α) + s0∥S) ≤ ∥−αs0+ s1∥S fol-
lows. Thus, the Bunjakowski�Cauchy�Schwarz inequality provides us

|u∗(n[in · S(in+ α) + s0])u| ≤ ∥n[in · S(in+ α) + s0]u∥E · ∥u∥E ≤
≤ n∥in · S(in+ α) + s0∥S · ∥u∥2E ≤ ∥−αs0 + s1∥S · ∥u∥2E. (80)

For each t ∈ [α,∞), we have |t − α| = lim infn→∞(t − α)n2[(t − α)2 + n2]−1.
Then∫

[α,∞)
|t− α|(u∗σu)(dt) =

∫
[α,∞)

lim inf
n→∞

(t− α)n2

(t− α)2 + n2
(u∗σu)(dt) ≤

≤ lim inf
n→∞

∫
[α,∞)

(t− α)n2

(t− α)2 + n2
(u∗σu)(dt),

(81)

by virtue of Fatou's lemma. Obviously, from (75) and (74) we infer∫
[α,∞)

ℑ
(
n

[
in

t− (in+ α)
+ 1

])
(u∗σu)(dt) =

=

∫
[α,∞)

(t− α)n2

(t− α)2 + n2
(u∗σu)(dt)

(82)
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and ∫
[α,∞)

ℑ
(
n

[
in

t− (in+ α)
+ 1

])
(u∗σu)(dt) =

= ℑ

(∫
[α,∞)

n

[
in

t− (in+ α)
+ 1

]
(u∗σu)(dt)

)
≤

≤

∣∣∣∣∣
∫
[α,∞)

n

[
in

t− (in+ α)
+ 1

]
(u∗σu)(dt)

∣∣∣∣∣.
(83)

(III) Since (75) holds true for every choice of u ∈ Cq and n ∈ N, Remark 7.1
yields gn ∈ L1([α,∞),B[α,∞), σ;C). Hence, Remark 7.1 shows that∫

[α,∞)
n

[
in

t− (in+ α)
+ 1

]
(u∗σu)(dt) =

= u∗

(∫
[α,∞)

n

[
in

t− (in+ α)
+ 1

]
σ(dt)

)
u

(84)

is valid for each u ∈ Cq and each n ∈ N. Combining (82), (83), and (84), we
have

0 ≤
∫
[α,∞)

(t− α)n2

(t− α)2 + n2
(u∗σu)(dt) ≤

≤

∣∣∣∣∣u∗
(∫

[α,∞)
n

[
in

t− (in+ α)
+ 1

]
σ(dt)

)
u

∣∣∣∣∣
(85)

for each u ∈ Cq and each n ∈ N. For all n ∈ N and all t ∈ [α,∞), we see
that gn(t)− n · 1[α,∞)(t) = g̃n(t) holds true, where g̃n : [α,∞) → C is given by

g̃n(t) := in2[t− (in+ α)]−1. Thus, for each n ∈ N, we get g̃n = gn − n · 1[α,∞),

and, since gn ∈ L1([α,∞),B[α,∞), σ;C), then g̃n ∈ L1([α,∞),B[α,∞), σ;C) and∫
[α,∞)

g̃ndσ =

∫
[α,∞)

gndσ − n

∫
[α,∞)

1[α,∞)dσ =

∫
[α,∞)

gndσ − nσ([α,∞))

hold true as well. Consequently, for each n ∈ N, we conclude∫
[α,∞)

n

[
in

t− (in+ α)
+ 1

]
σ(dt) =

∫
[α,∞)

in2

t− (in+ α)
σ(dt) + nσ([α,∞)) =

= in2
∫
[α,∞)

1

t− (in+ α)
σ(dt) + nσ([α,∞)) = n[in · S(in+ α) + σ([α,∞))].

Thus, because of (78), for each u ∈ Cq and each n ∈ N, we obtain∣∣∣∣∣u∗
(∫

[α,∞)
n

[
in

t− (in+ α)
+ 1

]
σ(dt)

)
u

∣∣∣∣∣ ≤ |nu∗[in · S(in+ α) + s0]u|. (86)
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Taking into account (81), (85), (86), and (80), for each u ∈ Cq, we get∫
[α,∞)

|t− α|(u∗σu)(dt) ≤ lim inf
n→∞

∫
[α,∞)

(t− α)n2

(t− α)2 + n2
(u∗σu)(dt) ≤

≤ lim inf
n→∞

∣∣∣∣∣u∗
(∫

[α,∞)
n

[
in

t− (in+ α)
+ 1

]
σ(dt)

)
u

∣∣∣∣∣ ≤
≤ lim inf

n→∞
|nu∗[in · S(in+ α) + s0]u| ≤

≤ lim inf
n→∞

∥−αs0 + s1∥S · ∥u∥2E = ∥−αs0 + s1∥S · ∥u∥2E <∞.

Therefore, we obtain that∫
[α,∞)

|t|(u∗σu)(dt) ≤
∫
[α,∞)

(|t− α|+ |α|)(u∗σu)(dt) =

=

∫
[α,∞)

|t− α|(u∗σu)(dt) +
∫
[α,∞)

|α|(u∗σu)(dt) ≤

≤ ∥−αs0 + s1∥S · ∥u∥2E + |α|(u∗σu)([α,∞)) <∞

is true for all u ∈ Cq. Thus, Remark 7.1 provides us σ ∈ Mq
≥,1([α,∞)). �

Lemma 6.13. Let α ∈ R, let κ ∈ N ∪ {∞}, let (sj)
κ
j=0 be a sequence from

Cq×q, and let n ∈ N0 be such that 2n + 1 ≤ κ. Further, let S ∈ S0,q;[α,∞) be

such that P
[S]
2n (z) ∈ C(n+2)q×(n+2)q

≥ and P
[S]
2n+1(z) ∈ C(n+2)q×(n+2)q

≥ hold true for
all z ∈ Π+. Then:

(a) The [α,∞)-Stieltjes measure σ of S belongs to Mq
≥,1([α,∞)).

(b) The function ϕ : [α,∞) → Cq×q given by ϕ(t) :=
√
t− αIq belongs to

q × q-L2([α,∞),B[α,∞), σ;C) and σ# : B[α,∞) → Cq×q de�ned by (14)

belongs to Mq
≥([α,∞)).

(c) The function S̃ : C\ [α,∞) → Cq×q given by S̃(z) := (z−α)S(z) and the

[α,∞)-Stieltjes transform S[σ#] of σ# ful�ll S̃(z) = S[σ#](z)−σ([α,∞))
for each z ∈ C \ [α,∞).

(d) The function (S̃)� := RstrΠ+ S̃ belongs to R′
q(Π+) and (σ̃)� : BR →

Cq×q given by (σ̃)�(B) := σ#(B∩[α,∞)) is exactly the matricial spectral

measure of (S̃)�.

Proof. (a) Part (a) is proved in Lemma 6.12.
(b) In view of (a), part (b) follows immediately from Remark 4.8.
(c) Let z ∈ C \ [α,∞). According to Remark 3.4 and Theorem 3.5, the

function gα,z : [α,∞) → C given by gα,z(t) := (z − α)/(t − z) belongs to
L1([α,∞),B[α,∞), σ;C) and

(z − α)S(z) =

∫
[α,∞)

z − α

t− z
σ(dt)
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is true. Consequently, in view of Lemma 7.2, we get that the pair
[gα,zIq, 1[α,∞)Iq] is left-integrable with respect to σ and that

S̃(z) = (z − α)S(z) =

∫
[α,∞)

(
z − α

t− z
Iq)σ(dt)I

∗
q .

Due to Remark 7.3, then the pair [gα,zIq + 1[α,∞)Iq, Iq] is left-integrable with
respect to σ and∫
[α,∞)

[(
z − α

t− z
+ 1

)
Iq

]
σ(dt)I∗q =

∫
[α,∞)

(
z − α

t− z
Iq

)
σ(dt)I∗q +

∫
[α,∞)

Iqσ(dt)I
∗
q

is ful�lled. Taking into account

σ([α,∞)) =

∫
[α,∞)

1[α,∞)dσ =

∫
[α,∞)

(1[α,∞)Iq)dσ(1[α,∞)Iq)
∗ =

∫
[α,∞)

Iqσ(dt)I
∗
q

and that (z − α)/(t − z) + 1 = (t − α)/(t − z) holds true for each t ∈ [α,∞),
we get then

S̃(z) =

∫
[α,∞)

(
t− α

t− z
Iq

)
σ(dt)I∗q − σ([α,∞)). (87)

Because of Lemma 7.2, Proposition 7.4, and (14), we have∫
[α,∞)

(
t− α

t− z
Iq

)
σ(dt)I∗q =

=

∫
[α,∞)

[(
1

t− z
Iq

)
(
√
t− αIq)

]
σ(dt)

[
Iq(

√
t− αIq)

]∗
=

=

∫
[α,∞)

(
1

t− z
Iq

)
σ#(dt)I∗q =

∫
[α,∞)

1

t− z
σ#(dt) = S[σ#](z).

Thus, from (87) it follows S̃(z) = S[σ#](z)− σ([α,∞)) for each z ∈ C \ [α,∞).

(d) In view of Theorem 3.5, we have S[σ#] ∈ S0,q;[α,∞). Thus, Remark 3.6

shows that RstrΠ+ S
[σ#] ∈ R′

0,q(Π+) ⊆ R′
q(Π+), that the matricial spectral

measure µ# of RstrΠ+ S
[σ#] ful�lls σ# = RstrB[α,∞)

µ#, and that µ#(R \
[α,∞)) = µ#((−∞, α)) = 0q×q. Consequently, (σ̃)� is the matricial spectral

measure of RstrΠ+ S
[σ#]. From Theorem 3.1 one can see that F : Π+ → Cq×q

given by F (z) := −σ([α,∞)) belongs toR′
q(Π+) and that the matricial spectral

measure θ of F ful�lls θ(B) = 0q×q for all B ∈ BR (see also [13, Beispiel 1.2.1]).

Since S̃(z) = S[σ#](z) − σ([α,∞)) is valid for all z ∈ C \ [α,∞), we get

(S̃)� = RstrΠ+ S
[σ#] + F . Since RstrΠ+ S

[σ#] and F both belong to R′
q(Π+),

from [26, Remark 4.4] we see that (S̃)� ∈ R′
q(Π+) and that (σ̃)� + θ is the

matricial spectral measure of (S̃)�. In view of (σ̃)� + θ = (σ̃)�, the proof is
complete. �

Lemma 6.14. Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj)
κ
j=0 be a sequence of

complex q × q matrices. Then:
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(a) Let n ∈ N0 be such that 2n ≤ κ and let S ∈ S0,q;[α,∞) be such that

P
[S]
2n (z) ∈ C(n+2)q×(n+2)q

≥ for all z ∈ C \ R. (88)

Then the [α,∞)-Stieltjes measure σ of S belongs to Mq
≥,2n([α,∞)) and

the inequality H
[σ]
n ≤ Hn holds true.

(b) Let n ∈ N0 be such that 2n+ 1 ≤ κ and let S ∈ S0,q;[α,∞) be such that{
P

[S]
2n (z), P

[S]
2n+1(z)

}
⊆ C(n+2)q×(n+2)q

≥ for all z ∈ C \ R. (89)

Then the [α,∞)-Stieltjes measure σ of S belongs to Mq
≥,2n+1([α,∞))

and the inequality H
[σ]
α◃n ≤ Hα◃n holds true.

Proof. (a) Because of (88), we get Hn ∈ C(n+1)q×(n+1)q
≥ ⊆ C(n+1)q×(n+1)q

H
and, in particular, s∗j = sj for each j ∈ Z0,2n. In view of S ∈ S0,q;[α,∞),

we see that the function S is holomorphic in C \ [α,∞) and, using addition-
ally [26, Propositions 8.9 and 8.8], we also obtain RstrΠ+ S ∈ R′

0,q(Π+) ⊆
R′

q(Π+). Let f := S and let F2n : Π+ → C(n+1)q×(n+1)q be given by (35). Us-
ing Remark 6.10 and [26, Propositions 8.9 and 8.8], we conclude that F2n ∈
R′

0,(n+1)q(Π+) ⊆ R′
(n+1)q(Π+) and that the matricial spectral measure µ2n of

F2n ful�lls µ2n(R) ≤ Hn. Let Ψ2n : C → C(n+1)q×(n+1)q be given (66). Since
s∗j = sj holds true for each j ∈ Z0,2n, from Lemma 6.11 we see that Ψ2n is

a continuous matrix-valued function with Ψ2n(R) ⊆ C(n+1)q×(n+1)q
H . Further-

more, Lemma 6.11 yields (67). According to Remark 3.6, the matricial spectral
measure σ� of RstrΠ+ S ful�lls σ = RstrB[α,∞)

σ� and σ�(R\[α,∞)) = 0. Stan-

dard arguments of measure theory show that we can choose sequences (ak)
∞
k=1

and (bk)
∞
k=1 of real numbers such that

σ�({ak}) = 0, σ�({bk}) = 0, µ2n({ak}) = 0, µ2n({bk}) = 0, (90)

ak < bk, and (ak, bk) ⊆ (ak+1, bk+1) (91)

hold true for each k ∈ N and that
∪∞

k=1(ak, bk) = R. In view of F2n ∈
R′

(n+1)q(Π+), a matricial version of Stieltjes' inversion formula (see [14, Theo-

rem 8.6]), and (90) provide us

µ2n((ak, bk)) =
1

2
[µ2n({ak}) + µ2n({bk})] + µ2n((ak, bk)) =

=
1

π
lim

ϵ→0+0

∫
[ak,bk]

ℑF2n(x+ iϵ)λ(1)(dx)
(92)

for all k ∈ N, where λ(1) is the Lebesgue measure de�ned on BR. The function
Eq,n : C → C(n+1)q×q given by (8) is holomorphic in C. Moreover, Ψ2n is

continuous with Ψ2n(R) ⊆ C(n+1)q×(n+1)q
H . Thus, for all k ∈ N, we get from

(67), a matricial version of Stieltjes' inversion formula (see [14, Theorem 8.6])

48



THE SYSTEM OF POTAPOV'S FUNDAMENTAL MATRIX ...

and (90) that

1

π
lim

ϵ→0+0

∫
[ak,bk]

ℑF2n(x+ iϵ)λ(1)(dx) =

=
1

2
(Eq,n(ak)σ�({ak})[Eq,n(ak)]

∗ + Eq,n(bk)σ�({bk})[Eq,n(bk)]
∗)+

+

∫
(ak,bk)

Eq,n(t)σ�(dt)E
∗
q,n(t) =

=

∫
(ak,bk)

Eq,n(t)σ�(dt)E
∗
q,n(t).

(93)

Combining (93) and (92), we obtain∫
(ak,bk)

Eq,n(t)σ�(dt)E
∗
q,n(t) = µ2n((ak, bk)) ≤ µ2n(R) for all k ∈ N (94)

and, consequently,

tr

[∫
(ak,bk)

Eq,n(t)σ�(dt)E
∗
q,n(t)

]
≤ tr[µ2n(R)] <∞ for all k ∈ N. (95)

The trace measure τ := trσ� of σ� is a �nite measure and σ� is absolutely
continuous with respect to τ . We can choose a version (σ�)′τ of the matricial

Radon�Nikodym derivative of σ� with respect to τ such that (σ�)′τ (t) ∈ Cq×q
≥

for all t ∈ R. For all k ∈ N, then

gk := ∥1(ak,bk)(RstrREq,n)
√
(σ�)′τ∥2F ∈ L1(R,BR, τ ;C)

and

tr[

∫
R
(1(ak,bk)RstrREq,n)dσ�(1(ak,bk)RstrREq,n)

∗] =

∫
R
gkdτ.

Thus, by virtue of (95), then∫
R
gkdτ ≤ tr[µ2n(R)] <∞ (96)

follows for all k ∈ N. Obviously, g : R → C de�ned by g(t) := ∥Eq,n(t)
√
(σ�)′τ∥2F

is an BR-BC-measurable function with g(R) ⊆ [0,∞). For all t ∈ R, we see
that

g(t) =

∥∥∥∥[ limk→∞
1(ak,bk)(t)

]
·
[
(RstrREq,n)

√
(σ�)′τ

]
(t)

∥∥∥∥2
F

=

= lim
k→∞

gk(t) = lim inf
k→∞

gk(t).
(97)

In view of (97) and (96), Fatou's lemma yields then∫
R
|g(t)|τ(dt) =

∫
R
lim inf
k→∞

gk(t)τ(dt) ≤ lim inf
k→∞

∫
R
gk(t)τ(dt) ≤ tr[µ2n(R)] <∞,

and, consequently, g ∈ L1(R,BR, τ ;C). Because of Lemma 7.2, we get then
RstrREq,n ∈ (n+ 1)q × q-L2(R,BR, σ�;C). Hence, from σ = RstrB[α,∞)

σ�

49



B.FRITZSCHE, B.KIRSTEIN, C.M�ADLER, M. SCHEITHAUER

we obtain that Rstr[α,∞)Eq,n belongs to (n+ 1)q × q-L2([α,∞),B[α,∞), σ;C),
that ∫

R
Eq,n(t)σ�(dt)E

∗
q,n(t) =

∫
[α,∞)

Eq,n(t)σ(dt)E
∗
q,n(t), (98)

and that Θn : BR → C(n+1)q×(n+1)q de�ned by

Θn(B) :=

∫
B
Eq,n(t)σ�(dt)E

∗
q,n(t) (99)

is a well-de�ned non-negative Hermitian (n+ 1)q × (n+ 1)q measure on
(R,BR). Furthermore, applying Remark 4.7, we get σ ∈ Mq

≥,2n([α,∞)) and

(13). Using (99),
∪∞

k=1(ak, bk) = R, (91), Θn ∈ M(n+1)q
≥ (R,BR), (94), and

µ2n ∈ M(n+1)q
≥ (R,BR), we conclude∫

R
Eq,n(t)σ�(dt)E

∗
q,n(t) = Θn(R) = lim

k→∞
Θn((ak, bk)) =

= lim
k→∞

∫
(ak,bk)

Eq,n(t)σ�(dt)E
∗
q,n(t) = lim

k→∞
µ2n((ak, bk)) = µ2n(R). (100)

The combination of (13), (98), (100), and µ2n(R) ≤ Hn provides us then

H [σ]
n =

∫
[α,∞)

Eq,n(t)σ(dt)E
∗
q,n(t) =

=

∫
R
RstrREq,ndσ�(RstrREq,n)

∗ = µ2n(R) ≤ Hn.

(b) Because of (89), we have {Hn,Hα◃n} ⊆ C(n+1)q×(n+1)q
≥ ⊆ C(n+1)q×(n+1)q

H
and, consequently, s∗j = sj for each j ∈ Z0,2n+1. Since S belongs to S0,q;[α,∞),

from (89) and Lemma 6.13 we infer that σ belongs to Mq
≥,1([α,∞)), that

σ# : B[α,∞) → Cq×q de�ned by (14) belongs to Mq
≥([α,∞)), that S̃ : C \

[α,∞) → Cq×q given by S̃(z) := (z − α)S(z) is a function with RstrΠ+ S̃ ∈
R′

q(Π+), and that (σ#)� : BR → Cq×q given by (σ̃)�(B) := σ#(B ∩ [α,∞))

is the matricial spectral measure of (S̃)� := RstrΠ+ S̃. Observe that Re-
mark 4.8(b) shows that (15) holds true. Now part (b) can be proved anal-

ogous to part (a), where F2n+1 : Π+ → C(n+1)q×(n+1)q given by (37) and

Ψ2n+1 : C → C(n+1)q×(n+1)q de�ned by (68) play the roles of F2n and Ψ2n,
respectively (for details, see also [48, Lemma 7.9]). �

Remark 6.15. It is readily checked that if E is non-negative Hermitian, then
∥B∥2S ≤ ∥A∥S · ∥D∥S (see, e. g. [16, proof of Lemma 1.1.10]).

Remark 6.16. Let α ∈ R, let κ ∈ N0∪{∞}, and let(sj)
κ
j=0 be a sequence from

Cq×q. Using Remark 6.15 and the de�nition of the class S0,q;[α,∞), it is readily
checked that the following statements hold true:
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(a) If n ∈ N0 is such that 2n ≤ κ and if S ∈ S0,q;[α,∞) is such that P
[S]
2n (iy) ∈

C(n+2)q×(n+2)q
≥ for all y ∈ (0,∞), then

lim
y→∞

RTq,n(iy)[vq,nS(iy)− un] = 0. (101)

(b) If κ ≥ 1 and n ∈ N0 are such that 2n+1 ≤ κ and if S ∈ S0,q;[α,∞) is such

that P
[S]
2n+1(iy) ∈ C(n+2)q×(n+2)q

≥ holds true for each y ∈ (0,∞), then

lim
y→∞

RTq,n(iy)[vq,n(iy − α)S(iy)− (−αun − y0,n)] = 0.

Remark 6.17. Let n ∈ N0 and let y ∈ R. If u ∈ C(n+1)q×p is such that
limy→∞[u∗RTq,n(iy)u] = 0, then from Remark 4.2 one can easily see that u = 0
holds true.

Remark 6.18. Let n ∈ N and let (dj)
2n
j=0 be a sequence of complex q × q ma-

trices. If d0 = 0q×q and if the block Hankel matrix [dj+k]
n
j,k=0 is non-negative

Hermitian, then a characterization of non-negative Hermitian block matrices by
their blocks (see [3, 23], or [16, Lemmata 1.1.9 and 1.1.7]), it is readily proved
by induction that dj = 0q×q for all j ∈ Z0,2n−1.

Lemma 6.19. Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj)
κ
j=0 be a sequence of

complex q × q matrices. Then:

(a) Let n ∈ N0 be such that 2n ≤ κ and let S ∈ S0,q;[α,∞) be such that

P
[S]
2n (z) ∈ C(n+2)q×(n+2)q

≥ holds true for all z ∈ C\R. Then the

[α,∞)-Stieltjes measure σ of S belongs to Mq
≥,2n([α,∞)) and S belongs

to S0,q;[α,∞)[(sj)
2n
j=0,≤].

(b) Let n ∈ N0 be such that 2n + 1 ≤ κ and let S ∈ S0,q;[α,∞) be such that

{P [S]
2n (z), P

[S]
2n+1(z)} ⊆ C(n+2)q×(n+2)q

≥ holds true for each z ∈ C\R. Then
the [α,∞)-Stieltjes measure σ of S belongs to Mq

≥,2n+1([α,∞)) and S

belongs to S0,q;[α,∞)[(sj)
2n+1
j=0 ,≤].

Proof. (a) Lemma 6.14 yields σ ∈ Mq
≥,2n([α,∞)) and H

[σ]
n ≤ Hn. If n = 0,

then σ ∈ Mq
≥[[α,∞); (sj)

2n
j=0,≤] follows. Suppose now n ≥ 1. Remark 6.16

shows that (101) is valid. Obviously, σ ∈ Mq
≥[[α,∞); (s

[σ]
j )2nj=0,≤], where

(s
[σ]
j )2nj=0 is de�ned by (1). Thus, Proposition 4.9 and Remark 6.16 provide

us limy→∞RTq,n(iy)[vq,nS(iy)− u
[σ]
n ] = 0 where s

[σ]
−1 := 0q×q and where u

[σ]
n :=

− col(s
[σ]
j−1)

n
j=0. Using additionally (101), we can conclude

lim
y→∞

(u[σ]n − un)
∗RTq,n(iy)(u

[σ]
n − un) = 0.

Consequently, Remark 6.17 yields u
[σ]
n = un. Let dj := sj − s

[σ]
j for each

j ∈ Z0,2n. Then u
[σ]
n = un and n ≥ 1 imply d0 = 0q×q. Furthermore, the

inequality H
[σ]
n ≤ Hn shows that the block Hankel matrix [dj+k]

n
j,k=0 is non-

negative Hermitian. Thus, d2n ∈ Cq×q
≥ and Remark 6.18 yield dj = 0q×q for

each j ∈ Z0,2n−1. Hence, σ belongs to Mq
≥[[α,∞); (sj)

2n
j=0,≤].
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(b) Part (b) can be proved analogous to part (a). We omit the details. �
Now we are able to prove that the solution set of the (reformulated) truncated

Stieltjes-type moment problem and the solution set of the corresponding system
of the fundamental Potapov's matrix inequalities coincide.

Theorem 6.20. Let α ∈ R, let κ ∈ N0 ∪ {∞}, and let (sj)
κ
j=0 be a sequence of

complex q × q matrices. Let D be a discrete subset of Π+ and let S : C\[α,∞) →
Cq×q be a holomorphic matrix-valued function. Then:

(a) Let n ∈ N0 be such that 2n ≤ κ. Then the following statements are
equivalent:
(i) S ∈ S0,q;[α,∞)[(sj)

2n
j=0,≤].

(ii) P
[S]
2n−1(z) ∈ C(n+1)q×(n+1)q

≥ and P
[S]
2n (z) ∈ C(n+2)q×(n+2)q

≥ for all z ∈
Π+ \ D.

(b) Let n ∈ N0 be such that 2n + 1 ≤ κ. Then the following statements are
equivalent:
(iii) S ∈ S0,q;[α,∞)[(sj)

2n+1
j=0 ,≤].

(iv) {P [S]
2n (z), P

[S]
2n+1(z)} ⊆ C(n+2)q×(n+2)q

≥ for all z ∈ Π+ \ D.

Proof. (i)⇒(ii), (iii)⇒(iv): Use Proposition 4.9.
(ii)⇒(i): Let m := 2n. Observe that the function F := RstrΠ+\D S is

holomorphic. Because of (ii), the inequalities P
[F ]
m−1(z) ≥ 0 and P

[F ]
m (z) ≥ 0

hold true for each z ∈ Π+ \ D. From Theorem 6.5 we get then that there is

a unique function Ŝ ∈ S0,q;[α,∞) such that RstrΠ+\D Ŝ = F , namely Ŝ = S,

and that P
[Ŝ]
k (z) ≥ 0 are valid for all k ∈ Z−1,m and all z ∈ C \ R. Applying

Lemma 6.19, we get then (i).
(iv)⇒(iii): Let m := 2n+1 and use the same argumentation as in the proof

of the implication �(ii)⇒(i)�. �

7. Particular results on non-negative Hermitian measures

In this appendix, we summarize some facts of the integration theory of non-
negative Hermitian measures. We consider a measurable space (Ω,A) and
use the notation Mq

≥(Ω,A) to denote the set of all non-negative Hermitian

q × q measures on (Ω,A).

Remark 7.1. Let µ ∈ Mq
≥(Ω,A) and let f : Ω → C be a function. Then

standard arguments of measure and integration theory show that the following
statements are equivalent:

(i) f ∈ L1(Ω,A, µ;C).
(ii) f ∈ L1(Ω,A, B∗µB;C) for all B ∈ Cq×p.
(iii) f ∈ L1(Ω,A, τ ;C) where τ := trµ is the trace measure of µ.

If (i) holds true, then ∫
A
fd(B∗µB) = B∗(

∫
A
fdµ)B

for all A ∈ A and all B ∈ Cq×p.
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Lemma 7.2. Let µ ∈ Mq
≥(Ω,A) and let µ

′
τ be a version of the Radon�Nikodym

derivative of µ with respect to the trace measure τ := trµ of µ. Let f : Ω → C
and g : Ω → C be A-BC-measurable functions. Then the following statements
are equivalent:

(i) fg ∈ L1(Ω,A, µ;C).
(ii) The pair [fIq, gIq] is left-integrable with respect to µ.

If (i) is ful�lled, then ∫
Ω
fgdµ =

∫
Ω
(fIq)dµ(gIq)

∗.

Lemma 7.2 can be proved by standard methods of measure and integration
theory.

Remark 7.3. Let µ ∈ Mq
≥(Ω,A) and let m,n ∈ N. For each j ∈ Z1,m, let pj ∈

N and let Φj : Ω → Cpj×q be an A-Bpj×q-measurable matrix-valued function.

For each k ∈ Z1,n, let rk ∈ N and let Ψk : Ω → Crk×q be an A-Brk×q-measurable
matrix-valued function. Suppose that, for every choice of j ∈ Z1,m and k ∈ Z1,n

the pair [Φj ,Ψk] is left-integrable with respect to µ. Let s, t ∈ N. For each
j ∈ Z1,m, let Aj ∈ Cs×pj , and, for each k ∈ Z1,n, let Bk ∈ Ct×rk . Then it is
readily checked that the pair

[

m∑
j=1

AjΦj ,

n∑
k=1

BkΨk]

is left-integrable with respect to µ and that∫
Ω

 m∑
j=1

AjΦj

dµ

(
m∑
k=1

BkΨk

)∗

=
m∑
j=1

n∑
k=1

Aj

(∫
Ω
ΦdµΨ∗

)
B∗

k.

Proposition 7.4. Let µ ∈ Mq
≥(Ω,A), let τ := trµ be the trace measure of µ,

and let µ′τ be a version of the Radon�Nikodym derivative of µ with respect to
τ . Furthermore, let Θ ∈ p× q-L2(Ω,A, µ;C). Then:
(a) µΘ : A → Cp×p de�ned by

µΘ(A) :=

∫
A
ΘdµΘ∗

belongs to Mp
≥(Ω,A).

(b) The non-negative Hermitian measure µΘ is absolutely continuous with
respect to τ and Θµ′τΘ

∗ is a version of the Radon�Nikodym derivative of
µΘ with respect to τ .

(c) Let r, s ∈ N, let Φ: Ω → Cr×p be an A-Br×p-measurable function and let
Ψ: Ω → Cs×p be an A-Bs×p-measurable function. Then the pair [Φ,Ψ]
is left-integrable with respect to µΘ if and only if the pair [ΦΘ,ΨΘ] is
left-integrable with respect to µ. In this case,∫

Ω
ΦdµΘΨ

∗ =

∫
Ω
(ΦΘ)dµ(ΨΘ)∗.
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Proposition 7.4 can be proved by standard arguments of measure and inte-
gration theory.
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THE CLASSICAL ORTHOGONAL POLYNOMIALS
IN RESONANT EQUATIONS

I. Gavrilyuk, V.Makarov

Ðåçþìå. Ó ñòàòòi çàïðîïîíîâàíî òåîðiþ òà àëãîðèòì äëÿ çíàõîäæåí-
íÿ ÷àñòêîâèõ ðîçâ'ÿçêiâ ðåçîíàíñíèõ ðiâíÿíü, ïîâ'ÿçàíèõ iç êëàñè÷íèìè
îðòîãîíàëüíèìè ïîëiíîìàìè. Öå äà¹ ìîæëèâiñòü îòðèìàòè çàãàëüíèé
ðîçâ'ÿçîê ó ÿâíîìó âèãëÿäi. Àëãîðèòì ïiäõîäèòü çîêðåìà äëÿ ñèñòåì
êîìï'þòåðíî¨ àëãåáðè, íàïðèêëàä, Maple. Ðåçîíàíñíi ðiâíÿííÿ ¹ íåâiä'¹ì-
íîþ ÷àñòèíîþ ðiçíèõ çàñòîñóâàíü, íàïðèêëàä, åôåêòèâíîãî ôóíêöiîíàëü-
íî-äèñêðåòíîãî ìåòîäó (FD-ìåòîä) äëÿ ðîçâ'ÿçóâàííÿ îïåðàòîðíèõ ðiâ-
íÿíü i ïðîáëåìè âëàñíèõ çíà÷åíü íà îñíîâi çáóðåíü i iäå¨ ãîìîòîïi¨. Öi
ðiâíÿííÿ âèíèêàþòü òàêîæ i â êîíòåêñòi ñóïåðñèìåòðè÷íèõ îïåðàòîðiâ
Êàçiìiðà äëÿ äi-ñïiíîâî¨ àëãåáðè, à òàêîæ ðiâíÿíü òèïó A2u = f ç çàäàíèì
îïåðàòîðîì A â äåÿêîìó áàíàõîâîìó ïðîñòîði, íàïðèêëàä, áiãàðìîíi÷íîãî
ðiâíÿííÿ.

Abstract. In the present paper we propose a theory and an algorithm for
particular solutions of resonant equations related to the classical orthogonal
polynomials. This enable us to obtain the general solution in explicit form.
The algorithm is particulary suitable for computer algebra tools like Maple.
The resonant equations are an essential part of various applications e.g. of the
e�cient functional-discrete method (FD-method) for solving operator equa-
tions and of eigenvalue problems based on the perturbation and the homotopy
ideas. These equations arose also in the context of supersymmetric Casimir
operators for the di-spin algebra as well as of the equations of type A2u = f
with a given operator A in some Banach space, for example, of the biharmonic
equation.

1. Introduction
There are various de�nitions of resonant equations, see e.g. [1, 2], where

a boundary value problem is called resonant, when the operator, de�ned by
the di�erential equation and by the boundary conditions does not possess the
inverse. In the present paper we follow the de�nition from [7, 16, 19] and call
an equation of the form Lf = g with Lg = 0 resonant. In other words, the
right-hand side of the resonant equation belongs to the kernel K(L) of the
operator L. These equations are interesting both from theoretical point of view
and from the practical side in various applications. For example, in [16] was
proposed the so called functional-discrete method (FD-method) for solving of
operator equations and of eigenvalue problems. The method is based on the

Key words. FD-method; Casimir operators; di-spin algebra; Banach space; biharmonic
equation.

2010Mathematics Subject Classi�cation. 33C15, 33C45, 33C90, 33F10, 34L40.
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ideas of perturbation of the operator involved and on the homotopy idea. This
approach was applied to various problems in particulary to eigenvalue problems
in [9�13] and has been proven to possess a super exponential convergence rate.
An essential part of the algorithm are some inhomogeneous equations with a
resonant component in the sense of the de�nition above. Resonant equations
arise in the theory of supersymmetric Casimir operators and of di-spin algebra
[7]. They can be used to study the equations of the type A2u = 0 with some
given operator A. Substituting Au = v we reduce this equation to the pair
Av = 0, Au = v where the second equation is resonant.
Their importance for praxis can be explained by the following example. Let

the mathematical model of some system be the operator equation

Au− λu = f

in some Hilbert space H, where the system is characterized by the operator
A and the parameter λ. The element f describes external perturbation. The
operator A is completely de�ned by its eigenvalues λ1, λ2, ... and by the corre-
sponding eigenvectors u1, u2, ... If the perturbation is of the kind f = αuk for
some �xed α, k, i.e, the equation is resonant, then the solution of the mathe-
matical model is u = α

λk−λuk. One can see that the norm ∥u∥, which can be

interpreted as �amplitude�, tends to in�nity as the system parameter λ tends
to the so called resonant frequency λk. This phenomenon is called resonance
and can be observed in the nature and many technical applications, e.g. in
magnetic resonance imaging or nuclear spin tomography etc.
The present article deals with the resonant equations associated with the or-

dinary di�erential operators of the hypergeometric or con�uent hypergeometric
type, de�ning the classical orthogonal polynomials, i.e.

An = σ(x)
d 2

dx2
+ τ(x)

d

dx
+ λn (1)

where σ(x) = a2x
2 + a1x + a0 is a polynomial of the degree not greater then

two, τ(x) = b1x + b0 - a polynomial of the degree not greater then one and
λn = λ(n) = −nb1 − n(n − 1)a2 depends on the integer parameter n ≥ 0
but not on the variable x. We consider the di�erential operators de�ning the
classical orthogonal polynomials (as the �rst linear independent solution of
the corresponding homogeneous di�erential equation) and the corresponding
functions of the second kind (the second linear independent solution) and the
resonant equations of the �rst and of the second kind with the corresponding
right hand side. We propose a theory describing particular solutions of the
inhomogeneous resonant equations. We propose a theory and an algorithm to
compute such solutions, which is especially convenient for the computer algebra
tools like Maple and prove that the functions generated by this algorithm satisfy
the resonant di�erential equation. Incidently we prove a new di�erentiation
formula which represents the derivative of a classical orthogonal polynomial
through the linear combination of the same and of a neighboring polynomial
and which is uni�ed for all classical orthogonal polynomials. Its coe�cients
are expressed through the coe�cients of σ(x), τ(x) and the coe�cients of the
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recurrence relation. Such formulas are well known in the literature (see e.g.
[5, 5, 24,28]), but for each concrete orthogonal polynomial only.

2. Representation of particular solutions of
resonant equations

A classical orthogonal polynomial (Jacobi, Laguerre or Hermite) P̂n(x) (see
e.g. [6, 24, 28]) satis�es the homogeneous di�erential equation

Anu(x) = 0 (2)

and is called also the function of the �rst kind. Let Q̂n(x) be the second linear
independent solution of the homogeneous di�erential equation, which is called
the function of the second kind. Then the general solution of the homogeneous
di�erential equation (2) is given by

u(x) = c1P̂n(x) + c2Q̂n(x), (3)

where c1, c2 are arbitrary constants.
Let us consider the resonant equations of the type

Anun(x) = Rn(x). (4)

In the case when Rn(x) is a classical orthogonal polynomial P̂n(x) (the function
of the �rst kind), the inhomogeneous di�erential equation (4) is called the res-
onant equation of the �rst kind. The inhomogeneous di�erential equation (4)

with the right-hand side Q̂n(x) instead of Rn(x) is called the resonant di�eren-

tial equation of the second kind. Both functions P̂n(x) and Q̂n(x) satisfy the
same homogeneous di�erential equation (2) and the same recurrence relation

Rn+1(x) = (α(n)x+ β(n))Rn(x)− γ(n)Rn−1(x), n = 1, 2, ... (5)

with some coe�cients α(n) = αn, β(n) = βn, γ(n) = γn (see e.g. [6, 23, 24, 28]).
If we change in the di�erential operator An the integer n ≥ 0 to a real ν
then the corresponding solutions P̂ν(x), Q̂ν(x) become the hypergeometric or
con�uent hypergeometric functions [5,6]. SinceRn(x) satis�es the homogeneous
di�erential equation (2), then we can di�erentiate this equation by n in the
following way: 1) switch from the integer n ≥ 0 to a real ν, 2)di�erentiate
by ν and 3)replace the real ν by the integer n. In regard of (1) we obtain

An
dRn
dn = −λ′(n)Rn or An

(
− 1

λ′(n)
dRn
dn

)
= Rn, which means that the function

un(x) = − 1

λ′(n)

dRn

dn
(6)

is a particular solution of the resonant equation. Using this relation and di�er-
entiating (5) by n we obtain

un+1(x) = − 1

λ′(n+ 1)

[
−λ′(n)(α(n)x+ β(n))un(x)+

+ λ′(n− 1) γ(n)un−1(x)+

+
(
α′(n)x+ β′(n)

)
Rn(x)− γ′(n)Rn−1(x)

]
, n = 1, 2, ...

(7)
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The general solution of the resonant equation (4) is given by

u(x) = c1P̂n(x) + c2Q̂n(x) + u(k)n (x), (8)

where u
(k)
n (x), k = 1, 2 is a particular solution of the corresponding inhomoge-

neous resonant equation. Below we propose an algorithm to �nd the particular
solutions, which is especially suitable for computer algebra tools like Maple etc.
Since our algorithm below for particular solutions of the resonant di�erential
equations of the �rst and of the second kind (3) is based on the same recurrence
relation (5) it is valid for the resonant equations of both types and we use the

notation Rn(x) below for both P̂n(x) and Q̂n(x). The following general result
on the particular solutions of the resonant equations has been proven in [19].

Theorem 1. Let A : X → X be a linear operator acting in a Banach space X,
the set K(A) ⊂ X be the kernel of A and a connected set Σ(A) in the complex
plane be the spectral set of A. If f(λ) ∈ K(A−λE), λ ∈ Σ(A) is a di�erentiable
function then the solution of the resonant equation

(A− λE)u = f(λ) (9)

can be represented by

u(λ) =
df(λ)

dλ
(10)

The proof of this theorem is based on the equivalent equation

(A− λ0I)
f(λ)− f(λ0)

λ− λ0
= f(λ)

with some �xed λ0 and on passing to the limit λ→ λ0.

3. An algorithm for computation of particular solutions.
A general differentiation formula for classical

orthogonal polynomials

Now we are at the position to formulate an algorithm for the particular
solutions of the resonant equations associated with a di�erential operator of the
hypergeometric type, de�ning classical orthogonal polynomials. This algorithm
is especially suitable for computer algebra tools like Maple etc.

Algorithm 1. Problem: Given a resonant equation of the �rst or of the second
kind, return a given number N of particular solutions.

Inputs: The number N and the right hand side Rν(x) of the resonant equa-
tion.

Outputs: The particular solutions u0(x), u1(x), ..., uN (x).
1. Find

χ0(x) = − 1

λ′(ν)

dRν(x)

dν

∣∣∣∣
ν=0

, χ1(x) = − 1

λ′(ν)

dRν(x)

dν

∣∣∣∣
ν=1

. (11)

Due to (6) these are particular solutions.
2. Compute u2(x) in accordance with (7) using the initial conditions

u0(x) = χ0(x) + c0P0(x) + d0Q0(x), u1(x) = χ1(x) + c1P1(x) + d1Q1(x) (12)
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with unde�ned coe�cients c0, c1, d0, d1.
3. Find c0, c1, d0, d1 from the condition that u2(x) satis�es the resonant dif-

ferential equation (3).
4. For n = 2 step 1 until n = N compute un(x) by (7) and return un(x).

Using Theorem 1 we prove below that the sequence un(x) generated by this
algorithm satisfy the resonant equation for all n = 0, 1, 2, ....

Theorem 2. All functions un+1(x) generated by the recursion (7) with the
initial conditions (12) satisfy the resonant di�erential equation (4).

Proof. We use the mathematical induction and, �rst of all, note that the func-
tions up(x), p= 0, 1, 2 satisfy the resonant equation by construction and due
to Theorem 1. Let us assume that all the functions up (x) , p = 0, 1, . . . , n
satisfy the resonant di�erential equation (4) and prove that then the function
un+1 (x) is its solution too.
First of all we notice that

An+1un(x) = σ(x)
d2un
dx2

+ τ(x)
dun
dx

+ λ(n+ 1)un =

= Anun(x) + (λ(n+ 1)− λ(n))un = Rn(x) + (λ(n+ 1)− λ(n))un,

An+1un−1(x) = An−1un−1(x) + (λ(n+ 1)− λ(n− 1))un−1 =

= Rn−1(x) + (λ(n+ 1)− λ(n− 1))un−1,

d

dx

[
(α′(n)x+ β′(n))Rn(x)− γ′(n)Rn−1(x)

]
=

= α′(n)Rn(x) + (α′(n)x+ β′(n))
dRn(x)

dx
− γ′(n)

dRn−1(x)

dx
,

(13)

Further we use the di�erentiation formula for the classical orthogonal poly-
nomials (which is the same for the functions of the second kind too) and which
represents the derivative of these functions through the same functions of index
n and the function of the index n − 1 with some coe�cients independent of x
(see, e.g. [23, �4, (12)] or [6, p.171,(15); p.189, (12); p.193, (14)] for concrete
classical orthogonal polynomials):

σ(x)
dRn

dx
= [q1(n)x+ q2(n)]Rn(x) + s(n)Rn−1(x) =

= [q1,nx+ q2,n]Rn(x) + snRn−1(x).
(14)

Substituting this expression as well as (13)into the formula for An+1un+1(x),
we obtain

An+1un+1(x) =
λ′(n)

λ′(n+ 1)
(α(n)x+ β(n))(λ(n+ 1)− λ(n))un(x)

1

λ′(n+ 1)
(α′(n)x+ β′(n))(λ(n+ 1)− λ(n))Rn(x)+

+
λ′(n)

λ′(n+ 1)
(α(n)x+ β(n))Rn(x)−

(15)
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− 2σ(x)

λ′(n+ 1)

[
−λ′(n)α(n)dun(x)

dx
+ α′(n)

dRn(x)

dx

]
−

− τ(x)

λ′(n+ 1)

[
−λ′(n)α(n)un(x)− α′(n)Rn(x)

]
−

− 1

λ′(n+ 1)
(λ′(n− 1)γ(n)(λ(n+ 1)− λ(n− 1))un−1(x)+

+ λ′(n− 1)γ(n)Rn−1(x)−
− γ′(n)(λ(n+ 1)− λ(n− 1))Rn−1(x)) =

=
λ′(n)

λ′(n+ 1)
{ (α(n)x+ β(n))(λ(n+ 1)− λ(n))+

+ 2α(n) [q1 (n)x+ q2 (n)] + λτ(x) }un(x)+

+
λ′(n− 1)

λ′(n+ 1)
{ γ(n)(λ(n+ 1)− λ(n)) + 2α(n)s (n) }un−1(x) +R(x),

where R(x) contains the functions Rn−1(x), Rn(x) and its derivatives but not
un−1(x), un(x). Setting the coe�cients in front of un−1(x), un(x) equal to zero,
we obtain

s(n) = −γ(n)
α(n)

[b1 + (2n− 1)a2] ,

q1(n) = −1

2
[b1 + λ(n+ 1)− λ(n)] = na2,

q2(n) = −b0
2

− β(n)

2α(n)
[λ(n+ 1)− λ(n)] = −b0

2
+

β(n)

2α(n)
[b1 + 2na2] .

(16)

It is easy to check that the coe�cients of the di�erentiation formulas for all
classical orthogonal polynomials satisfy (16). For example, the Laguerre poly-
nomials are de�ned by the con�uent hypergeometric di�erential equation with
σ(x) = a2x

2 + a1x + a0 = x, τ(x) = b1x + b0 = α + 1 − x, λn = λ(n) =
−nb1 − n(n − 1)a2 = n; i.e. a2 = 0, a1 = −1, a0 = 0, b1 = −1, b0 = α + 1.
Besides they satisfy the recurrence relation [6, �10.2]

(n+ 1)Lα
n+1(x)− (2n+ α+ 1− x)Lα

n(x) + (n+ α)Lα
n−1(x) = 0, (17)

i.e. α(n) = − 1
n+1 , β(n) =

2n+α+1
n+1 , γ(n) = −n+α

n+1 . Due to (16) we obtain s(n) =

n+ α, q1(n) = 0, q2(n) = −α+1
2 + 2n+α+1

2 = n and (14) implies the well known
di�erentiation formula (see e.g. [6, �10.2])

x
dLα

n(x)

dx
= nLα

n(x) + (n+ α)Lα
n−1(x). (18)

Now, using the recurrent relation (5) we obtain from (15) the equality

An+1un+1(x) = Rn+1(x), (19)

which proves the assertion. �

Remark 1. At once with (16) we have obtained the coe�cients of the general
di�erentiation formula (14) which is valid for the general classical orthogonal
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polynomials and contains all particular cases of the polynomials by Jacobi, La-
guerre, Hermite known from the literature [6, 24, 28]. This formula is much
more convenient for use then the corresponding formula from [23,24].

4. Examples

Example 1. This example demonstrates the use of Algorithm 1 for the repre-
sentation of the general solution of the following Laguerre resonant equation of
the �rst kind

x
d2u(x)

dx2
+ (1 + α− x)

du(x)

dx
+ nu(x) = Lα

n(x) (20)

where

Lα
n(x) =

(α+ 1)n
n!

Φ(−n, α+ 1, x) =

=
Γ(α+ 1 + n)

Γ(α+ 1)Γ(n+ 1)
Φ(−n, α+ 1, x) =

n∑
k=0

(
n+ α
n− k

)
(−x)k

k!

(21)

is the Laguerre polynomial satisfying the corresponding homogeneous di�er-
ential equation and Φ(−n, α + 1, x) is the con�uent hypergeometric function
satisfying a degenerate form of the hypergeometric di�erential equation when
two of the three regular singularities merge into an irregular singularity [5, p.
189, formula (14)] and (a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n − 1) is the
Pochhammer-Symbol.
The second linear independent solution of the homogeneous di�erential equa-

tion is the Laguerre function of the second kind lαn(x) (see e.g. [25, pp.16,20]).
The general solution of the homogeneous Laguerre di�erential equation is given
by

u(x) = c1L
α
n(x) + c2l

α
n(x) (22)

with arbitrary constants c1, c2. The general solution of the Laguerre resonant
(inhomogeneous) equation is given by

u(x) = c1L
α
n(x) + c2l

α
n(x) + un(x) (23)

where c1, c2 are arbitrary constants and un(x) is a particular solution of the
inhomogeneous (resonant) equation.
Solving the corresponding di�erential equation for the Laguerre function of

the second kind [25, pp.16,20] by Maple we obtain the following representation
of this function for non-integer α:

lαn(x) = Γ(1− α)Lα
n(x)− (−x)−α

1F1(−n− α,−α+ 1;x) =

= Γ(1− α,−x)Lα
n(x)− (−x)−αpαn(x) exp(x),

pαn+1(x) =
1

n+ 1

[
(2n+ α+ 1− x)pαn(x)− (n+ α) pαn−1(x)

]
,

n = 1, 2, ...,

pα0 (x) = 1, pα1 (x) = 1− x.

(24)
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For non-negative natural α ∈ N we have

lαn(x) = Ei1(−x)Lα
n(x)− (−x)−αpαn(x) exp(x),

pα−1(x) = (α− 1)!,

pα0 (x) = xα−1 + xα [U (2, 2,−x) + (−1)αα! U(1 + α, 1 + α,−x)] ,
(25)

where

Ei1(x) =

∫ ∞

z

e−t

t
dt, |Arg(z)| < π (26)

is the exponential integral and U(a, b, z) is the Kummer's function of the second
kind. The last one is a solution of the Kummer's di�erential equation

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0. (27)

The other linear independent solution of this di�erential equation is the Kum-
mer's function of the �rst kind M de�ned e.g. by the hypergeometric series:

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!
= 1F1(a; b; z). (28)

The Kummer's function of the second kind can be represented also as

U(a, b, z) =
Γ(1− b)

Γ(a+ 1− b)
M(a, b, z)+

+
Γ(b− 1)

Γ(a)
z1−bM(a+ 1− b, 2− b, z).

(29)

Note that the function at the second initial condition in (25) solves the following
di�erence initial value problem

pα0 (x) = x pα−1
0 (x) + (α− 1)!, α = 1, 2, ...,

p00(x) = 0.
(30)

Using Theorem 1 we can represent the particular solutions of the Laguerre
resonant equation of the �rst kind also by

un(x) =
∂

∂ν

Γ(α+ 1 + n)

Γ(α+ 1)Γ(n+ 1)
Φ(−n, α+ 1, x)

∣∣∣∣
n=ν

, n = 0, 1, ... (31)

From this expression we extract the following particular solutions containing
the elementary functions only

χα
0 (x) = u0(x) = − ln(x) +

α−1∑
p=0

(α− p)p+1

(p+ 1)xp+1
,

χα
1 (x) = u1(x) = −Lα

1 (x) ln(x) +

α∑
p=0

kp(α)

xp
,

(32)
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where

kp+1(α) = p
α−1∑
i=1

kp(i), p = 1, 2, ..., α− 1,

k1(α) =
α(α+ 1)

2
, k0(α) = −α− 2, α = 2, 3, ...,

(33)

At the �rst step of our Algorithm 1 we use the ansates

uα0 (x) = χα
0 (x) + c0L

α
0 (x) + d0l

α
0 (x),

uα1 (x) = χα
1 (x) + c1L

α
1 (x) + d1l

α
1 (x)

(34)

with unde�ned coe�cients c0, d0, c1, d1, obtain uα2 (x) from the corresponding
recurrence formula of our algorithm and choose c0, d0, c1, d1 so that uα2 (x) sat-
is�es the resonant di�erential equation. We get d0 = 0, d1 = 0 and c1 = 1+ c0.
Now one can verify that

uαn(x) = −Lα
n(x) ln(x) +

pαn(x)

xα
, (35)

where the polynomials pαn(x) satisfy the recurrence equation

pαn+1(x) =
2n+ α+ 1− x

n+ 1
pαn(x)−

n+ α

n+ 1
pαn−1(x)+

+
(α− 1− x)

(n+ 1)2
Lα
n(x)−

α− 1

(n+ 1)2
Lα
n−1(x), n = 1, 2, ...

(36)

with the initial conditions

pα0 (x) =
α−1∑
p=0

xα−p−1(α− p)p+1

p+ 1
+ c0x

α,

pα1 (x) =
α∑

p=0

xα−pkp(α) + (1 + c0)x
αLα

1 (x).

(37)

Example 2. Now, let us consider the Laguerre resonant equation of the second
kind

x
d2u(x)

dx2
+ (1 + α− x)

du(x)

dx
+ nu(x) = lαn(x) (38)

whith the Laguerre function of the second kind lαn(x). Due to Theorem 1 the
formula

un(x) = − d

dν
lαν (x) |ν=n

(39)

de�nes a particular solution of (38), so that its general solution is given by

u(x) = c1L
α
n(x) + c2l

α
n(x) + un(x). (40)

The use of formula (39) for arbitrary n is rather burdensome, therefore we use
Algorithm 1, where we for the sake of simplicity set α = 0. Solving di�erential
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equation (38) with Maple for n = 0, n = 1 we get

χ0(x) = −
∫ x

1

exp(t)

t

∫ t

1
Ei1(−ξ) exp(−ξ)dξdt,

χ1(x) = [(1− x) Ei1(−x)− exp(x)]×

×
∫ x

1
[1 + Ei1(−ξ)(−1 + ξ) exp(−ξ)](−1 + ξ)dξ+

+

∫ x

1
exp(−ξ)[Ei1(−ξ)(−1 + ξ) + exp(−ξ)]2dξ(−1 + x).

(41)

As the ansatzes for initial values of our algorithm we use

u00(x) = χ0(x) + c0Ei1(−x) + d0, u01(x) = χ1(x) + c1l
0
1(x) + d1L

0
1(x) (42)

with unde�ned constants c0, d0, c1, d1. Di�erentiating the recurrence equation
for the Laguerre functions of the second kind by n and in regard of (39) we
obtain the following recurrence relation for particular solutions

u0n+1(x) =
2n+ 1− x

n+ 1
u0n(x)−

n

n+ 1
u0n−1(x)−

− 1 + x

(n+ 1)2
l0n(x) +

1

(n+ 1)2
l0n−1(x).

(43)

We substitute (42) into this equation with n = 1 and demand that the obtained
function u02(x) satis�es the resonant di�erential equation (38) with n = 2, then
we obtain

c0 = −Ei1(−1) exp(−1)− 1,

d0 = −[Ei1(−1) exp(−1/2) + exp(1/2)]2,

c1 = 0, d1 = 0.

(44)

It can be veri�ed by substitution into (43) that the following representation
holds true

u0n(x) = p0n(x)χ1(x) + q0n(x)χ0(x) + v0n(x)Ei1(−x)+
+ w0

n(x) exp(x) + q0n(x)d0,
(45)

where the polynomials p0n(x), q
0
n(x) satisfy the recurrence relation for the La-

guerre polynomials with the initial conditions

p00(x) = 0, p01(x) = 1, q00(x) = 1, q01(x) = 0.

The polynomials w0
n(x) satisfy the inhomogeneous recurrence relation for the

Laguerre polynomials

w0
n+1(x) =

2n+ 1− x

n+ 1
w0
n(x)−

n

n+ 1
w0
n−1(x)−

1 + x

(n+ 1)2
p0n(x)+

+
1

(n+ 1)2
p0n−1(x), n = 1, 2, ...

(46)

with the initial conditions

w0
1(x) = 0, w0

2(x) =
x+ 1

4
.
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The polynomials v0n(x) solve the following discrete initial value problem

v0n+1(x) =
2n+ 1− x

n+ 1
v0n(x)−

n

n+ 1
v0n−1(x)−

1 + x

(n+ 1)2
L0
n(x)+

+
1

(n+ 1)2
L0
n−1(x), n = 1, 2, ...,

v01(x) = 0, v02(x) =
x2 − 2c0

4
.

(47)

Below we give some particular solutions of the Laguerre resonant equation of
the second kind obtained by our algorithm:

u00(x) = χ0(x) + c0Ei1(−x) + d0, u
0
1(x) = χ1(x),

u02(x) = −x− 3

2
χ1(x)−

1

2
χ0(x)+

+
x2 − 2c0

4
Ei1(−x)−

x2 − 1

8
exp(x)− 1

2
d0,

u03(x) =

(
1

6
x2 − 4

3
x+

11

6

)
χ1(x) +

(
1

6
x− 5

6

)
χ0(x)+

+

(
− 5

36
x3 +

7

12
x2 +

c0
6
x− 5c0

6

)
Ei1(−x)+

+

(
1

24
x3 − 11

72
x2 − 23

72
x− 1

72

)
exp(x) +

(
1

6
x− 5

6

)
d0,

(48)

where c0, d0 are given by (44) and χ0(x), χ1(x) � by (41).
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APPROXIMATION AND ESTIMATES IN THE PERIODIC
REPRESENTATION OF REAL NUMBERS OF THE CLOSED

INTERVAL [0, 5; 1] BY A2-CONTINUED FRACTIONS

M.V.Pratsiovytyi, O. P.Makarchuk, A. S. Chuikov

Ðåçþìå. Â ðîáîòi çíàéäåíî îöiíêè íàáëèæåíü äiéñíèõ ÷èñåë âiäðiçêà
[0, 5; 1] ëàíöþãîâèìè A2-äðîáàìè, åëåìåíòè ÿêèõ íàëåæàòü ìíîæèíi
{ 1
2
, 1}. Äîâåäåíî, ùî A2-ðàöiîíàëüíi ÷èñëà (÷èñëà, ùî ìàþòü äâà ðiçíèõ

íåñêií÷åííèõ A2-çîáðàæåííÿ) êðiì äâîõ íåñêií÷åííèõ, ìàþòü çëi÷åííó
ìíîæèíó ðiçíèõ ñêií÷åííèõ çîáðàæåíü. Ñïðîñòîâó¹òüñÿ ãiïîòåçà, ùî êîæ-
íå ðàöiîíàëüíå ÷èñëî ¹ A2-ðàöiîíàëüíèì i îáãîâîðþ¹òüñÿ ïðîáëåìà êðè-
òåðiÿ ðàöiîíàëüíîñòi ÷èñëà çà éîãî ëàíöþãîâèì A2-çîáðàæåííÿì.

Abstract. The paper investigates the estimates of the approximations of real
numbers of the closed interval [0, 5; 1] of the A2-continued fractions whose
elements belong to set { 1

2
, 1}. It is proved that A2-rational numbers (i.e.

numbers that have two di�erent in�nite A2-continued fraction representation)
except two endless A2-continued fraction representation have a countable set
of di�erent �nite ones. We refute the hypothesis that every rational number
is A2-rational numbers and discuss the criterion of rationality of numbers
according to its A2-continued fraction representation.

1. Introduction

The role and importance of continued fractions in mathematics and its ap-
plications are well-known [7�9, 11, 17, 19, 20]. They are also used to develop a
metric [5, 10] and probabilistic number theory [1, 6, 15, 16], the theory of dy-
namical systems [12], fractal geometry and fractal analysis [2, 4]. Especially
well developed is the theory of elementary continued fractions whose elements
are natural numbers [20]. Relatively recently, the theory of simple in�nite
A2-continued fractions whose elements are positive real numbers α0 and α1

was created [10, 13]. It is proved that at α0α1 = 1
2 the system of representa-

tion of numbers of a certain closed interval by such continued fractions, being
two-character, has zero redundancy. Particular attention deserves a case when
α0 = 1

2 , α1 = 1. We continue to develop this theory, in particular, supplement
it with �nite decompositions, and we focus on the interconnections of �nite and
in�nite continued A2-decomposers of numbers.
Let A2 ≡ {1

2 , 1} be a two-character alphabet. In�nite continued fraction

Key words. A2-continued fraction; A2-rational number; criterion of rationality of number;
left shift operator of digits of the A2-continued fraction representation of number; algorithm
for decomposing of rational numbers into �nite A2-continued fractions.
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1

a1 +
1

a2 +
. . . + 1

an+
. . .

≡ [0; a1, a2, . . . , an, . . .] ≡ ∆A2
a1a2...an...,

where an ∈ A2, is called [5, 10] A2-continued fraction.

Because
∞∑
n=1

an = ∞ then each A2-continued fraction is convergent. Remind

[20] that convergents of order n of the continued fraction [0; a1, a2, . . . , an, . . .]

is called the number
pn

qn
which is the value of a �nite continued fraction [0;

a0; a1, a2, . . . , an], that is a segment of the continued fraction moreover:{
pn = anpn−1 + pn−2,
qn = anqn−1 + qn−2, n = 2, 3, . . . ;

where p0 = a0, q0 = 1, p1 = a1a0 + 1, q1 = a1.
For convergents of the continued fraction the following properties are per-

formed [20]:

1. qkpk−1 − pkqk−1 = (−1)k, ∀k ∈ N ;

2.
pk−1

qk−1
−
pk

qk
=

(−1)k

qkqk−1
, ∀k ∈ N ;

3. qkpk−2 − pkqk−2 = (−1)k−1ak, ∀k ∈ N ;

4.
qk

qk−1
= [ak; ak−1, . . . , a1], ∀k ∈ N.

From the property (4) for A2-continued fractions it follows that
1

2
<
qn−1

qn
< 1

at n = 2, 3, . . ..

Theorem 1. [10] For any x ∈ [0, 5; 1] there exists a sequence (an) ∈ L such
that

x = [0; a1, a2, . . . , an, . . .], (1)

and the numbers of a countable set can be represented as two di�erent A2-
continued fractions:

x = [0; a1, a2, . . . , an,
1

2
, (
1

2
, 1)] = [0; a1, a2, . . . , an, 1, (1,

1

2
)], (2)

here the round brackets mean the period.

Those numbers of the closed interval [0, 5; 1] having two representation of A2-
continued fractions are called A2-rational numbers. The rest of the numbers in
this closed interval have only one representation and are called A2-irrational
numbers. The task of �nding a criterion (necessary and su�cient conditions)
for rationality of a number by its representation in a given coding system is
traditional and for many representations is solved. Consider it for this repre-
sentation.
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2. Conditions of the rationality of the number by its
A2-continued fraction representation

Let denote t =
[
0;
(
1
2 , 1
)]

then from equality

t =
1

1
2 + 1

1+t

it is easy to get equality 0,5t2 + 0,5t − 1 = 0 and solution of the equation
t = 1 =

[
0;
(
1
2 , 1
)]
. Similarly [

0;

(
1,

1

2

)]
=

1

2
.

Lemma 1. Each A2-rational number has at least two di�erent �nite A2-conti-
nued fraction representations that is

x = [0; a1, . . . , am,
1

2
, (
1

2
, 1)] = [0; a1, . . . , am,

1

2
+ 1] = [0; a1, . . . , am,

1

2
, 1] =

= [0; a1, . . . , am, 1, (1,
1

2
)] = [0; a1, . . . , am, 1 +

1

2
] = [0; a1, . . . , am, 1, 1, 1],

and hence it is a rational number.

Proof. Because

1

2
=

[
0;

(
1,

1

2

)]
i 1 =

[
0;

(
1

2
, 1

)]
,

then

[0; a1, . . . , am,
1

2
, (
1

2
, 1)] = [0; a1, . . . , am,

1

2
+ 1] =

=
1

a1 +
. . . + 1

am+ 1

0,5+1
1

= [0; a1, . . . , am,
1

2
, 1],

[0; a1, . . . , am, 1, (1,
1

2
)] = [0; a1, . . . , am, 1 +

1

2
] =

=
1

a1 +
. . . + 1

am+ 1

1+ 1

1+1
1

= [0; a1, . . . , am, 1, 1, 1].

Then equalities which are indicated in the formulation of the lemma follow from
the fact that equality

[0; a1, . . . , an, an+1, an+2, . . .] = [0; a1, . . . , an, a
′
n+1, a

′
n+2, . . .]

is executed then and only then

[0; an+1, an+2, . . .] = [0; a′n+1, a
′
n+2, . . .].

The value of each �nite A2-continued fraction is the result of a �nite number of
rational actions on rational numbers. So each A2-rational number is a rational
number. 2
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Theorem 2. Each A2-rational number has a countable set of di�erent �nite
A2-continued fraction representations, in particular

1

2
=

0; 1, 1
2
, 1, . . . ,

1

2
, 1︸ ︷︷ ︸

2m

, 1

 , 1 =

0; 1
2
, 1, . . . ,

1

2
, 1︸ ︷︷ ︸

2m

, 1

 .
Proof. Indeed, from equality

1 =
1

1
=

1
1
2 + 1

1+ 1
1

(3)

we have the following

1 = [0; 1] = [0;
1

2
, 1, 1] = [0;

1

2
, 1,

1

2
, 1, 1] = [0;

1

2
, 1,

1

2
, 1,

1

2
, 1, 1] = . . .

Then 1
2 = [0; 1, 1] = [0; 1, 12 , 1, 1] = [0; 1, 12 , 1,

1
2 , 1, 1] = . . ..

Representations that are indicated in the lemma have the last element which
is equal to 1, and hence, taking into account equality (3), we get countable set
of �nite representations of A2-rational number. 2

The question whether every rational number of a [0, 5; 1] is A2-rational is
interesting. The answer to this question is directly related to another question.
Is every rational number decomposed into a �nite continued fraction? Let us
give some examples of such expansions. But �rst we give the algorithm for
decomposing a rational number a

b into a A2-continued fraction.
1. The �rst element a1 of the expansion of number x = a

b is based on the
formula:

a1 = φ

(
a

b

)
=


1, if

1

2
≤ a

b
≤ 2

3
,

1

2
, if

2

3
≤ a

b
≤ 1.

2. The following elements ai are determined from equalities:

x1 =
1

x
− φ(x) =

1

x
− 1

2
ε1 =

2b− aε1
2a

,

x2 =
1

x1
− φ(x1) =

1

x1
− 1

2
ε2,

. . .

xn+1 =
1

xn
− φ(xn) =

1

xn
− 1

2
εn+1,

where an = φ(xn−1) =
1
2εn, εn ∈ {1, 2}.

3. The process ends if xn becomes equal to 1 or 1
2 or 1

3 .

� In the �rst case number x has n+ 1 digits, and an+1(x) = 1.
� In the �rst case number x has n+2 digits, and an+1(x) = 1, an+2(x) = 1.
� In the �rst case number x has n+2 digits, and an+1(x) = 1, an+2(x) =

1
2 .
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The following expansions are performed:

2

3
= [0; 1, 1, 1] =

[
0;

1

2
, 1

]
,
3

4
=

[
0; 1, 1,

1

2

]
,
4

5
=

[
0;

1

2
, 1, 1,

1

2

]
,

5

6
=

[
0;

1

2
,
1

2
,
1

2
, 1,

1

2
,
1

2
, 1, 1,

1

2
, 1,

1

2
,
1

2
, 1, 1, 1, 1, 1,

1

2

]
.

6

7
=

[
0;

1

2
, 1, 1, 1

]
=

[
0;

1

2
,
1

2
, 1

]
,

7

8
=

[
0;

1

2
, 1, 1,

1

2
, 1, 1,

1

2
,

]
,
8

9
=

[
0;

1

2
, 1, 1, 1, 1, 1

]
,

9

10
=

[
0;

1

2
, 1, 1, 1, 1, 1,

1

2

]
,

5

6
=

[
0;

(
1

2
,
1

2
,
1

2
, 1,

1

2
,
1

2
, 1, 1,

1

2
, 1,

1

2
,
1

2
, 1, 1, 1,

1

2

)]
.

Notation. The number x = 5
6 has both �nite and periodic A2-expansion

and the later does not satisfy the de�nition of a A2-rational number. This fact
refutes the hypothesis that every rational number is A2-rational number. It
remains neither proven nor disproved the hypothesis that every rational number
has a �nite A2-continued fraction expansion.

3. Left shift operator on digits of A2-continued fraction
representation of number

In the space of A2-continued fraction representations we de�ne operator ω
by equality

ω(∆A2
a1a2...) = ∆A2

a2a3..., (4)

called left shift operator on digits of A2-continued fraction representation of
number.
Let us use only the �rst of the two existing representations (2) of A2-rational

number. Then from equality (4) we get well-de�ned function of number x =
[0; a1, a2, . . . ] that has the following analytical form

ω(x) =
1

x
− a1(x) =

1− a1x

x
.

Let

ωn(x) = ω(ω(. . . ω︸ ︷︷ ︸(x))) = unx+ vn
cnx+ dn

,

then

ωn(x) =
1

ωn−1(x)
− an(x) =

1− ωn−1an(x)

ωn−1
.

Then u0 = 1, v0 = 0, c0 = 0, d0 = 1 and at an = 1
2 we have

un+1x+ vn+1

cn+1x+ dn+1
=
cnx+ dn
unx+ vn

− 1

2
=

(2cn − un)x+ 2dn − vn
2unx+ 2vn

,
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hence the following 
un+1 = 2cn − un,

vn+1 = 2dn − vn,

cn+1 = 2un,

dn+1 = 2vn.

If an = 1 then

un+1x+ vn+1

cn+1x+ dn+1
=
cnx+ dn
unx+ vn

− 1 =
(cn − un)x+ dn − vn

unx+ vn
.

We have 
un+1 = cn − un,

vn+1 = dn − vn,

cn+1 = un,

dn+1 = vn.

Let's estimate the value of |un| above.

Theorem 3. The following inequality is being performed:

cn ≤ 1√
17

((
1 +

√
17

4

)n

−

(
1−

√
17

4

)n)
, ∀n ∈ Z+.

Proof. It is clear that (u0; v0; c0; d0) = (1; 0; 0; 1). Possible options for
(u1; v1; c1; d1) are (−1; 2; 2; 0) and (−1; 1; 1; 0) for a1 = 1

2 or 1 respectively.
The following cases are possible:

un+1 = 2cn − un =

{
2un−1 − un,

4un−1 − un,

and

un+1 = cn − un =

{
2un−1 − un,

un−1 − un.

So

un+1 = kun−1 − un,

where k ∈ { 1; 2; 4}.
We got

|un+1| = |kun−1 − un| ≤ |kun−1|+ |un| ≤ 4|un−1|+ |un|.

Let (sn) such a sequence that

sn+1 = sn + 4sn−1, ∀n ∈ N,

s0 = 1, s1 = 1.

It is inductively easy to show that

un ≤ sn, ∀n ∈ Z+.
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Because

sn =
1√
17

((
1 +

√
17

4

)n

−

(
1−

√
17

4

)n)
,

then

un ≤ 1√
17

((
1 +

√
17

4

)n

−

(
1−

√
17

4

)n)
, ∀n ∈ Z+.

It is clear that cn = kun, where k ∈ { 1; 12}, then

cn ≤ un ≤ 1√
17

((
1 +

√
17

4

)n

−

(
1−

√
17

4

)n)
, ∀n ∈ Z+. 2

4. Properties of numbers with periodic A2-continued
fractions representation

Theorem 4. If number y has a period in its A2-continued fractions represen-
tation then it looks y = α+

√
γ where α, γ ∈ Q.

Proof. Let y = [0, α1, α2, . . . , αk, (β1, . . . βl)], then we have

[0, (β1, . . . , βl)] = ωk(y) =
uky + vk
cky + dk

,

[0, (β1, . . . , βl)] = ωl

(
uky + vk
cky + dk

)
.

So,
uk+ly + vk+l

ck+ly + dk+l
=
uky + vk
cky + dk

,

hence the following

y2(ck+luk−uk+lck)+y(ukck+l+vkdk+l−uk+ldk−vk+lck)+vkdk+l−vk+ldk = 0,

which proves necessary. 2

Theorem 5. If equation ax2+bx+c = 0, (a, b, c ∈ Z, a ̸= 0) has a solution
x1 = α+

√
γ, where α, γ ∈ Q, √

γ /∈ Q, then it has a solution x2 = α−√
γ.

Proof. It is clear that

a(α2 + 2α
√
γ + γ) + b(α+

√
γ) + c = 0,

√
γ(2aα+ b) + aα2 + aγ + c+ bα = 0.

If 2aα+ b ̸= 0, then
√
γ ∈ Q and we get a contradiction.

So, {
2aα+ b = 0,

aα2 + aγ + c+ bα = 0.

Hence we get

ax22 + bx2 + c = a(α2 − 2α
√
γ + γ) + b(α−√

γ) + c =

= −√
γ(2αa+ b) + aα2 + aγ + c+ bα = 0.

2
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Theorem 6. If number

y =
e

f
+

√
g

h
∈ [0,5; 1],

where l, f, g, h ∈ N, (g;h) = (f ;h) = 1,
√

g
h /∈ Q, has A2-continued fractions

representation of the form

y = [0, (β1, . . . , βl)],

then the following inequality is being performed:

h ≤ 1√
17

(1 +
√
17

4

)l

−

(
1−

√
17

4

)l
 .

Proof. We have
uly + vl
cly + dl

= y

hence

cly
2 + (dl − ul)y − vl = 0.

By the theorem 5 the last equation also has a root

ỹ =
e

f
−
√
g

h
,

then

−bl
cl

= yỹ =
e2

f2
− g

h
=
l2h− gf2

f2h

hence

−blf2h = cl(l
2h− gf2).

The left side of the last equality is divided by h hence cl is divided by h.
Taking into account theorem 3, we have

h ≤ |cl| ≤
1√
17

(1 +
√
17

4

)l

−

(
1−

√
17

4

)l
 . 2

5. Approximation of real number of the closed interval [0, 5; 1] by
A2-continued fractions

Let ν1(x, n) =
ln

n
, ν 1

2
(x, n) =

kn

n
, where ln i kn is the number of elements 1

i 1
2 respectively among (a1, . . . , an) in A2-continued fraction representation of

number x = [0; a1, . . . , an, . . .].
Let's call the values lim

n→∞
ν 1

2
(x, n) = ν 1

2
and lim

n→∞
ν1(x, n) = ν1 by the fre-

quencies of the digits 1 and 1
2 in A2-continued fraction representation of x,

provided that these limits exist.
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Lemma 2. Let B be a set of sets of numbers (α1, . . . , αk+l) among which l
elements are equal to 1 and k elements are equal to 1

2 , and let q((α1, . . . , αk+l))
be a number that is de�ned by the following recurrence formula:

q0 = 1, q1 = α1, qn = αnqn−1 + qn−2, n = 2, 3, . . . , k + l,

qk+l = q((α1, . . . , αk+l)).

Then there exist such constants Dj , D̃j(j ∈ {1, 2, 3, 4})(Dj , D̃j > 0), that do
not depend k and l such that

min
(β1,...,βk+l)

= D1δ
l
1η

k
1 +D2δ

l
1η

k
2 +D3δ

l
2η

k
1 +D4δ

l
2η

k
2 . (5)

max
(β1,...,βk+l)

= D̃1δ
l
1η

k
1 + D̃2δ

l
1η

k
2 + D̃3δ

l
2η

k
1 + D̃4δ

l
2η

k
2 . (6)

where δ1,2 =
1±

√
5

2
, η1,2 =

1±
√
17

4
.

Proof. Let qk = 1
2qk−1 + qk−2, qk+1 = qk + qk−1, then

qk+1 =
1

2
qk−1 + qk−2 + qk−1 = 1, 5qk−1 + qk−2.

If qk = qk−1 + qk−2, qk+1 =
1
2qk + qk−1, then

qk+1 =
1

2
qk−1 +

1

2
qk−2 + qk−1 = 1, 5qk−1 + 0, 5qk−2.

As we see, in the �rst case, the value of qk+1 is greater than in the second
case.
Let cn(β0, β1), dn(γ0, γ1) be such sequences that

cn+1(β0, β1) = cn(β0, β1) + cn−1(β0, β1), ∀n ∈ N,

c0(β0, β1) = β0, c1(β0, β1) = β1.

dn+1(γ0, γ1) =
1

2
dn(γ0, γ1) + dn−1(γ0, γ1), ∀n ∈ N,

d0(γ0, γ1) = γ0, d1(γ0, γ1) = γ1.

Inductively on n it is easy to show that

cn(β̃0, β̃1) > cn(β0, β1),

dn(γ̃0, γ̃1) > dn(γ0, γ1), ∀n ∈ N,

if β̃j > βj > 0, γ̃j > γj > 0, ∀j ∈ {0; 1}.
Considering all the above, we obtain that when replacing the neighboring

elements (12 , 1) on (1, 12) in a set (α1, . . . , αk+l) we will reduce the value of
the expression q(α1, . . . , αk+l). We will make such a replacement as long as
possible. As a result, we will come to the set1, 1, . . . , 1︸ ︷︷ ︸

l

,
1

2
,
1

2
, . . . ,

1

2︸ ︷︷ ︸
k

 .
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So,

min
(α1,...,αk+l)∈B

q((α1, . . . , αk+l)) = q

(1, 1, . . . , 1︸ ︷︷ ︸
l

,
1

2
,
1

2
, . . . ,

1

2︸ ︷︷ ︸
k

)

 .

Easy to see that

dn(γ0; γ1) =
4γ1 + (

√
17− 1)γ0

2
√
17

(
1 +

√
17

4

)n

+

+
(
√
17 + 1)γ0 − 4γ1

2
√
17

(
1−

√
17

4

)n

,

cn(β0;β1) =
2β1 + (

√
5− 1)β0

2
√
5

(
1 +

√
5

2

)n

+

+
(
√
5 + 1)β0 − 2β1

2
√
5

(
1−

√
5

2

)n

, ∀ ∈ N.

It is clear that q


1, 1, . . . , 1︸ ︷︷ ︸

l

,
1

2
,
1

2
, . . . ,

1

2︸ ︷︷ ︸
k


 is determined by the system of

equations

q0 = 1, q1 = 1, q2 = q1 + q0, q3 = q2 + q1, . . . , ql = ql−1 + ql−2,

ql+1 =
1

2
ql + ql−1, ql+2 =

1

2
ql+1 + ql, . . . , qk+l =

1

2
qk+l−1 + qk+l−2.

Then we have

ql =

√
5 + 1

2
√
5

(
1 +

√
5

2

)l

+

√
5− 1

2
√
5

(
1−

√
5

2

)l

.

ql−1 =

√
5 + 1

2
√
5

(
1 +

√
5

2

)l−1

+

√
5− 1

2
√
5

(
1−

√
5

2

)l−1

.

qk+l =
4b∗1 + (

√
17− 1)b∗0

2
√
17

(
1 +

√
17

4

)k

+
(1 +

√
17)b∗0 − 4b∗1
2
√
17

(
1−

√
17

4

)k

,

where b∗1 = ql, b
∗
0 = ql−1.

Similarly, from a system of equations

q0 = 1, q1 =
1

2
, q2 =

1

2
q1 + q0, . . . , qk =

1

2
qk−1 + qk−2,

qk+1 = qk + qk−1, . . . , qk+l = qk+l−1 + qk+l−2

we have

b∗0 = E1η
k
1 + E1η

k
2 , b∗1 = Ẽ1η

k
1 + Ẽ2η

k
2 ,
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max
(β1,...,βk+l)∈B

q((β1, . . . , βk+l)) =

=
2b∗1 + (

√
5− 1)b∗0

2
√
5

δl1 +
(
√
5 + 1)b∗0 − 2b∗1

2
√
5

δl2

for some constants E1, E2, Ẽ1, Ẽ2, which are easily determined, and from here
we have (6). 2

Lemma 3. If number x = [0; a1, a2, . . . , an, . . .] is A2-rational number, then

lim
n→∞

qn

δln1 η
kn
1

≤ D̃1,

lim
n→∞

qn

δln1 η
kn
1

≥ D1.

Proof. It is clear that lim
n→∞

ln = +∞, because otherwise number x will be

A2-rational number. The same is true for the (kn). We get

lim
n→∞

δln1 η
kn
2

δln1 η
kn
1

= lim
n→∞

(
η2
η1

)kn

= 0,

lim
n→∞

δln2 η
kn
1

δln1 η
kn
1

= lim
n→∞

(
δ2
δ1

)ln

= 0,

lim
n→∞

∣∣∣∣∣δln2 ηkn2δln1 η
kn
1

∣∣∣∣∣ ≤ lim
n→∞

|η2|n

ηn1
= lim

n→∞

(
|η2|
η1

)n

= 0.

Taking into account lemma 2 we get what we need. 2

Theorem 7. If for A2-continued fraction representation of irrational number
x frequencies of digits 1

2 and 1 exist, which are equal âiäïîâiäíî ν 1
2
and ν1

respectively then for any ε > 0 there is a number n0 such that

|x− pn
qn

| < 1

(δν11 η
ν 1
2

1 − ε)2n+1
, ∀n ≥ n0,

in particular for any irrational number y ∈ [0, 5; 1] there exist a number n1 and
constant C such that

|y − pn
qn

| < C

(1+
√
17

4 )2n+1
, ∀n ≥ n1.

Proof. Taking into account lemma 2 we get n
√
qn → δν11 η

ν 1
2

1 (n→ +∞). Then

for any for any su�ciently small ε > 0 we get qn > (δν11 η
ν 1
2

1 − ε)n starting with
a certain number n0.
Given the inequality ∣∣∣∣x− pn

qn

∣∣∣∣ < 1

qnqn+1
.

we have the required inequality.

Let us consider the function g(x) =
(
1+

√
5

2

)x (
1+

√
17

4

)1−x
interval [0; 1].

It is obvious that the function g(x) continuous on [0; 1]. Since the function
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ln(g(x)) = x ln
(
1+

√
5

2

)
+ (1 − x) ln

(
1+

√
17

4

)
is increasing

(
1+

√
5

2 > 1+
√
17

4

)
then g(x) is increasing too.
Taking into account lemma 2 we get that

qn ≥ D1(δ
ν1n
1 η

ν 1
2
n

1 )n ≥ D1(g(0))
n = D1

(
1 +

√
17

4

)n

,

starting with a certain number n1. This implies that we need. 2
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REPLACEMENTS IN THE FINITE ELEMENT
METHOD FOR THE PROBLEM OF

ADVECTION-DIFFUSION-REACTION

Ya.H. Savula, Y. I. Turchyn

Ðåçþìå. Ó äàíié ðîáîòi çàïðîïîíîâàíî íîâèé ïiäõiä äî ÷èñëîâîãî ðîçâ'ÿ-
çóâàííÿ ñèíãóëÿðíî-çáóðåíèõ çàäà÷ àäâåêöi¨-äèôóçi¨-ðåàêöi¨ (ÀÄÐ). Öåé
ïiäõiä áàçó¹òüñÿ íà åêñïîíåíöiàëüíèõ ïðÿìié i çâîðîòíié çàìiíàõ äî i ïiñëÿ
âàðiàöiéíîãî ôîðìóëþâàííÿ, âiäïîâiäíî. Îäåðæàíî òåîðåòè÷íi ðåçóëüòà-
òè iñíóâàííÿ ðîçâ'ÿçêó òà ïîðÿäêó çáiæíîñòi. Ïðîâåäåíî ÷èñëîâi åêñïåðè-
ìåíòè äëÿ ñèíãóëÿðíî-çáóðåíèõ çàäà÷ ÀÄÐ. Íàâåäåíî ãðàôiêè îäåðæàíèõ
ðîçâ'ÿçêiâ ó ñòàöiîíàðíîìó òà íåñòàöiîíàðíîìó âèïàäêàõ, òàáëèöi ïîõèáîê
òà åêñïåðèìåíòàëüíèé ïîðÿäîê çáiæíîñòi çàïðîïîíîâàíîãî ìåòîäó.

Abstract. In this work, a new approach for the numerical approximation of
the solution for the initial-boundary problem of advection-di�usion-reaction
(ADR) is proposed. This approach is based on exponential direct and inverse
replacements, before and after variation formulations, respectively. Theoreti-
cal results of the existence of the solution and of the order of convergence are
obtained. Numerical experiments are conducted for singularly perturbed ADR
problems. Graphs of the obtained results for stationary and non-stationary
problems, table of errors and experimental orders of convergence are pre-
sented.

1. Introduction
The mathematical modeling of processes of advection-di�usion-reac-

tion (ADR) is the relevant area of research. However, in the case of large
advantage of advection coe�cients over di�usion coe�cients, the standard ap-
proach based on the �nite element method (FEM) leads to the loss of stability
of the approximation. Nowadays, many approaches to solving singularly per-
turbed ADR problems might be found in works of M.Ainsworth, N.Bahvalov,
I. Babuska, G.Marchuk, Ya. Savula, G. Shynkarenko, S.Wang and others. In
particular, among the approaches well known are an application of the expo-
nential basis and exponential weights [6], [9], functions bubbles basis [5] in the
FEM. Among the well-known approaches, there are also adaptive schemes of
FEM [1], [10].
The problem of improving the stability of FEM to solve the problem of ADR,

despite a large number of publications, is still opened. Among a large number
of existing methods, there is a question of choosing the optimal method for
improving sustainability. This fact may be the subject of another review pub-
lication. The authors propose a new approach to solving this actual problem,

Key words. Advection-di�usion-reaction; �nite element method; exponential replacement.
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which does not require the use of irregular grids, h-p adaptive grids, counter-
�ow schemes, etc., which might greatly complicate the programming of the
method.
Let there Ω is a bounded limited area in R2 with a Lipschitz boundary Γ. The

problem is to �nd c � an unknown concentration, which satis�es a di�erential
equation

∂c

∂t
+∇ · (V c)−∇ · (K · ∇c) + σc = f(x, t); x ∈ Ω, t ∈ (0, T ] (1)

an initial condition

c(x, 0) = 0; x ∈ Ω̄ (2)

and a boundary condition

ν · (K · ∇c) + λc = ψ; x ∈ Γ, t ∈ (0, T ]. (3)

In (1),(3) V = (V1, V2) is a velocity vector of constant values V1 > 0, V2 > 0,
K is a di�usivity coe�cient, σ is a coe�cient of reaction, λ is a constant value,
f is a function of external sources, ψ is a function de�ned on the boundary Γ
and ν = (l1, l2) is a directed vector to Γ. Coe�cients are positive, constant and
dimensionless and, because V1, V2 are constant, environment is incompressible
∇ · (V ) = 0.
An operator of the problem was considered

Ac = ∇ · (V · c)−∇ · (K · ∇c) + σc.

Therefore, the following equation has been considered

∂c

∂t
+Ac = f

with initial and boundary conditions (2), (3), respectively.

2. FEM with exponential replacement

Previously, using a numerical experiment, it was found that the solution
obtained by the standard FEM with linear and quadratic basis functions [1,5�
10] is unstable in the case of a singular perturbed problem. In this paper, a
new alternative approach to solving the singular perturbed ADR problems is
proposed.
In (1)-(3) the following replacement [4] was applied

c = u exp

(
V1x1 + V2x2

2K

)
. (4)

Therefore, the problem (1)-(3) will be equivalent to the following problem

∂u

∂t
−K

(
∂2u

∂x12
+

∂2u

∂x22

)
+

(
V 2
1 + V 2

2

4K
+ σ

)
u =

= f exp

(
−V1x1 + V2x2

2K

)
, x ∈ Ω;

(5)

K
∂u

∂ν
+

((
V1
2
l1 +

V2
2
l2

)
+ λ

)
u = ψ exp

(
−V1x1 + V2x2

2K

)
, x ∈ Γ; (6)
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u(x, 0) = 0; x ∈ Ω̄.

The next step is a variation formulation of the resulting problem. To do this,

space W = W
(1)
2 (Ω) was introduced. Then, equation (5) was multiplied on

arbitrary function w ∈W and integrated over the area Ω∫
Ω

∂u

∂t
wdΩ−K

∫
Ω

∆uwdΩ+

(
V 2
1 + V 2

2

4K
+ σ

)∫
Ω

uwdΩ =

=

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(7)

To the �rst term of the equation (7) the Green's formula for Laplacian [2] was
applied. Thus, the following expression was obtained∫

Ω

∂u

∂t
wdΩ+K

∫
Ω

∇u∇wdΩ−K

∫
Γ

∂u

∂ν
wdΓ+

+

(
V 2
1 + V 2

2

4K
+ σ

)∫
Ω

uwdΩ =

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(8)

According to the algorithm, the discretization of the problem based on the
division of the area Ω by �nite elements and then on the construction of ap-
proximations using a linear combination of basic functions might be the next
step. However, after direct applying of the discretization, the initial system of
linear algebraic equations (SLAE) will have di�erent orders of the coe�cients
of right and left parts. That is due to the last integrant multiplier on the right
side of (8). Therefore, an approximation of the solution might be unstable.
That is the main reason why a reverse replacement was proposed to be

applied in (8)

u = c exp

(
−V1x1 + V2x2

2K

)
. (9)

Then, because

∂u

∂xi
=

∂c

∂xi
exp

(
−V1x1 + V2x2

2K

)
− Vi

2K
c exp

(
−V1x1 + V2x2

2K

)
the following expression was obtained

K

∫
Ω

∇u∇wdΩ = K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ−

−
∑
i=1,2

Vi
2

∫
Ω

c
∂w

∂xi
exp

(
−V1x1 + V2x2

2K

)
dΩ.

(10)

The formula is known [2]∫
Ω

(
∂φ

∂x1
+
∂ψ

∂x2

)
dΩ =

∫
Γ

(φl1 + ψl2) dΓ,
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then, taking: φ = uv, ψ = 0 and vice versa, it is easy to make sure that∫
Ω

v
∂u

∂xi
dΩ = −

∫
Ω

u
∂v

∂xi
dΩ+

∫
Γ

uvlidΓ.

Therefore, the following transformation was applied to the last two terms in
expression (10)

−Vi
2

∫
Ω

c
∂w

∂xi
exp

(
−V1x1 + V2x2

2K

)
dΩ =

=
Vi
2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ−

−
∫
Γ

cwli exp

(
−V1x1 + V2x2

2K

)
−

− V 2
i

4K

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(11)

According to the boundary condition (6)

−K
∫
Γ

∂u

∂ν
wdΓ =

∫
Γ

(
V1
2
l1 +

V2
2
l2

)
uwdΓ +

∫
Γ

λuwdΓ−

−
∫
Γ

ψ exp

(
−V1x1 + V2x2

2K

)
wdΓ.

Further, taking into account the inverse replacement (9), the following expres-
sion was obtained

−K
∫
Γ

∂u

∂ν
wdΓ =

∫
Γ

(
V1
2
l1 +

V2
2
l2

)
cw exp

(
−V1x1 + V2x2

2K

)
dΓ+

+

∫
Γ

λcw exp

(
−V1x1 + V2x2

2K

)
dΓ−

∫
Γ

ψ exp

(
−V1x1 + V2x2

2K

)
wdΓ.

(12)

Finally, after combining expressions (7) - (12), the variation formulation of
problem was obtained. To �nd such c (x, t) ∈ L2 (0, T ;W ) that satis�es the
following equation ∀w ∈W∫

Ω

∂c

∂t
w exp

(
−V1x1 + V2x2

2K

)
dΩ+K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
V1
2

∫
Ω

∂c

∂x1
w exp

(
−V1x1 + V2x2

2K

)
dΩ+
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+
V2
2

∫
Ω

∂c

∂x2
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+

∫
Γ

λcw exp

(
−V1x1 + V2x2

2K

)
dΓ + σ

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ =

=

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ+

∫
Γ

ψw exp

(
−V1x1 + V2x2

2K

)
dΓ.

(13)

It is important to notify that variation formulation (13) is signi�cantly di�erent
from the formulation obtained by using the classical approach for obtaining
variation formulation. Coe�cients V1 and V2 at advection integral expressions
are divided by 2. Integral expressions on the left and the right sides have the
same order.
According to the procedure of FEM, the triangulation of the area Ω by �nite

elements Ω ≈
N
∪
i=0

Ωi with boundary elements Γ ≈
M
∪
i=1

Γi was obtained. Then,

on the each �nite element Ωe with vertices numbering i, j, k an approximation
of the solution was built by using linear basic functions [8]:

ch = chi φ
(e)
i (x1, x2) + chjφ

(e)
j (x1, x2) + chmφ

(e)
m (x1, x2), (14)

where φ
(e)
i (x

(i)
1 , x

(i)
2 ) = 1

δ (ai + bix1 + cix2) and ai = x
(j)
1 x

(m)
2 − x

(m)
1 x

(j)
2 , bi =

x
(j)
2 − x

(m)
2 , ci = x

(m)
1 − x

(j)
1 , δ = 2Sijm.

Then the following bilinear forms were introduced

m(c′, w) =

∫
Ω

∂c

∂t
w exp

(
−V1x1 + V2x2

2K

)
dΩ;

a(c, w) = K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
∑
i=1,2

Vi
2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+

∫
Γ

λcw exp

(
−V1x1 + V2x2

2K

)
dΓ + σ

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ;

l(w) =

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ+

∫
Γ

ψw exp

(
−V1x1 + V2x2

2K

)
dΓ.

Therefore, by application semi-discrete Galerkin's method with

ch(x, t) =
N∑
j=1

cj (t)φ
h
j (x)
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the following Cauchy problem was formulated
N∑
j=1

{
mijC

′
j (t) + aijCj (t)

}
= li (t) , t ∈ (0, T ] , i = 1, N ;

N∑
j=1

mijCj (0) = pi, i = 1, N

(15)

where mij = m
(
φh
i , φ

h
j

)
; aij = a

(
φh
i , φ

h
j

)
; li (t) = l

(
φh
i

)
; pi = m

(
c0, φ

h
i

)
.

To discretize the problem (15) by time variable the Euler's method [8] was
applied. Mesh partitioning step δ was introduced. Thus, the following recur-
rence scheme was obtained

N∑
j=1

{mijCj (tk+1)} =
N∑
j=1

{mijCj (tk)}+

+δ

li (tk)−
N∑
j=1

aijCj (tk)

 , i = 1, N ;

N∑
j=1

mijCj (t0) = pi, i = 1, N ;

(16)

where k = 1, Nt, Nt is a number of subintervals by time variable.
It should be noted that, according to the speci�cs of the proposed approach,

FEM ultimately leads to solving the SLAE with the speci�c coe�cients. These
coe�cients are the sum of integrals, which will include exponential function.
It is known that for such integrals using classic quadrature in practice gives a
high error of the approximation. Therefore, we propose to use special IOST
quadrature [3], which is an extended Gaussian quadrature. The proposed in [3]
formula completely avoids the crowding of Gaussian points and allows to obtain
approximate values of the integrals determined with the high accuracy. The
last is shown in [3] for exponential integrant functions.

3. Convergence analysis and error estimate

For the purpose of theoretical study, a stationary problem with homogeneous
Dirichlet boundary conditions was considered

∇ · (V c)−∇ · (K · ∇c) + σc = f(x); x ∈ Ω,

c = 0, x ∈ Γ.

3.1. Classical approach FEM (linear basis). According to the classical
approach, the following variation formulation was obtained: �nd c ∈W that

K

∫
Ω

∇c∇wdΩ+ V1

∫
Ω

∂c

∂x1
wdΩ+ V2

∫
Ω

∂c

∂x2
wdΩ+

+ σ

∫
Ω

cwdΩ =

∫
Ω

fwdΩ, ∀w ∈W.

(17)
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Bilinear form was de�ned

ã(c, w) = K

∫
Ω

∇c∇wdΩ+ V1

∫
Ω

∂c

∂x1
wdΩ+ V2

∫
Ω

∂c

∂x2
wdΩ+ σ

∫
Ω

cwdΩ.

Theorem 1. The bilinear form ã(c, w) is continuous, i.e. ∃M > 0 :

ã(c, w) ≤M∥c∥
W

(1)
2

∥w∥
W

(1)
2

.

M = max
{√

3K,
√
3max {V1, V2} ,

√
3σ, 1

}
.

Proof. Norm in Sobolev's space is ∥u∥2
W

(1)
2

=
∫
Ω

(
u2 + (∇u)2

)
dΩ. Expres-

sion for (ã(c, w))2 was considered and evaluated by using elementary inequality

(q − p)2 ≥ 0 ⇒ 2qp ≤ q2 + p2.

(ã(c, w))2 =

∫
Ω

(
K∇c∇w +

∑
i

Vi
∂c

∂xi
w + σcw

)2

≤

≤
∫
Ω

(
3(K∇c∇w)2 + 3(max {V1, V2}∇cw)2 + 3(σcw)2

)
dΩ.

Let's reinforce inequality by adding an integral term∫
Ω

c2(∇w)2dΩ ≥ 0

(ã(c, w))2 ≤
∫
Ω

(
3(K∇c∇w)2 + 3(max {V1, V2}∇cw)2+

+3(σcw)2 + (c∇w)2
)
dΩ ≤≤M2∥c∥2

W
(1)
2

∥w∥2
W

(1)
2

.

2

Obviously, in the case V1 >> K and(or) V2 >> K, M =
√
3max {V1, V2} .

Theorem 2. The bilinear form ã(c, w) is V-elliptic, i.e. ∃m > 0 : ã(c, c) ≥
m ∥c∥2

W
(1)
2

.

m = min {K,σ} .

Proof. It is known [8] that a bilinear form b(c, w) =
∫
Ω

(
V1

∂c
∂x1

w + V2
∂c
∂x2

w
)
dΩ

is skew-symmetric, i.e. b(c, w) = −b(w, c) . Therefore, b(c, c) = 0. Then

(ã(c, c)) =

∫
Ω

(
K∇c∇c+

∑
i

Vi
∂c

∂xi
c+ σc2

)
=

=

∫
Ω

(
K(∇c)2 + σc2

)
≥ m ∥c∥2

W
(1)
2

.

2

Thus, the following two-sided estimate of bilinear form was obtained

m ∥c∥2
W

(1)
2

≤ ã(c, c) ≤M ∥c∥2
W

(1)
2

.
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Consequences If the function f (x) ∈ L2(Ω), then, according to the Lax-
Milgram's theorem [8], there is a single weak solution of the variation problem
(17). In addition, by using Cea's lemma and theorem about the order of con-
vergence proved in [8], applying the FEM with linear basis functions (14), a
priori estimation of the error of approximate solution ch to an exact solution c
was obtained

∥c− ch∥W (1)
2

≤ C1h
M

m
∥c∥

W
(2)
2

.

3.2. Method of exponential replacements. According to the approach pro-
posed in this paper, taking into account the homogeneous boundary condition

a(c, w) = K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
∑
i

Vi
2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+σ

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(18)

Theorem 3. The bilinear form a(c, w) is continuous, i.e. ∃Q > 0 :

a(c, w) ≤ Q∥c∥
W

(1)
2

∥w∥
W

(1)
2

.

Proof. An expression for (a(c, w))2 was considered and Cauchy-Schwarz's
inequality was applied

(a(c, w))2 =

=

∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)
exp

(
−V1x1 + V2x2

2K

)
dΩ

2

≤

≤
∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)2

dΩ

∫
Ω

exp

(
−V1x1 + V2x2

2K

)2

dΩ.

(19)

Let's evaluate the last multiplier∫
Ω

exp

(
−V1x1 + V2x2

K

)
dΩ ≤

{
max
Ω

exp

(
−V1x1 + V2x2

K

)}
SΩ =

=

{
min
Ω

exp

(
V1x1 + V2x2

K

)}
SΩ,

where SΩ is a square of the area Ω. Let's evaluate the �rst multiplier of the right
side of (19) by introducing notation L = 1

2 max{V1, V2} and using elementary
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inequality 2qp ≤ q2 + p2.

∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)2

dΩ ≤

≤
∫
Ω

(K∇c∇w + L∇cw + σcw)2dΩ ≤

≤
∫
Ω

(
3(K∇c∇w)2 + 3(L∇cw)2 + 3(σcw)2

)
dΩ.

Let's reinforce inequality by adding an integral term∫
Ω

c2(∇w)2dΩ ≥ 0

∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)2

dΩ ≤

≤
∫
Ω

(
3(K∇c∇w)2 + 3(L∇cw)2 + (c∇w)2 + 3(σcw)2

)
dΩ ≤

≤ 3K2

∫
Ω

(∇c)2dΩ
∫
Ω

(∇w)2dΩ+ 3L2

∫
Ω

(∇c)2dΩ
∫
Ω

(w)2dΩ+

+

∫
Ω

(c)2dΩ

∫
Ω

(∇w)2dΩ+ 3σ2
∫
Ω

(c)2dΩ

∫
Ω

(w)2dΩ ≤

≤ P 2

∫
Ω

(
c2 + (∇c)2

)
dΩ

∫
Ω

(
w2 + (∇w)2

)
dΩ,

P = max
{√

3K,
√
3L,

√
3σ, 1

}
. Obviously, in the case of the singularly per-

turbed problem P =
√
3
2 max {V1, V2} .

Therefore, the following evaluation was obtained

(a(c, w))2 ≤ Q2 ∥c∥2
W

(1)
2

∥w∥2
W

(1)
2

and

Q =

√{
min
Ω

exp

(
V1x1 + V2x2

K

)}
SΩP. 2

Theorem 4. The bilinear form a(c, w) is V-elliptic, i.e. ∃q > 0 : a(c, c) ≥
q ∥c∥2

W
(1)
2

.
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Proof. Let's investigate the bilinear form

b(c, w) =
V1
2

∫
Ω

∂c

∂x1
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
V2
2

∫
Ω

∂c

∂x2
w exp

(
−V1x1 + V2x2

2K

)
dΩ.

Taking into account the homogeneous boundary conditions∑
i

Vi

2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ =

=
∑
i

Vi
2

∫
Ω

∂w

∂xi
c exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
∑
i

Vi
2

4K

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

Then

b(c, w) = −b(w, c) +
∑
i

Vi
2

4K

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

Therefore,

b(c, c) =
∑
i

Vi
2

8K

∫
Ω

c2 exp

(
−V1x1 + V2x2

2K

)
dΩ

and

a(c, c) = K

∫
Ω

(∇c)2 exp
(
−V1x1 + V2x2

2K

)
dΩ+

+

(
V 2
1 + V 2

2

8K
+ σ

)∫
Ω

c2 exp

(
−V1x1 + V2x2

2K

)
dΩ ≥

≥ µ

∫
Ω

(
(∇c)2 + c2

)
exp

(
−V1x1 + V2x2

2K

)
dΩ,

µ = min
{
K,
(
V 2
1 +V 2

2
8K + σ

)}
. Obviously, in the case of the singularly perturbed

problem µ = K. ∫
Ω

(
(∇c)2 + c2

)
exp

(
−V1x1 + V2x2

2K

)
dΩ ≥

≥ min
Ω

exp

(
−V1x1 + V2x2

2K

)∫
Ω

(
(∇c)2 + c2

)
dΩ =
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= max
Ω

exp

(
V1x1 + V2x2

2K

)∫
Ω

(
(∇c)2 + c2

)
dΩ.

Therefore,

q = µmax
Ω

exp

(
V1x1 + V2x2

2K

)
. 2

Consequences If the function f (x) ∈ L2(Ω), then, according to the Lax-
Milgram theorem [8], there is a single weak solution of the variation problem
(19). In addition, by using Cea's lemma and theorem about the order of conver-
gence proved in [8], applying the FEM with linear basis functions (14), a priori
estimation of the error of the approximate solution ch to the exact solution c
was obtained

∥c− ch∥W (1)
2

≤ C1h
Q

q
∥c∥

W
(2)
2

.

In the case that V1 >> K and(or) V2 >> K classical approach of FEM
gives an error

∥c− ch∥W (1)
2

≤ C1h

√
3max {V1, V2}
min {K,σ}

∥c∥
W

(2)
2

. (20)

And method of exponential replacements gives an error

∥c− ch∥W (1)
2

≤ C1h

√
3

2

max {V1, V2}

√{
min
Ω

exp
(
V1x1+V2x2

K

)}
SΩ

Kmax
Ω

exp
(
V1x1+V2x2

2K

) ∥c∥
W

(2)
2

.

Considering that the region Ω is in the �rst quarter of the coordinate system{
min
Ω

exp

(
V1x1 + V2x2

K

)}
= 1.

Therefore,

∥c− ch∥W (1)
2

≤ C1h

√
3

2

max {V1, V2}SΩ
Kmax

Ω
exp

(
V1x1+V2x2

2K

)∥c∥
W

(2)
2

. (21)

On the right sight of evaluation (20), a maximum of advection coe�cients
appears, which in the case of singularly perturbed problems might be a high
number. This is the main reason for the loss of stability by using the classical
FEM approach. On the other hand, in the evaluation (21) the value in the
denominator of the corresponding constant value is much higher than in the
numerator and balances this issue.
Thus, the order of the convergence is preserved in both methods, but the con-

stant at h in the method of exponential replacements is much smaller. There-
fore, at the same value of step, an estimate of the error of the proposed method
is much better than without replacements.

4. Numerical Results
Numerical experiments were conducted for di�erent ADR problems. In this

paper stationary and non-stationary cases were considered.

94



ON THE NON-LINEAR INTEGRAL EQUATION APPROACHES ...

4.1. Sationary problem. For the purpose of study of experimental order of
convergence, a stationary one-dimensional problem on [0, 1] with homogeneous
Dirichlet boundary conditions was considered. In this case, the exact solution
is known

c(x) =
f

σ

{(
eα2b − 1

eα1b − eα2b

)
eα1x +

(
1− eα1b

eα1b − eα2b

)
eα2x + 1

}
,

α1,2 =
−V ±

√
V 2 + 4Kσ

−2K
.

(22)

The relative error of the method was calculated by the following formula

Rh = max
i

|c(x[i])− ch(x[i])|
c(x[i])

∗ 100%.

In the Table 1 we show relative errors with di�erent advection coe�cients and
numbers of mesh points. For the rest of input parameters the following values
were set K = 1.0; σ = 1.0; f = 1.0. As can be seen from Table 1 relative

Tabl. 1. Relative errors

N V = 70 V = 100 V = 150

16 0.045904065 0.033463525 0.012854694

32 0.035734439 0.044157740 0.042586510

64 0.018337116 0.026518133 0.037617746

128 0.014365357 0.017101069 0.022781162

error of the exact and approximate solution is extremely small and decreases
with an increase in the number of mesh points.
To calculate the experimental order of the convergence, the following scheme

was applied. Approximations ch1 , ch2 were calculated on 2 grids for h1, h2 =
0.5h1, respectively.
Denotation ei = ∥c− chi

∥ , i = 1, 2 was introduced. Then, orders of conver-

gence in the output spaces W
(1)
2 (Ω) and L2(Ω) were calculated according to

the formula

p ≈ ln e1 − ln e2
lnh1 − lnh2

.

Corresponding orders of convergence are not presented for N = 20, V = 1
and N = 80, V = 100 because results on 2 grids are needed to calculate
the orders. From the results obtained, the experimental order of convergence
coincides with the theoretical one obtained in the preceding paragraph of the
article.

4.2. Non-stationary problem. The same area and boundary conditions as
in the previous example were considered. The scheme (16) was applied. On
the (Fig. 1) an exact solution and approximations of the solution of problem
(1)-(3) in di�erent moments of time are presented. The number of mesh points
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Tabl. 2. Orders of convergence

V N ∥ch − c∥
W

(1)
2

∥ch − c∥L2
order p in W

(1)
2 order p in L2

1 10 0, 02764197 0, 00081619 − −
20 0, 01375605 0, 00020139 1, 0067934 2, 0189291

40 0, 00681524 5, 16259 · 10−5 1, 0132307 1, 9638124

100 20 0, 0547536 0, 0007214 − −
40 0, 0398390 0, 0002793 0, 4587726 1, 3689093

80 0, 0231478 8, 26024 · 10−5 0, 7833058 1, 7576934

160 0, 0116643 1, 95351 · 10−5 0, 9887709 2, 0801149

320 0, 0053174 3, 88396 · 10−6 1, 1332922 2, 330465

N = 128,mesh partitioning step by time variable δ = 0.05. Input parameters
were set into the following values

V = 100; K = 1.0; σ = 1.0; f = 1− e−t.

It is obviously that solution coincides with an exact solution (22) at t → ∞.
Graphs 1, 2, 3 are approximated concentrations ch in moments of time t =
0.1, t = 0.2, t = 0.3, respectively; Graphs 4, 5, 6 are approximated concentra-
tions ch in moments t = 0.8, t = 1.0, t = 2, respectively; Graphs 7, 8, 9 are
approximated concentrations ch in moments t = 3, t = 4.5, t = 5, respectively;
Graph 10 is an exact solution (22) of the problem (1)-(3) at t→ ∞.

Fig. 1. Approximations in di�erent moments of time and an
exact solution

As can be seen from (Fig. 1), approximations of the unknown solution exactly
coincide with the solution of a stationary problem with increasing moments of
time.
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The concentration closer to the end of interval [0, 1] in the �xed point x =
0.875 is shown on the (Fig. 2). This is a point where, in fact, there is a prob-
lem in the case of signi�cant advection coe�cients, overcome by the method
proposed in this paper. Coe�cients of di�usion, reaction, right part f and the
number of mesh points are the same as in the previous example.
On the graph 1 coe�cient of advection V = 70, on graph 2 coe�cient of

advection V = 100, on graph 3 coe�cient of advection V = 150.

Fig. 2. Approximations in the �xed point x = 0.875

As can be seen from obtained results, the solution coincides with the solution
of the stationary problem, that is, the process becomes stationary. It is also
worth noting that the value of the desired concentration c at the �xed point x =
0.875 decreases with an increase in the advection coe�cient, which corresponds
to the nature of the phenomenon, as well as the fact that with an increase of
V , obtained approximation reaches stationary behavior faster.

5. Conclusions

Thus, in this paper, a singular perturbed initial-boundary problem of ADR
has been considered. A new alternative method based on exponential direct
and reverse replacement in FEM for resolving singular-perturbed problems of
ADR has been proposed.
The sequence of theorems have been proved and the existence of the solution

and order of convergence of the proposed method have been shown.
Numerical experiments have been conducted and results have been compared

with an exact solution, known in partial case. Obtained results have proved
the e�ectiveness of the proposed method.
In the long term, it is planned to apply the proposed method to the mathe-

matical models of the distribution of drugs and others in which the aforemen-
tioned speci�city of the coe�cients arises.
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ON ACOUSTIC EQUILIBRIA

E.V.Tkachenko, A.N.Timokha

Ðåçþìå. Ñòàòòÿ óçàãàëüíþ¹ ìàòåìàòè÷íó òåîðiþ âiáðîðiâíîâàãè íà âè-
ïàäîê àêóñòè÷íî-êåðîâàíî¨ ïîâåðõíi ðîçäiëó ìiæ âèïàðîâíèì ãàçîì òà
ðiäèíîþ â êîíòåéíåði.

Abstract. The present paper generalises mathematical theory of vibroequi-
libria onto the case of the acoustically-driven interface between ullage gas and
liquid in a container.

1. Introduction
Using high-frequency vibrations and acoustic waves for the contactless con-

trol of a limited liquid volume is a relatively-old technologic idea coming from
the 70-90's. In this context, one should mention the so-called acoustical levita-
tion (of liquid drops) utilised in chemical and pharmaceutical industries as well
as for getting ultra-pure (smart) materials [4, 6, 15]. A mathematical theory of
acoustically-levitated liquid drops can be found in [5]. Other popular studies
deal with mean (time-averaged) shapes of the contained liquid in tanks under-
going a high-frequency vibration. These are associated with novel microgravity
technologies, whose fundamentals were recently developed in experiments [7,12]
(see, also, references therein). To explain the experimental vibro-phenomena,
the authors extensively employ theoretical concept of vibroequilibria, which
were �rst considered and analysed in the applied mathematical works [1, 2, 8].
The vibroeqilibria (time-averaged, mean liquid shapes in vibrating containers)
may dramatically di�er from those caused by Newtonian gravitation and sur-
face tension. The di�erence is clari�ed by vibrational forces introduced by
Blekhman [3]. The extra (in addition to gravitation and surface tension) forces
a�ect both the mean liquid shape and its hydrodynamic stability, i.e., the
high-frequency tank vibrations may make the mean free surface unstable, or,
contrary, stabilise it. Using the mathematical theory from [1,2,8], even though
it was based on a rather simple hydrodynamic model of ideal compressible �u-
ids, demonstrates a rather adequate prediction of the experimentally-observed
vibrational phenomena.
Along with technologies of acoustical levitation and vibrational control of a

limited liquid volume in a shaken tank, there exists another class of contactless
(acoustic) techniques in microgravity, whose idea comes from famous experi-
mental observations by Wesseln [16]. These experiments showed that generat-
ing an acoustic �eld in the ullage gas (vapour) makes it possible to destabilise

Key words. Vibroequilibria; variational formalism; interfacial �ows.
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(stabilise) the liquid-gas interface for certain input acoustic frequencies. For
cryogenic two-layer �uids, the destabilisation leads to extensive evaporations of
the condensed component, an increase of the mean pressure in the gas domain,
and, thereby, it causes the so-called acoustic pumping. A physical theory of
the acoustic pumping can be found in [10,13]. By utilising [5], the present pa-
per develops elements of a mathematical theory of the acoustic destabilisation
(stabilisation).
After formulating the non-dimensional mathematical statement of the con-

sidered hydrodynamic problem in � 2, which adopts the model of ideal com-
pressible barotropic two-layer �uids, we introduce small parameters (and re-
lations between them) in � 3 to apply the two-timing (separation of slow and
fast time) asymptotic technique and derive the free-surface problem describing
slow (modulated) motions of the liquid exposed to acoustic loads from the gas
side. Mathematically, the latter problem looks identical to those appearing in
the liquid sloshing dynamics for a motionless container when Newtonian grav-
itation, surface tension and acoustic radiation pressure become comparable on
the introduced asymptotic scale. This makes it possible to generalise classical
results [11] on sloshing of a capillary liquid. � 4 introduces acoustic equilib-
ria (generalisation of capillary equilibria) and spectral theory of linear relative
(natural) harmonic standing waves (natural sloshing modes and frequencies).
Spectral criterion of stability for the acoustic equilibria is formulated and ap-
plied to show that acoustic �eld can destabilise the �at liquid-gas interface (if
exists) for certain input acoustic frequencies. In � 5, we derive an analogy of
(pseudo-)potential energy for the acoustic equilibria.

2. Statement of the problem

Following [1], we consider the rigid container

Q = Q1(t) ∩Q2(t) = {(x, y, z)|W (x, y, z) < 0},

which is �lled by a two-layer �uid where the upper �uid is associated with the
ullage (ideal compressible barotropic) gas (domain Q1(t)) but the lower one
is an ideal compressible barotropic liquid (domain Q2(t)). The gas and liquid
domains are time-dependent and the interface

Σ(t) = ∂Q2(t) ∩ ∂Q1(t) = {(x, y, z)|ξ(z, y, z, t) = 0}

is implicitly speci�ed by the preliminary unknown function ξ such that∇ξ/|∇ξ|
is the outer normal to Q2(t) on Σ(t). The gravitational acceleration is directed
downward, against the Ox-axis. Furthermore, we assume an acoustic �eld
generated in Q1(t) by means of a vibrator on a piece of the time-independent
gas boundary

S0 ⊂ ∂Q1(t), S0 ∩ Σ(t) = ∅,
which is, in fact, a part of the tank wall contacting with Q1(t).
As in [1,5], the two-layer �uid dynamics is described by the velocity potentials

φi(x, y, z, t), the pressure pi(x, y, z, t) and density ρi(x, y, z, t) �elds in ullage
gas (i = 1) and liquid (i = 2), respectively. Henceforth, the corresponding
boundary value problem is considered in the non-dimensional statement, which
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appears after choosing the characteristic dimension (length) l and time 2π/σ,
where σ is the circular frequency of the acoustic �eld in the gas. This non-
dimensional mathematical statement takes then the form [5]:

ρi∇
(
φ̇i +

1

2
(∇φi)

2 + σ−2
∗ Bo x

)
= −∇pi; ρi =

(
pi
p0i

)1/γi

in Qi(t), (1)

ρ̇i + div(ρi∇φi) = 0 in Qi(t);

∫
Qi(t)

ρidQ = mi, (2)

∂nφi = 0 on Si(t); ∂nφi = − ξ̇/|∇ξ| on Σ(t), (3)

−p2 + σ−2
∗ (K1 +K2) = −δ0 p1 on Σ(t), (4)

− (∇W,∇ξ)
|∇W ||∇ξ|

= cosα on ∂Σ(t), (5)

ρ1 ∂nφ1 = ε µ0 k
−1 V (x, y, z) sin t on S0, (6)

where Si(t) = ∂Q ∩ ∂Qi (i = 1, 2) are the time-depending wetted (contacted)
walls of Q by gas and liquid, respectively, ∂Σ(t) is the contact (gas-liquid-tank)
line (curve), α is the contact angle (we assume that α =const), Ki are the main
curvatures of Σ(t), ρ0i are the mean densities of gas and liquid, respectively, γi
are the adiabatic indices for the barotropic �uids, p0i are the non-dimensional
mean (static) pressures in the �uids (i = 1, 2), m1 and m2 are (constant)
masses of gas and liquid, respectively; the dot implies the time-derivative and
∂n is the (outer) normal derivative. Furthermore, σ∗ = σ

√
ρ02l/Ts is the non-

dimensional (normalised) acoustic frequency, where Ts is the surface tension,
Bo = gl2ρ02/Ts is the Bond number, where g is the gravity acceleration, k =
σl/c is the wave number of the acoustic �eld in the gas, where c is the sound
speed in the gas, δ0 = ρ01/ρ02 ≪ 1 is the ratio between the mean densities.
Originally, V0(x, y, z) sin(σt) is the given dimensional distribution of the nor-

mal velocity on the acoustic vibrator S0 ⊂ S1 but the normalisation intro-
duces the non-dimensional distribution V = V0/sup|V0|, the small parameter
ε = sup |V0|/(cµ0) ≪ 1 (ratio of the maximum vibration velocity and the sound
speed, an analogy of the Mach number) as well as the non-dimensional param-
eter µ0 = O(1).

Remark 2. Since the �uids (gas and liquid) are barotropic, equations (1) admit
the Lagrange-Cauchy integral. However, this does not simplify the asymptotic
procedure below.

3. Asymptotic almost-periodic solution of (1)-(6)

The problem (1)-(6) contains two small parameters, one of which is asso-
ciated with the density ratio δ0 ≪ 1 but the second small parameter is the
non-dimensional value σ−2

∗ ≪ 1, which physically implies that the sound fre-
quency is much larger than the lowest eigenfrequency of the interfacial (slosh-
ing) waves [11]. To construct an almost-periodic solution, we assume the fol-
lowing asymptotic relations between the two small parameters

ρ01
/
ρ02 = δ0 = µ1ε, µ1 = O(1); σ−2

∗ = µ µ1ε
3, µ = O(1). (7)
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The asymptotic procedure adopts the multi-timing technique of vibrational
mechanics [3], which introduces fast and slow time scales such that the fast time
is associated with the dimensionless time t appearing in the inhomogeneous
condition (6) (expresses the input acoustic signal) and the slow time scale τ
should be proportional to the square-root of the dimensionless forces of potential
type (Newtonian gravitation and surface tension). The latter forces are of the
order O(ε3); they appear in the dynamic interface condition (4) and the Euler

equations (1). Therefore, the slow time is de�ned as τ = ε3/2t and the non-
dimensionless solution of (1)-(6), (7) can be posed in the following form

φi =

∞∑
k=0

εk/3 φ
(k)
i (x, y, z, t, τ), pi =

∞∑
k=0

εk/3 p
(k)
i (x, y, z, t, τ),

ρi =

∞∑
k=0

ε(k/3) ρ
(k)
i (x, y, z, t, τ), ξ =

∞∑
k=0

εk/3 ξk(x, y, z, t, τ).

(8)

Substituting (8) into (1)-(6) and using the standard multi-timing technique,
which separates t and τ , derives the free-surface (sloshing-type) problem

∆φ = 0 in ⟨Q2⟩(τ), (9)

∂nφ = 0 on ⟨S2⟩(τ), (10)

∂nφ = −∂τζ/|∇ζ| on ⟨Σ⟩(τ), (11)

∂τφ+
1

2
(∇φ)2 + µµ1 (Bo x− (K1 +K2))+

+
µ1
4

(
k2Φ2 − (∇Φ)2

)
= const on ⟨Σ⟩(τ),

− (∇W,∇ζ)
|∇W ||∇ζ|

= cosα on ∂⟨Σ⟩(τ);
∫
⟨Q2⟩

dQ = const

(12)

subject to

∆Φ+ k2Φ = 0 in ⟨Q1⟩(τ);
∂nΦ = 0 on ⟨S1⟩(τ) ∪ ⟨Σ⟩(τ);

∂nΦ = µ0
V (x, y, z)

k
on S0,

(13)

which describes the wave function Φ in the slowly changing gas domain ⟨Q1⟩(τ).
Here, ⟨·⟩ denotes averaging by the fast time t and, therefore, ⟨Q2⟩(τ), ⟨S2⟩(τ)

and ⟨Σ⟩(τ) are the fast-time averaged liquid domain, wetted tank surface and
interface, respectively. The boundary value problem (9)-(13) couples the main
terms of the asymptotic representation (8)

φ2 = ε φ(x, y, z, τ) + o(ε);

φ1 = ε2/3 Φ(x, y, z, τ) sin t+O(ε);

ξ = ζ(x, y, z, τ) + o(ε),

(14)

which are also independent of t.
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Remark 3. The boundary value problem (9)-(12) is of the mathematically iden-
tical structure to the classical sloshing problem of a capillary liquid but with extra
pseudo-di�erential terms in the dynamic boundary condition associated with Φ
appearing as solution of the Neumann boundary value problem (13). These ex-
tra terms can be interpreted as the acoustic radiation pressure. The radiation
pressure parametrically depends on the slowly-varying interface ⟨Σ⟩(τ).

4. Acoustic equilibria and relative harmonic waves

If the -time averaged interface does not depend on the slow time τ , i.e.

⟨Σ⟩ = Σ0 :ζ0 = ζ0(x, y, z) = 0, ⟨Qi⟩ = ⟨Qi⟩0 (i = 1, 2),

φ = 0, Φ = Φ0(x, y, z),

the problem (9)-(13) reduces to the stationary boundary problem

− µ(K1 +K2)− µ Bo x+
1

4

(
k2 Φ2

0 − (∇Φ0)
2
)
= const on Σ0,

− (∇W,∇ζ0)
|∇W ||∇ζ0|

= cosα on ∂Σ0;

∫
⟨Q2⟩0

dQ = const,
(15)

where Φ0 comes from the Newman boundary value problem

∆Φ0 + k2 Φ0 = 0 in ⟨Q1⟩0;
∂nΦ0 = 0 on ⟨S1⟩0 ∪ Σ0;

∂nΦ0 = µ0
V (x, y, z)

k
on S0,

(16)

(S0 ∪Σ0 ∪ ⟨S1⟩0 = ∂⟨Q1⟩0). Equality (15) expresses a balance between surface
tension, gravitation and the Langevin acoustic radiation. Following [5], solution
of (15), (16) (surface Σ0 and wave function Φ0) is called the acoustic equilibrium.

Remark 4. For the introduced asymptotic relations (7), the time-averaged
(mean) surface Σ0 may dramatical di�er from the capillary surface. The Lan-
gevin acoustic radiation can also in�uence stability of Σ0 as well as the natural
sloshing frequencies and modes by (9)-(13), which are, in fact, small harmonic
waves relative to Σ0.

Suppose Σ0 admits the singe-valued representation, x = H0(y, z), and lin-
earise (9)�(13) relative to the acoustic equilibrium Σ0. Furthermore, we con-
sider the natural sloshing modes (H,ψ,Ψ) and frequencies (ω), which corre-
spond to the harmonic solution

h = exp(iωτ)H(y, z); φ = iω exp(iωτ)ψ(x, y, z), Φ = iω exp(iωτ)Ψ(x, y, z)

of the linearised problem. The result is the spectral boundary problem with
respect to H and ψ

∆ψ = 0 in ⟨Q2⟩0; ∂nψ = 0 on ⟨S2⟩0; ∂nψ =
H

(1 + (∇H0)2 )1/2
on Σ0, (17)

−ω2 ψ + µ1µAH = 0 on Σ0, (18)
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where ω2 is the spectral parameter and the linear operator A = A1 +A2 takes
the form

AH = [A1H] + [A2H] =

=

[
−div

{
∇H

(1 + (∇H0)2 )1/2
− (∇H,∇H0)∇H0

(1 + (∇H0)2 )3/2

}]
+

+
[ 1

2µ

{
k2 Φ0 Φ0x H − (∇Φ0,∇Φ0x)H+

+ k2 Φ0 Ψ− (∇Φ0,∇Ψ)
}
+ BoH

]
,

(19)

WyHy +WzHz

|∇2W |
=
WyH0y +WzH0z

|∇2W |
(∇H,∇H0)

(1 + (∇H0)2 )1/2
on ∂Σ0;∫

Σ0

Hdydz = 0,

(20)

∆Ψ+ k2Ψ = 0 in Q0; ∂nΨ = 0 on ⟨S1⟩0 ∪ S0,

∂nΨ =
Φ0xxH − Φ0zHz − Φ0yHy − [Φ0xyH0y +Φ0xzH0z]H

(1 + (∇H0)2 )1/2
on Σ0.

(21)

One can study spectral properties of the pseudo-di�erential operator A and
show that it is self-conjugated and has a real pointer spectrum with only a �nite
set of negative eigenvalues. The following theorem establishes main properties
of (17), (18) with the operator (19)�(21).

Theorem 1. Let H0, Φ0 be a solution of the acoustic equilibria problem (9)-
(13) such that H0 ∈ C2(pΣ0) and Φ0 ∈ C2(⟨Q1⟩0 ∪ Σ0) (here, pΣ0 is the
projection of Σ0 on the Oyz plane). Then

1. The spectral boundary problem (17)-(21) has a real pointer spectrum con-
sisting of eigenvalues and {Hn} is the functional basis in the factor-space
L2(pΣ0)/const.

2. The set of negative eigevalues {n|ω2
n < 0} is �nite.

Proof. Introduce the auxiliary Steklov-Poinc�are operator T : H → ψ|Σ0 , which
is de�ned by the Neumann problem (17). This operator T is precompact and
invertible on the dense set in the factor-space L2(pΣ0)/const. The boundary
condition (18) yields the spectral equation

C0(ω
2)H = (µµ1A− ω2T )H = 0. (22)

Spectrum of (22) coincides with spectrum of the original problem (17)-(21).
Consider operator A1, de�ned by formulas (19). It appears when analysing

the eigenoscillations of the capillary liquid and is unbounded, self-conjugate
and positive in L2(pΣ0)/const. Let us introduce the auxiliary operators C1

and C2 as

C1(ω
2) = ω2A−1

1 T − µµ1(E +A−1
1 A2) = C2(ω

2)− µµ1E,

where C1 is due to the action of A−1
1 from the left on operator C0 in (22). The

operator C2(ω
2) is precompact in the factor-space L2(pΣ0)/const. If ω

2 is the
eigenvalue of (22), then µµ1 is the eigenvalue of the self-conjugate operator C2,
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and, therefore, ω2 is the eigenvalue of the original spectral problem (17)-(21).
Because T and A are self-conjugate operators, their eigenvalues are real.
Regular set of the spectral boundary problem (17)-(21) is not empty and

contains, at least, complex numbers with non-zero imaginary components. For
a regular point ω2

0, equation (22) is equivalent to the spectral equation(
C + (ω2 − ω2

0)
−1E

)
H = 0

where C(ω2
0) = C1(ω

2
0)

−1A−1
1 T is the compact operator in L2(pΣ0). Because

C is compact, its pointer spectrum consists of eigenvalues. As a consequence,
the �rst assertion of the theorem holds true.
All eigenvalues of A−1

1 T are positive and follow from the spectral boundary
problem on the natural sloshing modes and frequencies of the capillary liquid,
i.e. for all admissible H, the inequality

(A−1
1 TH,H) > 0

holds true. Therefore,

ω2
n = µµ1((Hn,Hn) + (A−1

1 A2Hn,Hn))/(A
−1
1 THn,Hn),

where (Hn,Hn) = 1, (A−1
1 THn,Hn) > 0. Because A−1

1 A2 is compact and

{Hn} is the functional base in L2(pΣ0), then (A−1
1 A2Hn,Hn) → 0, n → ∞.

Therefore, the second assertion holds.

Corollary 4.2 a. The acoustic equilibria may blow up only due to a �nite set
of linearly-independent perturbations.
Corollary 4.2 b. The acoustic equilibria are stable, if and only if, all eigen-
values {ω2

n} of A are positive.

The second corollary is the same as the so-called spectral stability criteria,
which was already used in [11] for analysing the stability of the capillary equi-
libria. The stability was investigated by studying the spectrum of the A1-type
operator.

Example 1. (The �at acoustic equilibrium.) The �at capillary surface in an
upright cylindrical tank is realised for the contact angle α = π/2. The �at Σ0 is
also possible for the acoustic equilibria when acoustic vibrator on S0 generates
a planar standing wave, namely, when

V0(x, y, z) = V0 = const

(
ε = − V0

c sin(kh1)
, µ0 = − sin(kh1), V (y, z) = 1

)
.

The acoustic equilibrium is then associated with the following solution

H0(y, z) ≡ 0; Φ0(x, y, z) = k−2 cos(kx). (23)

According to [11, 14], the �at capillary surface corresponds to a unique so-
lution of the capillary problem in an upright circular cylinder, if and only if,
Bo > κ211, where κ11 is the minimum root of J ′

1(κ11) = 0 (Jp(·) is the Bessel
function of the �rst kind). Let us pose solutions of the nonlinear boundary
value problem (15), (16) as the Fourier series by

hpq(r, θ) = Jp(κpqr)
sin
cos(pθ)
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in the cylindrical coordinate system, i.e.

H0(r, θ) =
∑
pq ̸=00

ηpq hpq(r, θ), (24)

and

Φ0(x, y, z) = k−2 cos(kx)+
∑
pq ̸=00

χpq bpq(x) hpq(r, θ)+χ00 cos(k(x−h1)), (25)

where

bpq(x) =


− cosh(ϕ(x− h1))

cosh(ϕh1) ϕ tanh(ϕh1)
, κpq > k,

− cos(ϕ(x− h1))

cos(ϕh1) ϕ tan(ϕh1)
, κpq < k,

ϕ =
√

|κ2pq − k2|,

in which ηpq, χpq are the unknown coe�cients.
Each index pq corresponds to two unknown coe�cients for asymmetric solu-

tions and one for symmetric ones hpq(r, θ), namely,

ηpq hpq(r, θ) =

{
η′pq Jp(κpqr) sin pθ + η′′pq Jp(κpqr) cos pθ, p ̸= 0,

η0q J0(κ0q), p = 0.
(26)

Inserting (24) and (25) into equations (15) and (16) and using the Fredholm
alternative leads to an in�nite system of nonlinear equations with respect to
η = {ηpq}. To within the o(||η||)-quantities, we have the equalities

Gαβ = Cαβ ηαβ + o(||η||) = 0, (27)

where

Cpq = µ(Bo + κpq ) +
1

2
bpq(0), p = 0, 1, ...; q = 1, 2, ... (28)

(Cpq are the eigenvalues of the operator A).
The system (27) admits the trivial solution η = 0, which corresponds to the

�at acoustic equilibrium. Trivial solution is stable as Cpq > 0. When there
is an index pq, such that Cpq(k) = 0, the trivial solution may not become
unique. For the eigenvalues with p ̸= 0, two equations in (27) do not have
linear components at ηpq but the eigenvalues C0q, q = 1, 2, . . . have the single
multiplicity. In the latter case, the Krasnoselsky theorem [9] gives the su�cient
condition of bifurcation of the trivial solution.

5. Pseudo-potential energy of acoustic equilibria

The above example shows that �nding the stable acoustic equilibria from
its di�erential statement (15), (16) can be e�cient when interface Σ0 coincides
with the capillary surface. If the acoustic equilibrium Σ0 di�ers from the capil-
lary surface, identifying solutions of (15), (16) and studying their stability may
become a rather complicated task. For the capillary surface, this task su�-
ciently simpli�es by employing the potential energy functional whose minima
correspond to the stable liquid shapes. Finding these shapes reduces to a direct
numerical minimisation of the potential energy functional.
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Theorem 1 in [1] states that the smooth solution of (1)-(6) can follow from
necessary extrema condition of the functional

G(ξ, φi, ρi) =

∫ t2

t1

{∫
Q2

ρ2

(
(∇φ2)

2

2
− U2(ρ2)− µµ1 ε

3 Bo x

)
dQ−

− µµ1 ε
3 (|Σ| − cosα|S2|)+

+ ε

∫
Q1

ρ1

(
(∇φ1)

2

2
− U1(ρ1)− µµ1 ε

3 Bo x

)
dQ

}
dt

(29)

subject to (1)-(3), (6) and for small variations

δξ|t1,t2 = 0, δρi|t1,t2 = 0 (30)

where pi = ρ2i dUi /dρi.
By using the multi-timing technique, one can show that

⟨G(ξ, φi, ρi)⟩ = const+ εG(ζ, φ) +O(ε4/3),

where

G(ζ, φ) =
∫ τ2

τ1

{∫
⟨Q2⟩

(
(∇φ)2

2
− µµ1Box

)
dQ−

− µµ1 (|⟨Σ⟩| − cosα|⟨S2⟩|)+

+
µ1
4

∫
⟨Q1⟩

(
k2Φ2 − (∇Φ)2

)
dQ− µ0µ1

2k

∫
S0

ΦV (x, y, z)dS

}
dτ,

(31)

where ∫
⟨Q2⟩

(∇φ)2

2
dQ

implies the pseudo-kinetic energy for the sloshing problem (9)�(13) but the
remaining quantities can be interpreted as the minus pseudo-potential energy.

Theorem 2. The problem on the stable acoustic equilibria Σ0 : ζ0 = 0 is
equivalent to identifying the minima of the functional

Π(ζ0) = µ

(
|Σ0|+ cosα|⟨S1⟩|+

∫
⟨Q2⟩0

BoxdQ

)
+

+

(
1

4

∫
⟨Q1⟩0

(k2Φ2
0 − (∇Φ0)

2)dQ+
µ0
2k

∫
S0

V (x, y, z)Φ0dS

)
=

= −G(ζ0(x, y, z),Φ0(x, y, z)),

(32)

where Φ0 is the solution of (16) subject to the volume conservation condition∫
⟨Q2⟩0

dQ = const.

The proof comes from computing the second variation byH0 of the functional
Π(x −H0). The second variation by Σ0 for the surface tension quantities was
already derived in [11] (chapter 1). The �rst variation by Φ0 is equal to zero
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restricted to (16) but the �rst variation by H0 leads to equation (15), which
links Φ0 and H0. Furthermore,

δ2Π = µ−1

∫
pΣ0

(AδH, δH)dydz,

where A is the operator by (19)-(21). Condition δ2Π > 0 is equivalent to the
spectral stability criteria 4.2 a.

6. Conclusions

By applying the fast-time averaging of the non-dimensional free-interface
problem for two compressible �uids, the mathematical theory of levitating drops
in [5] is generalised to study how acoustic �eld in the ullage gas may a�ect the
mean (time-averaged) liquid-gas interface (called the acoustic equilibrium) and
its stability. The theory includes a spectral theorem on the natural frequencies
and modes and a pseudo-potential energy introduced for the acoustic equilibria.

The second author acknowledges the �nancial support of the Centre of Au-
tonomous Marine Operations and Systems (AMOS) whose main sponsor is the
Norwegian Research Council (Project number 223254�AMOS).
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