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This issue of the journal is dedicated to the 70th anniversary of the
well-known scientist in the field of numerical mathematics and scientific
computing Professor Ivan Gavrilyuk. All authors cordially congratulate the
jubilee and wish him good health and new interesting scientific results.

Responsible Editor R. Chapko
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IVAN GAVRILYUK - 70

Our friend of long standing, colleague, and collaborator, Professor Ivan
Gavrilyuk (german Gawriljuk), has turned 70.

He was born and grew in the village Majdan Stasiv (currently Goncharivka)
of Lityns’kyj district of Vinnitsa region, Ukraine. School he graduated in the
village Klembivka of Jampil’” district of the same region. His professional activ-
ity of almost four decades in two countries, Ukraine and Germany, is a splendid
example of ceaseless service to the mathematical community and is noted for
remarkable scientific achievements in a wide range of topics in the area of the-
oretical numerical analysis, mathematical modelling, and scientific computing.

L.P. Gavrilyuk studied mechanics and mathematics at the Faculties of Me-
chanics and Mathematics and then at the Faculty of Cybernetics of the Taras
Shevchenko Kiev State University. He graduated in 1971 from the department
of Cybernetics and, as a talented young mathematician, was appointed as as-
sistant professor at the department. His mentors, collaborators, and colleagues
at that time were G.N. Polozhij, V.M. Glushkov, V.L .Makarov and other well-
known mathematicians from the Kiev school. In 1975 he defended his thesis
for the degree of Candidate of Sciences in physics and mathematics at the
Taras Shevchenko Kiev State University. In 1979 he was promoted to the post
of associate professor of applied statistics and soon to associate professor of
computational methods in mathematical physics.

In the period from 1981 to 1989 Makarov and Gavrilyuk were, respectively,
chair and vice-chair of the Department of numerical methods of mathematical
physics at the Kiev National University of Ukraine. Under their leadership the
department became a leading organization in Ukraine in the area of numerical
and applied mathematics. Makarov and Gavrilyuk were largely responsible for
the grown prestige of the department and for the raised quality of research.
Dr. Gavrilyuk was part of a team of young scientists with a vigorous research
program and close scientific collaboration with the world-renowed mathematical
schools.
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In 1989 Dr. Gavrilyuk made a cruicial decision to move to Germany with his
wife Ingrid and their children Alexander and Kristina. That year was a turning
point in the European history, when young professionals were looking for new
opportunities in the new world that was about to be created after the fall of the
Berlin wall. In 1989-1999 Dr. Gavrilyuk was a Lecturer, Privatdozent at the
Institute of Mathematics, Faculty of Mathematics and Informatics, University
of Leipzig and in 1995 he defended his Dr. rer. nat. habilitation at this
university. His close collaborators and mentors in Leipzig were the well-known
mathematicians Eberhard Zeidler, Damir Arov and Wolfgang Hackbush.

In 1999 Dr. Gavrilyuk was appointed Professor and Chairman of the depart-
ment of Information and Communication Technologies at the newly founded
University of Cooperative Education, Berufsakademie Eisenach, Staatliche Stu-
dienakademie Thueringen, later transformed into dual University Gera-FEise-
nach. These universities represent a new internationally recognized education
form, so to say the german "know-how" in the field of closed to practice educa-
tion. Professor Gawriljuk made a significant contribution to the development
of this form of education.

In the earlier period of his professional career as scientist, namely 1971-
1975, Dr. Gavrilyuk’s research was focused on the theory of finite difference
schemes. In this period he initiated a study of a new class of finite difference
schemes, namely schemes with exact and explicit spectra. He also introduced
the concept of the best scheme with exact spectrum, which was the forerun-
ner of the modern spectral and pseudospectral methods. Dr. Gavrilyuk made
important contributions to the development of the theory of exact and trun-
cated difference schemes for variational inequalities and for degenerate ODE’s,
the direction initiated and developed into a powerful numerical tool in the
early 1960s by A.N. Tikhonov and A.A. Samarskii and later in the 1970s by
V.L. Makarov. Among the most spectacular achievements of Dr. Gavrilyuk in
this area are his results on the existence and uniqueness of exact difference
schemes for the weak solutions. They have been used further as the basis for
the construction of truncated difference schemes of arbitrary given degree of ac-
curacy as well as of difference schemes on a finite grid for ordinary and partial
differential equations in unbounded domains. In the period from 1975 to 1989
Dr. Gavrilyuk participated also in a number of theoretical and applied projects
related to mathematical modelling and computer-aided design of complex radio-
engineering systems. He headed a team for developing a mathematical model of
photon recycling diode and used it for computer simulation of photon recycling.
It was probably the first mathematical model which could completely describe
all complex processes in this electronic device. Due to the strong nonlinear-
ity and nonlocal terms the investigation of this model and its discreztization
was a challenging mathematical problem. Further, Dr. Gavrilyuk and his team
proposed a new model (a system of nonlinear partial differential equations) of
internal-diffusion kinetics of adsorption, derived an appropriate discretization,
and developed efficient algorithms and computer programs for its numerical so-
lution. This was a team-work of applied mathematicians and engineers that led



IVAN GAVRILYUK - 70

to a number of unique results in terms of mathematical modelling, development,
of numerical algorithms and software for computer simulation.

In 1989 Dr. Gavrilyuk, while working at the University of Leipzig, began
a new line of research. He studied differential equations with operator coeffi-
cients and other operator equations in Hilbert and Banach spaces, which can be
considered as meta-models for partial differential equations. Using the Cayley
transform and special functions he obtained the solution operators and closed
form solutions of these meta-models containing, e.g., all the three important
classes of partial differential equations (parabolic, hyperbolic and elliptic), oper-
ator equations (including Lyapunov, Silvester, and other important equations).
On the basis of these explicit solutions he was able to construct and justify
numerical schemes without accuracy saturation and with exponential accuracy.

Further Dr. Gavrilyuk applied the improper Dunford-Cauchy integral to rep-
resent the solution operators and to discretize them using Sinc-quadratures.
These algorithms have three important properties: a) they converge exponen-
tially, b) they can be parallelized, and c¢) in the case of multidimensional prob-
lems they allow a tensor-product representation. These important properties
yield efficient numerical algorithms of optimal or low complexity, which in the
case of multidimensional problems solve the famous "curse of dimensionality"
problem. The tensor-product representations of the solution operators has be-
come a crucial tool (very often the only working tool) for many multidimen-
sional problems and is intensively developing at various scientific institutions.
Dr. Gavrilyuk’s colleague, friend and collaborator in this important field from
Leipzig school is Boris Khoromskij.

An important field of Dr. Gavrilyuk’s scientific activities in University of
Leipzig was mathematical modelling of the sloshing of liquids in moving con-
tainers in various marine applications. These phenomena are described by
a complex system of nonlinear partial differential equations in domains with
moving boundaries. The main idea of the approach used by Dr. Gavrilyuk in a
team with 1. Lukovskyj, V. Makarov, A. Timokha, M. Hermann and others is to
derive simpler mathematical models (so-called modal models) in the form of a
system of ODEs. Then he proposed efficient numerical algorithms that for var-
ious applications lead to boundary-value, initial-value, or eigenvalue problems
for the modal models.

Dr. Gavrilyuk has shown how the seemingly "abstract" mathematical results
in terms of numerical functional analysis in Hilbert and Banach spaces could
be converted into practical algorithms for solving particular applied problems
connected with the sloshing of liquids. In fact, using the full arsenal of theoret-
ical mathematical tools for the computational practice is very typical for the
research of Dr. Gavrilyuk.

Professor I.P. Gavrilyuk lectured for 18 years at the Kiev University, then
for 10 years at the University of Leipzig and afterwards till now at the dual
Gera-Eisenach-university. He has given a whole spectrum of undergraduate,
graduate, and special topics courses in numerical methods, computer science,
and mathematical modelling and has supervised a large number of diplomas
and Ph.D. theses.
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Results published by Prof. Gavrilyuk are widely known in the scientific world
and make an important contribution to mathematics. Scientific achievements
of Professor Gavrilyuk were awarded the State Prize of Ukraine in the field of
science and technology.

As editor Prof. Gavrilyuk left his mark in a number of mathematical jour-
nals, e.g., Mathematics of Computation, Computational Methods in Applied
Mathematics, Journal of Numerical and Applied Mathematics. He has been
invited speaker at a number of International conferences, symposia, and work-
shops. Prof. Gavrilyuk is the author or co-author of 9 monographs, a number
of university textbooks, and more than 150 research papers.

He is full of energy, new scientific ideas, and research endeavours. We warmly
congratulate the jubilee and wish him good health, fulfilment of his plans, and
Many Happy Returns of The Day!

R. Chapko, V. Khlobystov, M. Kutniv, I. Lukovskyj, V. Makarov,
H. Shynkarenko, A. Timokha, V. Trotsenko, V. Vasylyk.
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ON THE NON-LINEAR INTEGRAL EQUATION
METHOD FOR THE RECONSTRUCTION OF
AN INCLUSION IN THE ELASTIC BODY

R.S. CHAPKO, O. M. IVANYSHYN YAMAN, V. G. VAVRYCHUK

PE3IOME. [l151 3HaX0M2KeHHS rpaHuIli 06’eKTy B NPy KHiil 1BOBUMIpHIiit obsac-
Ti 3a Bimomumu ganmmu Komi Ha i1 rpaHuMIl 3aCTOCOBAHO METOJ HEJIHIMHUX
IHTerpasbHUX PIBHAHB, IO IPYHTYETHCS HA IPYXKHUX HOTeHmiagax. Po3pob-
JIEHO iTepariifinuil MeTosn /18 HabJIMKEHOrO PO3B’I3yBAHHSA OTPUMAHUX IHTEr-
pasbHUX piBHsAHB. JHalneno noxiany Ppeme BianoBiaHOTO ONIEPATOpPA 1 TIOKA-
3aHO PO3B’A3HICTH JIIHEAPU30BAHOI cucTemu. 1[0BHY AUCKPETH3AINIO 3AICHEHO
METOJOM TPUIOHOMETPUYIHUX KBAAPATYDP. epe3 HEKOPEKTHICTD 10 OTPUMAHOT
CHCTeMU JIHIHUX PIBHAHD 33CTOCOBAHO MeTO peryispn3arii Tixonosa. u-
CeJIbHI eKCIIEPUMEHTH MIOKA3YIOTh, [0 IIPOIOHOBAHUN MeTOH Ha€ J00py Tod-
HICTb PEKOHCTPYKITI IPU eKOHOMHHUX OOYHMC/TIOBAIBHAX 3aTPATAX.
ABsTRACT. We apply the non-linear integral equation approach based on
elastic potentials for determining the shape of a bounded object in the elasto-
static two-dimensional domain from given Cauchy data on its boundary. The
iterative algorithm is developed for the numerical solution of obtained integral
equations. We find the Fréchet derivative for the corresponding operator and
show unique solviability of the linearized system. Full discretization of the
system is realized by a trigonometric quadrature method. Due to the inher-
ited ill-possedness in the system of linear equations we apply the Tikhonov
regularization. The numerical results show that the proposed method gives a
good accuracy of reconstructions with an economical computational cost.

1. INTRODUCTION

The idea to reduce the problem of the boundary reconstruction directly
to non-linear equations and to employ a regularized iterative procedure was
firstly suggested in [18]. The concept consists in the use of the reciprocity
gap approach based on Green’s integral theorem. This approach was success-
fully extended in [9, 13, 16, 18, 20] for the case of the Laplace equation and
in [11, 12,14, 15] for the Helmholtz equation. The other possible way for it is
related with the Green’s function [6,7,10,20]. This method is applicable for the
reconstruction of an inclusion in some canonical domains for which the Green’s
functions are known. In this paper we would like to use the potential theory
to receive a system of non-linear integral equations [5] which is equivalent to
an inverse boundary problem for the Navier equation. As motivation for this
research we consider the extension of the potential approach to the system
of differential equations in elasticity and on the other hand the problem of the

Key words. Double connected elastostatic domain; boundary reconstruction; elastic po-
tentials; boundary integral equations; trigonometric quadrature method; Newton method;
Tikhonov regularization.
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shape reconstruction in the elastic medium is of interest for the solid mechanics
community.

We assume that D is a doubly connected bounded domain in IR? with the
boundary 0D consisting of two disjoint closed C? curves I'; and I's such that
I'; is contained in the interior of I's.

The corresponding direct problem is: Given a vector function g on I'y con-
sider the Dirichlet problem for a vector function u € C%(D) N CY(D) satisfying
the Navier equation

A*w=0 inD (1)
and the boundary conditions

u=0 onl}, (2)

Tu=g onDs. (3)

Here A*u = pAu + (A + p) grad divu and
Tu = Mivuv + 2u(v - grad)u + pdiv(Qu)Qu,

where v is an outward unit normal vector to the boundary and the matrix @
0 1
-1 0
the Lame coefficients, they characterize the physical properties of the material.
Note that throughout the paper the function spaces have to be understood as
vector valued.

It is well-know that the direct mixed boundary value problem has the unique
solution [21, Chapter X, §10].

The inverse problem we are concerned with is: Given the Neumannn data g
on I's and the Dirichlet data

is given by Q = . Constants g and A (u > 0,A > —pu) are called

u=f on Iy, (4)
determine the shape of the interior boundary I'y.
As opposed to the forward boundary value problem, the inverse problem is
nonlinear and ill-posed.

The issue of uniqueness, i.e., identifiability of the unknown curve I'y from
the Cauchy data on I'y, is settled by the following theorem (see [4]).

Theorem 1. Let I'1 and fl be two closed curves contained in the interior of
I'y and denote by u and u the solutions to the mized problem (1)—(3) for the

interior boundaries I'y and fl, respectively. Assume that g # 0 and
uU=1u

on an open subset of I'a. Then I'y = fl.

2. NONLINEAR INTEGRAL EQUATIONS AND ITERATIVE SCHEMES
FOR ITS SOLUTIONS
Firstly we introduce the single-layer elasticity potential. As it is well known,
the fundamental solution to the Navier equation (1) is given by

1
|z — y|

@(x,y):% In I+%2J(:z;—y),
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where ¢; = 4#?;&’5#), co = 4#5‘;_“2”), I is the identity matrix and the matrix J
is defined by
-
ww
Tw) = Top

in terms of a dyadic product of w € IR? \ {0} and its transpose w'. Then the
single-layer potential with vector density ¢ on I'y is defined by

U)(@)i= [ eg)il)dsty). weD, £=1.2

I3

We search the solution of the boundary value problem (1)—(3) in the form
u(z) = (Urr)(x) + (Uaho)(z), =z € D. (5)

From the boundary behavior properties of the single-layer elasticity potential
[21], we obtain

u(m) = (Sgﬂ/)l)($) + (Sgﬂﬁg)(%)? rzely, (£=1,2 (6)
and
(Tu)(x) = %1/12(%) + (D21v1)(x) + (Da2tpe) (), z €Dy (7)

Here, the boundary integral operators Sy, and Dy are defined by

wmmzééwmmw@,mm,

(Dup)a) = [ Td(w9)ol) dsty). €Ty
4

Taking into account the boundary conditions (2) and (3) we receive from (6) a
system of integral equations

S11¢1 + S12902 =0 on Iy,
. (8)
592 + Da1h1 + Dagtpp =g on Iy

and the condition (4) leads to the integral equation
S+ S =[f on Is. (9)

Theorem 2. The inverse boundary value problem (1)—(4) is equivalent to the
system of integral equations (8)—(9).

We will call the equations (8) as the “field” equations and the equation (9)
as the “data” equation.
In general, there exist three different iterative methods to solve the system
(8)-(9) by linearization:
A. Given initial guess for the boundary I'; and the densities ¥ and 12, we
linearize all three equations in order to update all the unknowns.
B. Given initial guess for the boundary I'i, we solve the subsystem (8)
to obtain the densities. Then, keeping the densities fixed we solve the
linearized “data” equation (9) to obtain the update for the boundary.
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C. Given initial guess for the densities, we solve the linearized “field” equa-
tions (8) to obtain I'; and then we solve the linearized “data” equation
(9) to obtain the new densities.

The linearization, using Fréchet derivatives of the operators, and the regulariza-
tion of the ill-posed equations are needed in all methods. However, the iterative
method A requires the calculation of the Fréchet derivatives of the operators
with respect to all the unknowns and the selection of three regularization pa-
rameters at every step. Thus, we prefer to use one of the so-called two-step
methods B or C. Between the two methods, the method B is preferable since we
solve first a well-posed linear system and then we linearize the “data” equation.

3. IMPLEMENTATION OF THE TWO-STEP METHOD B
3.1. Numerical solution of the “field” integral equations. Assume that
boundary curves I'y and 'y have parametric representation

Ty = {we(t) = (za1(t), 22(t))| t€[0,2a]}, £=1,2,

where 1, xy9 are 2n—periodic and twice continuously differentiable functions.
It gives us the following parametric form for the operator Sy

1 2m
(Sertbr) (ze(t)) = p Ko (t, )¢n()dr, £k =1,2,
0
where Ky(t,7) = 7@ (xe(t), zx(7)) and ¥(t) = Y(xi(t))]x)(t)|. Elementary
calculations yield the representation of the matrix Ky,
4 t—T7

Ky(t, 1) = —%1 In <e sin?

>I+[~(M(tv7-)v t;éT,

where

~ 4 t—
Kgg(t,T):Kgg(t,T)-l-%ln (sin2 27—) I, t;éT
(&

with the diagonal term
zy(t) - ()

C1 1
Kgg(t,t) =—1n () I+ Co
2 \elzg(t)]? EAGIE
Parametrization of integral operators Dy reads as following
1 21
(Duv)e®) =3 [ Lat.ryvn(r)ir
0
with the matrices

(t) = 2x(7)) - (1)

Ty
Lo(t,7) = c3 ’(m, Q-
¢

(O)llze(t) — x ()|

00 -y

10
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1 A+ . . .
———— and ¢4 = ———. The kernels Ly contain the singularity.
2(\ + 271 YT Nt 2 ¢ griatity

The straightforward calculations lead to the following expression

Here c3 =

t —
Lo(t,7) = —2 cot “—LQ + Ly(t, 1),
2|z (?)]
where ;
~ C3 — T
Lgo(t,7) = Lyg(t, 7) — cot Q
2|2y ()] 2

with the diagonal term

. cary (t) - wy(t) @ (t) - Qu(t)
20 (P2 EAGIKE

Thus we obtain a system of parametrized integral equations

( 2 B i
717/0 { [—C;ln (i sin? t . T> I+ Kt T):| 1 (7)+

+K12(t, 7)ba(T) }dT =0,

¢2(t) l 27
22 (0) + W/o {Lm(tﬁ)%(ﬂ‘i‘

wy(t) - 2y(t) |

Al FAOIE

[031 +cq

(10)

c3 t—1T1 ~
t L (t dr = g(t).
s o 57+ Enten) ”’2“)} oo

For the numerical solution of integral equations (10) we combine a quad-
rature method and a collocation method based on trigonometric interpola-
tion [3,17]. For this we choose an equidistant mesh by setting t; = jh, h = 7,

7 =0,...,2n — 1 and use the following three quadrature rules
1 2 1 2n—1
o [ a)drx o=y g(t), (11)
k=0
I 4 =
o ; g(7)In (e sin? tj — ) Z Ryj_k 9(tk) (12)
k=
and
1 o 2n—1
> g(T)cot T — ]dTNZ ~k9(tk), (13)
0

with the weights

1 n—1 1 (_1)j 1 n—1
R; = o {1 +2 Z:lmcosm]h—i— n} , Fj= - Z sinmjh.
m=

These interpolation quadrature formulas are obtained by replacing g by its
trigonometric interpolation polynomial from the 2n-dimensional space 7T, and
then integrating.

11
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Thus we use quadrature rules (11) and (12) to approximate two types of
integrals in the integral equations (10) and collocate the approximate equations
to obtain the linear system

2n—1
Z { |:01Rj—k|I + % f(n(tj,tk)] Yin(te)+
k=0
+% K12(tjatk)"¢2n(tk)} =0,
(14)
¢2 2n—1
2‘; + Z{ Loi(tj, tr)in(te)+
2
SR Lt t ) S = g(t;
| s @t Lottt ) = ot

for 5 =0,1,...,2n — 1, which we solve for the nodal values ¥y, (tx), £ = 1,2 of
wén € Th.

The convergence and error analysis for this quadrature method can be es-
tablished on the basis of the collectively compact operators theory (see [8]) or
on the basis of some estimate of trigonometric interpolation in Holder spaces

(see [19]).

Theorem 3. For f € CPTLP(0,27] and a sufficiently large n the system (14)
has an unique solution with Vg, € T,, and for the exact solutions v, of (10) we
have the error estimates

Inn

1%e — Yenllma < CWHWHM% £=1,2

for0<m < p, 0<a< B <1 and some constant C > 0 depending only on
a? /87 m7 p'

3.2. Numerical solution of “data” integral equation equation. Accord-
ing to our algorithm we need to find the correction for I'; from the “data”
equation (9), where the densities ¥y, £ = 1,2 are known. For simplicity we con-
sider only star-like interior curves, i.e., we choose a parametrization in polar
coordinates of the form

z1(t) = {r(t)c(t) : t € 0,27}, (15)

where ¢(t) = (cost,sint) and r : IR — (0,00) is a 27 periodic function repre-
senting the radial distance from the origin. Also we use the following notation
Sy = S919. However, we wish to emphasize that the concepts described below,
in principle, are not confined to star-like boundaries only.

For the given r and vy, £ = 1,2 we solve the linearized ill-posed integral
equation

(S"[r,1]g)(t) = f(t) = (Srth1)(t) — (Saath2)(t) (16)

12
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with respect to the function gq. Here the Fréchet derivative of the operator S

has the following representation
1 2
(STl = = [ a@N e

™

where
Np(t,7) = —c1¢(7) - Vo, () In[22(t) — 21 (7) |1+

+ 2 (e(7), Oy (7)) (2(t) — 21(7)).
Here (c(7), 0y, (7)) (72(t) — x1(7)) is the tensor obtained by applying (c(7),
Oz, (7)) to each column of J(x2(t) — z1(7)).

Theorem 4. The Fréchet derivative operator S'[r, 1;1] 15 injective at the exact
solution.

Proof. Assume S'[r, 121](] = 0. We introduce a function
Vi) = [ G 0)w i) dsty), @€ BT
1

where ((z1(t)) = q(t)e(t), t € [0, 27].

Clearly the function V satisfies the Navier equation

AV =0 inR*\T,
and by the assumption
Vi, =0.

It is known, [13], that for sufficiently small ¢, the perturbed interior curve as
given in polar coordinates by

Lirg = {(r(t) +q())e(t) : ¢ € [0, 2]}

can be represented in terms of the outward unit normal vector v to I'1, as
follows

Pipg = {r(®)elt) + dt(t) : 1 € 0,27]}.
Hence, the function V can be rewritten in the form

2w ~
V(z) = /0 ((7), Oy (1) ® (@, 21(7)) @(7) 1 (7) [y (7) | dr, 2 € R*\ T,

Recalling

L ;.o (i — yi)(ij_ Y;)
e -yl |z =yl
and having introduced ¢;; the two-dimensional Ricci tensor

& . .
O(x,y) = ;1 In € @ €j,

= ¢y, (845) =Q, v=-Qr,

we rewrite the (v(y), 0y)®(x,y) in terms of the tangential derivative as follows

C1 (9 1
v(y),0y)®(x,y) = — In I—
((y) y) ( y) T au(y) \x—y\
2 0 (@wi—y)w-y) .
ST R PR
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By |2, Theorem 4.5] we obtain that the function V' can be continuously extended
to the boundary I'y, i.e.,

V(1 (6)* = Ferdn (1)3(t)+

2 ~
+/ ((T), Oy (7)) @(21(), 21(7)) G(7)1 (7) |2 (7)| d.
0

The function V' behaves as o(1) at infinity. By the uniqueness of the exterior
and interior Dirichlet problem [21, p.55] we have

017;1@)5(75) =0, te]l0,2n].

The function u given by (5) solves the Dirichlet problem in the interior of I'y.
By uniqueness of the solution to the Dirichlet problem for the Navier equation
u has to vanish in the interior of I'y and hence Tu™ = 0 on I'y.

The jump relations imply Tu™ = 7. Employing Holmgren’s uniqueness
theorem similar to the case for the Helmholtz equation [1, Theorem 2.3.] one
can show that the Cauchy data (u™,Tu™) cannot be identically zero on an
open subset and hence 1}1 cannot vanish on an open subset of [0, 27]. a

For the numerical solution of (16) we apply tha collocation method with the
approximation of ¢ in the form

2m
szzqmzlla mem7n>m7
i=0

where [;(t) = cosit for i = 0,...,m and [;(t) = sin(m—i)t for i = m+1,...2m.
Then the following linear system needs to be solved

2m
=0
with
1 2n—1
Aij = = > L) No(ti, t)a(te)
k=0
and
2n—1 1
bi = f(ti) — = Ko1 (ti, ti)V1n(t
f(ti) kzzo{n 21 (tis th)V1n (te)+

+ |:_01R|z'—kl + % Km(hﬁk)] ¢2n(tk)}-

Due to ill-possedness of (17) and its over-determination we apply the least-
squares method and the Tikhonov regularization with the regularization pa-
rameter o > 0.

14
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3.3. Algorithm for the two-step method B. Now we summarize the algo-
rithm.

1. Choose some starting value r.

2. Solve the system of well-posed integral equations (8) (see subsec. 3.1).

3. For the given r, 1)1 and 19 solve the linearized ill-posed integral equation
(9) with respect to function ¢ (see subsec. 3.2).

4. Calculate an approximation for the radial function r = r + 8q, where 3
is a relaxation parameter for the Newton method.

5. Repeat steps 2-4 until a stopping criterion is satisfied.

4. NUMERICAL EXAMPLES
The Cauchy data on I's were generated by solving the direct problem (1)-(3)
for g = (1,1)T on I'y and calculating f = (f1, f2)' as the restriction of the
solution on I's. Note that when generating the “exact” Cauchy data we used a
finer mesh in order to avoid the “inverse crime”. The noisy data were formed as

1o = fo+0Cn =Dl fellzowy), £=1,2
with the noise level ¢ and the uniformly distributed random variable n in (0, 1).
The stopping rule was chosen as
lall oy
HT”Lz(rl)

We demonstrate the feasibility of the proposed methods for the inverse prob-
lem (1)-(3) with 4 = A =1 and with following boundaries

a). Reconstruction for exact data after b).Reconstruction for 5% nosy in the
21 iterations (o = 1E — 10) data after 16 iterations (o = 1E — 2)

F1G. 1. Reconstruction of the boundary I'; for Ex.1
Example 1: The exterior boundary curve I'y is a elipse I's = {zo(t) =

(2cost,1.5sint),t € [0,27]} and the interior boundary curve I'y (to be
reconstructed) is peanut-shaped with radial function

r(t) = Vcos2 t 4 0.25 sin’ .

15
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Example 2: The exterior boundary curve I'y is a rounded rectangle with
radial function

ro(t) = ((1/2cost)' + (2/3sint)10) =01
and I'7 is a boundary with radial function
r1(t) = 1+ 0.15cos 3t.

The results of the numerical experiments for exact and noisy data with § =

5% are reflected on Fig. 1 and Fig. 2. Here we used the following discretization
parameters n = 32, m = 4, ¢ = 0.0001 and g = 0.2.

Thus, as we see from this preliminary study the non-linear integral equation

approach provides accurate reconstruction for exact and noisy data.

N

\
VN '
\
\ \
| \ !
' \ !
| \
\ ‘
N ’
N P
) /
Seo -z

1
1
1

1
/

- _J

_J

a). Reconstruction for exact data after b). Reconstruction for 5% nosy in the data

16

21 iterations (o = 1E — 10) after 20 iterations (o = 1E — 2)

F1G. 2. Reconstruction of the boundary I'; for Ex. 2
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THE SYSTEM OF POTAPOV’S FUNDAMENTAL MATRIX
INEQUALITIES ASSOCIATED WITH A MATRICIAL
STIELTJES TYPE POWER MOMENT PROBLEM

B.FriTrzscHE, B. KIRSTEIN, C. MADLER, M. SCHEITHAUER

PE3IOME. B crarTi nmoka3amo, 1o MHOXKHUHA, PO3B’I3KiB MaTPUIHOI IIpodIeMu
cusoBUX MOMeHTIB Tury CTijibeca CIIBIAJA€ 3 MHOKUHOIO PO3B’SI3KiB crCTeMH
dyunamentanpHol MaTpuri nepisuocreit IloTamosa.

ABsTRACT. The paper shows that the solution set of a matricial Stieltjes-
type truncated power moment problem coincides with the solution set of the
corresponding system of Potapov’s fundamental matrix inequalities.

1. INTRODUCTION AND PRELIMINARIES

The starting point of studying power moment problems on semi-infinite in-
tervals was the famous two part memoir of T. J. Stieltjes [52,53]. A complete
theory of the treatment of power moment problems on semi-infinite intervals in
the scalar case was developed by M. G. Krein in collaboration with A. A. Nudel-
man (see |45, Section 10], [46], |47, Chapter V|). What concerns an operator-
theoretic treatment of the power moment problems named after Hamburger
and Stieltjes and its interrelations, we refer the reader to Simon [51].

In the 1970’s, V. P. Potapov developed a special approach to discuss ma-
trix versions of classical interpolation and moment problems. The main idea
of his method is based on transforming such problems into equivalent matrix
inequalities with respect to the Léwner semi-ordering. Using this strategy, sev-
eral matricial interpolation and moment problems could successfully be han-
dled (see, e.g. [6,7,13-16,18,20-22, 32, 33,3744, 48,54]). L. A. Sakhnovich
enriched Potapov’s method by unifying the particular instances of Potapov’s
procedure under the framework of one type of operator identities |9, 35, 50].
Matrix versions of the classical Stieltjes moment problem were studied by
Adamyan/Tkachenko [1,2], Andé [4], Bolotnikov [5, 6, 8], Bolotnikov/Sakhno-
vich [9], Chen/Hu [11], Chen/Li [12], Dyukarev [17, 18], Dyukarev/Katsnel-
son [21,22], and Hu/Chen [34]. The considerations of this paper deal with the
more general case of an arbitrary semi-infinite interval [«, 00), where a is an
arbitrarily given real number. This problem has already been treated by other
methods in [27,28].

In order to formulate the concrete moment problem, we are going to study,
we first review some notation. Throughout this paper, let p and g be positive

Key words. Stieltjes moment problem; Potapov’s fundamental matrix inequalities; Her-
glotz—Nevanlinna functions; Stieltjes functions.
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integers. Let C, R, Ny, and N be the set of all complex numbers, the set of
all real numbers, the set of all non-negative integers, and the set of all positive
integers, respectively. For every choice of v,w € RU {—00, 00}, let Z,,,, be the
set of all integers k for which v < k < w holds. If X is a non-empty set, then
XP*1 gtands for the set of all p X ¢ matrices each entry of which belongs to X,
and XP is short for XP*L. If (€2,2l) is a measurable space, then each countably
additive mapping whose domain is 2 and whose values belong to the set CL*4
of all non-negative Hermitian complex ¢ x ¢ matrices is called a non-negative
Hermitian ¢ x ¢ measure on (,2). By MZ(Q,2) we denote the set of all
non-negative Hermitian ¢ x ¢ measures on (Q,2). For the integration theory
for non-negative Hermitian measures, we refer to [36,49]. If u = L“jk]?,k:o is
a non-negative Hermitian ¢ X ¢ measure on a measurable space (Q,2) and if
K € {R,C}, then we use £(€, 2L, u; K) to denote the set of all Borel-measurable
functions f: Q — K for which the integral exists, i.e., that [|f[df;, < oo for
every choice of j and k in Z1 4, where [i;, is the variation of the complex measure
pik. I f € LY, p; K), then let Jafdu =g 1Afd/$jk;]?7k:1 for all A e
and we will also write [, f(w)p(dw) for this integral.

Let Br (resp. Bc) be the o-algebra of all Borel subsets of R (resp. C).
For all 2 € By \ {0}, let B be the o-algebra of all Borel subsets of €, let
ML(Q) := ML(Q,DBq) and, for all k € Ng U {oo}, let ML (Q) be the set of
all o € ML(Q) such that for all j € Zg, the function f;: Q@ — C defined by
fi(t) ==t/ belongs to L1(Q,Bq,0;C). If K € Ng U {oo} and if o € ML (),
then we set B

S;U] — / to(dt) for each j € Zo . (1)
Q

The following matricial power moment problem lies in the background of our
considerations:

Problem MP[(; (s;)"L,, <]: Let Q € Bg \ {0}, let m € Ny, and let (s;)"2, be
a sequence of complex ¢ X ¢ matrices. Describe the set MQZ[Q; (5]—);“:0, <] of

all o € Mgm(ﬂ) for which the matrix s, — s is non-negative Hermitian and

for which, in the case m > 0, moreover sg.a] = s; is fulfilled for all j € Zgm—1.

The considerations of this paper are mostly concentrated on the case that
the set €2 is a one-sided bounded and closed infinite interval of the real axis.
Such moment problems are called to be of Stieltjes type. We are going to
follow Potapov’s strategy to solve the moment problem MP{[a, 00); (s;)7Ly, <],
where « is an arbitrarily given real number. After the reformulation of the
moment problem in the language of the members of a class of distinguished
matrix-valued functions, a first step consists of finding a convenient system of
matrix inequalities such that the solution set of the moment problem coincides
with the solution set of the system of matrix inequalities. In a second step, one
proves a parametrization of the solution set of the system of matrix inequalities,
where the case that m is an even integer and the case that m is an odd integer
are treated seperately. This paper is aimed at doing the fist step. We are going
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to construct the system of matrix inequalities in question. It will turn out that
the solution set of the moment problem (obtained via Stieltjes transformation)
coincides with the solution set of a certain system of Potapov’s fundamental
matrix inequalities. Further considerations to solve these inequalities will be
stated in a subsequent paper.

In Section 2, we recall necessary and sufficient conditions of solvability of
the moment problems in question. In Section 3, we give a reformulation of the
moment problem, using certain matrix-valued functions. Section 4 is aimed at
showing that every solution of the moment problem fulfills necessarily the cor-
responding system of Potapov’s fundamental matrix inequalities. Some integral
estimates for the scalar case are given in Section 5. In Section 6, we will prove
that each solution of the system of Potapov’s fundamental matrix inequalities
is a solution of the moment problem as well.

At the end of this section, let us now introduce some further notations, which
are useful for our considerations. We will write I, for the identity matrix in
C?%4, whereas 0pxq is the null matrix belonging to CP*4. If the size of the iden-
tity matrix or the null matrix is obvious, then we will also omit the indexes. The
notations Cf*? and C%*? stand for the set of all Hermitian complex ¢ X ¢ ma-
trices and the set of all non-negative Hermitian complex matrices, respectively.
If A and B are complex ¢ X ¢ matrices, then we will write A < Bor B > A to
indicate that A and B are Hermitian matrices such that the matrix B — A is
non-negative Hermitian. For each A € CP*?, let N'(A) be the null space of A
and let R(A) be the column space of A. For each A € C9*Y, we will use RA
and SA to denote the real part of A and the imaginary part of A, respectively:
RA := J(A+ A*) and SA := 5 (A — A*). Furthermore, for each A € CP*4, let
||Al|r be the Frobenius norm of A and let ||Al|s be the operator norm of A. For
each x € CY, we write [|z|g for the Euclidean norm of z. If n € N, if (p;)j_4
is a sequence of positive integers, and if z; € CPi*? for each j € Z;,, then

%1
let col(z;)}_; = [ :2 ] If n € N, if (gx)}_, is a sequence of positive integers,
Tn
and if y, € CP*% for each k € Zi,, then let row(yx)i_y = [Y1,Y2,.--,Yn)-
If X, Y, and Z are non-empty sets with Z2 C X and if f: X — )Y is a map-
ping, then Rstrz f stands for the restriction of f onto Z. Furthermore, let
II; :={2€C: 3z € (0,00)} and let [I_ :={z € C: ¥z € (—00,0)}.

2. ON THE SOLVABILITY OF MATRICIAL POWER MOMENT PROBLEMS

In this section, we recall a necessary and sufficient condition for the solv-
ability of the Stieltjes moment problem MP[[a, 00); (s;)]Lg, <], where a is an
arbitrarily given real number and where m is an arbitrarily given non-negative
integer. First we introduce certain sets of sequences of complex g X ¢ matrices,
which are determined by the properties of particular block Hankel matrices
built of them. For each n € Ny, let H;Zn be the set of all sequences (s;)52,
of complex ¢ x ¢ matrices such that the block Hankel matrix Hy := [s;4+4]7 ¢

is non-negative Hermitian. Furthermore, let H%OO be the set of all sequences
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(85)520 of complex g X g matrices such that, for all n € Ny, the sequence (sj)?go
belongs to 7=, . The elements of the set H=,,., where x € NoU {oo} are called
Hankel non-negative definite sequences. For all n € Ny, let H=¥ be the set

q, 2n
of all sequences (sj)zﬁ of complex ¢ X g matrices for which there are matri-

2(n+1) belongs to H

q,2n" q,2K)

ces Sonr1 € CT*7 and s9,10 € C9%? guch that (sj) 22(n+1)"

Furthermore, for all n € Ny, we will use Hq—% 41 to denote the set of sequences

(s])‘?"l1 of complex ¢ x g matrices for which there is some s9,19 € C?7*7 such

that ( )= (nll) belongs to ’H Dt

”H are called Hankel non- negatwe definite extendable sequences. For techni-

For all m € Ny, the elements of the set

cal reasons, we set quo = ”H%OO. Observe that the solvability of the matricial
Hamburger moment problems can be characterized by the introduced classes
of sequences of complex ¢ X ¢ matrices:

Theorem 2.1 (see, e.g. [10, Theorem 3.2] or [20, Theorem 4.16]). Let n € Ny
and let (s])J %y be a sequence of complex q X q matrices. Then

MELIR; ()20, <] # 0

if and only if (SJ)J =0 € qu,2n

Let o € C, let K € NU {oo}, and let (s;)7_, be a sequence of complex
p X ¢ matrices. Then let the sequence (Sabj)?;é be defined by

Sapj ‘= —QSj + Sj41 for all j € Zo k—1. (2)

The sequence (sabj);;é is called the sequence generated from (s;)5_y by right-
sided a-shifting. (An analogous left-sided version is discussed in |25, Defini-
tion 2.1].) The sequence (SQDJ) é is used to define further sets of sequences of
complex matrices, which are useful to discuss the Stieltjes moment problems

we consider. Let ICq0a = quo For every choice of n € N, let ICq ma =

{(3])2"0 € Hq on : (Saw)g( 0 Ve Hq—2 (n-1) }. For all m € Ny, by &,,(C7%?) we
denote the set of all sequences (s;)" o of complex q X q matrices. Then we set
’CiQn-l-l,a = {<33)2n+1 € G541 (CTY): {(8])] 07(SCY1>J>j of S Hq on)- For all
m € Ny, let IC(Lm,a be the set of all sequences (Sj)j:O of complex ¢ X ¢ matrices
for which there exists a complex ¢ X ¢ matrix s,,+1 such that (sj)m+1 belongs
to ICq mila- We have qu e = {(31)2”0 € ’Hq on - (saDJ)Q” le Hq om—qt for all
n € N and ICq Sl = {(SJ)Q”H € Hq i1’ (Sani)ilo € H=, } for all n € No.
Obviously, Kz o C K2 Furthermore, if (s;)7L, € ICqma (resp. KT o),
then we easily see that (s])g 0 € quﬁa (resp. (sj)f 0 € quZa) holds true
for all £ € Zo,,. Thus, for all o € R, let K=

q,2n

q,m,o

be the set of all sequences

q,00,
(87)720 of complex g x ¢ matrices such that (sj) *y belongs to K2, , for all
m € Ny, and let K72 o = KZ.a- Forall K € Ng U {oo}, we call a sequence

(sj)i—o o, 00)-Stieltjes right-sided non-negative definite (resp. [, 00)-Stieltjes
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right-sided non-negative definite expendable) if it belongs to K%H’a (resp. to
K7:£a). Note that left versions of these notions are used in [25, Definition 1.3].

Using the introduced sets of sequences of complex ¢ X ¢ matrices, we are able
to recall solvability criterions of the problem MP[[a, 00); (s5)7%g, <]:

Theorem 2.2 ( [19, Theorem 1.4]). Let o € R, let m € No, and let (s;)72 be
a sequence of complex q X q matrices. Then /\/lqz[[oz, 00); (85)1L0, <] # 0 if and
only if (s;)7%q € Kz

q7m7a :

For the description of the solution set M [[a, 00); (8j)jLo, <] of Problem
MP[[a, 00); (s)jLg, <], it is essential that one can suppose extendable data
without loss of generality:

Theorem 2.3 ( [19, Theorem 5.2]). Let a € R, let m € Ny, and let (s;)], €

’Cz%m,a' Then there is a unique sequence (§j);-”:0 € K%}fm such that the sets

qu[[a, 00); (55) L, <] and /\/lqz[[a,oo); (55)7 0 <] coincide.

3. SOME CLASSES OF HOLOMORPHIC MATRIX-VALUED FUNCTIONS
The class Rq(I1;) of all ¢ x ¢ Herglotz—Nevanlinna functions in the upper
half-plane II; consists of all matrix-valued functions F': 11, — C?*? which are
holomorphic in II; and which satisfy S[F(I1;)] € CZ*?. Detailed considera-
tions of matrix-valued Herglotz-Nevanlinna functions can be found in [26,31].
In particular, the functions belonging to R4(Il;) admit a well-known integral
representation:

Theorem 3.1.  (a) For each F' € Ry(ILy), there exist unique matrices A €
C%Xq and B € CLY and a unique non-negative Hermitian measure v €

M‘IZ(R) such that

1+1¢
F(z)=A+:zB+ / + Zl/(dt) for each z € 11 (3)

R —Z

(b) If A € CIY, if B € CYY, and if v € ML(R), then F: 11} — C9%4

defined by (3) belongs to R,(I14). -

For each F' € Ry(IL}), the unique triple (4, B,v) € CF IxCL* x ML (R) for
which the representation (3) holds true is called the Nevanlinna parametrization
of F and we will also write (A, Bp,vr) for (A, B,v). In particular, vp is said
to be the Nevanlinna measure of F'. If F belongs to Rq(ILy), then up: Br —
[0, 0] defined by

jp(B) = /B (1+ 2)vp(dt) for all B € By (4)

is a measure, which is called the spectral measure of F'. By Ry(I1}) we denote
the set of all F € R,(IL) for which g: R — R defined by g(t) := 1+ belongs
to L1(R, Bg, vp;R). Obviously, R (I1}) = {F € Ry(Il}): vp € M(IZ’Q(R)}.
If I belongs to Ry (I14), then up: Br — (Cq;q given by (4) is a well-defined
non-negative Hermitian ¢ X ¢ measure belonging to M% (R), which is said to be
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the matricial spectral measure of F. Obviously, for functions which belong to
R;(I11), the notions spectral measure and matricial spectral measure coincide.
For our considerations, the class Ry ,(IL1) of all F' € Ry(Il) for which

sup y[|F(iy)llg < o0 (5)
y€[1,00)

holds true plays an essential role. The class Ry ,(I14) is a subclass of Ry (IL;.)
(see, e.g. [26, Lemma 6.1]). The functions belonging to Rg ,(I14) admit a
particular integral representation:

Theorem 3.2.  (a) For each I € Ry (1), there is a unique p € M%(R)
such that

F(z) = /R ; i Zp(dt) for each z € 11, (6)

namely the matricial spectral measure of F, and

p(R) = lim (yS[F(iy)]) = —1 lim [yF(iy)] =1 lim [yF~ (iy)].

(b) If F: 111 — C%9 4s a matriz-valued function for which there exists a
non-negative Hermitian measure p € ML (R) such that (6) holds true,
then I belongs to Ry ,(114).

A proof of Theorem 3.2 is given, e. g., in [14, Theorem 8.7]. If F' € R ,(I1),
then the unique p € MZ(R) for which (6) holds true is also called the Stieltjes
measure of F. If a non-negative Hermitian ¢ x ¢ measure u € M2 (R) is given,
then F: I, — C9%7 defined by (6) is said to be the Stieltjes transform of p.

Lemma 3.3. Let M € CI1*1 gnd let F': 11, — C9%? be a matriz-valued function
which is holomorphic in 11 and which satisfies the inequality
M F(z)
Fr(z) F@or' @) | 20

-z

for each z € Iy Then I belongs to Ry (1) and the inequality

sup yl|F(iy)lls < [M]ls
y€(0,00)

holds true. Furthermore, the Stieltjes measure p of F fulfills p(R) < M.

A proof of Lemma 3.3 is given, e. g., in [14, Lemma 8.9].

In view of the Stieltjes moment problem, a further class of matrix-valued
functions plays a key role: For each a € R, let Sg[q,00) be the set of all matrix-
valued functions S: C \ [a,00) — C?%? which are holomorphic in C\ [a, 00)
and which satisfy S[S(I1})] € CL*7 as well as S((—o00,a)) € CLY. In [29,
Theorems 3.1 and 3.6, Proposition 2.16], integral representations of functions
belonging to S;.q,00) are proved. Furthermore, several characterizations of the
class Sg[a,00) are given in [29, Section 4]. For each o € R, let Sp g.(a,00) be the
class of all F' € Sy;[q,00) Which satisfy (5). The functions belonging to Sy 4:(a,00)
admit a particular integral representation. Before we state this, let us note the
following:
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Remark 3.4. For every choice of a« € R and z € C\ [o,0), the function
bzt [a,00) — C given by by (t) == 1/(t — 2) is a bounded and continuous
function which, in particular, belongs to El([a,oo),%[a,oo),a;((:) for all o €
M ([or, 00)).

Theorem 3.5 ( [29, Theorem 5.1]). Let a € R.
(a) If S € So,gija,00), then there is a unique o € ./\/lqz([a,oo)) such that

1
S(z) = / o) for each = € C\ [, 00). (7)
[a,00) ¥
(b) Ifo € /\/lqz([a, 00)) is such that S: C\ [a, 00) — C?*? can be represented
via (7), then S belongs to Sp 4:[a.00)-

If I € 8)ga,c0) is given, then the unique o € M ([a,00)) which fulfills
the representation (7) of F is called the [a, 00)-Stieltjes measure of F. If
o € ML ([a,00)) is given, then F: C\ [a,00) — C?%7 defined by (7) is said
to be the [a, 00)-Stieltjes transform of o. In view of Theorem 3.5, the mo-
ment problem MP[[a, 00); (s;)L, <] admits a reformulation in the language of
[, 00)-Stieltjes transforms:

Problem S[[a, 00); (s5)720, <]: Let @ € R, let m € Ny, and let (s;)j2, be a
sequence of complex ¢ x ¢ matrices. Describe the set Sy g:a,00)[(87)720, <] of all

F € 80 g[a,) the [a, 00)-Stieltjes measure of which belongs to
M%HO&, OO), (Sj);n:()v S]

Remark 3.6. Let a € R and let F' € Sy g[a,00). Then Fo := Rstri, F' belongs
to Ry 4(I11), the matricial spectral measure uny of Fiy fulfills po((—oo, @) = 0,
and o = Rstre,  po is ezactly the [, 00)-Stieltjes measure of F (see [29,
Proposition 2.16]).

4. FROM THE STIELTJES MOMENT PROBLEM TO THE SYSTEM OF
POTAPOV’S FUNDAMENTAL INEQUALITIES

In this section, we introduce the system of Potapov’s fundamental matrices
corresponding to the matricial Stieltjes moment problem MP[[c, 00); (s;)72¢, <].
We will see that each solution of this moment problem fulfills necessarily the
system of Potapov’s fundamental matrix inequalities. First it seems to be useful
to introduce further notations and, in particular, several block Hankel matri-
ces which will play a key role in our considerations. For technical reason, let
51 1= Opxgqg-

Let k € Ng U {oo} and let (Sj)f:o be a sequence of complex p X ¢ matrices.
For each n € Ny with 2n < k, let H, = [Sj+k]§ik::07 for each n € Ny with
2n+1 < &, let Ky == [sjx41]]4—g, and, for each n € No with 2n +2 < &, let
Gn = [sjth+2]] j—o- If m and n are integers such that —1 <m < n < &, then
we set Y p 1= col(sj)?:m and 2z, n 1= row(sg)p_,,. Let ug 1= Opxq, Uo 1= Opxq,
wo = Opxq, and tog := 0pxq. Foralln € Nwithn <k +1, let u, := —y_1 n_1,

_yn+1,2n:|

and wy, := z_1,—1. Further, for each n € Ny with 2n < &, let u,, := [ O
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and 1wy, = [2Zy41,2n,0pxg]. If a real number « is additionally given, then we
continue to use the notation given by (2), and we set Hupy 1= [5a1>j+k]?7k:0 for
each n € Ng with 2n + 1 < k.

For each n € Ng, we set

where §;, is the Kronecker delta: 6;; = 1if j = k and d;; := 0if j # k.
Obviously, T, = [0j+1,k1q]} x—o for each n € No.

It seems to be useful to recall well-known Lyapunov identities for block Han-
kel matrices. (These equations can be also easily proved by straightforward
calculation.)

Remark 4.1. Let k € No U {oo} and let (sj)j_q be a sequence of complex
P X q matrices.

(a) For each n € Ny with 2n < k, then H,T7, — TpnHy = unvy,, — vppwn
and HyTyn — Ty Hp = un0y,, — 0pnton. In particular, if p = q and if
s; = s; for each j € Zy ., then H”T;n —TynH, = unv;‘m — Vg nly, and

HyTyn — 15, Hn = upby , — vgntty, for each n € No with 2n < k.

(b) For each n € Ny with 2n + 1 < k, we have Hypy, = —aH, + Ky,
VpnUp nHn = [RTp,n(oz)}_lﬂn — TpnHopn, and, in the case that p = q

and Sj = s; for each j € Zo . hold true, moreover HabnT;,n—TquaDn =
—QUp — Yo.n) Vs — Vg n(—atn — Yon)* for each n € Ng with 2n+1 < k.
) q,n q, 5

Remark 4.2. For each n € Ny, the  matriz-valued  functions
Ry, ,: C — Cvthax(ntla  gpg Rr: :C— Crtex(nta gipen by
Rr, . (2) = (Itns1yg — 2Tym) " and Rry (2) = (Itny1)q — 2T7,) 7" are well-
defined matriz polynomials of degree n, which can be represented, for each z € C,
vie Rr,,(2) = > i, ATd, and Rrs (2) = 30 Z(Ty,,), respectively. In
particular, Rry (2) = [Rr,,(2)]" for all z € C.

For each n € Ny, let E,,: C — Ct1axa and F,,: C — C+Haxa he
defined by

Eyn(z) = col(zjlq)?zo and Fyn(z) = 2E,n(2), (8)

respectively. Obviously, for each n € Ng and each z € C, we have Ry, , (2)vgn =
Eqyn(2).

Notation 4.3. Let a € R, let k € No U {oc}, and let (s;)7_ be a sequence of
complex q X q matrices. Further, let G be a subset of C with G\ R # 0 and let
f: G — C9*% be a matriz-valued function. Then, for each n € Ny with 2n < k&,
let Pz[i] : G\ R — Cn2)ax(n+2)a pe defined by

o H, Ry (200 (2) = ]
B = Ry, o f ) - EZEQ ] O)
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If Kk > 1, then, for each n € Ngo with 2n +1 < &, letP%Jr1 G\R —

@(n+2)qx(n+2)q be given by

_(_aun — Y0 n))
P (2) o= o T . 10
et ) (R, (2)(vgn[(z — @) f(2)] (z—a) f(z)—[(z—) f(2)]* 1o
—(—aun —yon)) F

Furthermore, let PY f] G\ R — C77 pe defined by
P2 = (z—a)f(z) —[(z —a)F(2)]"

z2—Z
With respect to the Stieltjes moment problem MP[[ev, 00); (s5)7%¢, <] if, G =
C, then the functions (9) and (10) are called the Potapov fundamental matrix-
valued functions connected to the Stieltjes moment problem (generated by
f). Tf these matrices are both non-negative Hermitian, then one says that
the Potapov’s fundamental matrix inequalities for the function f are fulfilled.

Remark 4.4. Let k € NoU{oo}, let (s;)5_ be a sequence of complex g x q ma-
trices, let G be a subset of C with G\ R # 0, and let S: G — C?*1 be a
matriz-valued function. Straightforward calculations show then that the follow-
ing statements hold true:

(a) For every choice of n € Ny with 2n < k and z € G\ R, we have

50 S(z) « plS
i S5 ) | = Wantt, 0gni] Py ()[vgn1, 0gnia].  (11)
S (Z) z—Z
(b) If kK > 1, for each n € Ny with 2n+ 1 < k and each z € G\ R, then
—asg + s1 (z—a)S(z)+s0 |
[(Z o a)S(z) + 30]* (Z*Q)S(Z)QE(EZ*Q)S(Z)} - (12)

= [Vgn+1, 9gnt1]” P2[n]+1( 2)[Vgnt1, Ognr1)-
Notation 4.5. For each n € Ny, let Agy(2) := diag([Ry, ()71, 1y), let
Ban(2) = [ e = Ban),
0q><(n+1)q Iq
let C’gn(z) = diag(RTq?n (2),14), let
A2n+1(z) = 121271(2)7
let Bopy1(2) := Bon(2), and let Copy1(2) = Con(2).
Lemma 4.6. Let k € No U {oo} and let (s;)5_, be a sequence of Hermitian
complex q X q¢ matrices. Let G be a subset of C with G\ R # (0. Further, let

f:G — C?9 be a matriz-valued function, let G¥ := {z € C: Z € G}, and let
Vi GY — C?1 be defined by fY(z2) :== f*(Z). For each k € Z_1 , and each z €

GV\R, then PY1(2) = X4 (2) PPN (2) X7 (2), where Xi(2) := Ci(2)B(2) Ag(2).
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Taking into account Remark 4.1, Lemma 4.6 can be proved by straightfor-
ward calculations (, for details, see e.g. [30, Lemma 4.8]).

In the following, we will write B,y, for the o-algebra of all Borel subsets
of CP*4. Let (Q,21) be a measurable space and let © € MZL(Q,2A). Then p is
absolutely continuous with respect to its trace measure 7 := tr . Let pl be a
version of the Radon—Nikodym derivative of p with respect to 7. A pair [®, V]
of an A-B,-measurable mapping ®: @ — CP*? and an A-B,,-measurable
mapping U: Q — C"*4 is called left-integrable with respect to p if ®u.¥* be-
longs to [£Y(Q, 2, 7;C)]P*". In this case, the corresponding integral is defined
by [o @dpl* = fQ Opl U*dr and we also use the notation [, ®(w)u(dw)¥*(w)
for it. In the following, when we write such an integral fQ &dp*, then
we also mean that the pair [®, U] is left-integrable with respect to p. By
p x ¢-L2(Q,2A, 1; C) we denote the set of all 2A-B,, ,-measurable mappings for
which the pair [®, ®] is left-integrable which respect to p. Furthermore, for
each subset A of Q, we will use 14 to denote the indicator function of the set
A (defined on Q).

Remark 4.7. Let Q € Bg \ {0}, let m € Ny, and let 0 € ML(Q). In view
of Lemma 7.2, it is readily checked that o belongs to Mi,gm(ﬁ) if and only
if Rstrq By m belongs to (m + 1)q x ¢-L2(Q, Bq, 7; C), where Eq,m is given by
(8). If o € Mng(Q), then Lemma 7.2 also shows that, for each n € Ny

with n < m, the block Hankel matrix HJ{I] = s Ej]-k}glc o admits the integral
representation
HIN = / Egn(t)o(dt)E}, (1), (13)
Q

If « € R, if & € NU{oo}, and if 0 € ML ([a,00)), then let ", =

s fiﬁk]]k o for each n € Ny with 2n 4+ 1 < k.

Remark 4.8. Let a« € R and let o € Mi’l([a, o0)). Using Proposition 7.4 and
Remark 7.3, it is readily checked that the following statements hold true:

(a) The function ¢: [o,00) — C9*? defined by ¢(t) := /t — aly belongs to
q x ¢-L*([a, 0), Bla,0), 75 C) and ot Bq,00) = CT* given by

o (B) := /B(\/t —aly)o(dt) (vt — al,)* (14)

belongs to M ([av, 00)).
(b) If n €Ny and if o € ML, ([, 0)), then

o~ /[ | VT aEyn(t)]o(d) [V~ aBygn(t)] " (15)

(¢) Ifn € Ny and if o7 € ML an([a,00)), then o belongs to Mq272n+1([a, 00))
and furthermore sg "1 _ S[U] —asgg] for all j € Zoopn and Hilg#] = HLUD]”.
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The next proposition shows that each solution of problem
MP{[cr, 00); (85)7L0, <] fulfills necessarily the system of the corresponding Pota-
pov’s fundamental matrix inequalities.

Proposition 4.9. Let o € R, let m € No, and let (s;)7, be a sequence
of complex q x q matrices such that M%[[a,00);(s)1y, <] # 0. Let 0 €

ML[a,00); (s)1g, <] and let S be the [a,00)-Stieltjes transform of o. For

[o] -
;. be given by (1). Then

[S1,.y _ Eyn(t) Eqn(t) " Vgn o]y | Pgn "
Pl = [ [ oan "] e o - [

t t—=z

each j € Zom, let s

for each n € No with 2n < m and all z € C\R, where E,, is given by (8), and

PQ[i]—H(Z) =
= [ (s ] )etan (ve=a [])

O n - ogn "
+ |:0q’ :| (82”+1 - S[Qn]—H) |:0q, :|

axq axq

for each n € Ng with 2n+1 < m and all z € C\ R. In particular, for every
choice of k € Zom and z € C\R, the matrix P,LS}(Z) is non-negative Hermitian.

Proposition 4.9 can be proved using standard arguments of integration theory
of non-negative Hermitian measures (Lemma 7.2 and Remark 7.3). We omit
the details.

5. SOME INTEGRAL ESTIMATES FOR THE SCALAR CASE

In this section, we state some integral representations and estimates in the
scalar case ¢ = 1.

Lemma 5.1. Let a € R and let F' € R1(11}) with Nevanlinna parametrization
(A, B,v) and spectral measure p. Then:

(a) For each w € 11, the integral [g|t —w| pu(dt) is finite and

SE(w) = (Sw) [B+ /R bu(dt)]. (16)

It -

(b) For eachw € 111, the integral [p|t[[t—w| 2 —(1+t*) " ] —alt—w|?|u(dt)
is finite and F7: 11, — C defined by

F#(w) == (w — a)F(w) (17)
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satisfies, for each w € I, the equation

SF# (w) =

= (Sw) <A + B(2Rw — o)+

1 1 «
t — — dt) |.
+ Ll G=or -~ m) ) )>
Proof. In view of

/Rlitzu(dt):/RlitQ(lnLtQ)y(dt):v(R) < o0,

we see that, for each w € II;, the function v¢,,: R — C given by the equation
Py (t) = (t —w)™! — t(1 +t2)~! belongs to L(R,Bg, u; C). By virtue of a
result due to R. Nevanlinna (see, e. g. [47, Theorem A.2|), for each w € 11, we
have

F(w) = A+ Bu+ /R<1 _ t),u(dt). (19)

t—w 1+t
(a) Let w € II,. For each t € R, then 39, () = (Sw)|t — w|~2. Thus,

1 1 N 1
/R It —wl? pldt) = %/wa(t)u(dt) < %/R\ww(t)!u(dt) <0

(\_ _ oS _ (Cx 1
o [ ww<t>u<dt>] = [ Svaouan = u) [ . @)

Because of A € R and B € [0,00), we have SA = 0 and $(wB) = (Sw)B.
Consequently, from (19), and (20) we get then (16).
(b) Let w € II;. In view of (17) and (19), we obtain

and

F#(w) = A(w — o) + Buw(w — a) + /R [1"_‘5 - f<;“+—t§>] p@dt). (21

For each ¢t € R, we see that (w Vo(t) = (w—a)/(t —w) —t(w—a)/(1+1?)

—a)
holds true. Hence, (w — )i, € L( ,%R,,u, C) and, for each ¢t € R, we have
furthermore 3[(w — oz)ww( )] = 21(%w)[t(‘t o ThlS implies

; 1 1 Q
A\t —wf  1+22) - up

and
N [/R(w - O‘)ww(t)u(dt)] -

- (%w)/nz<[t<lt—1wl2 1 it?) Tt —aw|2]“(dt)'

1
1+t2) [t— w|2]

() < 5o [ 10 = ppuOlut) < o

(22)
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Obviously, S(w?) = 2(Rw)(Sw). Hence, S[w(w — a)] = S(w?) — S(wa) =
(Sw)(2Rw — ). Thus, S[Bw(w — a)] = B(Sw)(2Rw — ). Then, by virtue of
(21), and (22), we get (18) from

%F#(w):%<A( — @) + Bw(w /R[w - - 1+_t2a)]u(dt)>
= S[A(w — )] + S[Buw(w — a)] + S (R[“’ o 1+t§>]“(d”)

= ASw + B(Sw)(2Rw — a)+

o [ (e~ 1w~ e -

Remark 5.2. Let a € R and let F € Rq(ILy) with spectral measure . Further,
let 01,02 € R be such that {1 < lo < . Then it is readily checked that for every
choice of a € (—00,41) and b € ({3,00), there exists a Kqp € R such that, for
each x € [(1,03], the inequality fR\(a,b) (t —2)"2u(dt) < Kup holds true.

_|_

Remark 5.3. Let r,s € R. Then it is readily checked that the following state-
ments hold true:

(a) If r < s and s # 0, then there exists a number a € (—oo,r) N (—00,0)
such that

1 9 T 1 1
't[(t—x)z—i—zﬁ B 1—|—t2} < ( * ‘ED ' ‘t[(t—s)2+1 B 1—|—t2} (23)
is valid for every choice of x € [r,s] and y € (0,1) and t € (—o0,al.

(b) If s < r and r # 0, then there exists a number b € (r,00) N (0,00) such
that, for every choice of x € [s,r] andy € (0,1) and t € [b, 00), inequality
(23) holds true.

Lemma 5.4. Let « € R and let F € Rq(11y) with spectral measure u. Further,
let ¢1 and U5 be real numbers with {1 < f9 < . Then there are real numbers
a, b, and C with a < {1 and {3 < b < a such that fR\ ab) |t] 5 2+y — ljﬁ] —

mW(dt) < C holds true for every choice of x € [51,52] and y € (0,1).

Using Lemma 5.1 and Remarks 5.2 and 5.3, Lemma 5.4 can be proved anal-
ogous to the well-known special case a = 0. However, in the general case of on
arbitrary real number «, these straightforward calculations are very lengthy.
We omit the details.

Lemma 5.5. Let o € R and let F € R1(I1y) be such that F#: 11, — C defined
by (17) belongs to R1(11y). Further, let v be the spectral measure of F' and let
b1 and 0o be real numbers with 1 < fo < a. Then there are real numbers a,
b, and C with a < {1 and l2 < b < « such that f(a7b)|@_;72ﬁygla(dt) < C and

f(a’b)|ﬁ|a(dt) < C hold true for every choice of x € [(1,03] and y € [0,00).

Lemma 5.5 can be proved, using Lemmata 5.1 and 5.4 and Beppo Levi’s
Theorem of monotone convergence. We omit the details.
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Remark 5.6. Let o € R and let F € Ry(I1y) be such that F7: I, — C defined
by (17) belongs to R1(11y). Let p be the spectral measure of F' and let {1 and
Uy be real numbers with {1 < o < a. Then one can easily see from Remark 5.2
and Lemma 5.5 that there is a real number C such that [p(t — ) ?p(dt) < C
Jor all x € [{1,03].

Lemma 5.7. Let a € R and let F € Ri(Il}) be such that F7: 11, — C
defined by (17) belongs to Ri(Il1). Then the Nevanlinna measure v of F' and
the spectral measure p of F fulfill v((—o0,a)) =0 and p((—oo0,a)) = 0.

Proof. (1) In the first step of the proof, we consider arbitrary real numbers ¢,
and fo with /1 < 2 < a. Let (A, B,v) be the Nevanlinna parametrization of
F. Because of Remark 5.6, there is a C' € R such that [ (t — ) ?p(dt) < C
is true for all = € [¢1, 5]. Since F belongs to R1(Il;), for each = € [¢1, 5] and
each € € (0,00), from Lemma 5.1 we get then 0 < SF(x +ie) = (B + [p[(t —
1) + 2|7 u(dt)) < (B + O) and, consequently,

0< / SF(z +ie)AV(dz) < e(B + O)(la — 1), (24)
[€1,£2]

where A1) is the Lebesgue measure defined on Bg. In view of F' € Ry (IL, ), the
inversion formula of Stieltjes—Perron (see, e.g. [47, Appendix, p. 390]) yields

%[a({el}) +o({L))] +o((tr,62)) = % lip, f , SFle+i AD(da). (25)

Combining (25) and (24), we obtain o((¢1,%2)) = 0, from

0 < ol(t1,62)) < g lo({tr)) + o ({a)] + (81, 62)
LIt 5 . 1 -
=7 lm [ SF@+iA(n) < 2 lim [o(B + Ot 0)] =0,

(IT) For each n € N, the real numbers a,, :== o — (1 +n) and b, == o —
fulfill a,, < b, < . Thus, part (I) of the proof provides us p((an,b,)) =
Obviously, (an,bn) C (ant1,bnt1) for each n € Nand (J; (an, by) = (—00, @).
Hence, u((—o0,@)) = limy o0 pt((an, b)) = 0. Thus, v((—oo0,a)) = 0 follows
from

1
n

0 <v((—o0,q)) = / ly(dt) <

(_oo»a)

2 = —00,a)) = 0.
< [ Qe = p((o0.0) =0

g

6. FROM THE SYSTEM OF POTAPOV’S FUNDAMENTAL MATRIX INEQUALITIES
TO THE MOMENT PROBLEM

Proposition 4.9 showed that the Stieltjes transform of an arbitrary solution

of problem MP[[a, 00); (s;)L, <] fulfills necessarily the system of correspond-

ing Potapov’s fundamental matrix inequalities. In this section, we are going
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to prove that the validity of the system of Potapov’s fundamental matrix in-
equalities for a holomorphic ¢ x ¢ matrix-valued function defined on C\ [a, 00)
is also sufficient to be the Stieltjes transform of some solution of this matricial
Stieltjes-type moment problem. For the convenience of the reader, first we state
two well-known facts.

Remark 6.1. Let D be a discrete subset of 114 and let F: 11 \ D — C7*4
be a matriz-valued function which is holomorphic in 114 \ D and which ful-
fills SF(z) € CT? for all z € Iy \ D. Then one can easily see from [16,
Lemma 2.1.9] that there is a function F® € R, (11}) such that Rstry, \p FA =
F.

Remark 6.2. Let A,B € C9%9, let M be an open subset of R, and let v €
ML(R\ M). In view of a well-known result on integrals which depend on a
complex parameter (see, e.g. [24, Satz 5.8]), it is readily checked that ¢: 11, U
MUTI_ — C?Y given by

¢(z)::A+Bz+/ Ltz
R\M t—z

v(dt)

15 holomorphic in I1L UM UII_.
In the following, for all &« € R, let C, — := {2z € C: Rz € (—o0,)}.

Lemma 6.3. Let o € R and let F € Ry(I1}) be such that F#: 11, — C9*4
defined by F¥(w) := (w — a)F(w) belongs to Ry(ILy). PFurther, let v be the
Newvanlinna measure of F. Then v((—oo,«)) = 0 and the following two state-
ments hold true:
(a) There is a function Fy: C\ o, 00) — C?*9 such that Rstry, Fo, = F and
Fo((—o00,a)) C CE? are fulfilled.
(b) There exists a unique function S € Sgq,00) with Rstry, S = F.

Proof. Since F and F7# belong to R,(Ily), for all u € C?, we see that {u*Fu,
w*F#u} C Ri(I1y) and that v*vu is the Nevanlinna measure of u* Fu. Because
of Lemma 5.7, for all u € C?, we have u*v((—o0,a))u = (u*ru)((—o0,a)) =
0 = u*0gxqu. Hence, v((—00, ) = Ogxq-

(a) Obviously, 7 := Rstrg, , v belongs to M2 ([, 00)). By virtue of F €
R4(IL;) and Theorem 3.1, there are matrices A € C4*? and B € CL*? such that
(3) holds true for each z € II;. Remark 6.2 shows that Fy,: C\ [a, 00) — C7*9
given by
14tz

-z

Fo(z):= A+ Bz + / 5(dt) (26)

[ar,00)
is holomorphic in C\ [a, 00). Comparing (3) and (26), we get F,(z) = F(z) for
each z € II;. For every choice of x € R, we have

/ 1+mﬂ(dt) :/ <1+m>ﬁ(dt):/ 1+tmﬂ(dt)'
[et,00) t—x [et,00) t—x [or,00) t—x
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In view of (26), A € C{?, and B € CL*?, then [F,(z)]* = Fa(z) follows for
each = € (—o0, ). -

(b) Because of part (a), there is a holomorphic function S: C\ [a, c0) — C7*4¢
such that

Rstrp, S =F and S((—o0,ar)) C CEH (27)
hold true. According to {F, F#} C R,(Il}) and (27), for all 2 € II;, then
39(2) =SF(2) € CL? and  S[(z — a)S(2)] = SF#(2) € CLY. (28)

For all z € C,,— NI, we have J[(z — a)S(2)] = [R(z — @)|]S(2) + (I2)RS(2)
and, by virtue of (28), consequently,

RS(2) = W + [-R(z — a)]%giz) e CL. (29)

Now we consider an arbitrary monotonically nondecreasing sequence (yy, )52 of
positive real numbers with lim,_, . y, = 0. Since the function .S is holomorphic
in C\ [a, 00), the functions RS and IS are continuous in C \ [a, 00). Thus,
for each z € (—o0, ), we have z + 1y, € C,_ NI} for all n € N and, hence,
because of (29), and (28), then

RS(x) = Jim RS(x + iyn) € CL and

30
3S(z) = nh_}rgo 38 (z +iyn) € (Cq;q. (30)

Combining (27) and (30), for each z € (—o0,a), we get RS(x) + i3S (x) =

S(x) = [S(x)]* = RS(z) —i3S(x) and, hence, IS(z) = 0. From (30) then

S(x) € C‘?q follows for each # € (—o0, ). Consequently, S € Sy 00). Now

we consider an arbitrary SP € Sgila,00) Such that Rstryr, SY = F. From (27)

we get then SY(2) = F(z) = S(z) for each z € 1. Thus, the identity theorem
for holomorphic functions provides us S5 = S. 0

Proposition 6.4. Let a € R and let D be a discrete subset of I1. Let F': 111\
D — C9* be a holomorphic matriz-valued function and let F#: 11, — C9%4
be defined by F#(w) := (w — a)F(w). Suppose {SF(w), SF#(w)} C CL*Y for
allw € I \D. Then there is a unique S € Sy [n,0) Such that Rstr, \p S=F.

Proposition 6.4 can be easily proved using Remark 6.1, Lemma 6.3, and the
identity theorem for holomorphic functions. We omit the details.

Theorem 6.5. Let a € R, let £ € No U {oo}, let (sj)f_, be a sequence of
complex q X g matrices, and let m € Zo . Further, let D be a discrete subset of
IIy and let F: 111 \ D — C?? be a holomorphic matriz-valued function such
that

P >0  and PV

m—1

(2) >0 for each z € 11, \ D. (31)

Then there exisls a unique S € 8¢ g.ja,00) Such that Rstryp \p S = F. Moreover,
the inequality P,LS](Z) > 0 holds true for each k € Z_1m and each z € C\ R.
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Proof. From (31) and Notation 4.3 we see that H, > 0 for each n € Ny with
2n < m, that Hynp > 0 for each n € N with 2n + 1 < m, that in par-

ticular s = s; for each j € Zom, and that SF(z) = (%z)w >0
and S[(z — a)F(2)] = (%z)(Z_a)F(z)i(;_a)F(z)]* > 0 hold true for each z €

Iy \ D. Thus, because of Proposition 6.4, there exists a unique S € Sy;[a,00)
such that Rstry,\p S = F. By continuity arguments, from (31) we get then

{B[;?](z), P,Ef]_l(z)} C CL* for each z € I} and, consequently,
P,LS}(z) >0 for each k € Z_1,, and each z € I1;. (32)
In particular, S := Rstry, S fulfills
50 S(z)
S*(Z) 5‘(2)*37*(2)

z—

= PO[S](Z) >0 for each z € I1;.

Consequently, Lemma 3.3 provides us S € Ro,o(IL4) and supyep o0) yI1S (1Y) [ls <
oo. Hence, S belongs to Sp g:[a,00)- Then Theorem 3.5 shows that there is a

o € M2 (Ja,00)) such that (7) holds true. Let SV:II_ — C9%9 be defined
by $V(2) == S*(%). Thus, from (7) we get §V(2) = [fj, ) Zzo(dD)]* =
f[am) A o(dt) = S(z) for each z € II_. From (32) and Lemma 4.6 we see
then that, for each k € Z_y,, and each z € II_, there exists a matrix Xy(2)

such that P (2) = P57 (2) = X4 (2) P (2) X2 (2) is fulfilled for all k € Z_1,,

and all z € II_. In view of (32), this implies P,LS](Z) > 0 for each k € Z_1.m
and each z € II_. Because of C\ R =1II, UII_ the proof is complete. 0

Remark 6.6. For each n € Ny and every choice of w and z in C, it is readily
checked that

(z — ) [RT;Yn(w)} “T,nRr, . (2) = Ry, . (2) {RT;’H (w)} .

Lemma 6.7. Let k € No U {oo} and let (s;)5_, be a sequence of Hermitian
complex q X q matrices. Then

H”TgynRTJ,n (Z) - [RT;n(w)} Tq,an+
+ [Bry )] (gt — wn ) Ry, () = (33)

— (Z — @) |:RT(1*JL (w)} Tq,anT;nRT,;n (Z>

for all n € Ng with 2n < k and every choice of w and z in C. Furthermore,

q,n

HaDnT;,nRT* (Z) — |:RT;”L ("UJ):| Tq,nHaDn"’
+ [RTQ*,n (w)} [U%n(*aun - yO,n)g< - (7au" o yOv")U;’”] RT;’" (Z) - (34)
— (Z — @) |:Rqu<m (?,U)i| Tq7nHal>nT;7nRT;7n (Z)

for all « € R, all n € Ng with 2n + 1 < k, and every choice of w and z in C.
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Proof. By virtue of Remark 4.1(a), we have
H, Ty Ry, (2) = | Rrg,, ()] TynHat

+ | By, ()] (g, = v By, (2) =

= [ 0] ([, 0] " Tyttt 14

+ (Vgnup, — Unvé,n)> Ry (2) = {RT,;:n (w)} ' (Itns1)q = WTyn) Hi Ty~
— TgnHn(Iint1)q — 2Tqn) + (Vgnty, — unvy, )bigr|Rry (2) =
= [Rry, ()] [z = O T HA Ty, — (o — HT )+
o (vgntty, — wnvy) | By, (2) = [Ba (0)] (5 = 0Ty Ha Ty | By (2) =

— (» — W) [RT;m (w)] TynHaT R (2).
Using Remark 4.1(b), equation (34) can be proved analogous to (33). O

Notation 6.8. Let o € R, let k € NoU{oo}, and let (s;)}_ be a sequence from
C?%4. Let G be a subset of C with G\ R # 0 and let f: G — C7? be a matriz-
valued function. For each n € Ng with 2n < k, let Fon: G — C(nt+h)gx(ntl)g pe
given by

Fon(2) i= HT; R

q,n

(2) + R, (2)[vgnf(2) — un]vy , R (2) (35)

q,n

and let Q[erl: G\ R — CEnH+2)axCn+2)a pe defined by

H Fon(2)
f L n 2n
Py = Fr (2) an(z;:ggn(z) : (36)

If k > 1, then, for all n € Ny with 2n+1 < &, let Fo,p1: G — Crthax(ntl)g
be given by

Fony1(2) = HopnTy o Rry (2) + R, (2) [Ugn(z — @) f(2)—

. (37)
— (—au, — yom)]vq’nRTq*’n(z)
and let Q[QJQH; G\ R — CCnt2ax(n42)a pe defined by
Hoz[>n F2n+1(2)
a2 1= | e ") P )| (38)

Further, for each k& € Ny, let mor 1= k and mogy1 1= k.

Proposition 6.9. Let a € R, let k € NoU{oo}, and let (s;)7_ be a sequence of
Hermitian complex q¢ X q matrices. Let f: C\[a, 00) — C9*? be a matriz-valued
function. Further, for each k € Ny, let Fy: C\ [a, 00) — ClmstDax(metlla pe
defined by Notation 6.8. For all k € Zy ., then there are functions I'y: C\R —
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Cmet2)ax(2mi+2)a gng Ay C \R — C@me+2)ax(me+2)a gy ch that P,Lf](z) =
Te(2)QY(2)T1(2) and QY (2) = AL(2)PY(2)AL(2) hold true for each = €
C\R.

Proof. (I) In the trivial case k = 0, choose I'g(2) := Iy, and Ag(z) := Iyq for
all z€ C\R.

(II) Now we consider the case that x > 1 and that n € Ny is such that
2n + 1 < k. Let
0

1
(n+1)q
Agpt1(z) == LRT* ()" Tym [RT;,n(Z)}*”qm} wnd

I 0
r = * S * *
on+1(2) [—Uq,n[RT;,n(Z)] Tom vy
for all z € C\ R. Since s} = s; holds true for each j € Zg s, we have Hj,,
Hgspn. We consider an arbitrary z € C\ R. Let

(39)

Boni1(2) := Rr,,,(2)[vgn(z — a) f(2) — (—aun — you)], (40)
let
Cpn() = EZ IO =[S )
and let

A%H(z)PQ[{Z]H(Z) ony1(2) = [)2(222111((5)) 51//227::1((?)}

be the (n + 1)g x (n + 1)g block representation of AgnH(z)Pz[ﬁH(z)A’Q‘nH(z).

Then [ I B ()]
(=5 1 ol

B311(2) Canta(2)
Consequently, using (42) and (39), straightforward calculations show that

X2n+1(2) = Hupn,
Yont1(2) = Hoon Ty By, (2) + Bany1(2)vg Ry, (2),

Z2n+1(z) = [RT;,n(Z)} Tq,nHaDn + [RT;YH(Z)} Uq,nB;rH»l(z)a (44)

(42)

P, 2[{}4- 1

(43)

and
W2n+1( [R i| anHaDn RT ( )+
+ [RT } TonBont1(2)vg Ry (2)+
(45)
+ [RT } Vg BQn—i—l T RT ( )+
+ [RT;’H(Z)} VanCons1(2)05n Res (2)
hold true. Because of (44), (40), and (37), we see that
Yont1(2) = HopnTynRry, (2) + R, (2) [vgn(z — @) f(2)—
— (—attn — yo)] vl B (%) = (46)

= Foni1(2)
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is valid. From (44), H}.,, = Hapsn, (43), and (46) we obtain then
Zon41(2) = Yop11(2) = Fapia(2)- (47)

Using (45), it follows
W2n+1 RT :| Tq nHaDnT RT;,n (Z)+

=
[Rry, (2)] TynBanir(2)og Ry, (2)+

.
+ ([RT* } TqugnH(z)v;’nRT;’n(Z))*+ e
+ [Ray ()] vanConsr (2)0g By (2),
In view of Lemma 6.7, we have
(2 = 2) [Rry, (2)| TynHoon Ty By, (2) =
= Hoon TRy, (2) = [Rrp, (2)] TynHoon (49)
+ [Br, ()] [van(=atn = y0.)" = (=t = yo)v; ) By, (2).
By virtue of (40), Remark 6.6, and (37), we conclude
(2 = 2)[Rry, (2)| TynBania (20 Rz, (2) = (2 = 2) [ Ry, ()]
X Ty B, (2) [0gn (2 — 0)F(2) = (—0tin — yo,0)]v; o By (%) =
= (Rry(2) = [Rr;, (2)] ) x
X [0gn( — 0)f(2) = (~tin — yo,0)]v By (2) =
= B, (2)[vgn(z = 0)F(2) = (~atn = o) v} Ry, (2)
- :RT;,n<z>:*[vqn< — ) f(2) = (—awn — yo)loga ey, () = (50)
= Font1(2) — Hopn T, Ry, (2)—
~ [Ba;.(2) *[vqn< — ) f(2) = (—awn = yo)lvga Ry, (2) =
= Fons1(2) = Haon T} Ry, (2) -
= [Rry, (2)] vanlz — ) f ()0} Ry, (2)+
+ [Rey, (2)] (—aun - yo,nw;,nRT;,n(z),
which implies
(2 = 2)([Rry, ()] TynBons1 (=)0 B () = -

=—F3,1(2)+ [RT;, (2 )} TynH o+
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+ [Rry, (2)] vgnl(z — @) F () g Ry, (2) -

B [RT;,n(Z)} Vgn(—QUn = Yon)" Rrz, (2).

Taking into account (41) we get
(2 = 2)[Rry, (2)] 0qnConsa (20 By (2) =
= [Rr;,,(2)] Can(z = ) F ()00 By, ()= (52)
— [Br;, (9] vanl(z = )N Ry, (2),

In view of (48), we obtain
(2 — ) Wang1(2) = (2 — 7) [RT;M (z)} TynHoonTynRrs  (2)+

+ (Z — f) [RT*H(Z)} *Tq,nBZH—O—l(Z)UZ,nRT* (Z)+

+ (2 = 2)( [y, (2)] T Bansr (=)0 Ry, (2)) +
+ (2= %) |Bry, (2)] vnCons1 (2)05 By, (2)

and, using (49), (50), (51), (52), and H}

abn = Hapn, consequently,

(2 = 2)Want1(2) = Haon T Rz (2) — [RT;’n(z)] Ty Hoont

+ RT;JL(Z) [vq,n(—aun —yon)" — (—ou, — yO,n)U;,n] Rry, (2)+
+ F2n+1(2) - HaDnT(;nRT;,n (Z)_
— | Ry, (2)| vgn(z— a)f(z)v;‘mRT;’n (z)+

7 *

+ [Rry (9)] (~0tun — y00)vp By (2) = Fha (2)+ (53)

+ [Rry (9)] TomHion + [, (2)] vanl(z = ) (2)]"v; By, (2)+

— |Rr= (2) vqm(—aun—yo,n)*RTqﬁn(z)—i—

q,n
+ [ Rry, (2)] tgn(z = ) f(2)vg By, ()~

— By, (2)] wanl(z = V()"0 Ry (2) = Fansa (2) = B (2).
From (42), (43), (46), (47), (53), and (38) we infer
A1 (2) P 1 (2) A5 (2) = Q314 (2). (54)

In view of vj ,[R7. (2)]vgn = Iy, we easily see that the matrices '2,+1(2) and
: i
Aop+1(2) given by (39) obviously fulfill

F2n+1(z)A2n+1(Z) = I(n+2)q‘ (55)
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Thus, because of (54), we obtain

P (2) = Lny)g ooy ()T 0 =
= F2n+1(Z)A2n+1(Z)P2[£]+1(Z)F§n+1(Z)A§n+1(Z) =
= Tons1(2)QY) 41 ()51 (2).

In this case k = 2n + 1 with some n € Ny, the proof is complete.

(III) Now we consider the case that x > 2 and that there is an n € N such
that k = 2n. Let 'y, := I'apy1 and let Ay, := Agyiq. We consider again an
arbitrary z € C\ R. Let

Xgn(z) an(z)} (56)

(] * -
M) PH) A3, (2) = | ) )
be the (n+ 1)g x (n + 1)g block representation of Agn(z)Pz[ﬁ(z)Agn(z). Set-
ting

Bon(2) := Rr,, (2)[vgnf(2) —un] and  Cop(z) := M, (57)

z—z

we have P2[£ ]( z) = [ B;?z) gz:gz; } Consequently, from (56) we easily see then

that
Xon(2) = Hn,  Yon(2) = HoT Ry, (2) + Ban(2)vg, By (2),  (58)
Zon(z) = [RT;’"(z)} Ty Ha + [RT;W(Z)] “vgnBin(2), (59)
and
Wan(2) = [Baz ()] TynHa T Rz (2)+
+ [RT* (z)}*vqu;n(z)T(anT;,n(z)ﬁL
+ [Ray ()] TynBan(2)ey By (2)+
+ [RT*YH(Z) vq’ann(z)v;nRT;_’n(z)
hold true. Because of (58), (57), and (35), we obtain
You(2) = HuT} Ry (2) + By (2)[tgn (2) = wnlvs o B (2) = Fon(2). (61)

Since s7 = s; is supposed for each j € Zg x, we get H;; = Hy. Consequently, in
view of (59), (58), and (61), then

Zon(2) = Yo, (2) = F3,(2) (62)
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follows. By virtue of (60) and (57), we see that
Wan(2) = [Ray , (2)] TynHaTy Ry, (2)+

+ [Fr, ()] vanls —up][Re,, ()] Ty Ry, (2)+
[RT* } TynRr, , (2)[vgnf(z) — n]U;,nRT;m(Z)—F (63)
+ [Rez, ()] o [ z_z*( )] vl R (2)

holds true. Taking into account (63) and Remark 6.6, we conclude

Wan(2) = [RT;’H(Z)} TynH T Ry (2)+

+ [Rry, ()] vgn £ (200 — ) L L — (e, (2) = [Br, ()] )} +
+ _Z L (Rryn(2) — [y, >]*)} I EER AT
+ [Bry, ()] v [W] VB (2).
Using Lemma 6.7, the equation H* = H,, (35), and (64), we infer
Wan(2) = - 1Z{Han"‘7nRqun (2) — [RT;,n(Z)rTq»nHﬁ
+ [Ray, (2)] (gt — wavy ) Ry, (2)+
+ [Rry, (2)] v [f*(Z)vZ;,n — 3] (R (2) = [, (2)] )+
+ (Rrya(2) = [Rrg, (2)] ) [oanf (2) = wnlo Ry, (2)+
# [Rr ()] oaal ) = £ i ()} =
= BT, () + R Ol ) = Ry, ()~
(Tt () + B (Vo ()~ wl i, (9) =
= [F(e) - B (2]
Thus, (56), the first equation in (58), (61), (62), and (36) show that
A PRI 83,) = | 7 Ff)9(>] —Qfl) (9)

is valid. Because of I'y;, = I'9,41 and Ag, = Agpt1, equation (55) implies
Lo, (2)A2n(2) = I(n12)q- Consequently, from (65) we get

PY)(2) = Tou(2) Dan(2) P (2) 85, ()15, (2) = Tan(2)QY) (2)T3,(2). O
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Remark 6.10. Let a € R, let k € NoU{oo}, and let (s;)5_ be a sequence from
C?4, Let f: C\ [a,00) = C?*7 be a holomorphic matriz-valued function. In
view of Proposition 6.9 and Lemma 8.3, it is readily checked that the following
statements hold true:

a) Let n € Ny be such that 2n < k. If Pm z) € (C(n+2)qx(n+2)q holds true
2n >

for each z € C\R, then Fy,: 11, — C(n+Dax(n+1)g given by (35) belongs
to R{)’(n+1)q(ﬂ+) and the matricial spectral measure fio, of Fop fulfills
(b) Letn € Ng be such that 2n+1 < k. IfPQ[gH(z) € C(;H)qx(nw)q for each
z € C\R, then Fapy1: I, — CHtDex(40a gefined by (37) belongs to

R, (n+1)q(H+) and the matricial spectral measure jion+1 of Font1 fulfills

H2n+1 (R) < Hopn.

Lemma 6.11. Let a € R, let f: C\ [a,00) — C?*? be a matriz-valued func-
tion, let k € No U {oo}, and let (s;)5_q be a sequence of Hermitian complex
q X q matrices. Then:
(a) Letn € Ny be such that 2n < k, let Fp,: 11, — CHDex(+0a pe defined
by (35), and let Uy, : C — CHVXMH0T je ginen by

Uon(z) := RTq,n(z)(HnT;’n — unv;n — ZTq,anT;n)RT;,n(Z)- (66)
Then Wy, is a continuous matriz-valued function such that Ve, (R) C
Cgﬂ)qx(nﬂ)q. In view of (8), furthermore,

Fop(2) = Wou(2) + Egn(2) f(2)Ey ,(Z) for each z € 11 (67)

(b) Let n € Ny be such that 2n+1 < k and let Fo,yq: I, — CrtDax(n+1)g
be defined by (37). Then Wy, 1: C — CHDXHDa gipen py
‘Ij2n+1(z) = -RTq,n (Z) [HaDnT(;n - (*aun - yO,n)U;,n* (68)

— 2Ty nHoon Ty ] Ry (2)

is continuous and fulfills Uop1(R) C (C%n“)qx(nﬂ)q

Fopi1(2) = Voni1(2) + Egn(2)[(2 — @) f(2)]E () for each z € T1,.

Proof. (a) The case n = 0 is trivial. Suppose now 0 < 2n < k. Remark 4.2
shows that Woy, is continuous. For each z € R, we have Rr» (z) = [Rr,, (7)]" =
[Rt,.,(x)]* and, consequently,

(Won(@)]" = R, (2)(TonHn — vgnun — 2TynHyTg ) Ry (),

as well as

which, in view of s7 = s; for each j € Zo,on, 1. €., H; = Hy, implies that
(Vo (2)]" = R, () (= [Ha Ty — Ty Hal+
+ HnT(;n — 'UqJﬂ,L: — qu,anT;,n>RT;Yn (x) =
=Ry, , (x)(—[unv;’n — Ugnty] + Han*,n — Ugnlly, — qu,anT;,n>RTJ,n (z) =

= Rr,, (w)(HnT;n — unv;n — qu,anT;n)RT;m (x) = oy ()
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holds true for all z € R. Hence, o, (R) C (ng—i-l)qx(n—&-l)q‘ Taking into account
(35), Remark 4.2, and (66), for all z € II;, we conclude

Fan(2) = Rr,, (2)[Rr,, (2)] " HaT} Res, (2)+
+ Ry, (2)vgnf(2)vg Rz (2) — B, (2)unvy , Rz (2) =

q,n

= R, (2) [(I(n+1)q — qum)HnT;n — unv;’n} RT;’n(Z)—I-

+ RTq,n (Z>UQ7nf(z)v;]k,TL [RTq,n (z)] i =
= Rr, ,(2)(Ho Ty, — 214 n Ho Ty, — unvy,, ) Ry, (2)+

+ RTq,n (Z)Uq,nf(z)[RTq,n (E)Uq,n]* =
= W2 (2) + Egn(2) f(2) Eq (%)

(b) Part (b) can be proved analogously. We omit the details. O

Lemma 6.12. Let o € R, let K € NU {oo}, let (s5)7_y be a sequence from
Co*4, and let n € Ny be such that 2n +1 < k. Further, let S € Sy ga,00) be
such that

PISI(a) € U ensne g
gl ~(n+2)gx (n+2) (69)
Py i(2) e CITYY © forall zell.

Then the [a, 00)-Stieltjes measure o of S belongs to M | ([, 00)).

Proof. (I) For all z € 11, from Remark 4.4 we see that (11) holds true and,
in view of (69), hence, that the block matrix on the left-hand side of (11) is
non-negative Hermitian. Consequently, since S is holomorphic in C\ [«, 00),
Lemma 3.3 yields that I := Rstry, S belongs to Rg ,(II1) and that the ma-
tricial spectral measure p of F' fulfills u(R) < sg. Thus, Remark 3.6 provides
us o([o, 00)) = Rstry,, ) u(le, 00)) = p([a, 00)) < p(R) < so. Because of (69)

and (9), we have H,, € C(;H)qx(nﬂ)q. In particular, so € C'?q. Hence,
so=s0 and {u'o([a,0))u,u"sou} C [0,00) forall w e Cl  (70)

(II) In the second part of the proof, we consider an arbitrary n € N and an
arbitrary u € C?. From Remark 3.4 we see then that

in . B 1 )
/[04700) m (u UU)(dt) a n/[a,oo)'t—(in-f-a) (u Uu)(dt) < 00. (71)
In view of
in n2 _ (t—a)n
t_(m"'o‘)__|t—04—in|2+1\t—a—in|2 (72)

and (71), we obtain

[l
[ar,00) |t —a— ln‘Q

- /[a,oo) ’3‘* o

(u*ou)(dt) =

(uou)(dt) < oo
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and
/ lt(—t;% (wou)(dt) =
[or,00) - (73)
= /[Cwo) %L_(mm] (u*ou)(dt) < oo.
For each t € o, 00), we have
in _ (t—a)n  (t—a)*n . (t—a)n?
n[t—(in+a) 1} Tt-a-in (t-aP+n? (t-a)Z+n? (74)

Consequently, the function g, : [o,00) — C given by g,(t) := n[% + 1]
fulfills [R[g,(¢)]] = n(t — a)?[(t —@)* + 0?7 <n=n-1} «)(t) and
Slon(®)]] = (¢ = @)n?[(t @) + 7] " <

<20t —aln?[(t—a)? +n?] T <n=n- 10
for each t € [a, 00). This implies f[a 0o)\?R[gn(t)]|(u"‘ou)(dt) < nu*o([a, 00))u <
oo and f[a o) Slon (]| (uou)(dt) < nu*o([a, 00))u < co. Thus,

gn € ﬁl([aa OO), %[a,oo)vu*gu; (C) (75)

Using Theorem 3.5, Remark 7.1, (72), and (73), we conclude

ufin- S(in + o)ju = u* (m/[ [t — (in + a)}_la(dt)> u =

@,00)
in .
:/[ =)0 =
n2 . (t—a)n . B
a /[a,oo) [_ |t —a —inl? + 1|t —a— in|2} (u“ou)(dt) =

= —n? - wou in _tma urou
— /[oz,oo) | (u*ou)(dt) + / (u*ou)(di)

t—a —in|? [a,00) |t — @ —inf?
and, in particular,
R(u*[in - S(in + a)]u) = —n? / It — o — in| (v ou)(dt). (76)
[ar,00)

Taking into account o([a,00)) < 8o, (76), and that 1 — n?|t — a — in|~! =
(t — a)?[(t — @)? +n?]~! holds true, for each t € [a, c0), we get

R(u*[in - S(in + a)u) + u*sou > R(u*[in - S(in + a)]u) + v o ([or, 00))u

_ /[wo) <1 - \t—072—1n\2> (u*ou)(dt) = /[a’oo) M(u*au)(dt) -

and, consequently,
[R(u*[in - S(in + a)]u) + u*sou]® >
> R(u*[in - S(in + a)]u) + u*o ([, oo))u}2
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Because of (70), (77), and again (70), it follows
Inu*[in - S(in + @) + solul* = n2|u[in - S(in + a)]u + u*soul* =
= n?([R(u[in - S(in + a)Ju) + u*sou] + [S(u'[in - S(in + a)]u))’) =
> ([R(ufin - S(in + a)Ju) + w*o (o, 00))ul® + [S(u*[in - S(in + a)]u)]*) =
= n?ju*[in - S(in + a))u + v o (o, 00))ul* =
= |nu*[in - S(in + a) + o ([a, 00))Jul®
and, therefore,
|nu*[in - S(in + «) + solu| > |nu*[in - S(in + ) + o([a, 00))]u. (78)

Since S belongs t0 Sp g;ja,00); the function G: I — C?*? given by G(w) :=
wS(w 4 ) + sg is holomorphic in I1;. From Remark 4.4 we know that, for all
z € C\ [a,00), equation (12) is true. Hence, from (69) we see that the block
matrix on the left-hand side of (12) is non-negative Hermitian. Consequently,
we conclude

—aso+s1 G(w) —asg+s1 wS(w+a)+so
G*(w) Gw)=G*(w) | = [wS(w+a)+so]* [wS(wta)+sgl—[wS(wta)+spl” | =
(79)
_ —asp+s1 [(wta)—a]S(w+a)+so C2q><2q
= | ([(wta)—a]S(w-+a)+s0)* [(wta)—a]S(wta)—([(wta)—a]S(w+a))* | € L5 .

Since G is holomorphic, from (79) and Lemma 3.3 then sup,¢ g o) (¥[|G(iy)|[s) <
||—aso + s1||s and, hence, sup,cn(n||in - S(in + a) + solls) < ||—aso + s1||s fol-
lows. Thus, the Bunjakowski—-Cauchy—Schwarz inequality provides us
|u*(nfin - S(in + @) + so])u| < [[n[in - S(in + @) + solullg - [lulle <
< nllin- S(in +a) + solls - [lullf < l[-aso + s1lls - Jullf.  (80)

For each t € [a,00), we have |t — a| = liminf, o (t — @)n?[(t — a)? + n?]~L.
Then

* .. t—a« TLQ %
/[a OO)|7§ — al(u*ou)(dt) :/ . hnnilo%f@t(a)Q)jtrﬁ(u ou)(dt) <

(o
N2
< lim inf %
=00 J[a,00) (t — Ot) +n

(81)
(u*ou)(dt),
by virtue of Fatou’s lemma. Obviously, from (75) and (74) we infer

in

/[a,oo) S<n [t—(era) + 1] > (u*ou)(dt) =
- /[a,oo) ((tw(“*”“)(dt)

t—a)?+n?

(82)
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and

/[a,oo) %<n [t—(llnnJra) * 1] > (w*ou)(dt) =
- </[a,oo> " [,;_(IIM + 1} (U*UU)(dt)> < (83)

/[m) ! L_(IIZM) + 1] (u*ou)(dt)).

(IIT) Since (75) holds true for every choice of u € C? and n € N, Remark 7.1
yields gn € L([or, 00), B[4,0), 03 C). Hence, Remark 7.1 shows that

[l 1) womian =

. (84)
( [ dt)
2), (

83), and (84), we

<

is valid for each u € C? and each n € N. Combining (8
have

(t — a)n2 *
0< /[a’oo) (—(u ou)(dt) <

t—a)?+n?

ut < /[a,oo) n [t_(fsta) + 1} a(dt)> u

for each u € C? and each n € N. For all n € N and all t € [a,00), we see
that gn(t) — n - 1jq,00)(t) = gn(t) holds true, where g,: [a,00) — C is given by
Gn(t) == in?[t — (in + «)]~!. Thus, for each n € N, we get g, = gn —n - Lia,00)5
and, since g,, € L!([a,00), Bq,00), 03 C), then g, € L ([er, 00), Ba,00); 0; C) and

/ gndo = / gndo — n/ Lia,00)do = / gndo — no([a, 00))
[a,00) [ar,00) [ar,00) [a,00)

hold true as well. Consequently, for each n € N, we conclude

/[apo) n [t_(ll:Jra) + 1] o(dt) = /[a,oo) t_(i:?:_a)a(dt) + no(Ja, 00)) =

= in? ;a no(|la,o0)) =nlin - S(in + « o(|a,00))]|.
- /[m)t_(mm> (dt) + ner([a, 00)) = nfin - S(in + a) + ([0, 00))]

(85)
<

Thus, because of (78), for each u € C? and each n € N, we obtain

o ( /[W) n [t_(ll:Jra) n 1] a(dt)> u

< |nu*fin - S(in + «) + solul.  (86)
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Taking into account (81), (85), (86), and (80), for each u € C?, we get

/[a OO)|t —al(u*ou)(dt) < hnni)gf/[a . M(u ou)(dt) <

< liminf|u* / n[m + 1] o(dt) |ul <
n—00 [at,00) t— (m + Oé)

< liminflnu*[in - S(in + ) + solu| <
n—oo

< liminf||—asg + s1|s - Hu||% =||—aso + s1]ls - ||uH% < 00.
n—0o0

Therefore, we obtain that

/[%OO)‘t‘(u*au)(dt) < / (|t — & + |o) (uou)(dt) =

,00)
= / [t — a|(u*ou)(dt) + / la|(u*ou)(dt) <
[ov,00) [o,00)

< [l=aso + sulls - [Jullf + ol (u*ou)(fa, 00)) < 00
is true for all v € C?. Thus, Remark 7.1 provides us o € Mgl([a, 00)). O

Lemma 6.13. Let o € R, let K € NU {oo}, let (s;)7_y be a sequence from
Co*4, and let n € Ny be such that 2n + 1 < k. Further, let S € Sy ga,00) e
such that P%i] (2) € (C(>n+2)qx(n+2)q and PQ[i]_H(Z) € (C(>n+2)qx(n+2)q hold true for
all z € I1,. Then: -

(a) The [a, 00)-Stieltjes measure o of S belongs to MY | ([, 00)).

(b) The function ¢: [a,00) — CT*9 given by G(t) = Vit —aly belongs to
q % q-L?([or,00), Bln.00),0: C) and 0% : By o) — CI*9 defined by (14)
belongs to M% (o, 00)).

(¢) The function S: C\ [a, 00) — CI4 given by S(z) = (z —)S(z) and the
[, 00)-Stieltjes transform S©7) of o# fulfill S(z) = SI71(2) — o(Jor, 0))
for each z € C\ [a, 0).

(d) The function (S)q := Rstry, S belongs to R,(IL}) and (6)0: Br —
C9%9 given by (5)g(B) := o7 (BN[a, 00)) is exactly the matricial spectral
measure of (8)g.

Proof. (a) Part (a) is proved in Lemma 6.12.

(b) In view of (a), part (b) follows immediately from Remark 4.8.

(¢) Let z € C\ [a,00). According to Remark 3.4 and Theorem 3.5, the
function gq.: [a,00) — C given by gq.(t) := (2 — «)/(t — z) belongs to
El([a,oo),%[a’oo),o;((:) and

(- )S(:) = [

[a,00)
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is true. Consequently, in view of Lemma 7.2, we get that the pair
[9a,21g5 1[a,00) I4] is left-integrable with respect to o and that

§(2) = (= — a)S(z) = /[ )(j__an)a(dt)I;‘.

z

Due to Remark 7.3, then the pair [ga,.ly + 1ja,00)lg; Ig] is left-integrable with
respect to o and

/[ >[<i:j+1>14"(dt)]§_/[ )<i:ij)0(dt)fg+/[ eaor;

is fulfilled. Taking into account

0'([0[700)) = /[ ) 1[a,oo)d0 :\/[ )(1[a,oo)lq)da(]-[a,oo)lq)* = / IqO'(dt)I;

[a,00)

and that (z —a)/(t —z) +1 = (t — ) /(t — z) holds true for each t € [«, c0),
we get then

5(2) = /[am) <t - O‘Iq>a(dt)1;; — o ([a, 50)). (87)

t— =z

Because of Lemma 7.2, Proposition 7.4, and (14), we have

t—«
1 dt)IF =
/[a,oo)(t_z Q>J( ) I

[ (220 )i am|own nvi=an) -

t—=z

1 . 1 o
:/[ )<t_zlq>a#(dt)lq :/[ )ma#(dt):S[ *1(2).

Thus, from (87) it follows S(z) = 51°71(2) — o(Jav, 00)) for each z € C \ [, o).

(d) In view of Theorem 3.5, we have Slo?] e 80,g:ja,00)- Thus, Remark 3.6
shows that Rstry, Slo?] ¢ Ro4(+) € Ry(I14), that the matricial spectral
measure p of Rstryr, ST fulfils o# = Rstre, ) p#, and that p# (R \
[, 00)) = p#((—00,a)) = Oyxq. Consequently, (5)g is the matricial spectral
measure of Rstryr, Slo7] From Theorem 3.1 one can see that F: I, — C7*¢

given by F(z) := —o([a, 00)) belongs to Ry (I11) and that the matricial spectral
measure 0 of F' fulfills (B) = 04« for all B € Br (see also [13, Beispiel 1.2.1]).
Since S(z) = S["#](z) — 0([a,00)) is valid for all z € C\ [, 00), we get
(S)g = Rstry, Slo*l 4 F. Since Rstry, Slo"] and F both belong to R,(IL}),

from [26, Remark 4.4] we see that (S)o € Ry(IL}) and that (5)g + 6 is the

matricial spectral measure of (S)g. In view of (6)g + 6 = (6)0, the proof is
complete. 0

Lemma 6.14. Let a € R, let & € Ng U {oo}, and let (s;j)i_, be a sequence of
complex q X q matrices. Then:
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(a) Let n € No be such that 2n < k and let S € 8y 4:(a,00) be such that
Pz[i](z) € (C(;H)qx(nw)q for all z € C\ R. (88)

Then the [a, 00)-Stieltjes measure o of S belongs to MY, 5 ([o,00)) and

the inequality HLU] < H,, holds true.
(b) Let n € Ny be such that 2n+ 1 < k and let S € Sy g[a,00) be such that

{Pz[i](Z), PQELl(z)} C ¢rAaxtnt2a for all z € C\R. (89)

Then the [a,o00)-Sticltjes measure o of S belongs to ML, . ([a,00))
and the inequality H}fm < Hupn holds true.
Proof. (a) Because of (88), we get H, € (C(;H)qx(nﬂ)q - (Cgﬂ)qx(n“)q
and, in particular, s} = s; for each j € Zog2n. In view of S € Sp gfa,00);

J
we see that the function S is holomorphic in C \ [, 00) and, using addition-

ally [26, Propositions 8.9 and 8.8], we also obtain Rstry, S € Ry, (I14) C
R,(I11). Let f:= S and let Fhy,: I, — CHex(+1)4 he given by (35). Us-
ing Remark 6.10 and [26, Propositions 8.9 and 8.8, we conclude that Fy, €
Ry (n+1)q(1_[+) - R’(n+1)q(ﬂ+) and that the matricial spectral measure g, of

Fy,, fulfills po,(R) < H,. Let Uy, : C — CHax(n+1)4 he given (66). Since

s;‘f = s; holds true for each j € Zgz2,, from Lemma 6.11 we see that o, is
a continuous matrix-valued function with ¥y, (R) C ng +1)q><(n+1)q. Further-

more, Lemma 6.11 yields (67). According to Remark 3.6, the matricial spectral
measure o of Rstryr, S fulfills o = Rstrg, ) o0 and o(R\ [o, 00)) = 0. Stan-
dard arguments of measure theory show that we can choose sequences (a)32,
and (by)g2, of real numbers such that

on({ax}) =0, oo({be}) =0, pon({ar}) =0, p2n({bk}) =0,  (90)
ap < bi, and (ak,bk) - (ak+1,bk+1) (91)

hold true for each k& € N and that J,—;(ag, by) = R. In view of Fy, €

R’(n+1)q(ﬂ+), a matricial version of Stieltjes’ inversion formula (see [14, Theo-

rem 8.6]), and (90) provide us

pan((ars 1)) = 3 lan(Lar) + pian ((0k1)] + pan (g 1)) =

(92)
Ly RN
= — lim SFon(x +16) A (dx)
T =040 [ ,br]

for all k € N, where A1) is the Lebesgue measure defined on Bgr. The function
Eyn: C — COHDaxa given by (8) is holomorphic in C. Moreover, W, is

continuous with ¥y, (R) C Cgﬁl)qx(nﬂ)q. Thus, for all £ € N, we get from

(67), a matricial version of Stieltjes’ inversion formula (see [14, Theorem 8.6])
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and (90) that

1
= lim SFop(x + ie) A (dz) =
7T e—0+0 [as,b]

1

= §(Eq7n(ak)UD({ak})[Eq,n(ak)]* + Eq,n(bk)UD({bk})[Eq,n(bk)]*)+

(93)
+/ Eyn(t)on(dt) B}, (1) =
(ak,br)

— [ B, o).
(a’k7bk
Combining (93) and (92), we obtain
/( )Eq,n(t)ag(dt)E;n(t) = pon((ag, br)) < pon(R)  forall ke N (94)
ag,bi

and, consequently,
tr [/ Egn(t)on(dt)Ey, (1) | < trlugn(R)] <oo forall ke N.  (95)
(a‘k’bk)

The trace measure 7 := trog of og is a finite measure and og is absolutely
continuous with respect to 7. We can choose a version (0g). of the matricial

Radon-Nikodym derivative of o with respect to 7 such that (o). (t) € CL*?
for all t € R. For all £ € N, then -

9 = |1 (g pp) RstrR Egn) v/ (00)[[F € L'(R, B, 75C)

and
tr[ / (L(ap,bp) Rstrr Eqpn)don(1a, b,) Rstrr Egn)*] = / grdr.
R R

Thus, by virtue of (95), then
/ grdr < tr[ug,(R)] < oo (96)
R

follows for all k € N. Obviously, g: R — C defined by g(¢) := || Egn(t)\/(o0)}||%
is an Br-Be-measurable function with g(R) C [0,00). For all ¢t € R, we see
that

2

g(t) =

F (97)

[gywmﬂiﬁm@m<mﬂm

= lim gx(t) = liminf gx(¢).
k—ro0 k—ro0

In view of (97) and (96), Fatou’s lemma yields then
[lstolr(@n = [ timint gu(oyran) < tmint [ gu(0r(@0) < iz (®)] < .

and, consequently, g € L}(R,Bg,7;C). Because of Lemma 7.2, we get then
Rstrg By € (n+1)g X ¢-L*(R, B, 00;C). Hence, from o = Rstry, ., o0

49



B.FRITZSCHE, B. KIRSTEIN, C. MADLER, M. SCHEITHAUER

we obtain that Rstriy o) Fgn belongs to (n+ 1)g x ¢-L3([a, 00), By 00), 03 C),
that

/R Egn()o(dt) B2 (1) = /[ Funl)o(d) B (1) (98)
and that ©,,: Bg — CtDax(n+1)a Jefined by

On(B) = /B Eyn(H)on(d) Ex (1) (99)

is a well-defined non-negative Hermitian (n+ 1)g x (n 4+ 1)¢ measure on
(R,Br). Furthermore, applying Remark 4.7, we get o € M%Qn([a,oo)) and

(13). Using (99), U, (ax, bx) = R, (91), ©, € MUTVYR Bp), (94), and

H2n € M(;H)q(]R, Br), we conclude

k—o0

[ EanDo(@ B () = ©4(8) = lim ©u((ax,1)) =

= lim Eqn(t)on(dt)Eqy(t) = lm pon((ak, by)) = pn(R). (100)

k=00 J (ay, br)

The combination of (13), (98), (100), and u2,(R) < H,, provides us then
Y = [ Bun(o(@) By (0) -
[er,00)
= / Rstrr Eqme'D(RStrR Eqm)* = pon(R) < H,,.
R

(b) Because of (89), we have {H,,, Hoon } C (C(;Hrl)qx(nﬂ)q C Cgﬂ)qx(nﬂ)q
and, consequently, s7 = s; for each j € Zoan+1. Since S belongs to 50,g:[a,00)
from (89) and Lemma 6.13 we infer that o belongs to /\/lq>71([a,oo)), that
o Blaoo) — C*9 defined by (14) belongs to M (o, 00)), that S:C\
[a,00) — C?*7 given by S(2) := (2 — a)S(z) is a function with Rstry, S €
R,(I1}), and that (0™)g: Br — CI¥9 given by (5)o(B) := o (B N [a, 0))
is the matricial spectral measure of (S)D = Rstryr, S. Observe that Re-
mark 4.8(b) shows that (15) holds true. Now part (b) can be proved anal-
ogous to part (a), where Fh, q: I, — CO+Dex(+1a given by (37) and
Wonp1: C — COHDax(+1)a defined by (68) play the roles of Fb, and Wa,,
respectively (for details, see also [48, Lemma 7.9]). O

Remark 6.15. It is readily checked that if E is non-negative Hermitian, then
Bl < ||Alls - || Dlls (see, e.g. [16, proof of Lemma 1.1.10]).

Remark 6.16. Let a € R, let s € NgU{oo}, and let(s;)_, be a sequence from
Co*4. Using Remark 6.15 and the definition of the class Sp g.[a,00), it 15 Teadily
checked that the following statements hold true:
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(a) If n € No is such that 2n < K and if S € S g:ja,00) 15 such that P2[i] (iy) €
(C(;H)qx(nw)q for all y € (0,00), then
yli_{glo Rr, , (iy)[vgnS(iy) — un) = 0. (101)

(b) If k > 1 and n € Ny are such that 2n+1 < k and if S € 8 4:a,00) 15 such
that Pz[i}_irl(iy) € (Cgl+2)qx(n+2)q holds true for each y € (0,00), then

Jim R, (i) v iy — 2)S(iy) ~ (~aun — o)) =0.

Remark 6.17. Let n € Ny and let y € R. If u € CPHIXP s such that
limy oo [u* Ry, (iy)u] = 0, then from Remark 4.2 one can easily see that u = 0
holds true.

Remark 6.18. Let n € N and let (dj)?io be a sequence of complex q X q¢ ma-
trices. If dy = Ogxq and if the block Hankel matriz [dj+k]§fk:0 s mon-negative
Hermitian, then a characterization of non-negative Hermitian block matrices by
their blocks (see [3, 23], or [16, Lemmata 1.1.9 and 1.1.7]), it is readily proved
by induction that d;j = Ogxq for all j € Zo2n—1.

Lemma 6.19. Let o € R, let k € No U {00}, and let (s;)_ be a sequence of
complex q X q matrices. Then:

(a) Let n € Ny be such that 2n < k and let S € Spga,00) be such that
PQ[i](z) € (C(_>n+2)qx(n+2)q holds true for all z€ C\R. Then the
a, 00)-Stieltjes measure o of S belongs to MY a,00)) and S belongs
>.2n
to SO,q;[oz,oo)[(Sj )?207 S]
(b) Let n € No be such that 2n + 1 < k and let S € Sy g[a,00) be such that
{Pgi](z), PQ[i]Jrl(z)} C Cg+2)qx(n+2)q holds true for each z € C\R. Then

the [a, 00)-Stieltjes measure o of S belongs to Mg%ﬂ([a,oo)) and S

2n+1 <]‘

belongs to So g;la,00)[(85)520 + <

Proof. (a) Lemma 6.14 yields o € M‘é’%([a,oo)) and HYY < H,. Ifn = 0,
then o € M[[q, oo);(sj)?ﬁo,g] follows. Suppose now n > 1. Remark 6.16

shows that (101) is valid. Obviously, ¢ € /\/lqz[[a,oo);(sga])?go,g], where

(sgg})zno is defined by (1). Thus, Proposition 4.9 and Remark 6.16 provide

]:
us limy 00 R, ,, (iy)[vg,nS(iy) — u,[f}] = 0 where s[f]l := Ogxq and where wll =

[o]

—col(s;_;)7—y- Using additionally (101), we can conclude

lim (ul?! — u,)*Re, , (iy) (ul) —u,) = 0.
Yy—00 ?

Consequently, Remark 6.17 yields ugf - Up. Let dj := sj — 35»0] for each

J € Zgon. Then ulf] = up and n > 1 imply dy = Oyxq. Furthermore, the
inequality HT[LU} < H,, shows that the block Hankel matrix [dj+k];?7k:0 is non-
negative Hermitian. Thus, ds, € CL*? and Remark 6.18 yield dj = 044 for
each j € Zoon—1. Hence, o belongs to /\/lqz[[a, 00); (sj)?;lo, <.
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(b) Part (b) can be proved analogous to part (a). We omit the details. [

Now we are able to prove that the solution set of the (reformulated) truncated
Stieltjes-type moment problem and the solution set of the corresponding system
of the fundamental Potapov’s matrix inequalities coincide.

Theorem 6.20. Let o € R, let k € NoU{oo}, and let (sj)5_o be a sequence of
complexr q X q matrices. Let D be a discrete subset of Il and let S: C\[a, 00) —
C9%? be a holomorphic matriz-valued function. Then:

(a) Let n € Ng be such that 2n < k. Then the following statements are
equivalent:

(1) S e SO,q;[oz,oo)[(s]')?zm é]
(i1) PQ[i]_l(z) € C(>n+1)qx(n+1)q and PQ[;S;}(Z> € C(;L+2)qx(n+2)q for all z €
I, \D.
(b) Let n € Ny be such that 2n + 1 < k. Then the following statements are
equivalent:
(iii) S e SO,q;[a,oo)[(Sj)?i?)rl’ S]
(iv) {Ph)(2), Pty (2)} € CUT2P020 for gl 2 € 1, \ D,

Proof. (i)=-(ii), (iii)=-(iv): Use Proposition 4.9.

(ii)=(i): Let m := 2n. Observe that the function F' := Rstry \pS is
holomorphic. Because of (ii), the inequalities Pg_]l(z) > (0 and P,[f](z) >0
hold true for each z € II; \ D. From Theorem 6.5 we get then that there is
a unique function S € S 4[a,00) Such that Rstry,\p S = F, namely S = S,

and that P,LS](Z) > 0 are valid for all k € Z_1,, and all z € C\ R. Applying
Lemma 6.19, we get then (i).

(iv)=-(iii): Let m :=2n+ 1 and use the same argumentation as in the proof
of the implication “(ii)=(i)". O

7. PARTICULAR RESULTS ON NON-NEGATIVE HERMITIAN MEASURES
In this appendix, we summarize some facts of the integration theory of non-
negative Hermitian measures. We consider a measurable space (£2,2) and
use the notation MZ(2,2() to denote the set of all non-negative Hermitian
q % q measures on (Q,A).

Remark 7.1. Let p € ML(Q,2) and let f: Q@ — C be a function. Then
standard arguments of measure and integration theory show that the following
statements are equivalent:
(i) e LY 50).
(ii) f € LYQ, A, B*uB;C) for all B € CI*P,
(iii) f € LY, 7;C) where T := trp is the trace measure of .
If (i) holds true, then

| gaB ) =5 [ saws
A A
for all A € A and all B € CI1*P,
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Lemma 7.2. Let p € ML (Q,2) and let y. be a version of the Radon—Nikodym
derivative of u with respect to the trace measure 7 :=trpu of u. Let f: Q — C
and g: @ — C be A-Bc-measurable functions. Then the following statements
are equivalent:

(i) fge L1922 1;C).
(ii) The pair [fI4,gl,) is left-integrable with respect to fu.
If (i) is fulfilled, then

/Q fadu = /Q (fIg)du(gly)"-

Lemma 7.2 can be proved by standard methods of measure and integration
theory.

Remark 7.3. Let p € ML (Q,2A) and let m,n € N. For each j € Z1 m, lelt p; €
N and let ®;: Q — CPi*? be an A-B), «q-measurable matriz-valued function.
Foreach k € Ziy, letry, € N and let U0 Q — C™+*9 be an A-B,, «4-measurable
matriz-valued function. Suppose that, for every choice of j € 71y and k € Z1
the pair [®;, W] is left-integrable with respect to p. Let s,t € N. For each
J € Zim, let Aj € C*Pi_ and, for each k € Zy,, let By € C™™. Then it is
readily checked that the pair

> Aj®5, > By
j=1 k=1

18 left-integrable with respect to p and that

m n

/Q iz‘lfbj dﬂ(in‘I’k>*:ZZAJ‘(/QCI)du\P*)BZ,

j=1k=1

Proposition 7.4. Let p € M%(Q,Ql), let 7 := tr p be the trace measure of p,
and let pl. be a version of the Radon—Nikodym derivative of u with respect to
7. Furthermore, let © € p x q-L2(Q,2A, u; C). Then:

(a) pe: A — CP*P defined by
po(d) = [ eduer

belongs to M2 (Q,21).

(b) The non-negative Hermitian measure pe is absolutely continuous with
respect to T and OuL.©* is a version of the Radon-Nikodym derivative of
wo with respect to T.

(c) Letr,s €N, let @: Q — C™*P be an A-B,xp-measurable function and let
U: Q — CP be an A-Bsxp-measurable function. Then the pair [P, V]
is left-integrable with respect to pe if and only if the pair (PO, VO] is
left-integrable with respect to p. In this case,

/Q BdueT* = /Q (2O)du(TO)*.
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Proposition 7.4 can be proved by standard arguments of measure and inte-
gration theory.
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THE CLASSICAL ORTHOGONAL POLYNOMIALS
IN RESONANT EQUATIONS

[. GAVRILYUK, V. MAKAROV

PE3IOME. V¥ crarTi 3ampomoHOBAHO TEOPiI0 Ta AJTOPUTM [T 3HAXO/IZKEH-
HsI 9aCTKOBUX PO3B’S13KiB PE30HAHCHUX DIBHAHD, IIOB'9I33HUX i3 KJIACHIHHUMU
OpPTOrOHAJbHUMH TojaiHOMaMu. Ile 1a€e MOKIUBICTH OTpUMAaTH 3arajIbHUL
PO3B’SI30K y SIBHOMY BUIJIs/. AJropurM mizxoiurTb 30KpeMa Jjisd CHCTEM
koMIT'I0oTepHOI anrebpu, Hanpukiag, Maple. Pe3onanchi piBuaHHS € HeBix eM-
HOIO 9aCTUHOIO PI3HUX 33CTOCYBAHb, HAIIPUKJIIA, €(PEeKTUBHOTO (DYHKITIOHATIb-
mo-guckperaoro merony (FD-meron) mis po3s’a3yBaHHS OLEPATOPHUX DiB-
HAHD 1 mpobJrleMu BJIACHUX 3HAYeHbL HA OCHOBI 30ypeHs i imel romoromil. i
PIBHSIHHS BUHPKAIOTh TAKOXK 1 B KOHTEKCTI CYIIEPCHMETPUYHHAX OIE€PATOPIB
Kaszimipa as ai-cuinosoi aimrebpu, a Taxox pisasap tuny A2u = f 3 3amanum
oreparopoM A B IessKOMy GaHAXOBOMY IIPOCTOPL, HAIPHUKJIAT, HirapMOHIIHOTO
PIBHSAHHS.

ABSTRACT. In the present paper we propose a theory and an algorithm for
particular solutions of resonant equations related to the classical orthogonal
polynomials. This enable us to obtain the general solution in explicit form.
The algorithm is particulary suitable for computer algebra tools like Maple.
The resonant equations are an essential part of various applications e.g. of the
efficient functional-discrete method (FD-method) for solving operator equa-
tions and of eigenvalue problems based on the perturbation and the homotopy
ideas. These equations arose also in the context of supersymmetric Casimir
operators for the di-spin algebra as well as of the equations of type A%u = f
with a given operator A in some Banach space, for example, of the biharmonic
equation.

1. INTRODUCTION

There are various definitions of resonant equations, see e.g. [1,2], where
a boundary value problem is called resonant, when the operator, defined by
the differential equation and by the boundary conditions does not possess the
inverse. In the present paper we follow the definition from [7,16,19] and call
an equation of the form Lf = g with Lg = 0 resonant. In other words, the
right-hand side of the resonant equation belongs to the kernel K (L) of the
operator L. These equations are interesting both from theoretical point of view
and from the practical side in various applications. For example, in [16] was
proposed the so called functional-discrete method (FD-method) for solving of
operator equations and of eigenvalue problems. The method is based on the

Key words. FD-method; Casimir operators; di-spin algebra; Banach space; biharmonic

equation.
2010 Mathematics Subject Classification. 33C15h, 33C45, 33C90, 33F10, 34L40.
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ideas of perturbation of the operator involved and on the homotopy idea. This
approach was applied to various problems in particulary to eigenvalue problems
in [9-13] and has been proven to possess a super exponential convergence rate.
An essential part of the algorithm are some inhomogeneous equations with a
resonant component in the sense of the definition above. Resonant equations
arise in the theory of supersymmetric Casimir operators and of di-spin algebra
[7]. They can be used to study the equations of the type A%u = 0 with some
given operator A. Substituting Au = v we reduce this equation to the pair
Av = 0, Au = v where the second equation is resonant.

Their importance for praxis can be explained by the following example. Let
the mathematical model of some system be the operator equation

Au—Adu=f

in some Hilbert space H, where the system is characterized by the operator
A and the parameter X\. The element f describes external perturbation. The
operator A is completely defined by its eigenvalues Aq, Ag, ... and by the corre-
sponding eigenvectors uj, ug, ... If the perturbation is of the kind f = awuy, for
some fixed a, k, i.e, the equation is resonant, then the solution of the mathe-
matical model is u = y%5uy. One can see that the norm |[lul[, which can be
interpreted as “amplitude”, tends to infinity as the system parameter A tends
to the so called resonant frequency Ag. This phenomenon is called resonance
and can be observed in the nature and many technical applications, e.g. in
magnetic resonance imaging or nuclear spin tomography etc.

The present article deals with the resonant equations associated with the or-
dinary differential operators of the hypergeometric or confluent hypergeometric
type, defining the classical orthogonal polynomials, i.e.

d? d

@‘FT(IE)%‘F)WL (1)
where o(x) = asx? + a17 + ag is a polynomial of the degree not greater then
two, 7(x) = bix + by - a polynomial of the degree not greater then one and
An = An) = —nby — n(n — 1)as depends on the integer parameter n > 0
but not on the variable . We consider the differential operators defining the
classical orthogonal polynomials (as the first linear independent solution of
the corresponding homogeneous differential equation) and the corresponding
functions of the second kind (the second linear independent solution) and the
resonant equations of the first and of the second kind with the corresponding
right hand side. We propose a theory describing particular solutions of the
inhomogeneous resonant equations. We propose a theory and an algorithm to
compute such solutions, which is especially convenient for the computer algebra
tools like Maple and prove that the functions generated by this algorithm satisfy
the resonant differential equation. Incidently we prove a new differentiation
formula which represents the derivative of a classical orthogonal polynomial
through the linear combination of the same and of a neighboring polynomial
and which is unified for all classical orthogonal polynomials. Its coefficients
are expressed through the coefficients of o(z),7(z) and the coefficients of the

A, =o(x)
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recurrence relation. Such formulas are well known in the literature (see e.g.
[5,5,24,28]), but for each concrete orthogonal polynomial only.

2. REPRESENTATION OF PARTICULAR SOLUTIONS OF
RESONANT EQUATIONS
A classical orthogonal polynomial (Jacobi, Laguerre or Hermite) P, (z) (see
e.g. [6,24,28]) satisfies the homogeneous differential equation

Anu(z) =0 (2)

and is called also the function of the first kind. Let Qn(m) be the second linear
independent solution of the homogeneous differential equation, which is called
the function of the second kind. Then the general solution of the homogeneous
differential equation (2) is given by

w(z) = c1Py(z) + c2Qn(x), (3)

where c¢1, co are arbitrary constants.
Let us consider the resonant equations of the type

Apun(x) = Ry (). (4)

In the case when R, (x) is a classical orthogonal polynomial P, (z) (the function
of the first kind), the inhomogeneous differential equation (4) is called the res-
onant equation of the first kind. The inhomogeneous differential equation (4)
with the right-hand side Q,, () instead of R,,(z) is called the resonant differen-
tial equation of the second kind. Both functions P, (z) and Q,(z) satisfy the
same homogeneous differential equation (2) and the same recurrence relation

Rot(@) = (a(n)z + B(n) Ru(2) = y(n) Ruci(2), n=1,2,..  (5)

with some coefficients a(n) = oy, B(n) = Bn, 7(n) = Y, (see e.g. [6,23,24,28]).
If we change in the differential operator A, the integer n > 0 to a real v
then the corresponding solutions P, (z), Q,(x) become the hypergeometric or
confluent hypergeometric functions [5,6]. Since Ry, (z) satisfies the homogeneous
differential equation (2), then we can differentiate this equation by n in the
following way: 1) switch from the integer n > 0 to a real v, 2)differentiate
by v and 3)replace the real v by the integer n. In regard of (1) we obtain

A, dff;‘ =-XN(n)R, or A, (—ﬁdﬁl) = R,, which means that the function
1 dR,

is a particular solution of the resonant equation. Using this relation and differ-
entiating (5) by n we obtain

1 '
YT T TN +80) un(@)+

£ XN (n = 1) 301 (2)+ “
+ (/(n)z 4+ B8'(n)) Ru(z) — v (n)Rp—1(z)], n=1,2,...

UnJrl(-T) = -
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The general solution of the resonant equation (4) is given by
w(z) = &1 Pa(a) + €200 () + uP) (2), (8)
(k)

where uy, ' (z),k = 1,2 is a particular solution of the corresponding inhomoge-
neous resonant equation. Below we propose an algorithm to find the particular
solutions, which is especially suitable for computer algebra tools like Maple etc.
Since our algorithm below for particular solutions of the resonant differential
equations of the first and of the second kind (3) is based on the same recurrence
relation (5) it is valid for the resonant equations of both types and we use the
notation R, (x) below for both P,(z) and Q,(z). The following general resuls
on the particular solutions of the resonant equations has been proven in [19].

Theorem 1. Let A: X — X be a linear operator acting in a Banach space X,
the set K(A) C X be the kernel of A and a connected set X(A) in the complex
plane be the spectral set of A. If f(\) € K(A—AE), X € X(A) is a differentiable
function then the solution of the resonant equation

(A= AE)u = f(}) (9)
can be represented by
df (A)
A)=—— 1
u() = L (10)
The proof of this theorem is based on the equivalent equation
A)— f(A
A=A

with some fixed A\g and on passing to the limit A — Ag.

3. AN ALGORITHM FOR COMPUTATION OF PARTICULAR SOLUTIONS.
A GENERAL DIFFERENTIATION FORMULA FOR CLASSICAL
ORTHOGONAL POLYNOMIALS
Now we are at the position to formulate an algorithm for the particular
solutions of the resonant equations associated with a differential operator of the
hypergeometric type, defining classical orthogonal polynomials. This algorithm
is especially suitable for computer algebra tools like Maple etc.

Algorithm 1. Problem: Given a resonant equation of the first or of the second
kind, return a given number N of particular solutions.

Inputs: The number N and the right hand side R, (x) of the resonant equa-
tion.

Outputs: The particular solutions ug(z),u1(z), ..., un(x).

1. Find

1 dR,(z) 1 dRy,(v)

CN(v)  dv b0 xi(@) = CN(v)  dv 1 (1)

Due to (6) these are particular solutions.
2. Compute uz(x) in accordance with (7) using the initial conditions

ug(x) = xo(x) + coPo(x) + doQo(x), ui(r) = x1(x) + c1Pi(z) + d1Q1(z) (12)

Xo(z) =
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with undefined coefficients cg, c1,do, d;.

3. Find cg,c1,dp,dy from the condition that uz(x) satisfies the resonant dif-
ferential equation (3).

4. Forn =2 step 1 until n = N compute u,(x) by (7) and return u,(x).

Using Theorem 1 we prove below that the sequence u,(z) generated by this
algorithm satisfy the resonant equation for all n =0,1,2, ....

Theorem 2. All functions up+1(x) generated by the recursion (7) with the
initial conditions (12) satisfy the resonant differential equation (4).

Proof. We use the mathematical induction and, first of all, note that the func-
tions up(z), p=0,1,2 satisfy the resonant equation by construction and due
to Theorem 1. Let us assume that all the functions u,(x),p = 0,1,...,n
satisfy the resonant differential equation (4) and prove that then the function
Un+1 () is its solution too.
First of all we notice that
duy,

d?u,,
Apiiup(z) = U(QJ)W + T(.%')% +A(n+ Du, =

= Apun(z) + (A(n+ 1) = A(n))un = Rn(2) + (A(n+ 1) — A(n))un,
Api1tun—1(x) = Ap_qup—1(x) + A(n+1) = A(n — 1)up—1 =

=Ry1(z) + An+1) = A(n — 1)) up_1, (13)
2 [(0/ () 4+ () Ru() 7' (m) B2 ()] =
= /() Ra(2) + (o () + () D)y B (2],

Further we use the differentiation formula for the classical orthogonal poly-
nomials (which is the same for the functions of the second kind too) and which
represents the derivative of these functions through the same functions of index
n and the function of the index n — 1 with some coefficients independent of x
(see, e.g. |23, §4, (12)] or |6, p.171,(15); p.189, (12); p.193, (14)| for concrete
classical orthogonal polynomials):

dR,,
o) 22 = [ ()2 + ()] R() + (1) R () =
= [QI,n:E + q2,n]Rn($) + San—l(fL')-

(14)

Substituting this expression as well as (13)into the formula for A, 1uny1(z),
we obtain
_ XN(n)
C N(n+1)

1 , /
m(a (n)x + B'(n))(A(n + 1) — X(n)) Ry (x)+ (15)
X(n)

+ m(a(n)x + B(n))Ry(z)—

(a(n)z + B(n))(A(n + 1) = An))un(z)

App1tng1(x)
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20(z) ) dup(z) ,,  dRn(x)
_ m =X (n)a(n) T + o (n)T _
@ ,
o N(n+1) [_ (n)a(n)u,(z) — a (n)Rn(x)] —
X(n1+ )(X(" = Dy()(A(n +1) = An = 1))un—1(2)+

+ N(
=7 (M)A +1) = An = 1)) By (@) =
_ X a(n)x n n —An
= Vg1 LT+ Bm)AMR+1) = Am)+
+2a(n) [q1 () 2 + g2 ()] + A7 (2) }un(2)+
+ m {1 (A(n+1) = A(n)) + 2a(n)s (n) }un—1(z) + R(x),

where R(z) contains the functions R,_1(x), R,(z) and its derivatives but not
Up—1(x), up(x). Setting the coefficients in front of u,—1(z), un(z) equal to zero,
we obtain

v(n)

s(n) = _a(n) [b1 + (2n — 1)ag],
q1(n) = —% [b1 + A(n+ 1) — A(n)] = nag, (16)
o(n) = —%0 - fa((’;)) A(n+1) — A(n)] = —%0 + fa((‘n)) by + 2nas)] .

It is easy to check that the coefficients of the differentiation formulas for all
classical orthogonal polynomials satisfy (16). For example, the Laguerre poly-
nomials are defined by the confluent hypergeometric differential equation with
o(r) = agr® + aix + ap = x,7(z) = bz +bp = a+1—x,X = An) =
—nby —n(n — 1)ag = n; ie. ag = 0,a1 = —1,a0 = 0,0y = —1,bp = o + 1.
Besides they satisfy the recurrence relation |6, §10.2]

(n+1D)Lo(x) = Cn+at+1—a)ly(z) + (n+a)ly_4(2) =0, (17)

ie. a(n) = —n%rl,ﬁ(n) = M%ff’l,y(n) = —*¢. Due to (16) we obtain s(n) =

n+a,q(n) =0,qa(n) = -2 4 2080kl — p and (14) implies the well known
differentiation formula (see e.g. [6, §10.2|)

dL%(x
D L) 4 0+ )2 ). (13)
Now, using the recurrent relation (5) we obtain from (15) the equality
An-l—lun—i-l(x) = Rn+1($), (19)
which proves the assertion. O

Remark 1. At once with (16) we have obtained the coefficients of the general
differentiation formula (14) which is valid for the general classical orthogonal
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polynomials and contains all particular cases of the polynomials by Jacobi, La-
guerre, Hermite known from the literature [6, 24, 28]. This formula is much
more convenient for use then the corresponding formula from [23, 24].

4. EXAMPLES
Example 1. This example demonstrates the use of Algorithm 1 for the repre-

sentation of the general solution of the following Laguerre resonant equation of
the first kind

d?*u(z du(zx
a:dx(Q)—l—(l—i-a—x) d;) +nu(z) = LY(x) (20)
where
Lo(x) = W(I)(—n,a +1,z) =
MNa+1+n)

T T+ )T(n+ 1)(1)(_”’ at1,z)= kzo

(o)

is the Laguerre polynomial satisfying the corresponding homogeneous differ-
ential equation and ®(—n,a + 1,z) is the confluent hypergeometric function
satisfying a degenerate form of the hypergeometric differential equation when
two of the three regular singularities merge into an irregular singularity [5, p.
189, formula (14)] and (a)o = 1,(a), = a(a+ 1)(a+2)---(a +n — 1) is the
Pochhammer-Symbol.

The second linear independent solution of the homogeneous differential equa-
tion is the Laguerre function of the second kind [%(z) (see e.g. [25, pp.16,20]).
The general solution of the homogeneous Laguerre differential equation is given
by

u(z) = c1 Ly (x) + colf(x) (22)

with arbitrary constants cj,ca. The general solution of the Laguerre resonant
(inhomogeneous) equation is given by
uw(z) = c1 Ly (z) + eoly) (z) + up(x) (23)
where ¢y, co are arbitrary constants and u,(z) is a particular solution of the
inhomogeneous (resonant) equation.
Solving the corresponding differential equation for the Laguerre function of

the second kind [25, pp.16,20] by Maple we obtain the following representation
of this function for non-integer a:

2(z) = T(1 - a)L2(x) — (~2)™ 1Fi(~n — , —a + 1;2) =
— D(1 - o, —)LE(x) — (—2) P (x) exp(a),

Pan(z) = —= [@n+a+l-)pi(z) - (n+ae)pia(@)], (24
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For non-negative natural a € N we have
b (x) = Eiy(=2) Ly (x) — (=)~ °py (2) exp(z),
pEi(z) = (@ = 1), (25)
p8($> = xa_l + ¢ [U (27 27 —33) + (_l)aa! U(l +a, 1+ Q, —.’L')] )

where
oo ,—t
Eu@:/‘lﬁ, Arg(2)| < (26)

is the exponential integral and U(a, b, z) is the Kummer’s function of the second
kind. The last one is a solution of the Kummer’s differential equation

d
z— + (b— )d—f—aw—() (27)

The other linear independent solution of this differential equation is the Kum-
mer’s function of the first kind M defined e.g. by the hypergeometric series:

_ > (a)nz" _ b
M(av b7 Z) - n§:O (b)nn' - lFl(av ba Z)‘ (28>
The Kummer’s function of the second kind can be represented also as
I'(1-0b)
=—"-M
rb—1) (29)
AMa+1-5,2-0,2).

T T

Note that the function at the second initial condition in (25) solves the following
difference initial value problem

pi(@) =2pf (@) + (@=L a=12,
po(z) = 0.
Using Theorem 1 we can represent the particular solutions of the Laguerre
resonant equation of the first kind also by
0 Tla+1+n)
ov I'a+1)I'(n+1)

(30)

u,(x) = O(—n,a+1,x) ,n=0,1,... (31)

n=v

From this expression we extract the following particular solutions containing
the elementary functions only

_ (o — pp+1
XA (@) = (o) =~ Gz Z ol

X (@) =i (@) = ~Lf(a +Z 1),
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where
a—1
kp+1(a) :pzkp(z)v p= 1727 ey 0 — 17
i=1 (33)
1
ki(a) = a(a;), ko(a) = —a—2, a=2,3,...,

At the first step of our Algorithm 1 we use the ansates
ug (x) = xo (¢) + coLg (x) + dolg (),
uf (z) = X7 () + e L (z) + dalf' (z)

with undefined coefficients co, do, c1, d1, obtain u$(x) from the corresponding

recurrence formula of our algorithm and choose ¢, dp, ¢1,d; so that u§(x) sat-

isfies the resonant differential equation. We get dp = 0,dy =0 and ¢; =1+ ¢g.
Now one can verify that

(34)

un(x) = =Ly (z) In(x) + M, (35)

n xa
where the polynomials p%(z) satisfy the recurrence equation

n+a+1—=x n+ o

P = O @) - T (o) y
B e O Bk S 0 S P S o
(n+1)2 " (n—|—1) Lo~ T
with the initial conditions
a—1 —_p—
P9 () = Z xeP 1(ilp)p+1 -
0 g (37)

= Zxo‘_pk‘p(a) + (1 + co)z* LT ().
p=0

Example 2. Now, let us consider the Laguerre resonant equation of the second
kind

d? d

x dz(f) -l—(l-i—a—x)l:lf)-i-nu(x):lg(x) (38)
whith the Laguerre function of the second kind [ (z). Due to Theorem 1 the
formula

un() = = 122 | (39)

defines a particular solution of (38), so that its general solution is given by
u(z) = c1 Ly (z) + coli () + upn(2). (40)

The use of formula (39) for arbitrary n is rather burdensome, therefore we use
Algorithm 1, where we for the sake of simplicity set & = 0. Solving differential
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equation (38) with Maple for n =0, n = 1 we get

(@ =- | 220 [ iy () exp(~)dea,

3 1
xi(z) = [(1 —z) Ei1(—z) — exp(z)]x

< [ 1+ B (-1 + € expl-€)) (-1 + e+

+ [ exp(-©)E(-)(~1+€) + exp(-€)Pd(~1 + ).
1
As the ansatzes for initial values of our algorithm we use
ug(x) = xo(x) + coBir(—x) + do, ui(x) = x1(z) + 1l (2) + i L (z)  (42)

with undefined constants cg, dg, c1,d;. Differentiating the recurrence equation
for the Laguerre functions of the second kind by n and in regard of (39) we
obtain the following recurrence relation for particular solutions

2n+1—=z n
U9L+1(5U) = ni_i_lug(:r) T T 1“2—1(3”)—
1+ 0 1 0 (43)
G n(T) + m+1? n—1(7)-

We substitute (42) into this equation with n = 1 and demand that the obtained
function uJ(z) satisfies the resonant differential equation (38) with n = 2, then

we obtain
co = —FEij(—1)exp(—1) — 1,
do = —[Ei1(~1) exp(~1/2) + exp(1/2)], (44)
c1 = 0, d1 =0.
It can be verified by substitution into (43) that the following representation
holds true

up () =

= po(@)x1(2) + ¢n(2)x0(2) + v (2)Eir (—2)+
0 0 (45)
+ wy, (2) exp(x) + ¢, (x)do,

where the polynomials p?(z), ¢ () satisfy the recurrence relation for the La-
guerre polynomials with the initial conditions

pg(x) = 0, p(l)(x) = 17 Q8(x) =1, q(l)(x) =0.

The polynomials wl(z) satisfy the inhomogeneous recurrence relation for the
Laguerre polynomials

2n+1—=zx n 1+zx
0 _ 0 . 0 o 0
wnJrl(x) - n+1 wn(‘r) n—+ 1wn71(‘r) (n + 1)2pn($)+ (46)

+ LI () 1,2
—_— x n=
(n+ 1)2pn—1 9 9 “y

with the initial conditions
r+1
W) =0, wh(z) ="
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The polynomials v2(z) solve the following discrete initial value problem

2n+1—=zx n 1+zx
U2+1(90) = ﬁvg(ﬂf) T 1“2—1(1’) - ngL(ﬂf)+
1 0
+ an_l(w), n = ]., 2, ceey (47)
% — 2¢p

(@) =0, w§(@) ="

Below we give some particular solutions of the Laguerre resonant equation of
the second kind obtained by our algorithm:

up(x) = xo(x) + coBir (—z) + do, u}(x) = x1(2),
r—3

W) = -7 2ae) — gxole)+

2 2
T4 — 2¢co .. r“—1
+ 70]311(_%) _

exp(x) — - do,

12ty 11) xi(z) + <1:c - 5> Xo()+ (48)

1, 11, 23 1 1 5
Sy Byt B “r—2)d
u’ Tt T 72) eXp(x)Jr( N > 0

where ¢g, dy are given by (44) and xo(z), x1(z) — by (41).
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APPROXIMATION AND ESTIMATES IN THE PERIODIC
REPRESENTATION OF REAL NUMBERS OF THE CLOSED
INTERVAL [0,5;1] BY A>-CONTINUED FRACTIONS

M. V. PRATSIOVYTYI, O. P. MAKARCHUK, A.S. CHUIKOV

PE3lOME. B poboti 3Haiigeno ominku HaOJJIMKEHb JIHCHUX YUCE] Biapiska
[0,5;1] nanmrorosumu  Az-gpobamu, €JEMEHTH SKMX HaJeXKaTh MHOMKUHI
{%,1}. Hoseneno, mo As-pamionansni qucia (MHCIA, MO MAIOTh JBa PIZHAX
HecKimaeHAnX A2-300pakeHHs) KPIM IBOX HECKIHYEHHMX, MAIOTh 3JII9€HHY
MHOXKUHY PI3HUX CKiHYeHHHX 300paxkenb. CLpPOCTOBYETHCs IioTesa, 1o KoxX-
HE pallioHaJbHe 9nucjo € Ax-panioHaJbHuM i 06rOBOPIOEThC NPobaeMa Kpu-
Tepid paIioHAJBHOCT] 9HCJIA 33 MOro JIAHITIOrOBAM A2-300pazkeHHIM.
ABsTrACT. The paper investigates the estimates of the approximations of real
numbers of the closed interval [0,5;1] of the Aj-continued fractions whose
elements belong to set {1,1}. It is proved that Ap-rational numbers (i.e.
numbers that have two different infinite A2-continued fraction representation)
except two endless As-continued fraction representation have a countable set
of different finite ones. We refute the hypothesis that every rational number
is Aj-rational numbers and discuss the criterion of rationality of numbers
according to its As-continued fraction representation.

1. INTRODUCTION

The role and importance of continued fractions in mathematics and its ap-
plications are well-known [7-9,11,17,19,20]. They are also used to develop a
metric [5,10] and probabilistic number theory [1, 6,15, 16], the theory of dy-
namical systems [12], fractal geometry and fractal analysis [2,4]|. Especially
well developed is the theory of elementary continued fractions whose elements
are natural numbers [20]. Relatively recently, the theory of simple infinite
As-continued fractions whose elements are positive real numbers oy and ag
was created [10,13]. It is proved that at apa; = % the system of representa-
tion of numbers of a certain closed interval by such continued fractions, being
two-character, has zero redundancy. Particular attention deserves a case when
oy = %, a1 = 1. We continue to develop this theory, in particular, supplement
it with finite decompositions, and we focus on the interconnections of finite and
infinite continued As-decomposers of numbers.

Let Ay = {%, 1} be a two-character alphabet. Infinite continued fraction

Key words. As-continued fraction; As-rational number; criterion of rationality of number;
left shift operator of digits of the As-continued fraction representation of number; algorithm
for decomposing of rational numbers into finite Az-continued fractions.
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1
1

=[0;a1,a9,...,ay,...] = AA2

aiaz...an...’

ay +

as+ "+ —1
an“r"'

where a,, € Ag, is called [5,10] Aa-continued fraction.
o0

Because Y a, = oo then each As-continued fraction is convergent. Remind
n=1
[20] that convergents of order n of the continued fraction [0; a1,aq,. .., an,...]

is called the number b which is the value of a finite continued fraction [0;
dn
ap;ai,az, ..., a,), that is a segment of the continued fraction moreover:

Pn = npPp—1 + Pn—2,
Qn = ApQp—1 + qn—2, n=23,...;

where po = ag,qo = 1,p1 = arao + 1,1 = a1.
For convergents of the continued fraction the following properties are per-
formed [20]:
k

L. gipr—1 — prqe—1 = (—1)%, Vk € N;
Pk-1 Pk _ (—1)*

2. , VkeN;
dk—-1 9k 9k4k-1
3. QkPk—2 — PrQk—2 = (—1)’“’1%, Vk € N;
2~ fagas,. ), Ve N,
qk—1
1 _
From the property (4) for As-continued fractions it follows that 3 < 1 <1
dn

atn=2,3,....
Theorem 1. [10] For any x € [0, 5;1] there exists a sequence (an) € L such
that

x=[0;a1,a9,...,an,...], (1)

and the numbers of a countable set can be represented as two different As-
continued fractions:

1 1 1

57(571)] = [0;0’170'27'"’anala(lai)}a (2)

here the round brackets mean the period.

x =1[0;a1,a2,...,an,,

Those numbers of the closed interval [0, 5; 1] having two representation of As-
continued fractions are called As-rational numbers. The rest of the numbers in
this closed interval have only one representation and are called As-irrational
numbers. The task of finding a criterion (necessary and sufficient conditions)
for rationality of a number by its representation in a given coding system is
traditional and for many representations is solved. Consider it for this repre-
sentation.
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2. CONDITIONS OF THE RATIONALITY OF THE NUMBER BY ITS
Ao-CONTINUED FRACTION REPRESENTATION
Let denote t = [O; (%, 1)] then from equality

1
1 1
2T 1

it is easy to get equality 0,5t2 + 0,5t — 1 = 0 and solution of the equation

t=1=1[0;(3,1)]. Similarly
1 1
b (3)] -3

Lemma 1. Fach As-rational number has at least two different finite As-conti-
nued fraction representations that is

1 1 1 1
J::[O;al,...,am,g,(g,l)]: [0;@1,...,am,§—|—1]: [0;@1,...,am,§,1]:

1

1
= [0;@1,...,am,1,(1,§)]: 0;a1,...,am, 1+ =] =1[0;a1,...,am,1,1,1],

5]
and hence it 1s a rational number.

Proof. Because

then

a4+ ——

a
m oI

1 1
[0;&1,...,&7”,1,(1,5)]: [O;alv"'vam71+§]
1
= =1[0;a1,...,am,1,1,1].
a

Then equalities which are indicated in the formulation of the lemma follow from
the fact that equality

: — . / /
[07 A1,.--50n;Apt1, 042, - - } - [07 A1y 0ny Qpyq,0p49,-- ]
is executed then and only then
. _ . /
[07 an+1, An+2, - - ] - [Oa Ap4150p42) - - ]

The value of each finite As-continued fraction is the result of a finite number of
rational actions on rational numbers. So each As-rational number is a rational
number. O

73



M. V.PRATSIOVYTYI, O.P. MAKARCHUK, A.S. CHUIKOV

Theorem 2. Fach As-rational number has o countable set of different finite
Ag-continued fraction representations, in particular

1 1 1 1 1
—=|(0;1,=,1,...,=,1,1| ,1=1(0;=,1,...,=,1,1
2 07 727 ) 72’ b ) 0727 b 727 )
—_—— —_——
2m 2m
Proof. Indeed, from equality
1 1
l=—-=——— (3)
1 1
1 §+1+%
we have the following
1 1 1 1 1 1
1=10;1=10;=-,1,1|=10;=,1,=-,1,1] = |0; =, 1, =, 1, =, 1, 1| = ...
[7] [7277] [727 7277] [727 727 7277]

Then § =[0;1,1] = [0;1,3,1,1] = [0;1,3,1,3,1,1] = ...

Representations that are indicated in the lemma have the last element which
is equal to 1, and hence, taking into account equality (3), we get countable set
of finite representations of As-rational number. |

The question whether every rational number of a [0,5;1] is As-rational is
interesting. The answer to this question is directly related to another question.
Is every rational number decomposed into a finite continued fraction? Let us
give some examples of such expansions. But first we give the algorithm for

decomposing a rational number 7 into a Ag-continued fraction.

1. The first element a; of the expansion of number x = 7 is based on the

formula:

1 a 2
1, if —<-<-<
a1_90<a>_ o 27673
N b) 1 2 a
S <2<
2 " 37—
2. The following elements a; are determined from equalities:
1 () 1 1 2b — aeq
rn=——px)=——-g=——"-
1= 77 z 27! 2a
1 (1) 1 1
To=— — (1) = — — =€9,
2 o P Ty 2 2
1 (z2) 1 1
Tptl = — —@(xn) = — — =€
n+1 T P\ Tn T 2 n+1,

where a, = p(x,_1) = %Emén € {1,2}.
3. The process ends if z,, becomes equal to 1 or % or %
— In the first case number = has n + 1 digits, and ap+1(z) = 1.
— In the first case number z has n+2 digits, and ap41(z) = 1, apt2(z) =
— In the first case number x has n+2 digits, and an+1(x) = 1, apt2(z) =
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The following expansions are performed:

2 1 1] 4 1 1

3 271~ 2 2 2
5 [ 11111 1 11 1
S 1 P D S 122101 =
6 -07272727172?27171727172727 ) 71717172]
6 _Jo.lirt1]=lot Ly

7_ I 727 ) b - 72727 )

1 1 1 1

Z: 0;7717177’17177a 7§: 0;7a1a1317171 9
8 |2 2 217 9 2
I ol

10 |72 2

R T T ISR TN IEIE A | B
6 | \2°22° 722 2777929 2

Notation. The number z = % has both finite and periodic As-expansion
and the later does not satisfy the definition of a As-rational number. This fact
refutes the hypothesis that every rational number is As-rational number. It
remains neither proven nor disproved the hypothesis that every rational number
has a finite As-continued fraction expansion.

3. LEFT SHIFT OPERATOR ON DIGITS OF As-CONTINUED FRACTION
REPRESENTATION OF NUMBER
In the space of As-continued fraction representations we define operator w
by equality
w(AA2 )= Al (4)

aias... asas...?
called left shift operator on digits of As-continued fraction representation of
number.

Let us use only the first of the two existing representations (2) of Aa-rational
number. Then from equality (4) we get well-defined function of number z =

[0;a1,as9,...]| that has the following analytical form
1 1—a1z
w(m)-;—al(x)— —
Let
n o _ UnpT + Uy
(@) = ol fa))) =
then
1 1 —w" ta,(z)
w"(z) = m— an(z) = ot

Then ug =1, v9=0, c¢cog=0, dozlandatan:%wehave

Un 1T + Unp1 T +dy 1 (2¢,, — up)x + 2d,, — vy

Cn41Z + dpy1 Cupr v, 2 2upx + 2v,

6]
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hence the following
Un+1 = 2¢y — Un,
Unt1 = 2dy — Uy,

Cnt1 = 2Up,

dnt1 = 20y,
If a,, = 1 then
Unt1T + Vnp1 _ Cal + dn 1= (cn — up)x + dp — vy,
Cni1® +dpy1 UpT + vy UpT + Up '
We have

Un+1 = Cp — Un,
Un+1 = dn — Un,
Cn+1 = Unp,
dn+1 = Up.

Let’s estimate the value of |u,| above.

Theorem 3. The following inequality is being performed:

1 1+v17\ (1-vIT\
() () e

Proof. Tt is clear that (ug;vo;co;do) = (1;0;0;1). Possible options for
(ui;vi;e15dy) are (—1;2;2;0) and (—1;1;1;0) for a3 = % or 1 respectively.

The following cases are possible:

o . 271%—1 — Unp,
Untl = 2Cp — Up =
dup 1 — Up,
and
_ ) 2up—1 — up,
Up+1 = Cp — Up =
Up—1 — Unp.
So

Unp+1 = kun—l — Unp,

where k € { 1;2;4}.
We got

tnt1] = [Kun—1 = tn| < [Kun 1] + [un| < 4fun—1] + [un].
Let (sp) such a sequence that
Sn+l = Sp +48n—1, Vn € N,
sop=1, s =1.
It is inductively easy to show that

Up < Spy, VN € Zy.

76



APPROXIMATION AND ESTIMATES IN THE PERIODIC ...

1 ((1+viT\" [(1-viT)"
AT 4 4 ) )

1 ((1+viT\" [(1-vIT\"
unﬁ\/ﬁ(( 1 ) —<4)>, Vn € Z,.

It is clear that ¢, = ku,, where k € { 1; %}, then

1 1+v17\ [(1=-vIT\"
n < Up < e ) Zy. 0

4. PROPERIIES OF NUMBERS WITH PERIODIC AQ—CONTINUED
FRACTIONS REPRESENTATION
Theorem 4. If number y has a period in its As-continued fractions represen-
tation then it looks y = o + /7 where o,y € Q.

Because

then

Proof. Let y = [0,a1,a2,...,a, (B1,...0;)], then we have

Ly W

[O?(Blv"')/BZ)] =w (y)_ Cky+dk7
(o

0.1, ... )] = w <Cky+dk>.

So,
U1y + Vel URY + Vg

Chrty + di+r oy + dyp

hence the following
Y (Cryrun—unyicr) +y (Wnch it +vrdi — uppide — vk sick) +Ordi — vk ady, = 0,
which proves necessary. a

Theorem 5. If equation ax?+br+c =0, (a,b,c€Z, a#0) has a solution
11 = a+ /7, where a,y € Q, /7 ¢ Q, then it has a solution xo2 = o — /7.

Proof. 1t is clear that
a(a? + 207 +79) + bla+7) +c=0,

V7 (2aa +b) + ac® + ay + ¢+ ba = 0.

If 2ac + b # 0, then /7y € Q and we get a contradiction.
So,

2aa+ b =0,
ac?® + ay + ¢+ ba = 0.

Hence we get
ax3 + bra + ¢ = a(a® — 207 + ) + bla — /) +c =
= —/7(2aa +b) +aa® + ay + ¢ + ba = 0.

7
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€ g
=242 el
Yy f \/; 6[77]a

where I, f,g,h € N, (g;h) = (f;h) = 1, \/% ¢ Q, has Ay-continued fractions

representation of the form

Theorem 6. If number

y=1[0,(B1,..., 5]

then the following inequality is being performed:

l l
b < 1 1++17 B 1—+/17
RvAY( 4 4
Proof. We have
wy +u
ay + d;

hence
ay® + (di —w)y — v = 0.

By the theorem b5 the last equation also has a root

_ e g
y—?— Ev
then
by ~_€2 g_l2h—gf2
A TUTETRT
hence

—b f?h = ¢ (I’h — gf?).

The left side of the last equality is divided by h hence ¢; is divided by h.
Taking into account theorem 3, we have

1 1+\/ﬁl 1—\/ﬁl
() ()

5. APPROXIMATION OF REAL NUMBER OF THE CLOSED INTERVAL [0,5;1] BY
A9-CONTINUED FRACTIONS

Let vi(z,n) = —, vi(z,n) = —, where I, i k, is the number of elements 1
n’ 2 n
i % respectively among (ai,...,ay) in As-continued fraction representation of
number z = [0;ay,...,an, ...

Let’s call the values lim vi(z,n) = v1 and lim vi(x,n) = 11 by the fre-
n—,oo 2 2 n—o0

quencies of the digits 1 and % in As-continued fraction representation of x,
provided that these limits exist.
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Lemma 2. Let B be a set of sets of numbers (..., ap1;) among which [
elements are equal to 1 and k elements are equal to 5, and let q((au,. .., i)
be a number that is defined by the following recurrence formula:

q0:17 q1 = g, Qn = QpQn—1 + qn—2, n:2737"'7k+l7

Qi1 = q((a1, ..o, 0ggr))-

Then there exist such constants D;, D;(j € {1,2,3,4})(D;, D; > 0), that do
not depend k and | such that

p miﬁn : = D1(5l177]f + Dz(5l177’2C + ngénlf + D45§77§. (5)
1seesPl+l
A= D16t + Dadinh + Dsdbnt + Dadbis. (6)
1y--Pk+1
1++5 1+417
where 51,2 = B y2 = T

Proof. Let qx = 3qx—1 + Qk—2, qk+1 = Gk + Qr—1, then

1
Qr+1 = = Q-1 + qe—2 + qx—1 = 1,5qx—1 + qr—2.

2
If gk = qr—1 + Gr—2, Ge+1 = %Qk + qx—1, then
1 1
Tet1 = 59k-1 + 5 0k—2 + qk—1 = 1,9qk—1 + 0,5qk—2.

As we see, in the first case, the value of g4, is greater than in the second
case.
Let ¢,(Bo, 1), dn(70,71) be such sequences that

nt1(Bo, B1) = en(Bo, B1) + cn—1(Bo, B1), Yn € N,
co(Bo, B1) = Bo, c1(Bo, B1) = P1.

1
dnt1(70,71) = §dn(70,71) +dp—1(70,71), VYn €N,
do(v0,71) = Y0, d1(70,71) = M1-

Inductively on n it is easy to show that

Cn<5~076~1) > Cn(ﬂ0751>7
dn(i()a’yl) > dn(PYOv’Yl)a Vn € Na

if B; > B; >0, 55 >7; >0, Vj € {0;1}.

Considering all the above, we obtain that when replacing the neighboring
elements (3,1) on (1,1) in a set (a1,..., ) we will reduce the value of
the expression g(aq,...,ar1;). We will make such a replacement as long as
possible. As a result, we will come to the set

111%§%
l \_\,_/

k
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So,
. 11 1
min Bq((al,...,ak+1)):q (1,1,...,1,5,5,...,5)
(@1,0p41)€ El"_/ %k,—/
Easy to see that
Ay + (VIT =1 (1+VIT)
dn(0:m) =~ ( il +
2417 4
L (VIT4 Do —dm (1-VIT\"
20/17 4 ’
enlfos ) = 2t (V5 Do (14 V5)
5+1)80—26 (1-v5)
n (V5 +1)B0 — 261 V5 Cven
2v/5 2
, 11 1. ,
It is clear that q 1,1,...,1, LD is determined by the system of
! k

equations

w=lg=lL@e=qn+q.@B3=09+q,...,q0=q-1+q-2,

1 1
Qi1 = 5@11 + -1, Q142 = §QZ+1 +q,-- ki = §Qk+l—1 + Qry1—2-

Then we have
l !
~VB+1 (1445 +\£—1 1-+5
"= 2 25 2 '

VBl (14vB) T VBt (1-vE)
q-1 = 25 B Wi B .

4b5 + (V1T = 1) [ 1+ V17 ‘ (1 4+ V17)b — 4b% (1 —+/17 ;
Y (4 )* 2T (4 )
where b] = ¢, b5 = q1—1-
Similarly, from a system of equations
1 1 1
o=la=5460=50+490 %= 59%1+ %2,

Qk+1 = Gk T qk—1, - - - Qk+1 = Qk+1—1 + Qk+t1-2

we have
by = Exnf + Enk, b = Exf + Eanf,

80



APPROXIMATION AND ESTIMATES IN THE PERIODIC ...

max  q((B1,...,Bkt1)) =

(B, Brr1)EB
2+ (VB Dy (VB L - 2
B 2v/5 ! 2v5 2
for some constants E1, Fo, El, Eg, which are easily determined, and from here
we have (6). O

Lemma 3. If number x = [0;a1,a2,...,an,...] is As-rational number, then

In_ _ Dl,

lim -
e it
n—00 5117]1 g

lim nk" Z Dl.

T
Proof. Tt is clear that li_)m ln, = +00, because otherwise number z will be
n [e.9]
Ag-rational number. The same is true for the (k,). We get

ln, kn kn
im 2y ()
n—00 5l1" nlfn n—oo \ 1)1 ’

ln , kn ln
lim A = lim @ =0
n—00 5lln77]f" n—00 (51 ’
lim | 22| < lim " i (21N
n—00 51n771n n—00 77? n—oo \ 11
Taking into account lemma 2 we get what we need. O

Theorem 7. If for As-continued fraction representation of irrational number
x frequencies of digits % and 1 exist, which are equal 61dnosidHo 2! and 11

respectively then for any € > 0 there is a number ng such that
Pn 1
an (61 s g)2ntl
1™

) vn Z no,

in particular for any irrational number y € [0,5; 1] there exist a number ny and
constant C such that
P C
ly— =1 <

——, Vn>n;.
In (1+>1/ﬁ)2n+1’ !

Vi
Proof. Taking into account lemma 2 we get /g, — 071, (n — +00). Then
vy
for any for any sufficiently small € > 0 we get g, > (07'n,? — €)™ starting with
a certain number nyg.

Given the inequality
1

GnGn+1

z -2 <
an

we have the required inequality.
T 1—x
Let us consider the function g(x) = (#) (H‘/ﬁ) interval [0;1].

4
It is obvious that the function g(x) continuous on [0;1]. Since the function
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In(g(z)) = zln <1+T\/5) +(1—2)n (%ﬁ) is increasing <# > HT‘/ﬁ)
then g(x) is increasing too.
Taking into account lemma 2 we get that

1417\

vin
an = DU )" 2 Dyg(0)" = Dy [ )

starting with a certain number n;. This implies that we need. a
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REPLACEMENTS IN THE FINITE ELEMENT
METHOD FOR THE PROBLEM OF
ADVECTION-DIFFUSION-REACTION

YAa.H.Savura, Y. 1. TURCHYN

PE3IOME. ¥ maniit po6oTi 3aIpOIIOHOBaHO HOBUI M AX1T 10 IUCIOBOTO PO3B’si-
3yBaHHS CHHTY/IAPHO-30ypeHmx 3amad aasekmnii-nudysii-peakmii (AIP). et
miaxin 6a3ye€ThCs HA €KCIOHEHIIAIbHIX IIPIMii i 3BOPOTHIiHM 3aMiHax 10 i micas
Bapiamiitnoro dbopmysoBanis, Bignosiano. Omep:KaHo TEOPETUIHI Pe3ysIbTa-
TH iCHYBaHHS PO3B’A3Ky Ta mOpsaKy 30ixkmocTi. IIposemeno uncaosi excriepu-
MEHTH /IJIsl CUHTYJIsipHO-30y penux 3aia4 AIP. Haseneno rpadiku ofepxanux
PO3B’sI3KiB Y CTAIIOHAPHOMY Ta HECTAITIOHAPHOMY BUIAIKAX, TaO Ul TOXUOOK
Ta eKCIIEPUMEHTAIHHUN TTOPIIOK 301KHOCTI 3aIIPOTIOHOBAHOTO METOY.
ABSTRACT. In this work, a new approach for the numerical approximation of
the solution for the initial-boundary problem of advection-diffusion-reaction
(ADR) is proposed. This approach is based on exponential direct and inverse
replacements, before and after variation formulations, respectively. Theoreti-
cal results of the existence of the solution and of the order of convergence are
obtained. Numerical experiments are conducted for singularly perturbed ADR
problems. Graphs of the obtained results for stationary and non-stationary
problems, table of errors and experimental orders of convergence are pre-
sented.

1. INTRODUCTION

The mathematical modeling of processes of advection-diffusion-reac-
tion (ADR) is the relevant area of research. However, in the case of large
advantage of advection coefficients over diffusion coefficients, the standard ap-
proach based on the finite element method (FEM) leads to the loss of stability
of the approximation. Nowadays, many approaches to solving singularly per-
turbed ADR problems might be found in works of M. Ainsworth, N. Bahvalov,
I. Babuska, G.Marchuk, Ya.Savula, G.Shynkarenko, S. Wang and others. In
particular, among the approaches well known are an application of the expo-
nential basis and exponential weights [6], [9], functions bubbles basis [5] in the
FEM. Among the well-known approaches, there are also adaptive schemes of
FEM [1], [10].

The problem of improving the stability of FEM to solve the problem of ADR,
despite a large number of publications, is still opened. Among a large number
of existing methods, there is a question of choosing the optimal method for
improving sustainability. This fact may be the subject of another review pub-
lication. The authors propose a new approach to solving this actual problem,

Key words. Advection-diffusion-reaction; finite element method; exponential replacement.
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which does not require the use of irregular grids, h-p adaptive grids, counter-
flow schemes, etc., which might greatly complicate the programming of the
method.

Let there Q is a bounded limited area in R? with a Lipschitz boundary I'. The
problem is to find ¢ — an unknown concentration, which satisfies a differential
equation

%—Fv-(VC)—V-(K-VC)+UCZf(x7t>; req, te(0,7] (1)

an initial condition
c(z,0)=0; z€Q (2)
and a boundary condition
v-(K-Ve)+Xe=1v; zel, te(0,T]. (3)

In (1),(3) V = (V1, Va) is a velocity vector of constant values Vi > 0, Vo > 0,
K is a diffusivity coefficient, o is a coefficient of reaction, X is a constant value,
f is a function of external sources, v is a function defined on the boundary I’
and v = (I, l2) is a directed vector to I'. Coefficients are positive, constant and
dimensionless and, because Vi, V5 are constant, environment is incompressible
V- (V)=0.

An operator of the problem was considered

Ac=V-(V-¢)=V-(K-Ve¢)+oc
Therefore, the following equation has been considered

Jc
a—&-Ac—f

with initial and boundary conditions (2), (3), respectively.

2. FEM WITH EXPONENTIAL REPLACEMENT
Previously, using a numerical experiment, it was found that the solution
obtained by the standard FEM with linear and quadratic basis functions [1,5-
10] is unstable in the case of a singular perturbed problem. In this paper, a
new alternative approach to solving the singular perturbed ADR problems is
proposed.
In (1)-(3) the following replacement [4] was applied

¢ = u exp (M> (4)
2K '

Therefore, the problem (1)-(3) will be equivalent to the following problem
ou 0*u 0*u VE+ Vi
K| = 4+ = -1 T2 —
ot <8x12 + 81‘22) + ( ik ”) ! 5

B Vizy + Voxo .
Oou Vi Va B Vizy + Vamry ,
K8y+<<2l1+2l2>+)\>U—¢eXp<_2[(>’ z €I (6)
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u(z,0) =0; z €.
The next step is a variation formulation of the resulting problem. To do this,

space W = WQ(D(Q) was introduced. Then, equation (5) was multiplied on
arbitrary function w € W and integrated over the area (2

ou VE + V3 B
5 wdS) — K/Auwdﬂ—l—(m—l-o /uwdQ—

= /fwexp <—‘/19512+KV2$2> dQQ.
Q

To the first term of the equation (7) the Green’s formula for Laplacian [2] was
applied. Thus, the following expression was obtained

ou

ot
Q

VE+V; - Vizy + Vomo
+ <4K+0> /uwdQ—/fwexp( K ds.
Q Q

According to the algorithm, the discretization of the problem based on the
division of the area €2 by finite elements and then on the construction of ap-
proximations using a linear combination of basic functions might be the next
step. However, after direct applying of the discretization, the initial system of
linear algebraic equations (SLAE) will have different orders of the coefficients
of right and left parts. That is due to the last integrant multiplier on the right
side of (8). Therefore, an approximation of the solution might be unstable.
That is the main reason why a reverse replacement was proposed to be

applied in (8)
U = c exp <—V1$1 + Vﬂ?) (9)
2K '

(7)

wdQ—i—K/VqudQ K/wdf‘-l—
(8)

Then, because

ou _ oc ox _V1ZL‘1 + Voxo B Vi cox _V1ZC1 + Voxo
dz; Oz T oK 2k CP 2K

the following expression was obtained

K Q=K —
/Vqu /Vch exp ( Ve
Q

( Vizy +V2962> JO

Vizy + V21L‘2> JO0—

2K

1=1,2

The formula is known [2]

dp | OY _
/ (aml + 81’2) dQ) = / ((Pll +wlz) dr’
r

Q
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then, taking: ¢ = uv,1¥ = 0 and vice versa, it is easy to make sure that

w0~ / g” a0 + / wvlydT.

ze T,
Q Q r

Therefore, the following transformation was applied to the last two terms in
expression (10)

Vi ow p<_V1961+V2562>dQ:

"2 ) ‘o 2K
Vi Oc Viz1 + Vaxo
_ _ it Vata ) g
2 ) 0z P ( 2K ) d
11
[ ety (- Fim T -
i EXP oK
r
VZ.2 Vizy + Voxo
7@ cw eXp <2[{ dQ
Q

According to the boundary condition (6)

K g;‘ I’ = /(Vlz1+ V%) uwdF—l—/)\uwdF—

r

/%Z)e < V1$1-|-V21U2>wdD

Further, taking into account the inverse replacement (9), the following expres-
sion was obtained

ou B i Vs Vixl + Voxo
K/ awdf = / (l1 + lg) cw exp (2K> dl'+
F VF + V. Vizy + V& (12)
n / Aew exp (_) ar - / bexp <_) wdl'.
T T

2K 2K

Finally, after combining expressions (7) - (12), the variation formulation of
problem was obtained. To find such ¢ (z,t) € Lo (0,T; W) that satisfies the
following equation Yw € W

oc Vizr + Voxo Vizy + Vaxo
awe p (_2[() dQ) + K/Vchexp <_2K> dQ+
Q

Vi e ( Vizy + Voxo
— exp | ——————=

— Q
8m1w 2K > d +

Q
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Vs 0 Vi V
FLIN B <_m+2w2> d0t

2 8902 2K
Vizy + Vawo Vizy + Vawo B
+/)\cwexp <_2K> dF+a/cwexp <_2K) dQ) = (13)
- Vizr + Vaxo Vizy + Vazo
Q r

It is important to notify that variation formulation (13) is significantly different
from the formulation obtained by using the classical approach for obtaining
variation formulation. Coefficients V; and Vs at advection integral expressions
are divided by 2. Integral expressions on the left and the right sides have the
same order.

According to the procedure of FEM, the triangulation of the area € by finite

elements ) ~ U Q; with boundary elements I' ~ U I'; was obtained. Then,

on the each ﬁnlte element €2, with vertices numbemng 1,7, k an approximation
of the solution was built by using linear basic functions [8]:

on = el (er,22) + el (@1, 22) + hpld) (1, 22), (14)
where gol(e) (mgi),xg)) =3 L (a; + by + cizo) and a; = xgj)mg m) _ xgm)xgj), b; =
:rg]) — :L’gm), ci = :cgm) xgj), 0 = 2S;ijm.

Then the following bilinear forms were introduced

m(c,w) = @w exp (—W) dQ;

alc,w) = K/Vch exp <—V1xl;_KV2$2) dQ+
Q

VZ' Oc V1$1+V2.%'2
— -2 21 dQ
+_Z 5 /axiweXp< 2K ) *
Q

[/1561 + ‘/2352 [/11‘1 + ‘/2332
_ i vede S S S .
—i—/Acwexp( 5 >dl —|—a/cwexp< 5 >dQ,

l(w) = /fwexp <_V1x12+KV2x2) dQ) + /ww exp <—‘/13012+KV2:U2> dr.
Q r

Therefore, by application semi-discrete Galerkin’s method with
N
t)= ¢t) ) (@)
j=1
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the following Cauchy problem was formulated
> {miiC; () +aiCs ()} =1 (1), t € (0,T], i = T,N;

0% (15)
me () pi7i:17N

where m;; = m (@?ﬁ#); Qi; = a (SO?’SO?); Li(t) =1 (@?); pi=m (COMP?) .

To discretize the problem (15) by time variable the Euler’s method [8] was
applied. Mesh partitioning step § was introduced. Thus, the following recur-
rence scheme was obtained

Z {m;Cj (te+1)} = Z {mi; C; (te)

- Zaijcj (tg) p,i=1,N; (16)

Zmlj =pi, i =1, N;

where k = 1, Ny, N; is a number of subintervals by time variable.

It should be noted that, according to the specifics of the proposed approach,
FEM ultimately leads to solving the SLAE with the specific coefficients. These
coefficients are the sum of integrals, which will include exponential function.
It is known that for such integrals using classic quadrature in practice gives a
high error of the approximation. Therefore, we propose to use special IOST
quadrature [3], which is an extended Gaussian quadrature. The proposed in 3]
formula completely avoids the crowding of Gaussian points and allows to obtain
approximate values of the integrals determined with the high accuracy. The
last is shown in [3] for exponential integrant functions.

3. CONVERGENCE ANALYSIS AND ERROR ESTIMATE

For the purpose of theoretical study, a stationary problem with homogeneous
Dirichlet boundary conditions was considered

V-(Ve)=V .- (K-Vec)+oc= f(z); z€,
c=0, zel.

3.1. Classical approach FEM (linear basis). According to the classical
approach, the following variation formulation was obtained: find ¢ € W that

K/VchdQ—l—Vl/andQ—i—Vz/acwdQ—F
8901 8%2
N (17)

+J/cwdQ:/fwdQ, Yw e W.
Q
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Bilinear form was defined

alc,w) = K/VchdQ +W —wdQ + Vs / € wd) + a/cwdQ.
Q

Theorem 1. The bilinear form d(c,w) is continuous, t.e. IM >0 :
a <M
a(c,w) < Mlellym lwlly,o

M = max{\/gK,\/gmax{Vl,Vz},\/ga, 1} )

Proof. Norm in Sobolev’s space is ||u||‘2/V(1) =/ (u2 + (VU)2) dQ). Expres-
2 Q
sion for (@(c, w))? was considered and evaluated by using elementary inequality
(@-p)°>0 = 2p<g+p°
2

(a(c,w))* = /(KVch+ZV8$Zw+acw) <

Q

< / (3(KVeTw)? + 3(mas (V1. Va) Vew)® + 3(ocw)?) de.
Q
Let’s reinforce inequality by adding an integral term

/c2(Vw)2dQ >0
Q
(a(c,w))? < /( (KVeVw)? + 3(max {Vi, Va} Vew)?+
Q g
3 2 2)d0 << M2?||e|)? 2.
+3(0ew)’ + (eVw)”)d2 << M2 el o ]y, 0
Obviously, in the case Vi >> K and(or) Vo >> K, M = v/3max {V},Vs}.
Theorem 2. The bilinear form a(c,w) is V-elliptic, i.e. Im > 0 : a(e,c) >
m||C||W<1 :
m =min{K,o}.

Proof. Tt is known [8] that a bilinear form b(c, w) = [ (V1 5o W+ Vo 2o T W ) aQ
Q

is skew-symmetric, i.e. b(c,w) = —b(w, ¢) . Therefore, b(c,c) = 0. Then
(a(c,c)) = / <KVCVC + Z Vi azzc + O'C2> =
Q@ O
_ / (K(V0? +0c) = m el 0
W2
Q

Thus, the following two-sided estimate of bilinear form was obtained

mlell?, m < afee) < MllCH
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Consequences If the function f (z) € Ly(Q2), then, according to the Lax-
Milgram’s theorem [8], there is a single weak solution of the variation problem
(17). In addition, by using Cea’s lemma and theorem about the order of con-
vergence proved in [8], applying the FEM with linear basis functions (14), a
priori estimation of the error of approximate solution ¢ to an exact solution ¢
was obtained

lle = enlly,, w < C'lh*HCH )

3.2. Method of exponential replacements. According to the approach pro-
posed in this paper, taking into account the homogeneous boundary condition

Vi Va
a(c,w —K/Vchexp _ ot ars dQ+

2K

Viz1 + Voxo

Z /axlwex < 72]( )dQ+ (18)
Vizr + Vazo
- | d).
+J/cwexp< Ve >d

Theorem 3. The bilinear form a(c,w) is continuous, i.e. 3Q > 0 :
ae.w) < Qllellygollwly.

Proof. An expression for (a(c,w))? was considered and Cauchy-Schwarz’s
inequality was applied

(a(e,w))* =

2

lel + [/21‘2
— - = <
/ (KVch + E > 8xzw +Ucw> exp < Ve ) dQ) (19)
Q

2 2
/(KVCVUH—Z 535 w—l—acw) dQ/exp (—W) dsQ.
T

Q Q

Let’s evaluate the last multiplier

o (e o= {mpe o (252 -
Q

= nin exp [(1FL V223 | o
- Q p K Qa

where Sq is a square of the area €. Let’s evaluate the first multiplier of the right
side of (19) by introducing notation L = £ max{V;, V2} and using elementary
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inequality 2qp < ¢% + p?.

2
Vi dc
K — 0 <
/( Vch—i—Z 5 a$iw+acw> a0 <
Q (A

< / (KVeVw 4 LVew + ocw)?dQ <
Q

(3(KVch)2 +3(LVew)? + 3(Ucw)2> A<,

<

D

Let’s reinforce inequality by adding an integral term

/cz(Vw)2dQ >0
Q

2
/ (chvarZ?a@;inrUC’w) dQ <
Q 3

< / (S(KVch)2 +3(LVew)? + (cVw)? + 3(ch)2) Q) <

Q

< 3K? / (Ve)2d / (Vw)?dQ + 3L2 / (Ve)?dQ / (w)?dQ+

Q Q Q Q

4 / (¢)2d92 / (Va)2dQ2 + 302 / (c)%dQ / (w)?dQ <

Q Q Q Q

< P2/ (c2+(Vc)2>dQ/ (w2+(Vw)2>dQ,

Q Q

P = max{\/gK, V3L,\/30, 1}. Obviously, in the case of the singularly per-

turbed problem P = § max {V7, Va}.
Therefore, the following evaluation was obtained

2 2 .12 2
(ale,w))” < @ llelly, o llwllyo

Q= oo (12275 ;

Theorem 4. The bilinear form a(c,w) is V-elliptic, i.e. 3¢ > 0 : a(c,c) >
2
allel, o
2

and
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Proof. Let’s investigate the bilinear form
% oc ( Vizy + Voxg
s pl -

b(c,w) =

— a2
61’1 wex 2K > +

Jdc Vi1 + Voxo
— [ — - | dS)
+ 8mwe p ( ¥e d

Taking into account the homogeneous boundary conditions

Vizy + Vaxo _
Z / 81'@ <_ 2K > dQ =

( Vizy + Vazo

2K

) a0+

i Viz1 + Vaz
+Z4K/cwexp (—112}(22) dQQ.
v Q

Then
b(e,w) = —b(w, /cw exp ( V1$12-|I-{V2332> ds.
g Q
Therefore,
Vizy + Voxo
Zz: /c exp ( 57 )dQ
and
Vi V;
= [ (werew (IR Y ans
Q
VE+ Vi 2 Vizy + Voxg
A S - >
+( 3K —i—a)/c exp Ve dQ >
Q
> [ (Ve + ) e <—V1‘”“2+KV2$2> a9,
Q
44 = min {K , (V ;I'(VQ ) } . Obviously, in the case of the singularly perturbed

problem p = K.

Vizy + Vo
2, 2 171 202

- - @@= = >
/((Vc) —i—c)exp( 5 >dQ
Q

. Vizy + Vaxo 2, 2 _
> min exp <_2K> / ((Vc) +c ) dQ =
Q
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B Vizy + Voo 2, 2
= max exp ( Ve ) / ((VC) +c ) ds2.
Q

Therefore,

izl + V2m> O

2K

Consequences If the function f(z) € Lo(£2), then, according to the Lax-
Milgram theorem [8], there is a single weak solution of the variation problem
(19). In addition, by using Cea’s lemma and theorem about the order of conver-
gence proved in [8], applying the FEM with linear basis functions (14), a priori
estimation of the error of the approximate solution ¢, to the exact solution c
was obtained

¢ = pmax exp (

Q
lle = enlly,o < Clh5||0\|w2<2>~

In the case that Vi >> K and(or) Vo >> K classical approach of FEM
gives an error

V3max {V1,Va}
. 2

And method of exponential replacements gives an error

max {Vb Vz} \/{mén exp (%) }SQ

V3
9 Viz 4V
2 ngx exp (L E2E2)

e = enlly < Cl

o= cully < Ci el

Wi

Considering that the region 2 is in the first quarter of the coordinate system

min exp [ AFLEV2z2 )\ 1y
Q b K o

V3 max {Vi,Vh} S

le = enlly,0) < Crh—- Viarivazgy |l
Wy 2 ngx exp (B E2E2) 2

Therefore,

(21)

On the right sight of evaluation (20), a maximum of advection coefficients
appears, which in the case of singularly perturbed problems might be a high
number. This is the main reason for the loss of stability by using the classical
FEM approach. On the other hand, in the evaluation (21) the value in the
denominator of the corresponding constant value is much higher than in the
numerator and balances this issue.

Thus, the order of the convergence is preserved in both methods, but the con-
stant at h in the method of exponential replacements is much smaller. There-
fore, at the same value of step, an estimate of the error of the proposed method
is much better than without replacements.

4. NUMERICAL RESULTS
Numerical experiments were conducted for different ADR problems. In this
paper stationary and non-stationary cases were considered.
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4.1. Sationary problem. For the purpose of study of experimental order of
convergence, a stationary one-dimensional problem on [0, 1] with homogeneous
Dirichlet boundary conditions was considered. In this case, the exact solution
is known

f e2b _ 1 1 —exb
C(m) - o eo1b _ pand e+ eb _ panb e+ 10,
—V+VV24+4Ko
—2K '
The relative error of the method was calculated by the following formula
c(zli])
In the Table 1 we show relative errors with different advection coefficients and

numbers of mesh points. For the rest of input parameters the following values
were set K = 1.0; o =1.0; f = 1.0. As can be seen from Table 1 relative

(22)

1.2

Ry, = max
3

TABL. 1. Relative errors

N V=170 V =100 V =150

16 | 0.045904065 | 0.033463525 | 0.012854694
32 | 0.035734439 | 0.044157740 | 0.042586510
64 | 0.018337116 | 0.026518133 | 0.037617746
128 | 0.014365357 | 0.017101069 | 0.022781162

error of the exact and approximate solution is extremely small and decreases
with an increase in the number of mesh points.

To calculate the experimental order of the convergence, the following scheme
was applied. Approximations cp,,cp, were calculated on 2 grids for hi, hy =
0.5h1, respectively.

Denotation e; = |j¢ — ¢, ||, © = 1,2 was introduced. Then, orders of conver-

gence in the output spaces W2(1)(Q) and Lo(Q2) were calculated according to

the formula
N Ine; —Ines

P —nhy

Corresponding orders of convergence are not presented for N =20, V =1
and N = 80, V = 100 because results on 2 grids are needed to calculate
the orders. From the results obtained, the experimental order of convergence
coincides with the theoretical one obtained in the preceding paragraph of the
article.

4.2. Non-stationary problem. The same area and boundary conditions as
in the previous example were considered. The scheme (16) was applied. On
the (Fig. 1) an exact solution and approximations of the solution of problem
(1)-(3) in different moments of time are presented. The number of mesh points
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TABL. 2. Orders of convergence

VI N ||en— CHWZ(U len —cllp, | order pin Wg(l) order p in Lo
1 10 | 0,02764197 0,00081619 - —
20 | 0,01375605 0,00020139 1,0067934 2,0189291
40 | 0,00681524 | 5,16259-107° 1,0132307 1,9638124
100 | 20 | 0,0547536 0,0007214 — -
40 | 0,0398390 0,0002793 0,4587726 1, 3689093
80 | 0,0231478 | 8,26024-10° 0, 7833058 1,7576934
160 | 0,0116643 | 1,95351-10° 0,9887709 2,0801149
320 | 0,0053174 | 3,88396 - 1076 1,1332922 2, 330465

N = 128,mesh partitioning step by time variable § = 0.05. Input parameters
were set into the following values

V =100; K =1.0; f=1-—e"t

It is obviously that solution coincides with an exact solution (22) at t — oo.
Graphs 1, 2, 3 are approximated concentrations cp in moments of time ¢ =
0.1, = 0.2,t = 0.3, respectively; Graphs 4, 5, 6 are approximated concentra-
tions ¢ in moments t = 0.8,¢t = 1.0,¢ = 2, respectively; Graphs 7, 8, 9 are
approximated concentrations c; in moments t = 3,t = 4.5, = 5, respectively;
Graph 10 is an exact solution (22) of the problem (1)-(3) at ¢ — oc.

o=1.0;

0.00%6
0.0084
0.0072

0.006
0.0048
0.0038
0.0024

0.0012

P

0.1 02 03 04 08 08 07 08 03 1

Fig. 1. Approximations in different moments of time and an
exact solution

As can be seen from (Fig. 1), approximations of the unknown solution exactly
coincide with the solution of a stationary problem with increasing moments of
time.
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The concentration closer to the end of interval [0,1] in the fixed point = =
0.875 is shown on the (Fig.2). This is a point where, in fact, there is a prob-
lem in the case of significant advection coefficients, overcome by the method
proposed in this paper. Coefficients of diffusion, reaction, right part f and the
number of mesh points are the same as in the previous example.

On the graph 1 coefficient of advection V' = 70, on graph 2 coefficient of
advection V' = 100, on graph 3 coefficient of advection V' = 150.

0.01447C

0.012

0.0096

0.0072

0.0048

0.0024

0 0.85 1.7 255 34 4.25 5.1 5.95 6.8 7.65

FiG. 2. Approximations in the fixed point x = 0.875

As can be seen from obtained results, the solution coincides with the solution
of the stationary problem, that is, the process becomes stationary. It is also
worth noting that the value of the desired concentration c at the fixed point x =
0.875 decreases with an increase in the advection coefficient, which corresponds
to the nature of the phenomenon, as well as the fact that with an increase of
V', obtained approximation reaches stationary behavior faster.

5. CONCLUSIONS

Thus, in this paper, a singular perturbed initial-boundary problem of ADR
has been considered. A new alternative method based on exponential direct
and reverse replacement in FEM for resolving singular-perturbed problems of
ADR has been proposed.

The sequence of theorems have been proved and the existence of the solution
and order of convergence of the proposed method have been shown.

Numerical experiments have been conducted and results have been compared
with an exact solution, known in partial case. Obtained results have proved
the effectiveness of the proposed method.

In the long term, it is planned to apply the proposed method to the mathe-
matical models of the distribution of drugs and others in which the aforemen-
tioned specificity of the coefficients arises.
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ON ACOUSTIC EQUILIBRIA

E. V. TKACHENKO, A.N. TIMOKHA

PE3ZIOME. Crarrs y3arajpHIOE MaTeMaTUYdHy TEOpilo BIOpOpiBHOBAru Ha Bu-
30K aKyCTHYHO-KEPOBAHO! IOBEPXHI PO3JIAY MIiXK BHUIAPOBHHM Ta30M Ta
PiAMHOIO B KOHTEHHEPI.

ABSTRACT. The present paper generalises mathematical theory of vibroequi-
libria onto the case of the acoustically-driven interface between ullage gas and
liquid in a container.

1. INTRODUCTION

Using high-frequency vibrations and acoustic waves for the contactless con-
trol of a limited liquid volume is a relatively-old technologic idea coming from
the 70-90’s. In this context, one should mention the so-called acoustical levita-
tion (of liquid drops) utilised in chemical and pharmaceutical industries as well
as for getting ultra-pure (smart) materials [4,6,15]. A mathematical theory of
acoustically-levitated liquid drops can be found in [5]. Other popular studies
deal with mean (time-averaged) shapes of the contained liquid in tanks under-
going a high-frequency vibration. These are associated with novel microgravity
technologies, whose fundamentals were recently developed in experiments [7,12]
(see, also, references therein). To explain the experimental vibro-phenomena,
the authors extensively employ theoretical concept of vibroequilibria, which
were first considered and analysed in the applied mathematical works [1,2,8].
The vibroegilibria (time-averaged, mean liquid shapes in vibrating containers)
may dramatically differ from those caused by Newtonian gravitation and sur-
face tension. The difference is clarified by vibrational forces introduced by
Blekhman [3]. The extra (in addition to gravitation and surface tension) forces
affect both the mean liquid shape and its hydrodynamic stability, i.e., the
high-frequency tank vibrations may make the mean free surface unstable, or,
contrary, stabilise it. Using the mathematical theory from [1,2,8], even though
it was based on a rather simple hydrodynamic model of ideal compressible flu-
ids, demonstrates a rather adequate prediction of the experimentally-observed
vibrational phenomena.

Along with technologies of acoustical levitation and vibrational control of a
limited liquid volume in a shaken tank, there exists another class of contactless
(acoustic) techniques in microgravity, whose idea comes from famous experi-
mental observations by Wesseln [16]. These experiments showed that generat-
ing an acoustic field in the ullage gas (vapour) makes it possible to destabilise

Key words. Vibroequilibria; variational formalism; interfacial flows.
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(stabilise) the liquid-gas interface for certain input acoustic frequencies. For
cryogenic two-layer fluids, the destabilisation leads to extensive evaporations of
the condensed component, an increase of the mean pressure in the gas domain,
and, thereby, it causes the so-called acoustic pumping. A physical theory of
the acoustic pumping can be found in [10,13]. By utilising [5], the present pa-
per develops elements of a mathematical theory of the acoustic destabilisation
(stabilisation).

After formulating the non-dimensional mathematical statement of the con-
sidered hydrodynamic problem in § 2, which adopts the model of ideal com-
pressible barotropic two-layer fluids, we introduce small parameters (and re-
lations between them) in § 3 to apply the two-timing (separation of slow and
fast time) asymptotic technique and derive the free-surface problem describing
slow (modulated) motions of the liquid exposed to acoustic loads from the gas
side. Mathematically, the latter problem looks identical to those appearing in
the liquid sloshing dynamics for a motionless container when Newtonian grav-
itation, surface tension and acoustic radiation pressure become comparable on
the introduced asymptotic scale. This makes it possible to generalise classical
results [11] on sloshing of a capillary liquid. § 4 introduces acoustic equilib-
ria (generalisation of capillary equilibria) and spectral theory of linear relative
(natural) harmonic standing waves (natural sloshing modes and frequencies).
Spectral criterion of stability for the acoustic equilibria is formulated and ap-
plied to show that acoustic field can destabilise the flat liquid-gas interface (if
exists) for certain input acoustic frequencies. In § 5, we derive an analogy of
(pseudo-)potential energy for the acoustic equilibria.

2. STATEMENT OF THE PROBLEM
Following [1], we consider the rigid container

Q = Ql(t) N QQ(t) = {(IE,y, Z)|W(£L‘,y,2’) < O}a

which is filled by a two-layer fluid where the upper fluid is associated with the
ullage (ideal compressible barotropic) gas (domain Q1(t)) but the lower one
is an ideal compressible barotropic liquid (domain Q2(t)). The gas and liquid
domains are time-dependent and the interface

2<t) = aQQ(t) n an(t) = {((L’,y, Z)’§(27y727t) = 0}

is implicitly specified by the preliminary unknown function £ such that VE/|V¢|
is the outer normal to Q2(¢) on X(t). The gravitational acceleration is directed
downward, against the Oz-axis. Furthermore, we assume an acoustic field
generated in Q1(t) by means of a vibrator on a piece of the time-independent
gas boundary

Sy C 6Ql(t), So N E(t) = @,

which is, in fact, a part of the tank wall contacting with Q1(¢).

Asin [1,5], the two-layer fluid dynamics is described by the velocity potentials
vi(z,y, z,t), the pressure p;(z,y, z,t) and density p;(x,y, z,t) fields in ullage
gas (i = 1) and liquid (¢ = 2), respectively. Henceforth, the corresponding
boundary value problem is considered in the non-dimensional statement, which
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appears after choosing the characteristic dimension (length) [ and time 27 /0,
where o is the circular frequency of the acoustic field in the gas. This non-
dimensional mathematical statement takes then the form [5]:

1 i 1/

piV <Sbi + §(V¢i)2 + 0. ?Bo :U) = —Vpi; pi= <5) in Q;(t), (1)
0i
it div(pVio) =0 in @it [ pdQ = @)
Qi(t)
Onpi =0 on Si(t);  Onpi = — &/|VE| on X(t), (3)
—p2+a;2 (K1+K2)= —dpp1 on Z(t), (4)
(VW, V¢§)

—-—— >~ —cosa on 0X(t), 5
VWIVe] ) )
p1 Onp1 =epok 1 V(x,y,2) sint  on So, (6)

where S;(t) = 0Q N 0Q; (i = 1,2) are the time-depending wetted (contacted)
walls of @ by gas and liquid, respectively, 0% (t) is the contact (gas-liquid-tank)
line (curve), « is the contact angle (we assume that a =const), K; are the main
curvatures of 3(t), po; are the mean densities of gas and liquid, respectively, 7;
are the adiabatic indices for the barotropic fluids, pg; are the non-dimensional
mean (static) pressures in the fluids (i = 1,2), m; and mg are (constant)
masses of gas and liquid, respectively; the dot implies the time-derivative and
Oy, is the (outer) normal derivative. Furthermore, 0. = o1/po2l/Ts is the non-
dimensional (normalised) acoustic frequency, where Ty is the surface tension,
Bo = gl%pp2/Ts is the Bond number, where g is the gravity acceleration, k =
ol/c is the wave number of the acoustic field in the gas, where ¢ is the sound
speed in the gas, dg = po1/po2 < 1 is the ratio between the mean densities.

Originally, Vo(z,y, ) sin(ot) is the given dimensional distribution of the nor-
mal velocity on the acoustic vibrator Sop C 51 but the normalisation intro-
duces the non-dimensional distribution V' = Vj/sup|Vp|, the small parameter
e = sup |Vo|/(cpp) < 1 (ratio of the maximum vibration velocity and the sound
speed, an analogy of the Mach number) as well as the non-dimensional param-
eter o = O(1).

Remark 2. Since the fluids (gas and liquid) are barotropic, equations (1) admit
the Lagrange-Cauchy integral. However, this does not simplify the asymptotic
procedure below.

3. ASYMPTOTIC ALMOST-PERIODIC SOLUTION OF (1)-(6)

The problem (1)-(6) contains two small parameters, one of which is asso-
ciated with the density ratio dp < 1 but the second small parameter is the
non-dimensional value o, ? < 1, which physically implies that the sound fre-
quency is much larger than the lowest eigenfrequency of the interfacial (slosh-
ing) waves [11]. To construct an almost-periodic solution, we assume the fol-
lowing asymptotic relations between the two small parameters

poi/poz =60 = pie, p1=O0(); 07 =pme®, p=0(Q). (7)
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The asymptotic procedure adopts the multi-timing technique of vibrational
mechanics [3], which introduces fast and slow time scales such that the fast time
is associated with the dimensionless time ¢ appearing in the inhomogeneous
condition (6) (expresses the input acoustic signal) and the slow time scale 7
should be proportional to the square-root of the dimensionless forces of potential
type (Newtonian gravitation and surface tension). The latter forces are of the
order O(®); they appear in the dynamic interface condition (4) and the Euler
equations (1). Therefore, the slow time is defined as 7 = €3/t and the non-
dimensionless solution of (1)-(6), (7) can be posed in the following form

oo 00
k k
Y; = Zsk/3 sz( )(IE,y7Z,t,T), pi = Z&k/3 pz( )(LL’,y,Z,t,T),
k=0

- =0 ®
Pi = Z E(k/s) Pik) ($7 Y, 2,1, 7—)7 5 = Z Ek/g gk(x7 Y, 2,1, 7—)'
k=0 k=0

Substituting (8) into (1)-(6) and using the standard multi-timing technique,
which separates t and 7, derives the free-surface (sloshing-type) problem

Ap =0 in (Q2)(7), (9)
One =0 on (S2)(7), (10)
O = —0:¢/|V(| on (X)(7), (11)

Orp + %(W)2 + pp (Bo o — (K1 + K2)) +
+ % (K202 — (V®)2) = const on (X)(r), (12)

(VIV, V()

T =cosa on I(X)(7); / dQ = const

(Q2)
subject to

AD + k2D =0 in (Q1)(7);

On® =0 on (S1)(7) U (X)(7);
V(z,y,2)

(13)

On® = 1o on Sp,

which describes the wave function @ in the slowly changing gas domain (Q1)(7).

Here, () denotes averaging by the fast time ¢ and, therefore, (Q2)(7), (S2)(T)
and (X)(7) are the fast-time averaged liquid domain, wetted tank surface and
interface, respectively. The boundary value problem (9)-(13) couples the main
terms of the asymptotic representation (8)

w2 =€ (z,y,2,7) + o(e);
1 = £2/3 O(x,y,z,7)sint + O(e); (14)
é‘ = C($>y7277) + 0(5)7

which are also independent of ¢.
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Remark 3. The boundary value problem (9)-(12) is of the mathematically iden-
tical structure to the classical sloshing problem of o capillary liquid but with extra
pseudo-differential terms in the dynamic boundary condition associated with ®
appearing as solution of the Neumann boundary value problem (13). These ex-
tra terms can be interpreted as the acoustic radiation pressure. The radiation
pressure parametrically depends on the slowly-varying interface (X)(7).

4. ACOUSTIC EQUILIBRIA AND RELATIVE HARMONIC WAVES
If the -time averaged interface does not depend on the slow time 7, i.e.

<E> = ZO :CU = C0($7y72> = Oﬂ <QZ> = <QZ>0 (Z = 1a 2)7
Y= 07 ¢ = ‘I’O(%y, 2)7

the problem (9)-(13) reduces to the stationary boundary problem

1
— (K1 + K2) — pu Bo x + 1 (k‘2 P2 — (Vdg)? ) = const on X,
(15)

(VW7 VCO) /
———— >~ = cosa on J0Xy; d@) = const,
VW[Vl (@z2)o
where @y comes from the Newman boundary value problem
ADg + k> ®o =0 in (Q1)o;
On®o =0 on <Sl>0 U Xo; (16)
0@ = MOV(x,ky, %) on So,

(SoUXpU(S1)o = 9(Q1)0). Equality (15) expresses a balance between surface
tension, gravitation and the Langevin acoustic radiation. Following [5], solution
of (15), (16) (surface Xy and wave function @) is called the acoustic equilibrium.

Remark 4. For the introduced asymptotic relations (7), the time-averaged
(mean) surface o may dramatical differ from the capillary surface. The Lan-
gevin acoustic radiation can also influence stability of Yo as well as the natural
sloshing frequencies and modes by (9)-(13), which are, in fact, small harmonic
waves relative to Xg.

Suppose Yo admits the singe-valued representation, x = Hy(y, z), and lin-
earise (9)—(13) relative to the acoustic equilibrium ¥y. Furthermore, we con-
sider the natural sloshing modes (H,, V) and frequencies (w), which corre-
spond to the harmonic solution

h = exp(iwT)H(y,2); ¢ = iwexp(iwr)Y(z,y,2), ®=iwexpiwr)¥(z,y,2)

of the linearised problem. The result is the spectral boundary problem with
respect to H and ¢

H
(1+ (VHo)* )'/2

A =01in (Q2)0; Onty =0 on (S2)o; Oy = on Yo, (17)
—w? Y+ pAH =0 on Yo, (18)
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where w? is the spectral parameter and the linear operator A = A; + Ay takes
the form
AH =[A1H| + [A2H] =

[ VH  (VH,VHy)VHy
- { v { L+ (VH)2) 2 (14 (VH? "2 H *

Ly (19)
+ {ﬂ{k By Doy H — (VPo, VP, ) H+
YR B W — (VQ)O,V\II)} +B0H},
W, H, + W.H, _ W,Ho,+ W.Ho. (VHVHy)
VW Wl e vme T
Hdydz = 0,
o
AU+ k2T =0 in Qo; 9,¥ =0 on (S1)oU So,
Boun H — ®oo H — Doy Hy — [Bowy Hoy + Pows Hol H 21
0,0 = 2 0 oy Hy — [Poxy Hoy + PoazHo:] on Y. (21)

(1+ (VHp)? )12
One can study spectral properties of the pseudo-differential operator A and
show that it is self-conjugated and has a real pointer spectrum with only a finite

set of negative eigenvalues. The following theorem establishes main properties
of (17), (18) with the operator (19)-(21).

Theorem 1. Let Hy, ®g be a solution of the acoustic equilibria problem (9)-
(13) such that Hy € C?*(pXo) and &9 € C%({Q1)o U Xo) (here, pXq is the
projection of ¥ on the Oyz plane). Then

1. The spectral boundary problem (17)-(21) has a real pointer spectrum con-
sisting of eigenvalues and {H,} is the functional basis in the factor-space
Lo(pXo)/ const.

2. The set of negative eigevalues {n|w? < 0} is finite.

Proof. Introduce the auxiliary Steklov-Poincédre operator T': H — v|x,,, which
is defined by the Neumann problem (17). This operator 7" is precompact and
invertible on the dense set in the factor-space La(pXg)/const. The boundary
condition (18) yields the spectral equation

Co(w)H = (A — W*T)H = 0. (22)

Spectrum of (22) coincides with spectrum of the original problem (17)-(21).

Consider operator Aj, defined by formulas (19). It appears when analysing
the eigenoscillations of the capillary liquid and is unbounded, self-conjugate
and positive in Lo(pXp)/const. Let us introduce the auxiliary operators C
and Cy as

C1(w?) = W AT — ppy (B + A7 Ag) = Co(w?) — pn E,

where C is due to the action of A7! from the left on operator Cp in (22). The
operator Ca(w?) is precompact in the factor-space Lo(p¥g)/const. If w? is the
eigenvalue of (22), then puy is the eigenvalue of the self-conjugate operator Cy,
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and, therefore, w? is the eigenvalue of the original spectral problem (17)-(21).
Because T and A are self-conjugate operators, their eigenvalues are real.

Regular set of the spectral boundary problem (17)-(21) is not empty and
contains, at least, complex numbers with non-zero imaginary components. For
a regular point w%, equation (22) is equivalent to the spectral equation

(C+ (W —wj) 'E)H =0

where C(w3) = C1(wd) AT is the compact operator in La(pY). Because
C' is compact, its pointer spectrum consists of eigenvalues. As a consequence,
the first assertion of the theorem holds true.

All eigenvalues of Al_lT are positive and follow from the spectral boundary
problem on the natural sloshing modes and frequencies of the capillary liquid,
i.e. for all admissible H, the inequality

(A7'TH, H) >0
holds true. Therefore,
WZ = ppr ((Hn, Hy) + (A1_1A2an Hn))/(Al_lTHm H,),

where (H,, H,) = 1, (AI_ITHn,Hn) > 0. Because Al_lAQ is compact and
{H,} is the functional base in La(p%y), then (Aj'AsH,, H,) — 0,n — oo.
Therefore, the second assertion holds.

Corollary 4.2 a. The acoustic equilibria may blow up only due to a finite set
of linearly-independent perturbations.

Corollary 4.2 b. The acoustic equilibria are stable, if and only if, all eigen-
values {w?2} of A are positive.

The second corollary is the same as the so-called spectral stability criteria,
which was already used in [11] for analysing the stability of the capillary equi-
libria. The stability was investigated by studying the spectrum of the A;-type
operator.

Example 1. (The flat acoustic equilibrium.) The flat capillary surface in an
upright cylindrical tank is realised for the contact angle o = 7/2. The flat ¥ is
also possible for the acoustic equilibria when acoustic vibrator on Sy generates
a planar standing wave, namely, when

Vo .
- = — khy),V =1).
c sin(khl)’ 0 sin(kha), V(y, 2) )

The acoustic equilibrium is then associated with the following solution
Ho(y,2) = 0;  ®o(w,y,2) = k2 cos(ka). (23)
According to [11,14], the flat capillary surface corresponds to a unique so-
lution of the capillary problem in an upright circular cylinder, if and only if|
Bo > k%, where k11 is the minimum root of Jj(k11) = 0 (J,(-) is the Bessel

function of the first kind). Let us pose solutions of the nonlinear boundary
value problem (15), (16) as the Fourier series by

hpg(r,0) = Jp(“pqr)glons(pe)

Vb(%yaz) = Vi = const (5 =
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in the cylindrical coordinate system, i.e.

Ho(r,0) = > ipg hipg(r,6), (24)
pg#00
and
®o(z,y,2) = k2 cos(kz) + Z Xpq bpq(x) hpg(r,0) +x00 cos(k(xz—h1)), (25)
pg#00
where

B cosh(o(z — hy)) o >

B cosh(ph1) ¢ tanh(phy)’ B \/ﬁ
bp@(x) - COS(¢($ . hl)) o ¢> - ‘Hpq k ‘7
— K
cos(oh1) ¢ tan(ghy)’ P ’
in which 7,4, Xpq are the unknown coefficients.
Each index pq corresponds to two unknown coefficients for asymmetric solu-
tions and one for symmetric ones hp,(r, §), namely,

Ny Jp(Kpgr) sinpl +nl J,(kpgr) cospl, p #0,
Tpa hpq(r,e):{ pa Jp\Fpg pq /p\Fpq (26)

Nog Jo(Kog)s p=0.

Inserting (24) and (25) into equations (15) and (16) and using the Fredholm
alternative leads to an infinite system of nonlinear equations with respect to
n = {npg}. To within the o(||n||)-quantities, we have the equalities

Gap = Cap Nap + o(|nl]) = 0, (27)
where )
Cpg = p(Bo + kipg ) + 2

(Cpq are the eigenvalues of the operator A).

The system (27) admits the trivial solution n = 0, which corresponds to the
flat acoustic equilibrium. Trivial solution is stable as Cpy > 0. When there
is an index pg, such that Cpq(k) = 0, the trivial solution may not become
unique. For the eigenvalues with p # 0, two equations in (27) do not have
linear components at 7,, but the eigenvalues Cyq, ¢ = 1,2,... have the single
multiplicity. In the latter case, the Krasnoselsky theorem [9] gives the sufficient
condition of bifurcation of the trivial solution.

bpe(0), p=0,1,..; ¢=1,2,... (28)

5. PSEUDO-POTENTIAL ENERGY OF ACOUSTIC EQUILIBRIA

The above example shows that finding the stable acoustic equilibria from
its differential statement (15), (16) can be efficient when interface ¥ coincides
with the capillary surface. If the acoustic equilibrium ¥ differs from the capil-
lary surface, identifying solutions of (15), (16) and studying their stability may
become a rather complicated task. For the capillary surface, this task suffi-
ciently simplifies by employing the potential energy functional whose minima
correspond to the stable liquid shapes. Finding these shapes reduces to a direct
numerical minimisation of the potential energy functional.
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Theorem 1 in [1] states that the smooth solution of (1)-(6) can follow from
necessary extrema condition of the functional

to \V/ 2
G(& i pi) = /tl {/QQ P2 <( 9202) — Us(p2) — pp1 €° Bo x) dQ—
— pp €% (|%] = cosalSa|) + (29)

2
+ 8/@ p1 ((v?) —Uy(p1) — i € Bo x) dQ} dt

subject to (1)-(3), (6) and for small variations
0tz = 0, Opilty e =0 (30)
where p; = p? dU; /dp;.

By using the multi-timing technique, one can show that

<G(§7 Pis Pz)) = const +¢€ g(C7 SO) + 0(84/3)7

where
T2 \V4 2
Q(C,SO)Z/H {/( 2><( ;p) —u,ulBom> dQ—
— pp ([(E)| — cos af(S2)[) + (31)
H1 252 2 Mol
+ T o (K*®° — (V®)?) dQ — ok /SO @V(:E,y,z)dS} dr,
where

/ (Vw)de
(Q2) 2

implies the pseudo-kinetic energy for the sloshing problem (9)-(13) but the
remaining quantities can be interpreted as the minus pseudo-potential energy.

Theorem 2. The problem on the stable acoustic equilibria Yo : (o = 0 s
equivalent to identifying the minima of the functional

I(¢o) = p <|Eo| + cos al(S1)| + /<Q Bode) +

2)0

32
+(i /< >(k2<1>%—<V<I>o>2>dQ+’”“) V(w,y,z><1>od5>= .

2k /g,
= —G(Co(7,y, 2), Po(z,9, 2)),

where ®q is the solution of (16) subject to the volume conservation condition

/ dQ) = const.
(Q2)0

The proof comes from computing the second variation by Hy of the functional
II(z — Hp). The second variation by 3¢ for the surface tension quantities was
already derived in [11] (chapter 1). The first variation by ®¢ is equal to zero
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restricted to (16) but the first variation by Hy leads to equation (15), which
links ®¢ and Hy. Furthermore,

I =pt / (ASH,5H)dydz,
pXo

where A is the operator by (19)-(21). Condition §°II > 0 is equivalent to the
spectral stability criteria 4.2 a.

6. CONCLUSIONS
By applying the fast-time averaging of the non-dimensional free-interface
problem for two compressible fluids, the mathematical theory of levitating drops
in |5] is generalised to study how acoustic field in the ullage gas may affect the
mean (time-averaged) liquid-gas interface (called the acoustic equilibrium) and
its stability. The theory includes a spectral theorem on the natural frequencies
and modes and a pseudo-potential energy introduced for the acoustic equilibria.

The second author acknowledges the financial support of the Centre of Au-
tonomous Marine Operations and Systems (AMOS) whose main sponsor is the
Norwegian Research Council (Project number 22325/-AMOS).
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